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Abstract

Aspects of Low Dimensional Quantum Gravity

by

Mykhaylo Usatyuk

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Raphael Bousso, Chair

This thesis will be an exploration of various topics within low dimensional quantum gravity,
with an emphasis on the gravitational path integral. We begin by studying two-dimensional
Jackiw-Teitelboim (JT) gravity deformed by a gas of conical defects and we solve the model
non-perturbatively. We then consider the problem of defining the Lorentzian gravity path
integral through a contour rotation of the Euclidean path integral within the context of JT
gravity. We demonstrate the agreement of integration domains and calculate the measure
for the Lorentzian path integral. We then analyze ensemble averaging a family of two
dimensional Conformal Field Theories and find a relation with an exotic three-dimensional
bulk Chern-Simons theory.
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Chapter 1

Introduction

A complete understanding of quantum gravity would allow us to address a variety of inter-
esting questions. A partial list of such questions includes understanding the origin of the
universe, the mechanism behind the resolution of gravitational singularities, the structure
and counting of black hole microstates, and the resolution of the black hole information
paradox. We currently lack such a theory for our own universe.

Over the past two decades, the AdS/CFT correspondence has played a central role in
quantum gravity research. The correspondence relates a conformal field theory in d spacetime
dimensions to a theory of quantum gravity in d + 1 dimensions [1]. Within the context of
the AdS/CFT correspondence, there has been growing appreciation that lower dimensional
models, such as two-dimensional Jackiw-Teitelboim (JT) gravity [2, 3], can give us valuable
insight into difficult problems in quantum gravity. These models capture the relevant physics
of interest while maintaining computational tractability. Moreover, recent advances in a wide
variety of directions have highlighted the central role played by Euclidean gravitational path
integral techniques [4–7]. The path integral is defined by

Z =

∫
∂M=Σ

Dg e−S[g], (1.1)

where we sum over all possible bulk geometries M with appropriate boundary conditions
Σ, with an appropriate action for the bulk geometry S[g]. In two spacetime dimensions the
path integral is well understood and we have good control over both perturbative and non-
perturbative gravitational effects that are inaccessible in more complicated models. These
effects are crucial in revealing quantum properties of black holes, including the information
paradox [5, 6]. The broader goal of studying these simple models is to investigate the
questions in the first paragraph within a simpler setting where we have full control, unlike
higher dimensions.

In this thesis we will highlight a few selected works exploring both perturbative and
non-perturbative aspects of lower dimensional theories of quantum gravity, with a special
emphasis placed on gravitational path integral techniques. We now provide a brief overview
of the thesis.
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1.1 Jackiw-Teitelboim gravity and ensemble averaging

The standard form of the AdS/CFT correspondence states that a given quantum mechanical
theory is dual to a theory of quantum gravity. This is encapsulated by the equation

ZQM = ZQG, (1.2)

where on the left we evaluate the partition function of the quantum mechanical theory on the
boundary while on the right we evaluate the quantum gravity partition function in the bulk.
However, in recent years it has been appreciated that there exist examples of a modified
version of this duality, where an average over quantum mechanical theories is dual to a
theory of quantum gravity

⟨ZQM⟩ = ZQG. (1.3)

On the left-hand side we average over a suitable space of quantum mechanical theories.
The clearest example of this is the duality between two-dimensional Jackiw-Teitelboim (JT)
gravity [2, 3, 8–11] and an ensemble of d = 0 + 1 dimensional quantum mechanical theories
[4]. The duality is expressed by an equality between a matrix integral and a gravitational
path integral ∫

dHe−N TrV (H) Tr(e−βH) =

∫
DgDϕ e−IJT[g,ϕ] (1.4)

where H is a Hermitian matrix of size N × N . To match the left-hand side to the right-
hand side we formally take the double-scaling limit where we send N → ∞ while tuning
the potential V (H) to match the JT gravity answer to leading order in the topological
expansion. The matrix H is interpreted as the Hamiltonian of the d = 0 + 1 dimensional
quantum mechanical system, and the boundary conditions imposed on the gravitational path
integral are specified by the observable computed on the left-hand side.

The existence of theories of quantum gravity dual to averages over quantum mechanical
systems is a radical departure from the standard statement of the AdS/CFT correspondence,
and a natural question is whether there exist additional quantum gravitational theories with
ensemble average duals. It was quickly realized realized that many two-dimensional quantum
gravity theories had ensemble average duals [12–20]. In [15, 16] a deformation of JT gravity
by a gas of conical defects was considered, with action (heuristically) given by

I[g, ϕ] = IJT[g, ϕ] + λ

∫
d2x

√
ge−2π(1−α)ϕ. (1.5)

The above theories were shown to be dual to matrix integrals, as in equation (1.4) with
modified potentials V (H), in the special range of angles given by the parameter α ∈ [0, 1

2
)

[15, 16]. The connection of the above theory with conical defects comes from expanding the
action perturbatively in the coupling λ, which enforces the localization constraint that the
metric is of constant negative curvature with special cone points.

Chapter 2 is based on the work [21] where we study this theory in the full range α ∈ [0, 1]
and show that for all choices of α the theory is dual to a matrix integral (1.4) with appro-
priately chosen matrix potential V (H). This is accomplished by using the correspondence
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between JT gravity and the (2, p) minimal string theory [4, 19, 20, 22] in the limit that
p→ ∞. This approach circumvents various technical difficulties encountered for JT gravity
with conical points in the regime of α ∈ [1

2
, 1]. We solve the theory non-perturbatively by

providing an explicit form of the string equation which can be used to calculate observables
to any order in the genus expansion.

1.2 Lorentzian path integrals and topology change

To define the gravitational path integral we must specify the types of metrics that are
integrated over. Naturally, there are two common gravitational path integrals that are
considered: Euclidean path integrals and Lorentzian path integrals, where we integrate over
Euclidean or Lorentzian metrics respectively [23]. The Euclidean path integral is much
better understood, and it is defined as a sum over all manifolds M with an integral over
all Euclidean metrics g on M . The manifolds M are not required to have a foliation giving
them fixed spatial topology, that is M can have topology change.

The clearest example of this is in two dimensions, where perturbative string theory is
defined as an integral over two-dimensional Euclidean worldsheets. The string partition
function for bosonic strings in Minkowski space is defined by the Polyakov path integral [24]

Zstring =

∫
DgDXe−S[g,X], (1.6)

where we implicitly sum over all compact orientable surfaces M . The fact that we include
manifolds M that change topology is crucial, since it is these contributions that implement
perturbative interactions between strings. However, the fact that the above definition uses
Euclidean metrics is in tension with the fact that the string is propagating in a Lorentzian
signature target space, since the induced metric on the worldsheet have Lorentzian signature,
and hence it seems more natural to consider strings on Lorentzian worldsheets. The trouble
with this is that manifolds M that change spatial topology cannot be equipped with smooth
Lorentzian metrics g. We will return to this issue momentarily.

Two-dimensional Euclidean gravity path integrals have also played a crucial role in recent
developments related to quantum properties of black holes. A unitary page curve can be
recovered by including non-perturbative, topology changing configurations when calculating
the entanglement entropy of Hawking radiation emitted by a black hole [5, 6]. The number of
microstates of certain higher dimensional supersymmetric black holes can be counted using
two-dimensional Euclidean path integral techniques, obtaining an exact integer degeneracy
that matches string theory computations [7]. The spectral form factor, which contains
information on the spectrum of the Hamiltonian is also computed by Euclidean path integral
techniques [4, 25–27]. A short list of other recent applications of path integrals techniques
applied to black hole physics includes [28–42].

The above results highlight that topology changing contributions to the Euclidean path
integral are crucial for recovering the expected quantum mechanical properties of black
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holes. Furthermore, two-dimensional Euclidean JT gravity naturally appears in the above
calculations, either as a dimensional reduction of higher dimensional black holes, or as a toy
model for a two-dimensional black hole.

However, black holes are inherently Lorentzian objects, and it is unclear how to interpret
topology changing Euclidean configurations from a Lorentzian gravitational path integral
perspective. While it is commonly believed that Euclidean and Lorentzian gravity path
integrals should be equivalent after a suitable contour rotation, this equivalence has never
been adequately demonstrated. Partial progress has been made within the framework of
string perturbation theory, where strings propagating on Lorentzian signature worldsheets
were considered by Mandelstam [43, 44]. To accommodate Lorentzian worldsheets with
spatial topology change the metrics g were not entirely restricted to be Lorentzian but were
allowed to become singular at points where strings interact and split apart or join together

Interaction point:
1

2

√
−gR = 2πiδ(2)(x− xI), det g(xI) = 0. (1.7)

These singular Lorentzian worldsheets are now known as lightcone diagrams, and they pro-
vide a Lorentzian interpretation for the Euclidean perturbative string genus expansion.

Chapter 3 is based on the work [45] where we explore extending the formalism of
Lorentzian lightcone diagrams to JT gravity. The aim is to establish a Lorentzian theory of
JT gravity that incorporates topology changing configurations. In this case, the structure of
the metric near the singular points takes the specific form

1

2

√
−g (R + 2) = (2πi+ α) δ(2)(x− xI), det g(xI) = 0, (1.8)

where α is a positive real number. We define the Lorentzian path integral to be given by

ZJT ≡
∫

DgDϕeiIJT[g,ϕ], (1.9)

where we now include the constant negative curvature analogues of lightcone diagrams,
with the metrics behaving as (1.8). We argue that by defining the Lorentzian theory on
such lightcone diagrams the theory has the same domain of integration as the Euclidean
JT gravity path integral, and we compute the Lorentzian integration measure. We are not
able to prove that the Euclidean and Lorentzian measures agree, which is required to show
that the Lorentzian path integral fully agrees with the Euclidean path integral. However,
since the regions of integration agree it guarantees that any topology changing Euclidean
configuration is mapped to a corresponding singular Lorentzian geometry, which provides a
Lorentzian interpretation for Euclidean wormhole geometries.
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1.3 Ensemble averaging in higher dimensions

In the previous sections we were primarily interested in two-dimensional gravitational theo-
ries. One surprising fact was that many two-dimensional models are actually dual to ensem-
ble averages over quantum mechanical theories, and a natural question is whether this idea
can be extended to higher dimensional versions of AdS/CFT. The basic idea is that while
a single conformal field theory might have a very complicated AdS bulk dual, an average
over a suitable moduli space of CFTs may have a very simple gravitational description that
captures the statistics of the ensemble of theories. One challenge for this idea is that CFTs
must satisfy additional consistency conditions compared to 0 + 1 dimensional quantum me-
chanical theories, and so CFTs are much rarer in the space of quantum field theories. As
a result, relatively few CFTs are explicitly known, and one challenge is to find a suitable
moduli space of theories to average over.

Nevertheless, these ideas have been applied within the context of AdS3/CFT2 in clever
ways [46–59]. In [49] an ensemble of two-dimensional QFTs was defined by specifying that
the density of states of the ensemble grows as Cardy’s formula [60], and the OPE coefficients
are taken to be Gaussian random variables with variance consistent with holographic CFT
statistics. While each such QFT is not itself a CFT, the average over the ensemble produces
data that is consistent with the theory being a holographic CFT to leading order in c. It
was found that ensemble averaged quantities were correctly reproduced by semiclassical 3d
gravity computations. One confusing aspect of this proposal is that the individual QFTs
that are averaged over are not UV complete, yet the averaged quantities are reproduced by
a semiclassical theory of gravity.

In [46, 47] the moduli space of two-dimensional TD Narain CFTs was averaged over and
it was found that many observables matched with an exotic theory of 3d gravity given by
U(1)D × U(1)D Chern-Simons with action

SCS =
D∑
i=1

∫
M

(
A(i) ∧ dA(i) −B(i) ∧ dB(i)

)
, (1.10)

coupled to topological gravity, where we sum over all handlebody geometries in the case of
a single asymptotic boundary. This provided an explicit example of how averaging over a
complicated set of CFTs can give rise to a simple semiclassical gravity theory in one higher
dimension. One feature of this duality is that the bulk dual for individual Narain theories is
not known.1 However, it turns out that a closely related family of CFTs known as symmetric
product orbifolds of Narain theories, denoted by SymN(T4), are dual to tensionless string
theory on AdS3×S3×T4 as we take the number of copies N of the theory to be large [61–65].
In this case the bulk dual is known for each CFT in the ensemble, but it is very far from a
semiclassical gravity theory.

Chapter 4 is based on [66] where we explore ensemble averaging the symmetric product
orbifold of Narain theories, with the goal of finding a simple bulk theory that reproduces

1Although see [54] for some developments in identifying the bulk dual for an individual Narain theory.
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the boundary average. One of our aims is to connect the standard story of holography with
ensemble averaging. In particular, while each individual SymN(T4) theory at large N is a
very complicated string theory that sensitively depends on the point in moduli space, the
hope is that the average is reproduced by a very simple semiclassical theory. We now explain
how this is partially realized.

The symmetric product orbifold CFTs are defined by taking a seed CFT X, taking
some integer number of copies of the theory, and gauging by the SN permutation symmetry
exchanging the copies

SymN(X) = X⊗N/SN . (1.11)

A natural expectation is that the averaged bulk dual should follow a similar structure which
turns out to be correct. Many contributions to the ensemble average are reproduced by
taking N copies of the bulk Chern-Simons theory (1.10) with total action

S =
N∑
I=1

∫
M

(AI ∧ dAI −BI ∧ dBI) , (1.12)

and gauging the SN permutation symmetry, where we have suppressed the summation over
the D indices above. We will consider the theory on an asymptotic boundary torus, and the
prescription we follow is to include bulk geometries to match the boundary ensemble average
computation. We again couple the theory to topological gravity and define the gravitational
path integral to be evaluated on handlebody geometries, which we denote by

ZBulk =
∑

handlebodies,
vortices

∫
DADB e−S[A,B] V . (1.13)

In the above we also allow for certain singular gauge field configurations in the bulk which
are implemented by inserting vortex operators V in the path integral that implement twisted
boundary conditions on the gauge fields. We sum over all vortices in the theory.

We find the above bulk theory correctly captures some, but not all, of the terms in the
boundary average of the partition function. We interpret the terms that are reproduced as
“semiclassical” contributions that admit a simple gravitational description, while the other
terms correspond to complicated wormhole configuration, see Chapter ??. Nevertheless, at
large N we are able to give an interpretation to certain geometries as arising from averaging
over the amplitude of a single string propagating on an AdS3 background. Furthermore,
certain special quantities such as the averaged free energy in the grand canonical ensemble
are fully reproduced by the semiclassical gravity calculation in the bulk. Therefore, the
proposed bulk theory does not reproduce all contributions to every observable, and we leave
a discussion of modifications of the gravity path integral to Chapter 4.6 that would allow us
to reproduce additional terms of the boundary average from the bulk.
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Chapter 2

2D Dilaton-gravity, deformations of
the minimal string, and matrix
models

2.1 Introduction

This chapter is based on [21] where we study two dimensional dilaton-gravity theories with
ensemble average holographic duals. In recent years many insights regarding quantum gravity
and black holes have been obtained by looking at simple models in two dimensions described
by variants of Jackiw-Teitelboim (JT) dilaton-gravity [2, 3, 8–11] that can be solved exactly
[4, 67–72]. Some examples are the study of shockwaves and their relation to quantum chaos
[9], traversable wormholes [73–75], quantum effects for higher dimensional near extremal
black holes [16, 29, 32, 36], and recently how unitarity of the black hole spectrum and
dynamics emerges from the inclusion of spacetime wormholes in the gravity path integral
[4–6, 76, 77].

