Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory

Title

Database of physical, chemical and toxicological properties of chemical and biological (CB) warfare agents for modeling airborne dispersion in and around buildings

Permalink

https://escholarship.org/uc/item/6v14r67g

Authors

Thatcher, Tracy Sextro, Rich Ermak, Don

Publication Date

2000-06-01

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY

Database of Physical, Chemical and Toxicological Properties of Chemical and Biological (CB) Warfare Agents for Modeling Airborne Dispersion In and Around Buildings

Tracy Thatcher, Rich Sextro, and Don Ermak Environmental Energy Technologies Division

June 2000

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or The Regents of the University of California.

Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Database of Physical, Chemical and Toxicological Properties of Chemical and Biological (CB) Warfare Agents for Modeling Airborne Dispersion In and Around Buildings

Tracy Thatcher¹, Rich Sextro¹, Don Ermak²

¹Lawrence Berkeley National Laboratory Environmental Energy Technologies Division Indoor Environment Department Berkeley, CA 94720

²Lawrence Livermore National Laboratory Livermore, CA

June, 2000

This work was supported by the Office of Research and Development, Office of Nonproliferation and National Security, of the Department of Energy under Contract No. DE-AC03_76SF00098

TABLE OF CONTENTS

Page

Purpose

Background

Tables for Chemical Warfare Agents

Table 1A: Chemical Warfare Agents

Table 1B: Physical Properties of Chemical Warfare Agents

Table 1C: Toxicological Properties of Chemical Warfare Agents

Tables for Biological Warfare Agents

Table 2A: Physical Properties of Biological Warfare AgentsTable 2B: Toxicological Properties of Biological Warfare AgentsAppendix A : Definitions and Units for Airborne ConcentrationsAppendix B Lethal Dose and Exposure Levels for Anthrax and SarinReferences

14

2

10

Purpose

The purpose of this report is to provide a single, consistent set of unclassified data on the physical, chemical and toxicological properties of chemical and biological (CB) agents that might be released in an urban terrorism incident, and references for the sources of the data. These data are needed for predicting airborne concentrations of CB agents in and around buildings as a function of time and their potential toxicological consequences, and for developing mitigation plans. As new information emerges, we will update this reference document. In addition to the data tables, Appendix A summarizes definitions and units for airborne concentrations of CB agents more detailed information on the lethal dose and exposure levels for anthrax and sarin.

Background

The agents in this reference have been divided into two major classes: chemical and biological. The chemical agents have been further divided into sub-categories reflecting their toxicological effects, e.g., respiratory agents, nerve agents, etc. The biological agents are sub-divided into categories based on type of micro-organism. Within the sub-categories, agents are listed alphabetically.

Chemical and biological agents differ significantly in their physical forms and physical behavior in indoor and outdoor air. The chemical agents, such as phosgene or sarin, may be gases, liquids or solids at typical indoor conditions. The liquids may be dispersed as vapors and/or aerosols (droplets or particles). If dispersed as an aerosol, some of the liquid chemical agent may volatilize over time to give a mixture of vapor and particles. Chemical agents that are solids are often dispersed as powders, i.e., particles suspended in air. Vapors and particles exhibit different physical behavior with respect to persistence in air and deposition to surfaces.

In the first set of tables, the common and official chemical names of chemical agents are provided along with their Chemical Abstract Service (CAS) Registry numbers. The database includes molecular weight (MW), density, boiling and melting points, vapor pressure, vapor density and information on hydrolysis rate and solubility in water. Toxicological properties include the Airborne Exposure Limit (AEL), which is the 8-hour time-weighted concentration in air that is a permissible exposure, LCt_{50} , the exposure (in units of mg-min/m³) at which death will occur in 50% of the exposed population, and the detoxification rate (if any).

Biological agents, listed in the second set of tables, are particles (aerosols), with sizes that vary depending upon the specific agent. They may consist of a toxin from a biological agent (e.g., botulinum toxin), a bacterial organism, (e.g., anthrax), a fungal agent (e.g., Valley fever), a rickettsia organism (e.g., typhus) or a viral organism (e.g., dengue fever). This document provides information on biological agents in each of these classes, on dissemination and/or route of exposure, range of particle size and shape, incubation period, contagiousness, and persistence. The particle size range represents the physical size of the organism or spore and, therefore, is the minimum particle size for an aerosol containing the agent. Actual particle size distributions for an aerosol containing a given biological agent will vary, depending primarily upon the preparation and dissemination methods. Thus, the mass median aerosol diameter and size distribution may be larger than the values given in Table 2A.