Of particular importance is the study of non-perturbative effects and spacetime worm-
holes, which connects pure JT gravity with a matrix integral [4] in the double-scaling limit
[78–80]. This gives a new twist on holography where a bulk gravitational theory is related
to an ensemble average over boundary Hamiltonians. This has been generalized in various
directions, for example [12, 28, 42, 81].

It was argued in [4] that pure JT gravity, including non-perturbative effects, is equal to
the large p limit of the (2, p) minimal string theory. This theory of 2D gravity has been
known to be dual to a matrix integral for a long time [19, 20]. This correspondence has been
further studied in [22, 82–89].

The connection between JT gravity and matrix integrals was generalized in [15, 16] to
include a gas of defects, which in turn can be related to more general 2D dilaton-gravity
building on some previous work [90]). The goal of the present paper is to identify defor-
mations of the minimal string that in a certain limit are equal to these deformations of JT
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gravity. Developing this connection will also allow us to find exact solutions for deformations
of JT gravity that are outside the reach of the methods used by [15, 16]. In the rest of this
section we will give a brief summary of our results.

The (2, p = 2m−1) minimal string theory consists of coupling the (2, p) 2D minimal model
to 2D gravity. After fixing the conformal gauge this theory can be recast as a combination
of the minimal model, the Liouville gravity mode ϕ, and a set of bc ghosts. We will study
deformations of this theory described by the action

I = I(2,p) −
m−1∑
n=1

τn

∫
O1,n e

b(1+n)ϕ, (2.1)

where b =
√

2/p is the Liouville coupling. In this equation I(2,p) represents the undeformed
minimal model coupled to Liouville gravity. The constants τn are the couplings of the defor-
mations labeled by a gravitationally dressed minimal model primary O1,n. The cosmological
constant µ is identified with the n = 1 deformation.

We will focus on the disk path integral with fixed length boundary conditions ℓ ≡
∮
bdy

ebϕ.
This can be computed using 2D CFT techniques, although in general this is difficult to do.
Alternatively we can use the fact that the theory is dual to a matrix integral, with the
matrix interpreted as a random Hamiltonian. All information is then encoded in the leading
order disk density of states ρ(E), where E are the eigenvalues of the matrix (related to
the boundary cosmological constant in the continuum description). Other observables and
higher genus corrections are uniquely fixed by the loop equations [91]. In a remarkable work,
Belavin and Zamolodchikov [92] proposed an exact expression for ρ(E) valid to all orders
in τn. Their only input is the fact that the theory is equivalent to a matrix integral and
that correlators on the sphere satisfy the fusion rules of the minimal model, following the
program started in [93].

Another theory that is dual to a matrix integral is JT gravity with a gas of defects. These
conical singularities are characterized by two numbers, a weighting factor λ and a parameter
α defined through the deficit angle 2π(1 − α). In general we have 0 < α < 1, with α = 0
being a cusp and α = 1 being basically no defect. This duality has been studied in [15, 16]
for the case 0 < α < 1/2 which we will refer to as sharp defects. The first result of this
paper is to show, using the Belavin-Zamolodchikov solution, that the large p limit of the
deformed minimal string gives JT with a gas of defects. In this correspondence we identify
each deformation with each defect species. The coupling τn is proportional to λ in the large
p limit. We also scale the label of the minimal model operator as n = p

2
(1−α), with fixed α

identified as the other defect parameter. At finite p, α is a discrete parameter but becomes
continuous at large p and bounded between zero and one.

Even though we can check this connection between deformations of the minimal string
and JT with a gas of defects by comparing explicit solutions of the theories, having a more
direct argument would be preferable. In order to do this we can write the minimal string as a
minimal model coupled to Liouville gravity. Then we can write a Lagrangian representation
of the minimal model as time-like Liouville (this connection is not completely understood;
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see [94] for a recent discussion) and a field redefinition gives JT with defects (this is a simple
generalization of [22, 86]). We summarize the relation between these theories in figure 2.1.

Taking the large p limit of the minimal string solution, we find the exact disk density of
states for JT gravity coupled to general defects. The answer we obtain from the Belavin-
Zamolodchikov solution is given in (2.67). Instead, we will present the result using a trick
pointed out to us by T. Budd [95]. It is convenient to define a defect generating function
W (y) as

W (y) ≡
∑
i

λie
−2π(1−αi)y, (2.2)

where i is an index labeling defect species, which can be continuous. Providing a function
W (y) is equivalent to specifying the angle and weights of the defects. Since 0 < αi < 1 the
inverse Laplace transform of W (y) should have support on (−2π, 0).

Before presenting the solution to the disk density of states we need to specify the edge
of the spectrum E0 where ρ(E < E0) = 0. In terms of the defect generating function, the
large p limit of the Belavin-Zamolodchikov solution (2.67) gives E0 as the largest solution of∫

C

dy

2πi
e2πy

(
y −

√
y2 − 2W (y)− E0

)
= 0. (2.3)

Using this result, the disk density of states for E > E0, obtained in the same way, is given
by

ρ(E) =
eS0

2π

∫
C

dy

2πi
e2πy tanh−1

(√
E − E0

y2 − 2W (y)− E0

)
. (2.4)

The contour C is the one appropriate for an inverse Laplace transform, running along the
imaginary direction with a real part such that all singularities are to the left. This solution
matches the one found in [15, 16] when W involves only defects in the range 0 < α ≤
1/2. Since the connection between the minimal string deformations, defects, and Belavin-
Zamolodchikov solution are valid for any value of α we claim that this solution is valid for
JT gravity with a gas of general defects with 0 < α < 1. The solution we find for α > 1/2
is very different from the 0 < α ≤ 1/2 solution, analytically continued in α. This feature is
most transparent in (2.67). The new terms we find have a nice geometrical interpretation as
we explain later on1. It is an open problem to derive this result using the JT gravity path
integral representation of the theory, since the methods of [15, 16] cannot be directly applied
for reasons we review in next section.

Finally, we study the connection between JT gravity with defects and the quantization
of 2D dilaton-gravity

I = −1

2

∫
√
g [ΦR + 2U(Φ)] . (2.5)

1When α > 1/2 there is the possibility of defects merging and this produces new contributions to the
density of states. This is reminiscent of the situation with conical defects in 3D gravity and 2D CFT
associated to operators with h < (c− 1)/32 [96]. We thank S. Collier for discussions on this.
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(2, p) minimal string
+ deformations

time-like + space-like

Liouville

JT + defects

Compare ρdisk(E) Field redefinition

Coulomb gas

Figure 2.1: Relation between the three theories we are interested in and their respective
deformations: the minimal string, time-like Liouville coupled to space-like Liouville and JT
gravity with defects. The connection between the (2, p) minimal string and the combination
of Liouville theories is the least rigorous since it relies on a Coulomb gas representation of
the minimal model.

In the simplest quantization scheme, as explained in [15], one can identify the dilaton po-
tential with the defect generating function as U(Φ) = Φ + W (Φ). This can be justified
by Taylor expanding the path integral in powers of W representing contributions from an
arbitrary number of defects. The minimal string gives a new perspective on this connec-
tion. In order to do this we start from the action (2.1) and rewrite the minimal model in a
Coulomb gas, or time-like Liouville, representation. This action can be combined with the
gravitational Liouville mode into a 2D metric and a 2D dilaton which we identify with Φ
[22, 86]. This approach to the quantization scheme gives a 2D dilaton-gravity theory with
a slightly different identification between the parameters λ, α and the dilaton potential, see
equation (2.89). We use this approach to propose a solution of dilaton-gravity with a poly-
nomial potential. The advantage of this scheme is that it gives an answer consistent with a
semiclassical limit. Some recent studies on other aspects of dilaton-gravity are [97–102].

The organization of the rest of the paper is as follows. In section 2.2 we review the
solution for JT gravity with a gas of sharp defects and its connection to 2D dilaton-gravity.
In section 2.3 we describe the minimal string theory and its deformations, and present the
exact solution proposed by Belavin-Zamolodchikov. In section 2.4 we show the connection
between these two theories. We use the minimal string to find a solution of JT gravity
with a gas of defect with arbitrary angles. In section 2.5 we explain the connection with
dilaton-gravity. We finish presenting conclusions and open directions in section 2.6. We
leave technical details for Appendices.

Note: While this work was in progress, we became aware of a related work by T. Budd
[95]. The author found the same results by computing the Weil-Petersson volumes via a
geometric construction.
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2.2 JT gravity with defects: Review

We are interested in analyzing the path integral of JT gravity with conical defects. We
first review the genus expansion of pure JT gravity following [4], followed by a summary of
JT gravity with a gas of “sharp” defects with deficit angles π < θ ≡ 2π(1 − α) < 2π, or
equivalently 0 < α < 1/2 [15, 16] 2. These theories were shown to be dual to certain double-
scaled matrix models. We will comment on this briefly but postpone the full discussion to
sections 2.3 and 2.4, when we discuss defects with general deficit angles 0 < θ < 2π, or
equivalently 0 < α < 1, and the connection to the deformed minimal string. We will refer
to the range α > 1/2 as “blunt” defects. The case α = 1/2 is treated separately in section
2.4, where we show that it exhibits the same behavior as α < 1/2.

Pure JT gravity

JT gravity in Euclidean signature is a 2D dilaton-gravity theory described by a metric g
coupled to a scalar dilaton Φ with action

IJT = −S0

2π

(
1

2

∫
M

√
gR +

∫
∂M

√
hK

)
− 1

2

∫
M

√
gΦ(R + 2)−

∫
∂M

√
hΦ(K − 1), (2.6)

where we have set ℓAdS = 1. The first term is the Einstein-Hilbert term, which by the
Gauss-Bonnet theorem is equivalent to the Euler characteristic χ(M) of the manifold, so it
is purely topological. For a surface with genus g and n boundaries, χ = 2− 2g− n. We will
assume S0 is some large parameter3 so that e−S0 plays the role of suppressing higher genus
topologies in the path integral and the theory can be studied under an asymptotic “genus
expansion.” The dilaton Φ appears linearly in the action and merely acts as a Lagrange
multiplier enforcing the constraint R+ 2 = 0. This fixes the bulk manifold M to be a patch
of hyperbolic surface, bounded by some boundary curve ∂M .

Thus, all of the non-trivial dynamics come from the boundary term. For geometries with
circular asymptotic boundaries we choose boundary conditions such that the proper length
of each boundary is fixed to be β/ϵ where ϵ is regarded as a “holographic” regulator which is
eventually taken to zero. The dilaton is fixed to be a constant Φb = γ/ϵ on each boundary.
Taking ϵ→ 0 while keeping the ratio β/γ fixed corresponds to sending ∂M to the asymptotic
boundary. We set γ = 1/2 for simplicity. This gives the familiar Schwarzian action [9], which
encodes fluctuations of the curve.

We are interested in path integrals over connected geometries with n asymptotic bound-
aries of regularized lengths βi. We will denote this quantity by the n-point connected cor-
relator ⟨Z(β1)...Z(βn)⟩C . The topological term in the action naturally organizes the path

2We follow the conventions in [16], related to [15] via αW → 1 − αMT

2π . As explained in those papers,
taking α > 1 generates a proliferation of defects near the boundary that spoils the AdS2 asymptotics. For
this reason, in this paper we will only focus on 0 ≤ α ≤ 1. This is also the natural range appearing from the
minimal string, as explained in the next section.

3When the theory is regarded as an effective action for the near-horizon dynamics of near-extremal black
holes, the prefactor S0 has the interpretation as the Bekenstein-Hawking entropy.
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Figure 2.2: Left: The SSS construction of the correlator ⟨Z(β1)Z(β2)Z(β3)⟩C . The Weil-
Petersson volume Vg=0,n=3 is glued to trumpets along each of the three geodesic boundaries.
Right: Analogous construction of the correlator with sharp conical defects. The Weil-
Petersson volume Vg=0,n=3,k=3 has three sharp defects.

integral into a topological expansion in the genus g of bulk manifolds. A manifold of genus g
with n asymptotic boundaries has Euler characteristic χ = 2−2g−n so the genus expansion
has the form

⟨Z(β1)...Z(βn)⟩C =
∞∑
g=0

e−S0(2g+n−2)Zg,n(β1, ..., βn). (2.7)

In [4] an explicit expression for Zg,n was found in terms of volumes of moduli spaces of hyper-
bolic Riemann surfaces with geodesic boundaries. It will turn out that a similar construction
generalizes to JT with sharp conical defects, so it will be useful to first understand the pure
JT construction.

To compute Zg,n we must integrate over all constant negative curvature geometries of
genus g with n asymptotic boundaries. All of these geometries can be constructed by gluing
n trumpet geometries to an internal surface of genus g with n geodesic boundaries. See figure
2.2. We can now fix the lengths of the geodesic boundaries to be b1, ..., bn and compute the
contributions of the trumpets and internal geometry separately. Finally, we can integrate
these contributions for all geodesic boundary lengths, with appropriate measure, to recover
Zg,n as desired.

The path integral on each trumpet is

Ztrumpet(β, b) =

√
1

4πβ
e−

b2

4β . (2.8)

We must also integrate over all internal geometries of genus g with n geodesic boundaries
of lengths bi. These surfaces form the moduli space Mg,n(b1, ..., bn) of bordered Riemann
surfaces. The proper measure for this moduli space is provided by the Weil-Petersson (WP)
measure, and the integral over the moduli space reduces to the Weil-Petersson volume
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Vg,n(b1, ..., bn) [103]. Putting everything together, we integrate over all possible geodesic
lengths b with the proper gluing measure bdb to get all stitchings of trumpets with internal
moduli with the final result

Zg,n(β1, ..., βn) =

∫ ∞

0

b1db1Ztrumpet(β1, b1) · · ·
∫ ∞

0

bndbnZtrumpet(βn, bn)Vg,n(b1, ..., bn). (2.9)

There are two special cases for which the above formula does not apply, the disk Z0,1(β)
and the double trumpet Z0,2(β1, β2). It will be interesting to compare these amplitudes to
the corresponding ones with defects so we quote the pure JT results here:

Z0,1(β) =

√
1

16πβ3
e

π2

β , Z0,2(β1, β2) =

√
β1β2

2π(β1 + β2)
. (2.10)

The structure of the genus expansion implies that JT gravity is dual to a double-scaled
Hermitian matrix model [4]. An integral transform of the JT amplitudes Zg,n satisfies the
topological recursion property of matrix integrals, derived from the loop equations. This
turns out to be a consequence of Mirzakhani’s recursion relations [103] for Vg,n, which were
shown to be equivalent to a topological recursion by Eynard and Orantin [104]. The gravi-
tational path integral can now be interpreted as a matrix integral

⟨Z(β1)...Z(βn)⟩ =
∫
dHe−LTrV (H) Tr(e−β1H)...Tr(e−βnH), (2.11)

where H is a Hermitian matrix of size L×L. Formally we take a double-scaling limit on the
right-hand side where we send L→ ∞ while tuning the potential V (H) such that the matrix
model density of states matches the JT density of states at leading order. The matrix H is
interpreted as the Hamiltonian of a dual quantum system and we interpret JT gravity as an
ensemble average over independent quantum systems.

Sharp defects

We will now briefly review the work of [15, 16] on JT gravity with conical defects of deficit
angle 0 < α < 1/2. The reason for this restriction will be apparent shortly.

We are again interested in path integrals over connected geometries with n asymptotic
boundaries which we denote by ⟨Z(β1)...Z(βn)⟩C , but allowing for the presence of a gas of
defects. The path integral naturally organizes into a topological expansion in genus alongside
an expansion in the number of defects inserted in the bulk

⟨Z(β1)...Z(βn)⟩C =
∞∑
g=0

∞∑
k=0

e−S0(2g+n−2)λ
k

k!
Zg,n,k(β1, ..., βn). (2.12)

The term proportional to λk inserts k conical defects in the bulk integrated over all possible
insertion positions. The defects are indistinguishable so the symmetry factor k! prevents
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overcounting identical configurations4. From this expression we see the weight λ acts as a
fugacity with respect to the number of defects.