TABLES FOR CHEMICAL WARFARE AGENTS

Table 1A: Chemical V	Warfare Agents
----------------------	----------------

Agent Type	Common Name ^a	Chemical Name	Code	CAS Number
Respiratory Agents	Chlorine	Chlorine		7782-50-5
	Diphosgene	Trichloromethyl chloroformate	DP	503-38-8
	Phosgene	Carbonyl chloride	CG	75-44-5
Nerve Agents	Sarin	Isopropylmethylphosphonofluoridate	GB	107-44-8
	Soman	Pinacolylmethylphosphonofluoridate	GD	96-64-0
	Tabun	Ethyl-n-dimethylphosphoroamidecyanidate	GA	77-81-6
	V-agents	Ethyl S-2 diisopropylaminoethyl-	VX	50782-69-9
•		methylphosphonothioate		
Blood Agents	Arsine	Arsenic trihydride	SA	7784-42-1
	Cyanogen Chloride	Cyanogen chloride	CK	506-77-4
	HCN	Hydrogen cyanide	AC	74-90-8
Blister Agents	Ethyldichloroarsine	Ethyldichloroarsine	ED	598-14-1
	Lewisite	Dichloro (2-chlorovinyl)arsine	L	541-25-3
	Methyldichloroarsine	Methyldichloroarsine	MD	593-89-5
	Mustard, Distilled	2,2- dichloro-diethyl-sulfide	HD	505-60-2
	Mustard-Lewisite	mix of HD and L	HL	
	Mustard-T Mixture	60% HD, 40% TT (similar to HD)	HT	
	Mustard, Nitrogen	2,2-dichloro-triethylamine	HN-1	538-07-8
	Mustard, Nitrogen	2,2,2-trichloro-triethylamine	HN-3	555-77-1
	Mustard, Sulfur	1,1- thiobis(2-chloroethane)	H	
	Phenyldichloroarsine	Phenyldichloroarsine	PD	696-28-6
	Phosgene Oxime	Dichloroformoxime	CX	1749-86-1
Vomiting Agents	Adamsite	Diphenylaminochloroarsine	DM	578-94-9
	Diphenylchloroarsine	Diphenylchloroarsine	DA	712-48-1
	Diphenylcyanoarsine	Diphenylcyanoarsine	DC	23525-22-6

a. When no common name is available, the chemical name is used.