The factor Zg,n,k consists of an integral over all constant negative curvature geometries
of genus g with k conical points and n asymptotic boundaries. It turns out that for conical
defects with deficit angles π < θ < 2π, or equivalently 0 < α < 1/2, all such geometries can
be constructed by gluing trumpets to internal geometries of genus g with k conical points
[105], the only exception being the disk with one defect, where a direct calculation [90] gives
Z0,1,k = Ztrumpet(b = 2πiα). Besides this exception, all of our formulas from the pure JT
discussion carry over as long as we replace the moduli space that we are integrating over in

Zg,n,k (β1, . . . , βn;α1, . . . , αk) = (2.13)∫ ∞

0

b1db1 Ztrumpet (β1, b1)· · ·
∫ ∞

0

bndbn Ztrumpet (βn, bn)Vg,n,k (b1, . . . , bn;α1, . . . , αk) ,

with Vg,n,k the Weil-Petersson volumes of the moduli space of surfaces of genus g with n
geodesic boundaries and k conical points. For α < 1/2 there is a simple relation between
the WP volumes with conical points Vg,n,k and volumes without conical points Vg,n+k [105–
107]. The WP volumes with k conical points can be found from the ordinary volumes by
analytically continuing k of the n+ k geodesic boundary lengths to imaginary values

Vg,n,k (b1, . . . bn;α1, . . . , αk) = Vg,n+k (b1, . . . bn, bn+1 = 2πiα1, . . . , bn+k = 2πiαk) . (2.14)

Using the above relation, and a formula for the genus zero WP volumes previously derived
in [22], reference [16] re-summed the defect expansion at genus zero

⟨Z(β1)...Z(βn)⟩C,g=0 = e−S0(n−2)

∞∑
k=0

λk

k!
Z0,n,k(β1, ..., βn). (2.15)

We will give the answer for the case with multiplet species of sharp defects (λi, αi). Perform-
ing the sum explicitly and doing an inverse Laplace transform gives the density of states

⟨ρ(E)⟩g=0 =
eS0

2π

∫ E

E0

du√
E − u

(
I0(2π

√
u) +

∑
i

λi
2παi√
u
I1
(
2παi

√
u
))

, (2.16)

where In are modified Bessel functions of the first kind. Here, E0(λ) gives the spectral edge
of the distribution and is the largest root of the string equation which we review in section
2.3. We will derive the same result from the minimal string in section 2.4.

JT gravity with defects is again dual to a matrix integral which can be shown by proving
that integral transforms of Zg,n,k satisfy topological recursion. We omit the details, arriving
at the same result through the minimal string in the next section.

4The moduli space and volumes Vg,n,k are typically defined with distinguishable points, so Zg,n,k is
defined here with distinguishable defects.
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We finish by outlining the connection to dilaton-gravity. It was argued in [90] that an
insertion of a defect with parameters (λ, α) in JT gravity is equivalent to the insertion in
the path integral of

λ

∫
d2x

√
ge−2π(1−α)Φ. (2.17)

By summing over an arbitrary number of defects and summing over possible defect species
this insertion simply exponentiates [15, 16]. The end result is a modification of the action
of JT gravity into a more general dilaton-gravity model

I = −1

2

∫
d2x

√
g (ΦR + 2U(Φ)) , U(Φ) = Φ−

∑
i

λi e
−2π(1−αi)Φ, (2.18)

where the sum i is over the defect species. As emphasized in [15] there is a choice of
renormalization scheme behind this identification between a quantum theory (the sum over
defects) and a classical dilaton potential. We will give a different scheme using the minimal
string in section 2.5.

General defects

For blunt defects, corresponding to α > 1/2, the previous methods cannot be used for the
reasons we will emphasize now. The recipe of [4] involves first integrating out the dilaton
and summing over hyperbolic surfaces with cone points. The second step involves finding
geodesics homologous to the holographic boundaries and computing the path integral by
gluing Weil-Petersson volumes with ‘trumpet’ partition functions. This step fails when
α > 1/2 since hyperbolic surfaces with these cone points do not necessarily always have
geodesics that we could use to cut and glue.

There is a simple argument explaining why this is the case. Assume the opposite, namely
that we can write a hyperbolic surface with k cone points labeled by αi and for concreteness
take a single geodesic boundary and no handles. We can use the Gauss-Bonnet formula on
a two-dimensional surface with k cone points and with geodesic boundaries

1

2

∫
M

R +
k∑

i=1

2π(1− αi) = 2πχ(M). (2.19)

For surfaces with R = −2 away from cone points and one geodesic boundaries this gives
the inequality

∑k
i=1(1− αi) > 1. When αi < 1/2, this inequality is always satisfied as long

as we have more than a single defect. Instead, assume we have a single defect species with
α > 1/2. Then we need at least k > 1/(1−α) in order for the inequality to be satisfied. We
show this in Figure 2.3.

Another manifestation of the fact that general defects are special is the fact that they
can merge without having to pinch off the surface. Consider the case of a single species of
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Figure 2.3: Left: Picture of a hyperbolic surface with a holographic boundary to the left
and two sharp defects shown to the right with α < 1/2. In dashed line we show a geodesic
homologous to the holographic boundary. Right: Similar picture of a hyperbolic surface in
the case α > 1/2. As argued in the main text there is no geodesic to cut and glue.

defects with defect parameter α. In general, k of them can merge into a single “large” defect
with cone angle

2πα(k) = 2π(1− k(1− α)) (2.20)

as long as α(k) is positive. This is not possible when α < 1/2, so sharp defects do not merge
in a smooth way. Instead, when α > 1/2 we can merge no more than k = ⌊ 1

1−α
⌋ defects.

For these reasons instead of following the approach of [4], we will exploit the connection
between JT gravity with defects and the minimal string that we develop in section 2.3. The
solution of the deformed minimal string given in [92] is insensitive to whether it corresponds
to sharp defects or not. Therefore we will find the JT answer by taking a limit of the minimal
string.

2.3 Deformations of the minimal string

In this section we review the relevant aspects of the (2, p) minimal string and its deformations
by adding “tachyon” operators in the action. These string theories are dual to a Hermitian
one-matrix integral in the double-scaling limit. Therefore the tree-level string equation of
the matrix integral, or equivalently the disk density of states, completely specifies the model
in the double-scaling limit. The most general tree-level string equation corresponding to the
deformed minimal string was proposed by Belavin and Zamolodchikov [92] building on the
work [93].

The minimal string

We will begin with a brief review of the minimal string theory. We will interpret it as a
theory of 2D gravity on the worldsheet coupled to a minimal model CFT. In the conformal
gauge the physical metric g can be written in terms of a fiducial metric ĝ and a scale factor
as g = e2bϕĝ, with b a parameter to be determined later. After gauge fixing, the minimal
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string reduces to a minimal model coupled to Liouville field theory associated to the scale
factor ϕ, and bc ghosts. Below we review some useful facts of these building blocks that we
will need later.

Minimal model: The minimal string can be defined for any minimal model labeled by
coprime integers (p, p′). Since we will be interested in the theories dual to a one-matrix
integral we focus on the Lee-Yang series (2, p = 2m− 1), for integer m. The central charge
of these theories is given by cM = 1− 6q2, where we define q = 1/b− b and b =

√
2/p. The

interpretation of these parameters will become clear soon. We will consider theories with
odd m since only those exist non-perturbatively; see for example [108].

The spectrum of these models includes a finite number of primaries labeled by a single
integer with scaling dimension

O1,n, with ∆n =
(nb−1 − b)2 − (b−1 − b)2

4
, n = 1, . . . ,m− 1. (2.21)

These primary operators satisfy very simple fusion rules. Using the Coulomb gas approach,
some aspects of the minimal models can be reproduced by a time-like Liouville action, as
discussed by Zamolodchikov [109] (see also [110]), in terms of a scalar field χ. The action is
given by

IMM[χ] =
1

4π

∫ √
ĝ
[
−(∇̂χ)2 − qR̂χ− 4πµe2bχ

]
, (2.22)

where µ is a parameter we will fix later. This gives a Lagrangian description of these CFT.
This representation motivates the connection to dilaton-gravity following [86]. Within this
time-like Liouville theory consider the following operators

exp
(
2ânχ

)
, ân =

b

2
(1− n), n = 1, . . . ,m− 1, (2.23)

with scaling dimension ∆ân = ân(q+ ân). We associate these operators to the minimal model
primaries O1,n ↔ exp

(
2ânχ

)
, although with a different normalization we present below. It

was verified in [109] that some correlators of time-like Liouville reproduce the minimal model
correlators, after imposing the fusion rules by hand. Some recent progress understanding
this identification can be found in [94] (for a different approach see [111, 112]).

Liouville sector: The second building block of the minimal string is the Liouville gravity
mode. This is an action for the scale factor ϕ in the conformal gauge, originating from the
conformal anomaly, given by

IL[ϕ] =
1

4π

∫
d2z
√
ĝ
[
(∇̂ϕ)2 +QR̂ϕ+ 4πµe2bϕ

]
, (2.24)

where Q = b + 1/b. The central charge is given by cL = 1 + 6Q2. The cancellation of the
conformal anomaly between the minimal model, Liouville and the ghosts fixes the parameter
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b =
√

2/p. The primary operators are

Va = exp
(
2aϕ

)
, a =

Q

2
+ iP, ∆a = a(Q− a) (2.25)

which we can write in terms of a or the Liouville momentum P , which is continuous. The
normalizable states correspond to P 2 > 0 while non-normalizable local operator insertions
have P 2 < 0. We will be interested in the case of geometries with boundaries. In this case we
will define the FZZT boundary condition [113] with fixed boundary cosmological constant

µB = κ cosh (2πbs) , κ ≡
√
µ

√
sin πb2

, (2.26)

in terms of the parameter s. Equivalently we will work with the fixed length boundary
condition which is a Laplace transform of the FZZT brane. This can be thought of a
Dirichlet boundary condition on the Liouville field that fixes the value of

∮
ebϕ → ℓ along

the boundary. For a detailed explanation of how to go between them see [22].

Minimal string: The minimal string theory is a combination of the minimal model CFT,
the Liouville mode and a set of ghosts. These sectors are only coupled through the anomaly
cancellation, and a possible integral over moduli space when computing observables. We will
only consider in this paper states of ghost number one. These are “tachyon” operators that
are given by gravitationally dressing minimal model primaries

Tn ≡
∫ √

ĝ O1,n e
2anϕ, an =

b

2
(1 + n), n = 1, . . . ,m− 1. (2.27)

For the operator Tn to be diffeomorphism invariant, the composite operator O1,n e
2anϕ should

have dimension (1, 1). The dressing parameter was determined from the condition

∆n +∆an = 1. (2.28)

There is another solution for an to this equation, but in (2.27) we picked the one that is
smooth in the b→ 0 limit.

In the rest of this section we will review a connection pointed out by Seiberg and Stanford
[86] (see also Appendix F of [22]) between this theory and two-dimensional dilaton-gravity
that we will exploit later on. The idea is to use the time-like Liouville representation of
the minimal model. Then the action of the minimal string can be written as a sum of two
Liouville modes IMS[χ, ϕ] = IMM[χ]+ IL[ϕ]+ Ighosts. The ghosts do not seem to be important
so we will ignore them from now on, although this should be understood better. In conformal
gauge we can perform the following field redefinition mixing the two modes

bϕ = ρ− πb2Φ, (2.29)

bχ = ρ+ πb2Φ. (2.30)
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We rewrite the path integral now over ρ and Φ. We will call Φ the dilaton and define a new
two-dimensional metric

g = e2ρĝ. (2.31)

Notice this metric is not the same as the worldsheet metric in the minimal string. In terms
of this new metric and dilaton the minimal string can be rewritten as

I = −1

2

∫
√
g
[
ΦR + 4µ sinh

(
2πb2Φ

)]
. (2.32)

This has the most general two-derivative form of dilaton-gravity −1
2

∫
ΦR + 2U(Φ), with

dilaton potential given by U(Φ) = 2µ sinh (2πb2Φ) (this potential was studied for different
reasons in [114–116]). This suggests that the minimal string is equal to a certain dilaton-
gravity theory and some checks were performed in [22]. This theory simplifies in the limit
b→ 0 where the potential is linear and the theory becomes Jackiw-Teitelboim gravity

I = −1

2

∫
√
g Φ(R + 2Λ), (2.33)

where in the limit we keep Λ ≡ 4πb2µ, which becomes the absolute value of the two-
dimensional cosmological constant, fixed and set to one. We will call this the pure JT
gravity limit or JT limit for short. We can check that this identification is true by com-
paring the disk density of states [4]. We will extend this to the case of the minimal string
deformed by tachyon operators in section 2.4.

String equation

From the perspective of the loop equations [117, 118], all the information of a matrix integral
is encoded in the disk density of state ρ0(E), which is also equivalent to giving the matrix
potential V (H). Higher genus contributions are determined from the topological recursion
[118, 119]; for an example on how this is done see [4]. Therefore, if two theories that are dual
to a matrix integral share the same disk density of states it means the theories are equivalent
to all orders in the genus expansion. Since we will work in the double-scaling limit we will
‘label’ the theory by ρ0(E) instead, since the precise matrix potential depends on how we
regularize the theory away from the double-scaling limit.

It will be very useful when studying deformations to look at the matrix integral from a
different perspective: the string equation [78–80] (building on previous work [19, 120–123]).
To leading order in the genus expansion the string equation has the following form∑

k

tku
k = x, (2.34)

where x is a dummy variable we can use to compute certain observables and tk are the KdV
couplings. We include t0 on the left-hand side so at the end of the day we will always fix
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x = 0. This can be derived by taking the double-scaling limit of the orthogonal polynomial
method; see for example [78]. Knowing u(x) allows us to compute the main observable we
are interested in. For example, the genus zero disk partition function is given by [124]〈

Tr
[
e−βH

]〉
g=0

= eS0
1√
2πβ

∫ ∞

0

dx e−u(x)β. (2.35)

The string equation provides an independent way to compute higher genus corrections. The
recipe is to replace in the string equation the powers of u by the Gelfand-Dickii differential
operators uk → Rk[u; ℏ] which to leading order in ℏ ≡ e−S0 coincide with Rk[u] ∼ uk [125,
126]. Then one needs to solve again for u(x; ℏ) and compute observables using the quantum
mechanical free fermion perspective [124] which to leading order reduces to (2.35). This
perspective is useful to derive analytical [22] and numerical results [84] which would be hard
to obtain from the topological recursion.

To simplify the presentation, instead of giving the KdV couplings individually we will
directly define and compute the function

F(u) ≡
∑
k

tku
k. (2.36)

The string equation to leading order becomes F(u) = x. The KdV coupling can be easily
extracted by a Taylor expansion. We allow for the possibility of the index k being unbounded,
since this is needed for the JT gravity matrix integral.

The function F(u) fully specifies the double-scaling limit of a matrix integral. This is
equivalent to giving the disk density of states which using (2.35) is related by the equation

ρ(E) =
eS0

2π

∫ E

E0≡u(0)

du√
E − u

∂F
∂u

, (2.37)

where E0 is the largest root of the string equation with x = 0, given explicitly by F(E0) = 0.
This is in general a complicated equation.

String equation for the (2, p) minimal string: The minimal string with p = 2m− 1 is
dual to the mth-multicritical model of a one-matrix integral [19, 20]. In order to compare
the matrix model with the results from the worldsheet CFT approach one has to turn on
lower order couplings in a specific way [93]. We will now review the derivation of the ‘string
equation’ that matches with the CFT continuum approach [92, 93]. This can be read off from
the calculation of the disk partition function Z(ℓ) with fixed length boundary conditions [93,
113]. The final answer is given by

Z(ℓ) ∼
∫ ∞

0

ds e−µB(s)ℓ sinh 2πbs sinh 2π
s

b
. (2.38)

From this expression we can extract the disk density of states as a function of p and also the
cosmological constant through κ. This identifies µB(s) with the matrix eigenvalues EMS (we
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leave E and u to refer to a different convention that we specify below). The answer picking
a particular normalization is given by

ρ(EMS) = eS0
p2

32π4κ2
sinh

(
p

2
arccosh

(
EMS

κ

))
. (2.39)

Using (2.37) we can obtain the string ‘string equation’ associated to this theory. The result
is given by

F(uMS) =
p2

32π3
√
2κ3

[
Pm

(uMS

κ

)
− Pm−2

(uMS

κ

)]
, (2.40)

where κ ∼ √
µ and Pn(x) are the Legendre polynomials. We review the definition and

some useful properties in Appendix A.2. At large energies this precisely becomes the string
equation of the m-th multicritical point of the matrix integral um ∼ x, or equivalently
ρ0(EMS) ∼ (

√
EMS)

2m−1. As anticipated this answer is modified by turning on other lower
couplings and near the edge this presents the universal ρ(EMS) ∼

√
EMS − κ behavior.

JT gravity string equation: Now we will write down the JT gravity tree-level string
equation and compare it with a limit of the minimal string. It is useful to rescale and
shift the matrix, and therefore its eigenvalues E, and the variable u in the string equation
correspondingly. Following [22] we define the variables E and u as

EMS = κ
(
1 +

8π2

p2
E
)
, uMS = κ

(
1 +

8π2

p2
u
)
. (2.41)

In terms of these variables the density of states and string equation of the minimal string
are independent of µ and become

ρ(E) =
eS0

4π2
sinh

(p
2
arccosh

(
1 +

8π2

p2
E
))
, (2.42)

F(u) =
p

16π2

[
Pm

(
1 +

8π2

p2
u
)
− Pm−2

(
1 +

8π2

p2
u
)]

. (2.43)

We can now take the large p limit keeping E and u fixed. This gives

ρJT(E) =
eS0

4π2
sinh

(
2π

√
E
)

↔ FJT(u) =

√
u

2π
I1
(
2π

√
u
)
. (2.44)

It is now evident that this coincides with the density of states (and therefore string equation)
of the matrix integral dual to pure JT gravity.

Deformations and Belavin-Zamolodchikov string equation

We now analyze deformations of the minimal string. We will review the exact string equation
proposed by Belavin and Zamolodchikov [92], building on the work of Moore, Seiberg and
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Staudacher [93]. In the next section we will make a connection between these deformations
of the minimal string and the conical deformations of pure JT gravity introduced in [16] and
[15].

We will focus on the following type of deformations by adding a combination of tachyon
operators

∑
n τnTn to the minimal string action, where τn are the couplings of each defor-

mation. Then the action of the deformed minimal string is, writing the deformation more
explicitly,

I = I(2,p) −
m−1∑
n=2

τn

∫ √
ĝ O1,n e

b(1+n)ϕ, n = 1, . . . ,m− 1, (2.45)

where an = b(n+ 1)/2 is tuned such that the integrand is a marginal operator.
The outline of the derivation is the following. When computing tachyon correlation

functions on the sphere, the structure is strongly constrained by the minimal model fusion
rules and conformal invariance. For example the correlator ⟨TnTn′⟩S2 = 0 unless n = n′. On
the other hand, given a tree-level string equation one can derive these correlators by taking
derivatives with respect to the couplings τn’s. Strikingly, solely the conditions derived from
the fusion rules completely fix the string equation. The final answer is given by

F(uMS) =
p

16π2

(
Pm

(uMS

κ

)
− Pm−2

(uMS

κ

))
+

∞∑
L=1

m−1∑
n1,...,nL=1

1

L!
ΠL

i=1λni

(
16π2

p2

)L−1

P
(L−1)

m−1−
∑L

i=1 ni

(uMS

κ

)
, (2.46)

where λn ∝ τn, with the prefactor determined below. We defined the Lth derivative of
the nth Legendre polynomial as P

(L)
n (x) ≡ ∂LxPn(x)

5. The sum is over a set of L integers
1 ≤ ni ≤ m − 1 where i = 1, . . . , L and L = 1, . . . ,∞. As explained in Appendix A.2, the
Legendre polynomial is defined such that Pn(x) = 0 when n < 0. This implies that the sums
in the second term in the right-hand-side only contribute as long as m−1−

∑
i ni ≥ 0. This

constraint comes from analyzing resonance conditions between deformations.
The relation between the parameter λn associated to the deformation and the coupling

in the action τn depends on the precise normalization of the minimal model operators. If we
pick the conventional normalization we obtain

λn = τn Leg(n)
p2

16π2
, (2.47)

where we defined the leg-factor

Leg(n) ≡ in−1

2µ

√
πµγ(nb2)

(πµγ(b2))n
Γ( 1

b2
− 1)

Γ( 1
b2
− n)

, (2.48)

5Not to be confused with the associated Legendre polynomial which will not appear in this paper.
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with γ(x) ≡ Γ(x)/Γ(1− x). This relation comes from comparing the correction to the disk
partition function to linear order in the deformation computed from the string equation or
from the worldsheet CFT description. We do this in Appendix A.3. The leg-factor appears as
well in computing sphere correlators. For example the normalized sphere two-point function
is

⟨TnTn′⟩S2 = δn′n
(2m− 3)(2m− 1)(2m+ 1)

2m− 2n− 1
Leg(n)2. (2.49)

If we want to shift normalization for the minimal model operators by O1,n → NnO1,n this
can be achieved by shifting Leg(n) → NnLeg(n). We will use this in section 2.5 to study
these expressions in a normalization more natural for the time-like Liouville description of
the minimal model.

Now we will analyze several special cases of these formulas in order to gain some intuition.
To simplify we will consider the case of a single deformation with parameter n and look at
various cases:

n = m− 1: This corresponds to the case of deforming the action by the operator with the
lowest dimension in the minimal model. The level of the Legendre polynomial appearing in
the string equation is m − 1 −

∑
i ni. Therefore whenever an operator with n = m − 1 is

present, it will only contribute by itself to linear order exactly. Any other term vanishes.
Then its contribution to the string equation is

δF ∼ λm−1P0

(uMS

κ

)
= λm−1. (2.50)

This is equivalent to shifting x → x − λm−1 when computing observables. Therefore this
gives an interpretation of the parameter x as a specific coupling in the minimal string.

m−1
2

≤ n < m− 1: In this case the string equation also simplifies as long as n > n⋆ with

n⋆ ≡ (m − 1)/2. In this range, the string equation is linear in the λn’s. This happens
because the resonance conditions for these operators are very limited and there are no non-
linear ambiguities due to contact terms [92]. The solution is given by

F(uMS) =
p

16π2

[
Pm

(uMS

κ

)
− Pm−2

(uMS

κ

)]
+

m−1∑
n=n⋆

λnPm−n−1

(uMS

κ

)
. (2.51)

As n decreases from n = m − 1 to n⋆, the order of the polynomial goes from order zero to
order (m− 1)/2.

n < m−1
2

: This is the most complicated range. As becomes clear from the string equation,

deformations with lower n involve higher orders in λn. In this case there is no simplification
and we need to consider the full expression.
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n = 1: Finally, there is a simplification when we include operators with n = 1. This is the
identity operator and we should reproduce a shift of the cosmological constant by −τ1. In
this case the bound on the terms that can appear in the string equation is m− 1−

∑
i ni =

m − 1 − L > 0, and therefore L ≤ m − 1. The sum can be explicitly done using results in
Appendix A.2 as

F(uMS) ∼ Pm(uMS/κ)− Pm−2(uMS/κ)

2m− 1
+

m−1∑
n=1

λn

n!

(
16π2

p2

)n

P
(n−1)
m−n−1(uMS/κ) (2.52)

∼ Pm

(
uMS

κ
√

1− 2τ1Leg(1)

)
− Pm−2

(
uMS

κ
√

1− 2τ1Leg(1)

)
, (2.53)

where we omit a u independent prefactor that will not be important, and in the second line
we have used λ 16π2

p2
= τ1Leg(n = 1). We see that this gives back the undeformed minimal

string equation with the replacement κ → κ
√
1− 2τ1Leg(1). Using the minimal model

normalization of operators we obtain Leg(n = 1) = 1
2µ
. Therefore we find that the shift

of κ ∼ √
µ is equivalent to shifting the cosmological constant µ → µ − τ1, consistent with

equation (2.45).

After these clarifications we see the behavior of the deformed minimal string strongly
depends on whether the parameter n is bigger or smaller than n⋆. This is reminiscent of the
differences between sharp or blunt defect deformations with either α < 1/2 and α > 1/2. In
the next section we will see this is not a coincidence.

2.4 JT gravity with defects from the minimal string

In the previous section we studied the exact solution for deformations of the (2, p) minimal
string. In this section we will show that the large p limit of these theories corresponds to
JT gravity with a gas of defects. We will use this correspondence to find the disk density of
states for JT gravity in the presence of general defects with an arbitrary defect angle.

Sharp defects from the minimal string

Having explained the exact solution of the deformed minimal string in section 2.3 we will
now begin to take the JT gravity limit, namely p→ ∞. As a first clarification, we will take
the energy and u to scale as

EMS = κ
(
1 +

8π2

p2
E
)
, uMS = κ

(
1 +

8π2

p2
u
)
, (2.54)

where E and u are kept fixed in the p→ ∞ limit.
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Figure 2.4: The relationship between the minimal string operators Tn and the JT defect
parameter α. The spacing between the operators in α is discrete and of order 1/p; as we
take the JT limit by sending p to infinity, α becomes a continuous parameter.

As we take the large p limit, we need to choose a scaling for both the index n labeling
the operator and the coupling τn. We choose the following scaling

n =
p

2
(1− α), τn = λ

16π2

p2
1

Leg(n)
, (2.55)

where we keep α and λ fixed in the JT limit. The rationale for this choice will be motivated
and explained below.

At finite values of p, α is a discrete parameter since n is discrete and takes value in the
set α ∈ 2

p
·Z. As we take p→ ∞ this parameter becomes continuous. Since n in the minimal

string is in the range 1 ≤ n ≤ m − 1, the parameter α lies between 0 < α < 1. The case
n = 1 corresponds to α = 1− 2

p
→p→∞ 1, while n = m−1 corresponds to α = 1

p
→p→∞ 0. We

give a diagram showing the relation between n and α in figure 2.4. We saw the deformations
in the minimal string changes drastically at the threshold n⋆. In terms of α this is given
by α⋆ = 1

2
+ 1

2p
→p→∞

1
2
. The string equation simplifies when n⋆ < n or equivalently

0 < α < 1/2. This is precisely the same range corresponding to sharp defects studied in [15,
16].

We begin by considering the large p limit restricted to n⋆ < n or α < 1/2. We write the
string equation (2.51) in terms of variables that we keep fixed in the JT limit. Deformations
of the string equation in this range are exactly linear so we can consider one defect without
loss of generality. The finite p string equation perturbed by one defect is

F(u) =
p

16π2

[
Pm

(uMS

κ

)
− Pm−2

(uMS

κ

)]
+ λ Pm− p

2
(1−α)−1

(uMS

κ

)
. (2.56)

Using identities from Appendix A.2 the large p limit with α and λ fixed gives the following
answer

F(u) →
√
u

2π
I1
(
2π

√
u
)
+ λ I0

(
2πα

√
u
)
, (2.57)

which precisely coincides with the string equation of JT gravity with a gas of sharp defects
[15, 16]! In that context the gas of defects are characterized by a deficit angle 2π(1−α) (with
α related to the minimal model operator) and a weighing factor λ (related to the coupling
τ). It is easy to extend this to the case of multiple defect species from (2.51)

F(u) →
√
u

2π
I1
(
2π

√
u
)
+
∑
i

λi I0
(
2παi

√
u
)
, (2.58)
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obtaining again a match with JT gravity.
We have shown that the minimal string deformed by operators n⋆ < n at large p becomes

JT gravity with sharp defects α < 1/2. We have only compared tree-level string equations,
but we would like to stress that this is enough to argue that both theories are the same to
all orders in perturbation theory. This is because both theories are dual to a matrix integral,
and all observables are determined by the matrix potential which can be determined from
the tree-level disk density of states. Of course, this is true up to corrections not captured by
the double-scaling limit.

Another check

The upshot of the previous calculation is that the insertion of a defect from the dilaton-
gravity perspective is equivalent to a tachyon vertex operator insertion in the minimal string.
It is instructive to check this more explicitly in a simple example, taken from [22, 90]. We
compute the expectation value of the disk partition function with a single tachyon insertion
and fixed boundary length ℓ. This is easy to do using Liouville CFT techniques and gives
the answer

⟨Tn⟩ ∼
∫ ∞

0

ds e−µB(s)ℓ cos (4πPns) , (2.59)

where Pn = ±i(1− nb2)/(2b) is the Liouville momentum of the gravitational dressing asso-
ciated to O1,n with n = (1− α)/b2. Replacing this value and writing the answer in terms of
α gives

⟨Tn⟩ ∼
∫ ∞

0

dse−ℓκ cosh(2πbs) cosh

(
2παs

b

)
. (2.60)

To take the JT limit of the result written in this form we set s = bk and ℓ = β/(2π2κb4) and
take b→ 0 while keeping β and k fixed

⟨Tn⟩ ∼
∫ ∞

0

dke−βk2 cosh (2παk) ∼ 1√
β
e

π2α2

β . (2.61)

This is precisely, for a specific choice of units, the path integral of JT gravity on the disk
with fixed renormalized length β. This check is valid for any 0 < α < 1.

In the small b limit these are heavy operators. This match can then be understood from
the perspective of the semiclassical evaluation of the Liouville path integral with one heavy
insertion and fixed boundary length. The classical solution is precisely a hyperbolic metric
with one conical defect at the operator insertion. For a review in the present context see
Appendix B.1 of [22].

Cases with E0 = 0

In analogy with an analysis in [15], we can study deformations of the minimal string with
n⋆ < n that give E0 = 0. This requires at least two different defects and in general

∑
n λn = 0.

In this case we can analytically compute the density of states.
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Using the equation for the density of states (2.37) with the string equation (2.56) in terms
of u variables, the integral identity in (A.6) immediately gives

e−S0ρ(E) =
1

4π2
sinh

(
p

2
arccosh

(
EMS

κ

))
+

m−1∑
n=n⋆

λn
2κ

p
√
E2

MS − κ2
cosh

(
p− 2n

2
arccosh

(
EMS

κ

))
, (2.62)

where we have written the final result in terms of EMS for simplification purposes. It is
surprising from the worldsheet CFT perspective of the minimal string that all higher order
corrections in λn vanish! This is a nontrivial consequence of the Belavin-Zamolodchikov
analysis that deserves further study. A similar observation was made in [15] in the context
of JT gravity. To make the connection we take the large p limit of this expression giving

e−S0ρ(E) → 1

4π2
sinh

(
2π

√
E
)
+
∑
i

λi
cosh

(
2παi

√
E
)

2π
√
E

. (2.63)

This is precisely the density of states of JT gravity with sharp defects for E0 = 0.

Solution with general defects

One defect species

The most general string equation for an arbitrary deformation is complicated, so we will
begin by analyzing a simpler case where only one deformation τn is turned on with n < n⋆.
Then (2.46) simplifies into the following equation

F(u) =
p

16π2

[
Pm

(uMS

κ

)
− Pm−2

(uMS

κ

)]
+

⌊m−1
n

⌋∑
L=1

λLn
L!