				Boiling	Melting	Vapor	Vapor		
			Density	Point	Point	Pressure	Density		Solubility
Common Name	Code	MW	(g/cc)	(°C)	(°C)	(mmHg)	(air=1)	Hydrolysis	(in water)
Respiratory Agents							-		
Chlorine		71	1.41	-34.51	-101 ¹	4992 (20) ¹	2.41	Slow	
Diphosgene	DP	198	1.65	1271	-57 ¹	$4.2 (20)^{1}$	<u>6.8</u> ¹	Slow	
Phosgene	CG	99	1.37 ¹	7.6 ¹	-128 ¹	1173 (20) ¹	3.4 ¹	Rapid	
Nerve Agents									
Sarin	GB	141	1.09 ^{1,2}	158 ^{1,2}	$-50^{1}/-56^{2}$	$2.9(25)^{1,2}$	4.9 ^{1,2}		Miscible ^{2,3}
Soman	GD	182	1.02 ^{1,2}	198 ¹	-42 ^{1,2}	$0.40(25)^{1,2}$	6.3 ^{1,2}	Slow	2.10% ^{2,3}
Tabun	GA	162	1.07 ¹	220 ²	-50 ^{1,2}	$0.07(25)^{1}$	5.6 ^{1,2}	Slow	9.80% ³
V-agents	VX	267	1.01 ^{1,2}	298 ^{1,2}	-511,2	0.0007 (25) ^{1,2}	9.2 ^{1,2}	Slow	Slight ² /Mis cible ³
Blood Agents					- I				1
Arsine	SA	78	1.341	-62.51	-116'	$11100(20)^{1}$	2.7	Rapid ¹	
Cyanogen Chloride	CK	61	1.18 ¹	13 ¹	-7 ¹	$1000(25)^{1}$	2.11	Very slow ¹	6.90% ³
HCN	AC	27	0.69 ¹	26 ¹	-13 ¹	742 (25) ¹	0.9 ¹	Low	Complete ³
Blister Agents			····					-4	· · · · · · · · · · · · · · · · · · ·
Ethyldichloroarsine	ED	175	1.66 ¹	156 ¹	-65 ¹	2.09 (20) ¹	6.0 ¹	Rapid ¹	
Lewisite	L	207	1.89 ^{1,2}	190 ^{1,2}	01	0.394 (20) ^{1,2}	7.1 ^{1,2}	Rapid ¹	Insoluble ²
Methyldichloroarsine	MD	161	1.84	133 ¹	-55 ¹	$7.76(20)^{1}$	5.51	Very Rapid ¹	
Mustard, Distilled	HD	159	1.27 ^{1,2}	217 ^{1,2}	14.5 ^{1,2}	$0.072(20)^{1,2}$	5.4 ¹ /5.5 ²	17 min ¹	0.09%3
Mustard-Lewisite	HL	186	1.66 ¹	190 ¹	-251	$0.248(20)^{1}$	6.5 ¹	Slow	
Mustard-T Mixture	HT			· .					
Mustard, Nitrogen	HN-1	170	1.09 ¹	194 ¹	-34 ¹	$0.24(20)^{1}$	5.9 ¹	Slow	
Mustard, Nitrogen	HN-3	205	1.24 ¹	256 ¹	-3.7 ¹	0.0109 (25) ¹	7.1 ¹	Slow	
Mustard, Sulfur	Н	· .	1.243	Varies ³		Varies ³	5.5 ³		0.09%3
Phenyldichloroarsine	PD	223	1.65	252 ¹	-20 ¹	$0.033(25)^{1}$	7.7	Rapid ¹	
Phosgene Oxime	CX	114	1.50	54 ¹	40 ¹	None	(solid)	Unknown	70%3
Vomiting Agents			****	·····		· · · · · · · · · · · · · · · · · · ·			
Adamsite	DM	278	1.65	410 ¹	195 ¹	$2e-13(20)^{1}$	(solid)	Rapid ¹	
Diphenylchloroarsine	DA	265	1.39 ¹	333 ¹	41	$0.0036(45)^1$	(solid)	Rapid (gas) ¹	
Diphenylcyanoarsine	DC	255	1.33 ¹	350 ¹	31.51	$0.0002(20)^{1}$	(solid)	Moderate	

Table 1B: Physical Properties of Chemical Warfare Agents (references indicated by numerical superscripts)

Common Name	Code	AEL ^a (mg/m ³)	LCt ₅₀ (inhalation) ^b (mg-min/m ³)	Detoxification Rate ^c
Respiratory Agents			·	
Chlorine		· · · · · · · · · · · · · · · · · · ·	19000 ¹	Rapid ¹
Diphosgene	DP		3200 ¹	Negligible Detoxification
Phosgene	CG	· · · · · · · · · · · · · · · · · · ·	3200 ¹	Negligible Detoxification
Nerve Agents				
Sarin	GB	0.0001 ^{2,6}	70 ^{1,2} , 100 ³	Slow ¹
Soman	GD	0.00003 ²	100 ¹ , 70 ² , 50 ⁶	Slow ¹
Tabun	GA	0.0001 ^{2,6}	400 ^{1,3} , 135-400 ⁶	Slight ¹
V-agents	VX	0.00001 ^{2,6}	$100^1, 30^2, 10^3, 20-50^6$	Very Slow ¹
Blood Agents	I	· · · ·		3
Arsine	SA	· · · · · · · · · · · · · · · · · · ·	5000 ¹	Slow ¹
Cyanogen Chloride	СК		11000 ^{1,3}	Rapid ¹
HCN	AC	······································	2000-5000 ^{1,3}	Rapid ¹
Blister Agents				
Ethyldichloroarsine	ED		3000 ¹	Rapid ¹
Lewisite	L	0.003 ²	1200-1500 ^{1,2,3}	Negligible Detoxification ¹
Methyldichloroarsine	MD		3000 ¹	Rapid'
Mustard, Distilled	HD	0.003 ^{2,6}	1500 ^{1,3} , 10000 ⁶	Very Slow ¹
Mustard-Lewisite	HL		1500'	Negligible Detoxification ⁴
Mustard-T Mixture	HT	0.0036	100006	
Mustard, Nitrogen	HN-1		1500 ¹	Negligible Detoxification ¹
Mustard, Nitrogen	HN-3		1500 ¹	Negligible Detoxification ¹
Mustard, Sulfur	H	0.003 ⁶	1500 ³ , 10000 ⁶	
Phenyldichloroarsine	PD		2600 ¹	Rapid'
Phosgene Oxime	CX		32003	Very Slow ¹
Vomiting Agents	·	L		
Adamsite	DM		15000 ¹	1-2 hrs ¹
Diphenylchloroarsine	DA		15000 ¹	1-2 hrs'
Diphenylcyanoarsine	DC		10000'	1 hr'