(
16π2

p2

)L−1

P
(L−1)
m−Ln−1

(uMS

κ

)
, (2.64)

where we remind the reader that P
(L)
n (x) ≡ ∂LxPn(x) is the derivative of the Legendre poly-

nomial. The new feature compared to (2.51) is the fact that now the string equation is
non-linear as a function of the deformation. This modification will survive the large p limit.

Now we take the JT limit. In order to do this we take p → ∞, or equivalently m → ∞,
while scaling the index of the minimal model operator as n = p(1 − α)/2 and the coupling
as in (2.55). This scaling gives JT gravity with a gas of defects with weight λ and defect
angle α. The final answer for the string equation obtained from (2.64), using identities in
Appendix A.2, is given by

F(u) =

√
u

2π
I1
(
2π

√
u
)
+ λI0

(
2πα

√
u
)

+

⌊ 1
1−α

⌋∑
L=2

λL

L!

(
2π(1− L(1− α))√

u

)L−1

IL−1

(
2π(1− L(1− α))

√
u
)
. (2.65)
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The first line contains the two terms that already appear in the string equation for sharp
defects. In the second line we show the new terms that appear when α > 1/2. The nonlinear
terms of order λL appear only if L ≤ ⌊ 1

1−α
⌋. This has a geometric interpretation since there

is a bound on the number of individual defects that can be merged into a single defect.
Moreover, the combination appearing in each term, 2π(1− L(1− α)) is precisely the deficit
angle after merging L defects of angle 2π(1 − α). It would be nice to understand how to
derive this formula directly from the perspective of JT gravity but we leave this for future
work.

Finally, using this tree-level string equation we can find the density of states to leading
order in the genus expansion. Using (2.37) this is given by

ρ(E) =
eS0

2π

⌊ 1
1−α

⌋∑
L=0

λL

2L!

∫ E

E0

du√
E − u

(
2π(1− L(1− α))√

u

)L

IL
(
2π(1− L(1− α))

√
u
)
. (2.66)

The edge of the spectrum E0 appearing in this expression is defined as the largest root
of (2.65) solving F(u0 = 1 + 8π2

p2
E0) = 0. For α ≤ 1/2 this coincides with the answer

found in [15, 16] and generalizes it to α > 1/2. Contrary to previous expectations this is a
non-analytic function of α and the result changes drastically as α approaches one.

General case

We now generalize the previous discussion to an arbitrary number of defect species put
together. In order to do this we take the JT gravity limit of the most general deformed
minimal string equation (2.46). The calculation is very similar to what we have already
done and therefore we give the final answer

F(u) =
′∑

{ℓi}

∏
i λ

ℓi
i

L!

(
2π(1−

∑
i ℓi(1− αi))√
u

)L−1

IL−1

(
2π
(
1−

∑
i

ℓi(1− αi)
)√

u
)
, (2.67)

where L =
∑

i ℓi and the sum includes all permutations of λi for a particular configuration
{ℓi}. The case with all ℓi = 0 and therefore L = 0 gives back the pure JT gravity contribution.
We see this is a simple generalization of the one species case (2.65). The prime in the
summation means that we only include configurations {ℓi} such that the following identity
is satisfied

1−
∑
i

ℓi(1− αi) > 0. (2.68)

This bound has a simple geometric interpretation. It specifies the maximum number of
defects αi that can merge together, and it is a straightforward generalization of the bound
on L appearing in (2.65).
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Structure of the perturbative expansion

We now explain general features of the perturbative expansion in λ of the partition function,
and we relate it to some geometrical intuition developed in section 2.2. For simplicity we
focus on the case of one defect species.

To begin consider the case of sharp defects. For 0 < α ≤ 1/2 the first orders in the
expansion are

α ≤ 1

2
: ZJT = eS0

e
π2

β

4
√
πβ3/2

, Z1−def = eS0
e

π2α2

β

2
√
πβ

, Z2−def = eS0

√
β

2
√
π
, . . . , (2.69)

where the dots indicate contribution with larger number of defects. The exponential ap-
pearing in ZJT and Z1−def come from classical solutions, while the prefactor comes from
perturbative quantum corrections. On the other hand for more than one defect there is no
classical solution. This manifests itself in the fact that for Zk−def with k > 1 the answer is
always given by a finite polynomial in

√
β (it is easy to show this property using the string

equation).
Consider now the case 1/2 < α < 2/3 for which the maximum order in λ in the string

equation is ⌊ 1
1−α

⌋ = 2. The perturbative expansion now has new terms

1

2
< α <

2

3
: ZJT = eS0

e
π2

β

4
√
πβ3/2

, Z1−def = eS0
e

π2α2

β

2
√
πβ

, Z2−def = eS0

√
β

2
√
π
e

π2(1−2α)2

β ,

Z3−def = eS0
π3/2

6
√
β
(β(12− 6α(4− 3α))− π2), . . . . (2.70)

The first two terms corresponding to zero or one defect are unchanged. This is true for
defects in the whole range 0 < α < 1. But now for 1/2 < α < 2/3 we see the two-defect
term gets modified and a new exponential term appears. This is consistent with the analysis
in section 2.2, in particular the exponent of Z2−def is precisely the same as the classical
contribution of two defects of angle α merging into a single one of angle 2π(2α − 1) > 0.
The contribution of Zk−def for all k > 2 can be shown to be given by a finite sum of powers,
consistent with the fact that for 1/2 < α < 2/3 there is no classical solution with three or
more merged defects6.

A similar structure is valid in the whole range 0 < α < 1 consistent with section 2.2. If
we look at the high temperature limit of small β, then the first terms have the behavior

ZL−def ∼ eS0βL− 3
2 e

π2(1−L(1−α))2

β , for L ≤
⌊ 1

1− α

⌋
, (2.71)

6For 1/2 < α < 2/3 and k > 2 there is a geodesic in the geometry we can use to glue with trumpets.
Nevertheless in this case a different calculation of the WP volume is required [105]. Therefore, more generally
contributions with Zk−def and k > ⌊ 1

1−α⌋ do not need to match with the ones from sharp defects continued
to values of α > 1/2, and we find they are different.
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while for Zk−def with k > L the answer is always a finite sum of powers. It would be
interesting to understand these results directly from a JT gravity with defects path integral
calculation, but we leave this for future work. Some progress in this direction was done in
[95]. We collect more results regarding the perturbative expansion in Appendix A.5.

Summary: Types of defects

In this section we summarize the different types of defects and their correspondence to the
minimal string deformations outlined at the end of section 2.3.

α = 0: This gives a gas of cusps, and is obtained in the large p limit of the Tm−1 deformation.
The string equation in this case is simply

F(u) =

√
u

2π
I1
(
2π

√
u
)
+ λ. (2.72)

Just like the Tm−1 deformation, this is equivalent to shifting the variable x → x − λ in
the string equation and gives a geometric interpretation for this dummy variable used to
compute expectation values. From the dilaton-gravity perspective this amounts to adding a
term to the dilaton potential proportional to e−2πΦ.

0 < α ≤ 1/2: These are the sharp defects studied in [15, 16] and they are obtained from
deformations between Tn⋆ , . . . , Tm−2. The string equation is exactly linear in the deformation
parameter λ

F(u) →
√
u

2π
I1
(
2π

√
u
)
+ λ I0

(
2πα

√
u
)
. (2.73)

For α = 1/2, the contribution with L = 2 is exactly zero7. This was implicitly assumed in
[16] since this case is relevant to the application to 3D, and here we can verify this.

1/2 < α < 1: They correspond to blunt defects, for which the SSS recipe cannot be applied.
The string equation is non-linear in the deformation

F(u) →
⌊ 1
1−α

⌋∑
L=0

λL

L!

(
2π(1− L(1− α))√

u

)L−1

IL−1

(
2π(1− L(1− α))

√
u
)
, (2.74)

and we propose the new terms are related to the possibility of defects merging and new
classical solutions compared with sharp defects.

7This happens whenever (1 − α)−1 is an integer since then the contribution from Lmax =
⌊

1
1−α

⌋
is

proportional to (1− Lmax(1− α))Lmax−1 = 0.
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α = 1: The deformation with α = 1 corresponds to the large p limit of the deformation T1,
which in the minimal string simply shifts the cosmological constant. From the JT perspective,
when α = 1 we have a gas of insertions with vanishing deficit angle and therefore we expect
to recover pure JT gravity. Indeed this is the case:

F(u) →
√
u

2π
I1
(
2π

√
u
)
+

∞∑
L=1

λL

L!

(
2π√
u

)L−1

IL−1

(
2π

√
u
)

(2.75)

=

√
u+ 2λ

2π
I1

(
2π

√
u+ 2λ

)
. (2.76)

This is precisely the JT gravity string equation up to a simple shift of u → u + 2λ. The
density of states associated to this is simply

ρ(E) =
eS0

4π2
sinh

(
2π
√
E − E0

)
, E0 = −2λ. (2.77)

In section 2.5, we give a possible interpretation of this shift from the dilaton-gravity perspec-
tive. It is interesting that the α → 1 limit of the partition function in the disk with a single
defect does not give back pure JT gravity. Instead we need to sum over a gas of points with
zero deficit angle in order to recover the undeformed theory.

Defect generating function

We have presented the solution to JT gravity with a gas of generic defect species parameter-
ized by their weight λi and angle αi. It will be convenient to recast this information about
the theory in the following defect generating function W (y). This is defined as

W (y) ≡
∑
i

λie
−2π(1−αi)y. (2.78)

Characterizing the species present is equivalent to giving the function W (y), with some
restriction on W coming from 0 < αi < 1.

The solution found through the string equation (2.67) is not very transparent when
describing the spectrum of defects in terms ofW (y). As we show in Appendix A.4, using some
integral identities for Bessel functions, the string equation (2.67) can be exactly rewritten as
an inverse Laplace transform8

F(u) =

∫
C

dy

2πi
e2πy

(
y −

√
y2 − u− 2W (y)

)
, (2.79)

which now depends on the function W (y) in a very simple way. The contour is along the
imaginary axis with all singularities to the left.

8We thank T. Budd for pointing this out [95].
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Moreover, this expression can be inserted in (2.37) to obtain a general formula for the
disk density of states as a function of the defect generating function W (y)

ρ(E) =
eS0

2π

∫
C

dy

2πi
e2πy tanh−1

(√
E − E0

y2 − 2W (y)− E0

)
, (2.80)

where the edge of the spectrum E0 can be found by solving F(E0) = 0. From these ex-
pressions it becomes evident that adding a gas of defects with angle α → 1 has the effect
of shifting the generating function by a y-independent constant. From (2.79) we see such
a shift W (y) → W (y) + c, for some constant c, can be absorbed by a shift u → u − 2c, or
equivalently a shift in the energy E → E− 2c. We have seen this explicitly in a simpler case
at the end of the previous section.

These expressions will be extremely useful in the next section when we reinterpret this
theory as a solution of 2D dilaton-gravity.

2.5 Dilaton-gravity

We will argue that there is a connection between deformations of the minimal string and
dilaton-gravity theories, and we study the large p limit of these theories. The minimal string
formulation implies a precise relation between the defect parameters and the dilaton potential
which differs from the one proposed in [15]. We then use the Belavin-Zamolodchikov string
equation to propose an exact solution of these dilaton-gravity theories.

The minimal string as 2D dilaton-gravity

To explain the first point we again use the argument of [86] (see also [22]) to rewrite the
minimal string action in terms of a time-like Liouville field. We apply the same field redefini-
tion (2.29)-(2.30) to the tachyon insertions present in the deformation of the minimal string
action. Ignoring changes in normalization, this gives∫ √

ĝ O1,n e
2αLϕ →

∫ √
ĝ e2αMχ e2αLϕ →

∫
√
g e−2πb2nΦ, (2.81)

where g is the JT gravity metric and Φ the JT dilaton. The final proposal is that the
deformed minimal string is equivalent to a two-dimensional dilaton-gravity theory

I = −1

2

∫
√
g [ΦR + 2U(Φ)] , (2.82)

with the following dilaton potential

U(Φ) = 2µ sinh
(
2πb2Φ

)
+

m−1∑
n=1

τn e
−2πb2nΦ, (2.83)
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where n = 1, . . . ,m− 1 9. The first term is the undeformed minimal string potential derived
in section 2.3. We can take the JT limit of this dilaton-gravity action using the scaling
introduced in (2.55) n = (1− α)/b2. Each deformation term becomes

τn

∫
√
g e−2πb2nΦ → τn

∫
√
g e−2π(1−α)Φ, (2.84)

which is the same dilaton potential associated to one defect species. This gives yet another
perspective on why deformations of the minimal string matched with JT gravity with defects
in the previous section.

The conventional normalization of the minimal model operator does not match with the
time-like Liouville exponential required in this derivation. Therefore the parameter τn here
is rescaled with respect to the one used in the previous section. We analyze this in detail in
the next section.

Minimal string normalization

The Belavin-Zamolodchikov string equation, which gives the exact solution of the theory, is
written in (2.46) in terms of λn, related to the coupling in the dilaton potential τn by

λn = τn
p2

16π2
Leg(n). (2.85)

The leg-factor is defined in (2.49) and depends on the precise normalization of the minimal
model operator. In order to compute the dilaton potential in (2.83) as a function of the
λn’s we need to compute the leg-factor corresponding to the exponential time-like Liouville
normalization,

e2ânχ = N (E)
n O1,n, (2.86)

where O1,n denotes the minimal model with the standard normalization used in equation

(2.48). We exclude the definition of the prefactor N
(E)
n for convenience; its precise expression

can be found in Appendix C of [109]. Instead we quote directly the result for the leg-factor
corresponding to the exponential normalization10

Leg(n) =
γ(nb2)

2µMγ(−b2)

(
−γ(−b2)
γ(b2)

) 1+n
2

, (2.87)

where µM is the cosmological constant of the time-like Liouville field which we take to be
−µ, consistent with (2.22), and γ(x) = Γ(x)/Γ(1 − x). If we take the JT limit by sending

9It would be interesting to understand from the dilaton-gravity perspective whether the exponent in the
dilaton potential has to be quantized at finite p. A more complete understanding of the minimal model as
time-like Liouville would very likely answer this question (see [94] for some progress in this direction).

10Our definition has an extra factor of −1/2 relative to C.18 in [109]; this is to normalize the correlation
functions to be consistent with the convention of [92].
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b→ 0 for a deformation with n = (1− α)/b2 we find that

τn =
2πλn

γ(1− α)
e−2(1−α)c, (2.88)

where c is the Euler–Mascheroni constant and we have again set 4πb2µ = 1 to recast the JT
action in the standard form. The exponential term can be removed by a simple shift of the
dilaton.

The final result of this section is that, following the minimal string quantization, the
string equation (2.79) provides an exact solution for the following 2D dilaton-gravity

U(Φ) = Φ +
∑
i

2πλi
γ(1− αi)

e−2π(1−αi)Φ, (2.89)

where the sum is over species of defects with parameters αi and λi. The advantage of this
choice is the existence of a good semiclassical limit, which we can probe in the limit α → 1
where the backreaction from the conical defect is small. Using that γ(1 − α) ≈ (1 − α)−1,
the dilaton potential becomes approximately U(Φ) = Φ+

∑
i 2π(1−αi)λie

−2π(1−αi)Φ. It was
checked in Appendix D of [16] that this extra factor of 2π(1 − α) guarantees a match with
the semiclassical dilaton-gravity calculation. We will come back to this in the next section
where we analyze polynomial dilaton potentials.

Polynomial potentials

In this section we explain how to generate nearly polynomial dilaton potentials

U(Φ) = Φ +
N∑

n=2

ηnΦ
n + · · · (2.90)

by choosing certain combinations of defect parameters in (2.89). By nearly polynomial we
mean that for some large interior region in the geometry the potential has the desired form,
but near the asymptotic boundary where the dilaton is very large it reduces to JT.

One way to construct a potential of lowest degree m is to introduce m + 1 defects with
θi = 2π(1 − αi) ≈ 0. After expanding the exponentials in θiΦ the terms up to Φm can be
cancelled by tuning the couplings τi, with one coupling leftover to specify the free parameter
ηm. The behavior of the potential is such that there is an arbitrarily large polynomial region
defined by θiΦ ≪ 1 which smoothly connects to a JT region near the asymptotic boundary
where the dilaton becomes large. This ensures that the boundary is asymptotically AdS2

and these theories are unambiguously defined through the string equation (2.67).
We demonstrate the above procedure with a simple example of the quadratic potential

U(Φ) = Φ + η
2
Φ2 + · · · , for which the semiclassical limit was studied in [127]. We begin by

turning on three general defects with corresponding potential

U(Φ) = Φ + τ1e
−θ1Φ + τ2e

−θ2Φ + τ3e
−θ3Φ, (2.91)
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Figure 2.5: We illustrate the geometry for the quadratic deformation constructed in sec-
tion 2.5. The blue curve corresponds to the Schwarzian boundary, while the shaded region
corresponds to the portion of the disk where the deformation to the dilaton potential is ap-
proximately quadratic. The region in between corresponds to the transition from the nearly
polynomial behavior to AdS2 asymptotics.

where the linear term is the undeformed JT potential. For θiΦ ≪ 1 we can expand the
exponentials to find

U(Φ) = Φ + τ1 + τ2 + τ3 − (τ1θ1 + τ2θ2 + τ3θ3)Φ +
1

2
(τ1θ

2
1 + τ2θ

2
2 + τ3θ

2
3)Φ

2 + · · · (2.92)

To get the leading order behavior of Φ2 we can choose the following parameters θ1 = θ2/2 =
θ3/3 ≡ θ and τ1 = −τ2/2 = τ3 ≡ τ , with θ close to zero. If we now formally take θ → 0
while keeping the combination η ≡ 2θ2τ fixed at a small but finite value, we arrive at the
following potential

U(Φ) = Φ +
η

2
Φ2. (2.93)

The quantity that will be relevant to us will be the prepotential, which is defined by

Û(Φ) = 2

∫ Φ

0

U(Φ′)dΦ′ = Φ2 +
η

3
Φ3. (2.94)

Higher order polynomial potentials can be constructed by tuning defect parameters in a
similar way.

Note that since we have constructed this potential by turning on defects this approxima-
tion is only valid when θΦ ≪ 1. At any finite value of θ, this condition only holds for a region
near the center of the disk. The deformation can be turned on in a large portion of the bulk
by taking θ small, but there is a transition to JT asymptotics near the boundary. See figure
2.5 for an illustration of this. As we will see in the next section, as long as we assume η is
fixed to be small but finite and only work perturbatively in η, we can consistently take the
θ → 0 limit.
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Solution from string equation

We now solve for the density of states from the string equation for the quadratic potential
and compare to the answer from the semiclassical gravity calculation. The string equation
for this theory is given by choosing the same combination of defect parameters as above in
the defect generating function (2.78) which gives

W (y) = −η
6
y3 (2.95)

where we have taken the θ → 0 limit and added a defect with zero deficit angle to cancel
the constant term. Examining (2.79) and (2.80), we see that the combination y2 − 2W (y)

appearing in the string equation can be identified with the prepotential Û(Φ → y), with the
y2 term corresponding to the JT term. To make this identification, it is important to use
the quantization we obtained from the minimal string in equation (2.89). Now using either
(2.37) or (2.80) we can obtain the exact density of states

ρ(E) =
eS0

2π

∫
dy

2πi
e2πy tanh−1

(√
E

Û(y)

)
, Û(y) = y2 +

η

3
y3 (2.96)

where we have used E0 = 0 to all orders in η. This can now be evaluated perturbatively in
η and we find

ρ(E) =
eS0

2π

sinh
(
2π

√
E
)

2π
− η

6
E sinh

(
2π

√
E
)
+ · · ·

 . (2.97)

For each term in perturbation theory in η we do the y integral along a contour in the imagi-
nary direction with all singularities to the left, appropriate to an inverse Laplace transform.
This is the prediction for the density of states from the string equation for the quadratic po-
tential. It would be interesting to connect this solution to the quantization of the non-local
boundary action derived by Kitaev and Suh [127].

We now comment on the validity of the string equation (2.79) and density of states
(2.80) for more general choices of W (y) beyond sums of exponentials. The expression for
the string equation is poorly behaved when we formally send θ → 0 to achieve (2.95).
The integrand is unbounded as y becomes large and the branch cut structure becomes
complicated. These issues are ameliorated if one works directly with the density of states
(2.80) where the integrand is better behaved. Still working non-perturbatively in η, an issue
remains regarding the choice of contour of the y integral. This is not a problem in the case
of defects producing exponential terms so to solve this we can go back to consider finite θ.
In this case the contour is uniquely defined and we expect this to indicate unambiguously
which contour to use in (2.80). We leave a more thorough investigation of this issue for
future work.
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Check: Semiclassical limit

We will see now that the large E limit of the density of states we propose matches the
semiclassical gravity calculations obtained in [127]; see also [128] and more recently [129].

In the semiclassical limit, the energy in terms of the prepotential is E = Û(Φ0) where Φ0 is
the value of the dilaton at the horizon. Since the entropy is proportional to the dilaton at
the horizon, the density of states is immediately given by

ρclassical(E) ≈
eS0

8π2
exp

(
2π Û−1(E)

)
. (2.98)

We now show that this formula matches (2.97) for the case of quadratic potential. Taking
the large energy limit of (2.97) and expanding for small η we find

log ρ(E) = S0 + 2π
√
E − η

3
πE +O(η2, 1/

√
E) (2.99)

This expression matches with the semiclassical answer above since expanding (2.98) for small

η gives log ρclassical = S0 + 2πÛ−1(E) ≈ S0 + 2π
√
E − η

3
πE +O(η2).

Moreover, at each order in η we can keep the terms in the exact density of states that
grow fastest at large energies. We have checked these terms match with (2.98) to leading
order in large E up to O(η5). This suggests that our string equation correctly captures the
semiclassical behavior of general dilaton potentials that can be built by turning on defect
deformations. We note that this result was obtained directly from a polynomial W (y) and is
therefore independent of how it is regulated by a sum of exponentials in the asymptotically
AdS2 region.

2.6 Discussion

An important result of [4] was the realization that after the inclusion of spacetime wormholes
in the gravity path integral, pure JT gravity in asymptotically AdS2 is dual to an ensemble
of quantum mechanical systems, realizing a new paradigm of holography. In this paper we
have generalized this story by showing that a large class of pure dilaton-gravity theories in
two dimensions are dual to an ensemble of quantum systems. We expect this duality to
hold for pure gravity in higher dimensions since wormholes play a very similar role, although
computing their precise contribution is harder (for some progress see [130]).

More specifically, we have pointed out a connection between deformations of the (2, p)
minimal string by tachyon-like operators in the large p limit and JT gravity with a gas of
defects, and studied the connection between these theories formulated as 2D dilaton-gravities
with general potentials. Using the minimal string we found an exact solution for JT gravity
with defects when the defect angle is blunt, or in our notation α > 1/2. The structure of
the solution is more complicated than the case of sharp defects studied in [15, 16], and we
gave a geometrical interpretation of these new features. Finally we have used this solution
to propose an exact disk density of states for a general class of dilaton potentials.

We finish with some open questions.
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Path integral with general defects

In the presence of general defects we can still integrate out the dilaton first, producing an
integral over the moduli space of hyperbolic surfaces with cone points. When α < 1/2, the
geometry has geodesics that can be used to cut and glue by decomposing the surface into
trumpets and pairs of pants, following the recipe of [4]. For the case α ≥ 1/2 we have used
the minimal string to solve the theory. In this case there might not exist geodesics we can
use to cut and glue and it would be very interesting to understand how to directly evaluate
the JT path integral. Moreover, after integrating out the dilaton, we are left with an integral
over the moduli space of hyperbolic surfaces with cone points, for which the corresponding
Weil-Petersson volumes have only been calculated for α < 1/2 [105, 106]. Therefore, our
results can be seen as a physicist derivation of what these volumes are for more general
defects. It would be interesting to understand this from first principles [95].

A possible approach to solve this problem is to rewrite the JT path integral with defects
as a sum over discretized surfaces with constant negative curvature. This sum over discrete
surfaces cannot be done with a matrix integral, which does not fix the curvature locally.
Instead, a related problem was actually studied some time ago using the model of dually
weighted graphs [131] 11. Matching these discrete results to the continuum approach is an
open problem being pursued in [132].

Leg-factor from JT gravity

When relating the exact solution of JT gravity with defects to the 2D dilaton-gravity formu-
lation through the dilaton potential, some ambiguities appear. This was explained in [15]. In
general different renormalization procedures can lead to different quantizations of the same
classical theory and 2D dilaton-gravity is no exception.

The natural choice for JT gravity made in [15] associates the classical dilaton potential
with the defect generating function (2.78). In this paper we have studied a different quanti-
zation provided by the minimal string, recast as a time-like Liouville coupled to a standard
gravitational Liouville theory. This gives a different identification between the defect pa-
rameters and the dilaton potential (2.89). The advantage of this choice is that the quantum
theory has a good semiclassical limit.

It would be nice to understand the origin of this mismatch in (2.89) from a detailed
evaluation of the dilaton-gravity path integral. In order to do this it might be important
to fill in the gaps regarding how the minimal model appearing in the minimal string is
equivalent to a time-like Liouville theory (for some progress in this direction see [94]).

Negativities in spectral density

It was noticed in [16] and [15] that the disk density of states for JT gravity with defects
can become negative if the defect weight λ is too large, above some angle-dependent critical

11We thank V. Kazakov for pointing this out and for several discussions.
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E

ρ(E)

E0

Figure 2.6: Disk density of states for a matrix model with string equation u(u2− 1)+λ = x,
dual to the only deformation of the (2, 5) minimal string. For concreteness we used λ = 0.5,
giving E0 = −1.2.

value. It is an open question to understand what resolves this problem and the matrix
integral formulation of the theory might help answer this.

One complication is that the matrix integral associated to JT gravity with defects is
difficult and requires turning on an infinite number of operators in the matrix potential. In
this section we would like to conclude with the observation that similar negativities already
appears in the (2, p) minimal string at finite p, and is thus inherited by the general class of
dilaton-gravity theories derived from the p→ ∞ limit.

We will present the simplest case we found, which is the (2, 5) minimal string, correspond-
ing to the Lee-Yang CFT coupled to 2D gravity. Besides the identity this CFT contains only
one non-trivial operator O1,2, and this gives rise to the only possible deformation. We study
the minimal string with the following deformation term in the action δI ∼ λ

∫
O1,2 e

2a2ϕ.
After some rescalings, the string equation associated to this theory is F(u) = u(u2 − 1) + λ.
From this string equation we can compute the disk density of states using (2.37) and we
find that it becomes negative at some energies for negative enough λ. See figure 2.6 for an
example. This model corresponds to a simple matrix potential which can be easily studied
to see whether there is a phase transition to a two-cut model as suggested in [15] (another
approach to this issue has been taken in [133])12. In the case of JT gravity, understanding
this regime might be necessary to study theories with a dS2 region inside the bulk [134, 135].

12The negativity seems to appear for values of λ where the interpretation of the matrix integral as a sum
over random surfaces of finite size fails [19]. We thank V. Kazakov for pointing this out.
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Chapter 3

Lorentzian Topology Change in JT
Gravity

3.1 Introduction

This Chapter is based on [45] where we explore defining a Lorentzian theory of JT gravity
with topology changing configurations. Euclidean wormholes have played an important
role in recent developments in quantum gravity. The study of two dimensional Jackiw-
Teitelboim (JT) gravity [4] has been central to these developments. Topology changing
Euclidean configurations have been found to be important in the calculation of a unitary
page curve [5, 6], the spectral form factor[4, 25, 27], and a variety of other interesting effects,
see [28, 31, 33] for a few selected examples.

However, so far a satisfactory Lorentzian explanation for Euclidean wormhole calculations
has been lacking. The standard procedure is to calculate a Euclidean amplitude and then
analytically continue it to obtain a Lorentzian result. The role that Euclidean wormholes
play in the Lorentzian theory is not apparent in this analytic continuation. Similarly, in the
standard canonical quantization treatment of Lorentzian JT gravity[136] the topology of the
Lorentzian spacetime is fixed, and it’s unclear how the Euclidean path integral formulation
of the theory[4] can be related to the Lorentzian formulation.

In this work we formulate a Lorentzian theory of JT gravity that includes Lorentzian
topology changing configurations. The theory is defined through a special analytic con-
tinuation of the standard Euclidean path integral. Euclidean wormholes are turned into
topology changing Lorentzian configurations with degenerate points in the metric, see fig-
ure 3.1. Our proposal is inspired by a formulation of bosonic string theory on degenerate
Lorentzian worldsheets known as the interacting string picture[43, 44]. In [137, 138] it was
argued that the interacting string picture is equivalent to the standard Euclidean path inte-
gral formulation to all orders in the genus expansion. This is accomplished by gauge-fixing
the Euclidean path integral to lightcone diagrams[137], which are a special class of metrics
that can be analytically continued to Lorentzian signature where they become the topology



CHAPTER 3. LORENTZIAN TOPOLOGY CHANGE IN JT GRAVITY 41

Figure 3.1: Lorentzian topology changing transition where two spatial circles evolves into
three circles. The metric is Lorentzian everywhere except the splitting points (blue circles)
where it is degenerate. At the splitting points the topology of spatial slices changes. The
spacetime is an analytic continuation of a genus two Euclidean geometry with five circular
boundaries.

changing geometries of the interacting string picture.
To define the Lorentzian JT path integral we closely follow the construction of the bosonic

string genus expansion with singular Euclidean/Lorentzian worldsheets [137–139]. We start
with the standard Euclidean JT path integral and with a suitable gauge choice and analytic
continuation we end up with a Lorentzian path integral over degenerate metrics. We now
briefly explain this construction, leaving technical details to the main sections.

Summary of results

We begin with the two dimensional Euclidean gravity path integral with specified boundary
conditions. In this paper we consider boundary conditions given by n geodesic circles of
given lengths b⃗ = (b1, · · · , bn). For simplicity we assume the bulk geometry has fixed genus
g and is fully connected. The path integral is computed by

Z =

∫
DgµνDΦ

Vol
e−IJT[g,Φ] = (3.1)

The integral over Euclidean metrics can be split into an integral over the Weyl factor ω and
over the moduli ĝ, where all metrics can be represented as g = e2ωĝ. The moduli space of
ĝ is the moduli space of punctured Riemann surfaces Mg,n of genus g with n punctures. It
was shown by Giddings and Wolpert [137] that this Moduli space has a representative metric



CHAPTER 3. LORENTZIAN TOPOLOGY CHANGE IN JT GRAVITY 42

ĝ that is flat with curvature singularities at isolated points, this is known as a Euclidean
lightcone metric. Choosing the Euclidean lightcone metric as our representative metric ĝ
gives us a path integral over singular Euclidean geometries

Z =

∫
moduli

d(measure)

∫
DωDΦe−IJT[e

2ω ĝ,Φ] = (3.2)

In the above figure, the circles (blue) corresponds to points where the metric ĝ becomes
degenerate det ĝ = 0. It is at these points that the topology of spatial slices changes. The
integral over the moduli is partially over all possible locations of the degenerate points. The
Euclidean lightcone diagram has a globally defined euclidean time τ in terms of which the
metric is flat everywhere except the degenerate points. The boundary conditions are now
specified at τ = ±∞, and we must make a choice to send boundary conditions either to the
future or the past. In the above figure the boundary of length b1 has been sent to the past
while the boundaries of length b2, b3 have been sent to the future.