Table 1C: Toxicological Properties of Chemical Warfare Agents (references indicated by numerical superscripts)

^a Airborne Exposure Limit: permissible 8 hour time weighted average concentration. ^b Inhalation exposure which would be lethal for half of the exposed population. ^c Rate at which the human body can metabolize or eliminate the toxin. Compounds with low detoxification rates may accumulate to dangerous level within the body, even at very low concentrations.

TABLES FOR BIOLOGICAL WARFARE AGENTS

Type	Common Name	Biological Class	Spore Forming	Persistence	Size (µm) ^{a.}	Shape
Biotoxins	Aflatoxins		NA		b	
	Botulinus	otulinum toxin, protein	NA	12 hrs air'	b.	
	Ricin		NA	very stable'	b.	
	Tricothecene	anoprotein	NA	very stable'	b.	<u> </u>
Bacteria	Anthrax	acillus anthracis	2 hrs ¹	years ⁴	$\sim 1 \times \sim 1.5^{12}$	Rod ^{1,4}
	Brucellosis	rucella melitensis, abortus, and suis	No ¹			Rod ¹
	Cholera	ibrio cholera	No ⁴			Bent Rod ⁴
	Diptheria	orynebacterium Diptheriae	No ⁴		$0.5 \text{ to } 1 \text{ (D) } \text{x } 2 \text{ to } 7 \text{ L})^4$	Curved Rod ⁴
	Dysentary	higella Dysenteria	No ⁴			Rod⁴
	Glanders	alleomyces Mallei	No ⁴	2-3 weeks ⁴		Rod ^{1,4}
	Melioidosis (Whitmore's)	alleomyces Pseudomallei	No ⁴	month or more ⁴	0.5 (D) x 1 to 2 (L) ⁴	Rod ⁴
	Paratyphoid Fever	almonella Paratyphi/Schottmuelleri	No ⁴	weeks to months ⁴		Short rod ⁴
	Plague	asteurella Pestis	No ⁴	days-weeks ⁴		Rod ^{1,4}
	Pulmonary Tuberculosis	ycobacterium Tuberculosis		weeks to months ⁴	.2 to 0.5 (D) x 1 to 4 $(L)^4$	Slender rod ⁴
	Salmonella food poisoning	almonella typhimurium	No ⁴	-	0.5 (D) x 1 to 1.5 (L) ⁴	Plump Rod ⁴
1	Tularemia	asteurella Tularensis	No ⁴		varies ⁴	Sphere
	Typhoid Fever	almonella Typhosa	No ⁴	weeks to months*		Rod
Fungi	Histoplasmosis	istoplasma capsulatum	Yes ⁴	months to years ⁴	1 to 5^4	Oval⁴
	Nocardiosis	ocardia Asteroides			diam $<1^4$	Filament ⁴
	Valley Fever	occidioides immitis	Yes ⁴	months to years ⁴	20 to 80 ⁴	Spherical ⁴
Rickettsia	Endemic Typhus	ickettsia mooseri	NA			
	EpidemicTyphus	ickettsia prowazekii	NA		0.34	Sphere/Rod ⁴
	Q fever	oxiella burnetti	NA	5-60 days ⁴	0.25 x 0.5 (D) to 1.5 (L) ⁴	
	Scrub Typhus	ickettsia Tsutsugamushi	NA		$0.2(D) \ge 0.4(L) = 0.5(D)$	Short Rods ^⁴
					x 1.3(L) ⁴	
	Spotted fever	ickettsia rickettsii	NA		$0.2 \text{ to } 0.3 \text{ (D) x } 1 \text{ (L)}^{*}$	Rod Pairs"
Viruses	Denegue fever	enegue fever virus	NA		$0.017 \text{ to } 0.025^4$	
	Encephalitis	ncephalomyelitis viruses	NA	variable⁴		
	Influenza	nfluenza virus	NA		0.07 to 0.1 ⁴	
1	Psittacosis		NA		1 	
	Rift Valley fever		NA		0.023 to 0.035 ⁴	
	Smallpox	ariola virus	NA	years ⁴	0.15 to 0.2*	
	Yellow fever	ellow fever virus	NA		0.017 to 0.028 ⁴	

Table 2A: Physical Properties of Biological Warfare Agents (references indicated by numerical superscripts)

a. For the sizes of rod shape biological agents, the diameter (D) and length (L) of the rod are given.
b. The biotoxins are chemicals produced by biological organisms; particle size will depend upon methods of preparation and dissemination.

Common Name	Dissemination/Route of Entry	Incubation/	Contagious?	50% Infective Dose	Untreated
		Onset	u U	(organisms/person)	Lethality (%)
Biotoxins					
Aflatoxins	Incapacitating or additive to other agents ¹		No		
Botulinus	Ingestion, contact with wounds, possibly inhalation ^{1,4}	6 hrs-8 days ¹	No	$0.4 \ \mu g/person (LD_{50})^5$	
Ricin	Injection (umbrella, balls), microencapsulation ¹	hours	No	$0.1 \text{ mg/kg} (LD_{50})^{5}$	
Tricothecene	Yellow-green powdered aerosol, encapsulation not required ¹		No	500 μg/kg (LD ₅₀) ⁷	
Bacteria		· · · · · · · · · · · · · · · · · · ·			
Anthrax (N)	Spore inhalation, ingestion (rare), broken skin ^{1,4}	1-2 hrs ¹ , 1-7 days ⁴	No ⁵	8,000 to 20,000 ⁵	1005
Brucellosis (US)	Broken skin, eyes, ingestion ¹	1-3 wks ¹ , 1- 8.5 wks ²	No ⁴		2'
Cholera	Ingestion, flies ¹	1-5 days ^{1,4}	Yes ⁴		
Diptheria	Contact, droplet inhalation ⁴	2-5 days ⁴	Yes⁴		
Dysentary	Ingestion, flies, feces ⁴	1-7 days ⁴	Highly ⁴		
Glanders	Horses, mules, asses, droplet inhalation, broken skin ⁴	3-5 days⁴	Yes ⁴		
Melioidosis (Whitmore's)	Rodent contaminated food, rat fleas ⁴	few days ⁴	Not typically ⁴		
Paratyphoid Fever	Ingestion, infected feces and urine ⁴	1-10 days4	Yes ⁴		
Plague	Insect or animal bites, airborne mucus ¹	1-4 days ¹ , 1- 7days ⁴	Yes ^{1,4}		
Pulmonary Tuberculosis	Inhalation droplets, contact, natural tranmission slow ⁴	month ⁴	Yes⁴		
Salmonella food poisoning	Ingestion, rodents, food handling (eggs and meat), contact, flies ^{1,4}	6-48 hours ^{1,4}	Yes⁴		
Tularemia	Insect or animal bites, inhalation, ingestion, eyes ^{1,4}	2 -7 days ¹ , 1- 10days ^{4,5}	No⁴	252	6 [°] , 30 (inh) ¹
Typhoid Fever	Ingestion, infected feces and urine ^{1,4}	1-2 wks ¹ , 3- 38days ⁴	Yes⁴		
Fungi		· · · · · · · · · · · · · · · · · · ·			
Histoplasmosis	Dust, inhalation (primary), ingestion, broken skin ⁴	5-18 days ⁴	No ⁴		
Nocardiosis	Dust, soil, dry vegetation, inhalation, infection of wounds ⁴	Unknown⁴	Possible ⁴		
Valley Fever	Dust, soil, dry vegetation, inhalation, skin, ingestion ^{1,4}	10 to 21 days ⁴	No⁴		