To turn the above Euclidean path integral into a Lorentzian path integral, we will ana-
lytically continue the Euclidean lightcone geometries. Since the time τ is globally defined,
we can analytically continue τ → iτ to get a Lorentzian signature metric ĝ, known as a
Lorentzian lightcone diagram. We now have a path integral over degenerate Lorentzian
metrics that incorporate topology changing transitions

ZL =

∫
moduli

d(measure)

∫
DωDΦeiIJT[e

2ω ĝ,Φ]. (3.3)

Our definition for the Lorentzian JT path integral will be the above integral over Lorentzian
lightcone diagrams. The role of the Weyl factor ω will be to give the geometry constant
negative curvature away from the degenerate points.

In the above procedure we started with the usual Euclidean path integral and through
a gauge choice and a suitable analytic continuation we ended up with a Lorentzian path
integral. It might then be expected that the amplitudes computed with this Lorentzian
path integral should agree with the corresponding Euclidean amplitudes. Indeed, this is the
argument of D’Hoker and Giddings[138] that the interacting string picture[44] is equal to
the Euclidean path integral to all orders in the genus expansion1. In the case of JT gravity
there are some additional subtleties that arise due to the degenerate points, and we return

1Giddings and D’Hoker [138] stopped short of analytically continuing the Euclidean lightcone diagrams
to Lorentzian signature. Thus they argued that the analytically continued interacting string picture was
equivalent to the usual Euclidean path integral.
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to this question in section 3.3 and in the discussion. We now briefly summarize the rest of
the paper.

In Section 3.2 we review the basic aspects of Euclidean and Lorentzian lightcone diagrams.
We also review the work of Giddings and Wolpert [137] where it was shown that Euclidean
lightcone diagrams give a single cover of the moduli space of punctured Riemann surfaces.
Lastly, we discuss the problem of finding a Weyl factor to turn a Euclidean/Lorentzian
lightcone metric into a constant negative curvature geometry with degenerate points.

In Section 3.3 we fill in the technical details of the path integral over lightcone diagrams.
We explain how boundary conditions are implemented, and we discuss the integration mea-
sure over the moduli space of lightcone diagrams. The inclusion of degenerate points in-
troduces certain ambiguities into the path integral, and we discuss how these ambiguities
modify the relation of the Euclidean amplitudes to the Lorentzian amplitudes.

In the Appendices we construct the Lorentzian pair of pants with constant negative cur-
vature, and we include additional details on punctured Riemann surfaces and the integration
measure.

3.2 Lightcone diagrams

In this section we review aspects of Euclidean and Lorentzian lightcone diagrams, their
connection to punctured Riemann surfaces, and how to construct constant negative curvature
analogues of lightcone diagrams.

Euclidean and Lorentzian lightcone diagrams

A Euclidean/Lorentzian lightcone diagram is a two dimensional geometry with degenerate
metric g built out of flat Euclidean/Lorentzian cylinders joined together at singular points,
see figure 3.2. The two basic properties of a lightcone diagram are the number of asymptotic
cylinders n and the genus g. The number of cylinders running off to infinity is given by
n ≥ 2 with a fixed number extending to past or future infinity2. In the next section we will
see that in/out states are specified by introducing boundary conditions on the asymptotic
cylinders. The genus g and number of boundaries n determine the number of times the
diagram splits apart and joins together in the interior of the geometry. At the splitting and
joining points the metric is degenerate, and there are 2g− 2+n such degenerate points. We
will also call these interaction/singular points, and denote where they occur by the subscript
zI . The curvature on a Euclidean lightcone diagram is given by

1

2

√
gR = −2π

2g−2+n∑
I=1

δ2(z − zI), det g(zI) = 0. (3.4)

2At least one cylinder must run to the future and one to the past.
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Figure 3.2: Euclidean/Lorentzian lightcone diagram of genus two with five boundaries. The
geometry is flat except at interactions points τi with delta functions of curvature. A lightcone
diagram is built by gluing pairs of pants together. The interaction times are labelled by τ ,
the twist angles by θ, and the free internal radius by ρ.

Note that since the determinant of the metric is zero at the interaction points the action
on a lightcone diagram can be badly behaved at these points. Even though the metric is
singular, the singularity is sufficiently mild. The Gauss-Bonnet theorem continues to hold

1

2

∫
√
gR = 2πχ, (3.5)

where χ = 2 − 2g − n. All the curvature required for Gauss-Bonnet to be satisfied is
localized at the interaction points. In Euclidean signature we introduce coordinates τ, σ on
the diagrams where τ is a time coordinate and σ is a periodic coordinate around the cylinder.
We can represent the diagrams by making identifications in the complex plane w = τ + iσ,
see Fig. 3.3 for an example of how to build a pair of pants. To travel around a singular
point we must go through angle 4π in w coordinates, so the singularity is a double cover of
the Euclidean plane.

We can easily find the metric near the singular points using complex coordinates

ds2 = |z|2αdzdz̄ = e2ωdzdz̄,
1

2

√
gR = −2παδ(2)(z). (3.6)

which is a cone of opening angle 2π(1 + α) with conformal mode ω = 1
2
log |z|2α. The

singularities of the Euclidean lightcone diagram correspond to α = 1. We can see this by
the coordinate w = z2, going through angle 2π in z takes us through an angle of 4π in w,
which is a double cover of the Euclidean plane as required.

Lorentzian lightcone diagrams

The above discussion was largely restricted to Euclidean lightcone diagrams. However, by
an analytic continuation of the time coordinate τ → iτ we obtain a metric that is Lorentzian
everywhere except at the degenerate points. These geometries are Lorentzian lightcone
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Figure 3.3: Euclidean Pair of pants constructed by identification in the complex w = τ + iσ
plane. The middle line (dashed) is infinitesimally split up to the interaction time τ and
identified with the top and bottom segments as indicated. The singular point is indicated
by the circle (blue). A closed loop around the singular point goes through angle 4π.

diagrams, and the metrics on them are known as almost Lorentzian metrics. The curvature
is given by

1

2

√
−gR = 2πi

2g−2+n∑
I=1

δ2(x− xI), det g(xI) = 0. (3.7)

These geometries are constructed by gluing Lorentzian pants along geodesic boundaries. The
pair of pants cannot be given an everywhere Lorentzian metric, but with the inclusion of
the above singularity at the splitting point it becomes possible to equip it with an almost
Lorentzian metric [140, 141]. We can explicitly write down a regularized complex metric
near the splitting point of the pants. In the conventions of [141] this metric is given by

ds2 =
(
x2 + y2 + γ

) (
dx2 + dy2

)
− (2± iϵ)(xdx− ydy)2. (3.8)

The splitting point is located at x = y = 0, and we have introduced regulators γ, ϵ > 0.
The almost Lorentzian pants are obtained from the above metric as we take the regulators
to zero, with appropriate identifications of the x, y plane[140]. Analogous to the Euclidean
case, the almost Lorentzian pants are a double cover of Minkowski space. The γ regulator
temporarily removes the degenerate point and the ϵ regulator deforms the metric into what
is known as an allowable complex metric3 [141]. This is important for us because allowable
complex metrics satisfy an analytically continued version of the Gauss-Bonnet theorem [140,
141].

Ultimately we will be integrating over all lightcone diagrams, and our Euclidean action
will contain a topological term suppressing each geometry by it’s Euler characteristic eS0χ,
where S0 is some large constant. Upon analytic continuation of the time coordinate the
topological term will be proportional to

i

2

∫
d2x

√
−gR. (3.9)

3A complex metric is defined as allowable if the following condition is satisfied[141, 142]. Consider a
basis where the metric is diagonal gij = λiδij , if

∑
i |Arg λi| < π at every point on the manifold then the

metric is allowable. Allowable metrics satisfy certain nice properties. For example, this condition ensures
that the path integral of a p-form gauge field converges on the background g.
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For allowable complex metrics the above integral is equal to an analytically continued version
of the Gauss-Bonnet theorem [141]

1

2

∫
d2x

√
−gR = −2πiχ. (3.10)

All metrics considered in this paper can be deformed to be allowable, and so we maintain
the same topological expansion in Lorentzian as in Euclidean signature. We can directly
see that the above formula holds for the Lorentzian lightcone metric (3.7). An important
property is that given an allowable complex metric g, e2ωg is also allowable if ω is real. Since
the Lorentzian pants are allowable so is any rescaling of the pants, which will be useful when
we need to consider the constant negative curvature pants geometry.

Moduli space of lightcone diagrams

We now explain the moduli space of inequivalent Euclidean/Lorentzian lightcone diagrams
of genus g with n boundaries. The starting point is to specify the geodesic radius ri of
each of the n boundaries and whether they run off to past or future infinity. A positive
radius indicates that the boundary originates from past infinity, a negative radius indicates
the boundary goes to future infinity. We demand that the sum of the lengths vanishes∑

i ri = 0. So that the total length of incoming boundaries is equal to the total length of
outgoing boundaries. We denote the total length of incoming/outgoing boundaries by rmax.

A general diagram is constructed by gluing Euclidean/Lorentzian pairs of pants together
along geodesic boundaries4. The different ways to glue pants together gives the moduli space
of lightcone diagrams. From figure 3.2, the moduli space is parameterized by the following
coordinates

Interaction Times τi ∈ [0,∞) i = 1, . . . , 2g + n− 3

Twist Angles θj ∈ [0, 2π) j = 1, . . . , 3g + n− 3

Internal Radius ρk ∈ [0, rmax] k = 1, . . . , g

The moduli space is of real dimension 6g− 6+2n. The interaction times τ define the points
at which the cylinders split apart at degenerate points. The diagram can be translated in
time so the first interaction time can always be set at τ = 0. When gluing two cylinders
together we can twist them by a relative angle θ ∈ [0, 2π), this gives the twist angles. Since
the pair of pants conserves total geodesic boundary length, the sum of radii of the diagram
at any intermediate time must be identical to the sum of beginning or ending radii. We
have a freedom in how the total geodesic length is distributed at intermediate times between
cylinders, which gives the last parameter ρk where we integrate over lengths of intermediate
cylinders subject to the constraint that the total length is fixed to rmax.

4The pair of pants used in the construction have boundaries with waist of length b1 and legs of lengths
b2, b3 with the constraint that b1 = b2+ b3. There are other Lorentzian pair of pants geometries without this
constraint, but they are not used in this construction.



CHAPTER 3. LORENTZIAN TOPOLOGY CHANGE IN JT GRAVITY 47

Figure 3.4: A genus three surface Σ with two punctures. We can put a metric on Σ given
by (3.13) to turn it into a Euclidean lightcone diagram with two asymptotic cylinders.

The end result is that the integral over all lightcone diagrams is given by integrating over
interaction times τ , twist angles θ, and intermediate radii ρ∫

[dτ ][dθ][ρdρ] ≡ 1

S

(
2g+n−3∏

i=1

∫ ∞

0

dτi

)(
3g+n−3∏

j=1

∫ 2π

0

dθj

)(
g∏

k=1

∫ rmax

0

ρkdρk

)
. (3.11)

The above integration range actually overcounts identical lightcone diagrams, and we must
divide by a symmetry factor S to integrate over one copy of the moduli space[137]. This
symmetry factor has never been explicitly computed, but see [143] for a recent discussion.

Punctured Riemann surfaces and lightcone diagrams

In this section we’d like to explain the connection between punctured Riemann surfaces and
lightcone diagrams. Giddings and Wolpert[137] showed that the moduli space of Euclidean
lightcone diagrams gives a single cover of the moduli space of punctured Riemann surfaces
Mg,n. This is accomplished by showing that every Riemann surface with n ≥ 2 punctures
can be equipped with a unique Euclidean lightcone metric and vice versa. The integral over
the moduli space of punctured Riemann surfaces Mg,n can therefore be represented as an
integral over the moduli space of Euclidean lightcone diagrams.

We now briefly explain how a given Riemann surface can be equipped with a Euclidean
lightcone metric. Consider a genus g Riemann surface Σ with local coordinates z and n
punctures located at points zi. The goal will be to find a unique meromorphic one-form
ω = ω(z)dz on Σ with simple poles at the punctures zi with real residues ri such that their
sum is zero

∑n
i=1 ri = 0. The specific choice of the ri does not matter. We also require that

the integral of the form ω is imaginary along any closed cycle5 on the surface Σ∮
ω(z)dz ∈ iR. (3.12)

Under these conditions, Giddings and Wolpert [137] showed that the one-form ω exists, is

5Without this condition there are many one-forms ω with the appropriate simple poles, however they
fail to give a global lightcone diagram. One way to understand this condition is that on a lightcone diagram
a closed loop starts and ends at the same time τ , so around any closed loop ∆τ + i∆σ =

∮
ω(z)dz must be

purely imaginary.
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unique, and that it defines a unique Euclidean lightcone metric6 on Σ by

ds2 = ωω = |ω(z)|2dzdz̄ = dwdw̄, (3.13)

see figure 3.4. In the last equality we have defined the lightcone coordinates w = τ + iσ =∫ z

z0
ω(z)dz, where z0 is an arbitrary point on Σ. In these coordinates the metric is explicitly

flat with the only breakdown occurring near the poles or zeroes of the form. Near a puncture
z ∼ zi the form behaves as ω = ri

z−zi
dz + . . ., so the metric will behave as

ds2 =
r2i

|z − zi|2
dzdz̄ + . . . (3.14)

The form will also have 2g− 2+n zeros at certain points zI on Σ, near such points the form
behaves as ω = (z − zI) dz + . . ., and the metric will behave as

ds2 = |z − zI |2dzdz̄ + . . . (3.15)

Note that near zI the metric is that of the interaction point of a Euclidean lightcone diagram
in equation (3.6). Thus, the zeros of ω correspond to degenerate points where the topology
of spatial slices of Σ change, while the simple poles are located at the punctures.

We now explain how to extract the moduli of the lightcone diagram (τ, θ, ρ) from the met-
ric (3.13), see figure 3.5. One useful property is that the time coordinate τ = Re

∫ z

z0
ω(z)dz is

globally defined and path independent, since it is defined as the integral of a globally defined
one-form7. The interaction time differences can be determined by performing an integral
between zeros of the form τI − τJ = Re

∫ zI
zJ
ωdz. The radius of an asymptotic cylinder is

given by integrating around a puncture
∮
dw =

∮
zi
ω(z)dz = 2πiri. Near the punctures

we have w = ri log(z − zi), and so the puncture is mapped to τ = ±∞ if the radius ri is
negative/positive respectively.

The lengths of intermediate cylinders are given by integrating along cycles at constant
time τ , which gives

∮
dw =

∮
ω(z)dz = 2πiρi. Integration over cycles with non-constant

τ allows us to reconstruct the twist angles θ, see [137] for additional details. The above
procedure gives us the moduli (τ, θ, ρ) which uniquely fixes a lightcone diagram for a given
Riemann surface Σ, but the reverse direction also holds in mapping a lightcone diagram to
a Riemann surface[137]. To summarize, given a punctured Riemann surface Σ we can equip
it with a unique Euclidean lightcone metric. Integrating over the moduli space of punctured
Riemann surfaces Mg,n is thus equivalent to integrating over the moduli space of Euclidean
lightcone diagrams. ∫

Mg,n

. . . =

∫
[dτ ][dθ][ρdρ] . . . (3.16)

In the above we have left out the integration measure to which we return to in section 3.3.