Table 2B: Toxicological Properties of Biological Warfare Agents

Common Name	Dissemination/Route of Entry	Incubation/	Contagious?	50% Infective Dose	Untreated
		Onset		(organisms/person)	Lethality (%)
Rickettsia		•			
Endemic Typhus	Rodent flea bites ⁴	6-14 days ⁴	No ⁴	21	
Epidemic Typhus	Insect bites, inhalation infected louse feces ^{1,4}	5 - 23 days ^{1,4}	Yes,lice ⁴		
Q fever	Inhalation, ingestion ^{1,4}	10-28 days	Slight⁴		13
Scrub Typhus	Infected mite bites ⁴	1-2 wks ⁴	No⁴		
Spotted fever	Insect bites, aerosol inhalation, broken skin ^{1,4}	2 days-2 wks ¹	No⁴		
Viruses	· · · · · · · · · · · · · · · · · · ·				
Denegue fever	Mosquitos, freeze dried virus	3-6 days ¹ , 3- 15 days ⁴	No⁴	Seldom Fatal	
Encephalitis	Insect bites, freeze dried virus ¹	2-15 days ⁴	Possible ⁴	1 [°] (VEE type)	25° (VEE type)
Influenza	Mouth and nose excretions, inhalation, contact ^{1,4}	7-10 days ¹ , 1-2 days ⁴	Highly⁴	variable	
Psittacosis	Infected birds and their excretions ¹	1-4 days'		20 ¹	
Rift Valley fever	Mosquitos, aerosol excretions, pustulant, freeze dried virus ¹	24-36 hrs ¹			
Smallpox	Person-person, dried scabs, freeze dried virus ¹	7-21 days ⁴	Highly⁴		
Yellow fever	Mosquitos, freeze dried virus ¹	1-6 days ^{1,4}			

Table 2B (continued): Toxicological Properties of Biological Warfare Agents

	С	=	concentration of contaminant = mass concentration of contaminant
		-	mass fraction of contaminant $\left(\frac{\text{mass of contaminant}}{\text{mass of air - contaminant mixture}}\right)$
	C _{vol}	=	$\frac{M_{air} \bullet C}{M_{c} + (M_{air} - M_{c}) \bullet C} = \text{volume concentration of contaminant}$
	M _{air}	-	molecular weight of air = 28.95 amu
	M _c	=	molecular weight of contaminant (e.g., for sarin, = 140.11 amu)
	PPM	==	$10^6 \cdot C_{vol}$ = volume concentration of contaminant in parts per million (ppm)
		Note:	If $M_c = M_{air}$, then $C_{vol} = C$ and PPM = $10^6 \cdot C$
	ρ	=	density of air - contaminant mixture (mass/volume)
	ρ _c	=	$\rho \cdot C$ = density concentration of contaminant (mass/volume)
Mixture	of Contam	inant C	as in Air
	ρ	=	$\rho_{air}/[(1 - C) + C \cdot (M_{air}/M_c)]$
	$ ho_{air}$	=	density of air at 0 °C = 1.29 kg/m^3 ; at 20 °C = 1.2 kg/m^3
Mixture	e of Contam	<u>inant P</u>	articles (Liquid or Solid) in Air
	ρ	=	$\rho_{air}/[(1 - C) + C \cdot (\rho_{air}/\rho_{cp})]$

As $C \! \rightarrow \! 0,$ then $\rho \! \rightarrow \! \rho_{air}$ and $\rho_c \! \rightarrow \! \rho_{air} \cdot C$

Page 13

Definiti	ons		
	С		concentration of contaminant $\left(\frac{\text{mass of contaminant}}{\text{mass of air - contaminant mixture}}\right)$
	$ ho_{ m air}$		density of air (20 °C) = $1.2 \text{ kg/m}^3 = 1.2 \text{ x } 10^6 \text{ mg/m}^3$
	BR		breathing rate
	SR	=	spore ratio (for biological agents) = spores per mass of contaminant released
÷	Exposure	=	Time Integrated Concentration = $\int dt \cdot C \cdot \rho_{air} (mg-min/m^3)$
	LCt ₅₀		Lethal time-integrated Concentration (Exposure) Level for 50% of the Population (generally use for chemical agents such as sarin)
,	Dose	-	$\int dt \cdot C \cdot \rho_{air} \cdot BR \cdot SR = Exposure \cdot BR \cdot SR \text{ (spores or mass)}$
	LD ₅₀	= , .	Lethal Dose Level for 50% of the Population (spores or mass) (generally used for biological agents such as anthrax)

Appendix B Lethal Dose and Exposure Levels for Anthrax and Sarin

Common Units for Comparison of Agents

Converting from Lethal Dose (LD) to Lethal time-integrated Concentration (Exposure) (LCt) gives:

LCt (mg-min/m³) =
$$\frac{LD}{BR \bullet SR}$$

LCt Levels for Sarin

 $LCt_{50} = 70 (mg-min/m^3) (ref. 7)$

Using a probit slope of 12 (ref. 8), the estimated 90% and 10% lethality levels are:

 $LCt_{90} = 90 (mg-min/m^3)$

 $LCt_{10} = 55 (mg-min/m^3)$

LD and LCt Levels for Anthrax

In order to have a common set of units for comparison, we report here values for both the lethal dose (LD) (spores) and the lethal Exposure (LCt) (mg-min/m³), using a breathing ratio, BR = $0.02 \text{ m}^3/\text{min}$ (for light activity) (ref. 9), and a spore ratio, SR = 3×10^7 spores/mg (ref 10).

 $LD_{50} = 8,000 \text{ spores (ref 5);} LCt_{50} = 0.013 (mg-min/m³)$

Based on a probit slope of 0.7 (ref 11), the estimated 90% and 10% lethality levels are:

LD ₉₀	=	540,000 spores;	LCt ₉₀	-	0.9 (mg-min/m ³)
LD10	=	120 spores;	LCt ₁₀	=	0.0002 (mg-min/m ³)

References:

- 1. Compton, J.A.F., Military Chemical and Biological Agents, Telford Press, Caldwell NJ, 1987.
- 2. U.S. Army, Material Safety Data Sheet, U.S. Army Chemical Biological Defense Command, Department of the Army, Washington, DC.
- 3. Sidell, F.R., Patrick, W.C., Dashiell, T.R., Jane's Chem-Bio Handbook, Jane's Information Group, Alexandria, Virginia, 1998.
- 4. Ganders, T.J. (ed.), Jane's NBC Protection Equipment, Jane's Information Group, Alexandria, Virginia, 1997.
- 5. Metz, D.F. and Jenkins, W.P., Biological Warfare Hazard Protection, Technical Report DPG/JCP-95/012, U.S. Army Dugway Proving Ground, UT, 1995.
- 6. National Research Council, Recommendations for the Disposal Of Chemical Agents and Munitions, National Academy Press, Washington, DC, 1994.
- 7. U.S. Army, Potential Military Chemical/Biological Agents and Compounds, Field Manuals, FM 3-9/NAVFAC P-467, AFR 355-7, Headquarters Departments of the Army, Navy, and Air Force, Washington, DC, 1989.
- 8. Reutter, S.A. and Wade, J.V., Review of Existing Toxicity Data and Human Estimates for Selected Chemical Agents and Recommended Human Toxicity Estimates Appropriate for Defending the Soldier (U), Report ERDEC-SP-18, Edgewood Research, Development and Engineering Center, Aberdeen Proving Ground, MD, 1994. This report is classified secret; any data used in the present report from this reference are unclassified.
- 9. U.S. Department of Health Education and Welfare, Radiological Health Handbook, U.S. Public Health Service, Bureau of Radiological Health, Rockville, MD, 1970, p. 215.
- 10. Stockholm International Peace Research Institute, The Problem of Chemical and Biological Warfare, In CB Weapons Today, Vol. 2, Humanities Press, New York, 1973

- 11. World Health Organization, Health Aspects of Chemical and Biological Weapons, World Health Organization, Geneva, Switzerland, 1970.
- 12. Friedlander, A.M., Anthrax, In Textbook of Military Medicine: Medical Aspects of Chemical and Biological Warfare, Sidell, F.R., Takafuji, E.T., and Franz, D.R., (eds), Office of the Surgeon General, U.S. Army, Washington, DC, 1997, pp. 467-478.