6The construction of ω involves the period matrix of the Riemann surface, which is why each Riemann
surface is mapped to a unique lightcone diagram.

7The integral along two paths can differ by at most an imaginary constant if they enclose a puncture,
but the time τ is the real part of the integral so it does not matter.
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Figure 3.5: A torus with two punctures mapped to a lightcone diagram with two interaction
points and two asymptotic cylinders. The circles (blue) on the torus denote where the one-
form ω has zeros. The two cycles on the torus are illustrated with one at constant time τ
(orange). The loops γi enclose the punctures which run off to infinity in the lightcone metric.

Negative curvature lightcone diagrams

We are ultimately interested in JT gravity, so we want to construct the constant negative cur-
vature analogues of lightcone diagrams. We would like to start with a Euclidean/Lorentzian
lightcone metric ĝ and turn it into a constant negative curvature geometry g = e2ωĝ with
a Weyl factor ω, with suitable singularities at the degenerate points. The reason for this is
that when considering JT gravity we will find we have a constraint R = −2 away from the
degenerate points, but there is no condition on the behavior of ω at such points. We find
that the Weyl factor is not unique, and we have a large class of geometries that differ by the
strength of the conical singularity at the degenerate points. The only constraint is that the
resulting geometries satisfy Gauss-Bonnet.

Negative curvature Euclidean lightcone diagrams

Since ĝ already satisfies Gauss-Bonnet, we will choose Weyl factor to weaken the delta func-
tions at the splittings points, and redistribute the curvature uniformly so that Gauss-Bonnet
remains satisfied. Consider a Riemann surface Σ where we prescribe conical singularities of
opening angles 2παI at points zI , where the metric locally behaves as ds2 = |z|2(1−αI)dzdz̄
near zI . Does there exist a constant negative curvature metric g on Σ with the prescribed
singularity structure? The answer turns out to be yes, assuming the specification of αI does
not violate Gauss-Bonnet

1

4π

∫
Σ\{zi}

√
gR = χ(Σ) +

∑
I

(1− αI) < 0. (3.17)

Under the above condition, it was shown8[145, 146] that the metric g exists, is unique,
and is in the conformal equivalence class of metrics on Σ. We conclude that starting from
a Euclidean lightcone metric ĝ, we can find a unique ω such that g = e2ωĝ has constant

8For a review of various existence and uniqueness theorems on metrics with conical singularities see [144].
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negative curvature and any desired singularity structure consistent with Gauss-Bonnet

1

2

√
g (R + 2) = −2π

2g−2+n∑
I=1

(1− αI)δ
2(z − zI). (3.18)

We have written the curvature in this way to emphasize that the effect of αI is to take
curvature from the interaction points and redistribute it uniformly across the rest of the
surface Σ\{zi}. Note that this amounts to studying JT gravity with conical excesses, which
appears to be the closest relative to Euclidean lightcone diagrams. However, the utility
of lightcone diagrams is they can be easily analytically continued to singular Lorentzian
geometries, which we now discuss.

Negative curvature Lorentzian lightcone diagrams

We would like to construct negative curvature Lorentzian lightcone diagrams in a similar
way by rescaling the metric g = e2ωĝ, where g, ĝ are almost Lorentzian geometries. As far
as we are aware, not much is known about almost Lorentzian metrics and the existence of
such Weyl factors. However, we would like to argue that it is plausible that there exists an
appropriate ω such that the curvature of g = e2ωĝ takes the form

1

2

√
−g (R + 2) = 2π

2g−2+n∑
I=1

(i+ αI) δ
2(z − zI), (3.19)

under the condition that αI is chosen so that the complex Gauss-Bonnet theorem is not
violated, which requires that αI > 0. The purpose of the αI can can be seen from the form
of Gauss-Bonnet for complex metrics[140, 141]

1

2

∫
Σ

√
−gR = −2πiχ(Σ). (3.20)

The effect of the αI is to cancel out the contribution of the bulk volume

1

4π

∫
Σ\{zI}

√
−gR +

2g−2+n∑
I=1

αI = 0, (3.21)

so that the remaining terms in (3.19) give the Euler characteristic. While we cannot prove
that such Weyl factor exists, we think it is reasonable that it does for the following reasons.
It’s existence would be the natural extension of the Euclidean results of [145, 146] which
gives the unique metric (3.18). In both cases the role of the αI is to cancel out the bulk
volume term to satisfy Gauss-Bonnet. Furthermore, since the Lorentzian lightcone metric
ĝ is complex allowable, so is e2ωĝ, which implies that Gauss-Bonnet (3.20) holds for both
metrics. If e2ωĝ is to have constant negative curvature, it’s singular points must contribute
in a way to cancel out the bulk volume, otherwise Gauss-Bonnet would be violated. Finally,



CHAPTER 3. LORENTZIAN TOPOLOGY CHANGE IN JT GRAVITY 51

in appendix A.6 we construct the Lorentzian constant negative curvature pairs of pants with
the same singularity structure as advocated above.

To summarize, we believe it is reasonable that there exists a Weyl factor that turns a
Lorentzian lightcone diagram into a constant negative curvature analogue given by (3.19),
with the only constraint on αI being that Gauss-Bonnet (3.20) is satisfied. One important
point is that while flat lightcone diagrams are unique, the constant negative curvature ana-
logues are not. When integrating over the Weyl factor we must make a choice of which
geometries to include, which amounts to deciding which αI to include. We are not able to
give a conclusive answer to this question, but we return to it in the discussion.

3.3 JT gravity on lightcone diagrams

JT gravity is a two dimensional dilaton gravity theory with metric gµν and dilaton Φ. We
will start with the Euclidean JT gravity path integral with boundary conditions given by n
geodesic circles of given lengths b⃗ = (b1, · · · , bn). We assume the bulk geometry has genus g
and is connected, with the extension to the full topological expansion easily following. This
amplitude can be computed by performing the path integral over all compact geometries Σ
of genus g with n vertex operators V inserted9

Z =

∫
DgµνDΦ

Vol
e−IJT[g,Φ]V1 . . . Vn, (3.22)

where Vol is the volume of the diffeomorphism group. The Euclidean JT action on a compact
surface Σ is given by [2, 3, 10]

IJT[g,Φ] = −S0

4π

∫
Σ

√
gR− 1

2

∫
Σ

√
gΦ(R + 2). (3.23)

The first term is purely topological. Taking into account the vertex operators, the total
topological contribution will be given by eS0χ where χ = 2 − 2g − n. We ignore this term
from now on, although at certain points various constants will be absorbed into the definition
of S0. The vertex operator that inserts a geodesic boundary of length b is given by [147]

V = e−S0

∫
Σ

d2z
√
ge−2πΦ cos (bΦ) . (3.24)

The path integral over all two dimensional Euclidean metrics can be decomposed into an
integral over the moduli space Mg of genus g Riemann surfaces, and over the Weyl factor ω
of the metric [148, 149] ∫

DgµνDΦ

Vol
=

∫
Mg

dµ

∫
DωDΦe−25SL[ω,ĝ]. (3.25)

9The other way to compute this amplitude is to perform the path integral over surfaces with n boundaries
with appropriate boundary conditions. However, the formalism of lightcone diagrams most easily applies to
the situation where boundary conditions are specified by vertex operator insertions.
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The above path integral is performed over metrics g = e2ωĝ, where ĝ is a choice of repre-
sentative metric10 for each point in the moduli space Mg. In the above integral dµ is the
standard integration measure on the moduli space Mg [148, 149], since it is quite compli-
cated we write it schematically and go into additional detail in appendix A.7. The Liouville
action SL will turn out to be proportional to the Euler characteristic after we integrate out
the dilaton, and we absorb it into the definition of the topological term. This integral treats
the moduli of the Riemann surface on a different footing from the positions of the vertex
operators. Giddings and D’Hoker [138] gave an argument that the integral over vertex op-
erator positions

∫
d2zi

√
g can be absorbed into the integral over Mg to give an integral over

the moduli space of punctured Riemann surfaces Mg,n of genus g with n punctures[138]∫
Mg

dµ
n∏

i=1

(
e−S0

∫
d2zi

√
ge−2πΦ cos (biΦ)

)
=

∫
Mg,n

dµ
n∏

i=1

Wi. (3.26)

The measure dµ on the right is now for the moduli space of punctured Riemann surfaces
Mg,n, and various factors have been absorbed into the definition of the wavefunctions Wi.
The integral overMg,n automatically takes into account the integral over all distinct points zi
at which the wavefunctions can be inserted, and it could have been our starting point for the
Euclidean path integral11 (3.22). On the right hand side we have defined the wavefunctions

Wi = e−2πΦ(zi) cos (biΦ(zi)) , (3.27)

located at the punctures at points zi on the surface. The role that the wavefunctionsWi play
is that they impose boundary conditions at the punctures in the following way. Consider
performing the path integral over the dilaton near a particular puncture zi with wavefunction
Wi. When we integrate over the dilaton Φ near the puncture we get the following constraint
on the behavior of the metric

1

2

√
g(R + 2) = (2π ± ibi)δ

2(z − zi). (3.28)

Each wavefunction comes with two branches denoted by ±ib, which arise from the expansion
of cos(bΦ), and so the constraint is a linear combination of the two branches12. Since each
wavefunction comes with two branches, performing the dilaton integral over the entire surface
gives a sum over all possible branches of the constraints.

10The standard choice is to pick ĝ such that it has constant negative curvature for g ≥ 2.
11The two are equal up to overall normalization factors that can be absorbed, see [138, 149].
12It might at first be surprising that a geodesic boundary is given by an imaginary conical defect since a

geodesic boundary does not give a delta function of curvature. This was explained in Appendix A of [147]. A
geodesic boundary is given by the end of the trumpet geometry, after reaching the geodesic on the trumpet
the radial coordinate can be analytically continued into the imaginary axis to reach an imaginary defect.
We should thus imagine that the geometry is continued into the complex radial direction near the insertion
points.
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The end result is we have re-written the path integral over two dimensional Euclidean
metrics with vertex operator insertions as a path integral over the moduli space of punctured
Riemann surfaces with wavefunctions inserted at the punctures

Z =

∫
Mg,n

dµ

∫
DωDΦe−IJT[e

2ω ĝ,Φ]W1 . . .Wn. (3.29)

In the above integral dµ is the standard measure on the moduli space Mg,n [138, 149]. The
path integral measure for Mg,n is quite complicated and is written out in appendix A.7
alongside additional details on the moduli space.

Lightcone diagrams

To perform the above integral we must choose a representative metric ĝ for each point in
Mg,n, and then perform the integral over the Dilaton Φ and Weyl factor ω. At this point we
must make a choice to separate the n wavefunctions Wi into those that run to the Euclidean
past or future13. We must have at least one wavefunction in the future and one in the past
for the Euclidean lightcone metric ĝ to be a good gauge choice. Using the results summarized
in section 3.2, we choose the representative metric ĝ to be given by the unique Euclidean
lightcone diagram for each point in Mg,n, which we write below for convenience

1

2

√
ĝR̂ = −2π

2g−2+n∑
I=1

δ2(z − zI), det ĝ(zI) = 0. (3.30)

As explained in section 3.2, the Euclidean lightcone metric ĝ has a globally defined
Euclidean time τ . In terms of the τ coordinate on Σ, the wavefunctions Wi we choose to
define the in state are located at τ = −∞, while those that define the out state are at τ = ∞.
In lightcone diagram gauge the measure dµ takes a particularly simple form[138, 149]∫

Mg,n

dµ =

∫
[dτ ][dθ][ρdρ]

2π det′(−∇̂2)∫
Σ
d2z

√
ĝ

, (3.31)

up to a term proportional to the Euler characteristic that we absorbed into S0. The prime
on the determinant indicates that we exclude zero modes. We include more details on the
derivation of the above measure in appendix A.7. The determinant of the Laplacian is
defined to be with respect to the Euclidean lightcone metric ĝ on Σ, and we discuss the
determinants in more detail slightly later. We end up with the following path integral

Z =

∫
Wi

[dτ ][dθ][ρdρ]
2π det′(−∇̂2)∫

Σ
d2z

√
ĝ

∫
DωDΦe−IJT[e

2ω ĝ,Φ]. (3.32)

13In bosonic string theory we would send the vertex operators defining the in state to the Euclidean past,
while vertex operators that define the out state would be sent to the future.



CHAPTER 3. LORENTZIAN TOPOLOGY CHANGE IN JT GRAVITY 54

We have denoted the integral over lightcone diagrams as
∫
Wi

to emphasize that the wave-
functionsWi impose boundary conditions at the ends of the cylinders at τ = ±∞. Note that
so far all we have done is rewritten (3.22) in a particular gauge choice. This is essentially
the argument for the equivalence of the Polyakov formulation of bosonic string theory and
the interacting string picture [43, 44] on Euclidean lightcone diagrams [138, 150]. The only
new ingredients we have encountered in considering this formalism for JT gravity is that we
have to integrate over the Weyl factor, and there is no canonical choice for separating the
boundaries into those that are sent to the past or future.

Lorentzian JT path integral

Since Euclidean lightcone diagrams come with a global notion of Euclidean time τ , we can
analytically continue τ → iτ to get Lorentzian lightcone diagrams with metric

1

2

√
−ĝR̂ = 2πi

2g−2+n∑
I=1

δ2(z − zI), det ĝ(zI) = 0. (3.33)

Our definition for the Lorentzian JT path integral will be given by the above analytic
continuation applied to (3.32), which gives us

ZL =

∫
Wi

[dτ ][dθ][ρdρ]
2π det′(−∇̂2)∫

Σ
d2z

√
ĝ

∫
DωDΦeiIJT[e

2ω ĝ,Φ]. (3.34)

The Lorentzian JT action is now given by

IJT[g,Φ] =
S0

4π

∫
Σ

√
−gR +

1

2

∫
Σ

√
−gΦ(R + 2). (3.35)

where we use the notation g = e2ωĝ. We will ignore the first term which is topological by
complex Gauss-Bonnet (3.20) and focus on the second term. On a lightcone diagram we use
(3.33) to find that the second term is given by

1

2

∫
Σ

√
−gΦ(R + 2) = 2πi

2g−2+n∑
I=1

Φ(zI) +
1

2

∫
Σ\{zI}

√
−gΦ (R + 2) . (3.36)

We see that the JT action on a lightcone diagram picks up point terms at the degenerate
points where the geometry undergoes a topology changing transition. The usual JT gravity
constraint of constant negative curvature R = −2 no longer holds at such points. If the
constraint did hold on all of Σ the path integral would be zero since a suitable Lorentzian
topology changing metric does not exist. There is one issue, if we integrate over the dilaton
Φ(zI) at the interaction point the path integral will diverge. However, since there are 2g−2+n
interaction points we can absorb this infinite divergence into the definition of S0 in the
topological term.
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We can now perform the path integral over the dilaton Φ. Since we are in Lorentzian
signature, we choose our contour for Φ to be along the real axis. Rewriting the action in
terms of the Weyl factor we find∫

DΦexp

(
i

∫
Σ\{zI}

√
−ĝΦ

(
−∇̂2ω + e2ω

))
= δ

(
−∇̂2ω + e2ω

)
=

δ (ω − ω0)

det
(
−∇̂2 + 2e2ω0

) .
(3.37)

Here ω0 is a configuration that satisfies the delta function constraint. This constraint enforces
that the metric g = e2ωĝ has constant negative curvature R = −2 away from the interaction
points. The end result is the following path integral

ZL =

∫
Wi

[dτ ][dθ][ρdρ]
2π det′(−∇̂2)∫

Σ
d2z

√
ĝ

∫
Dω δ (ω − ω0)

det
(
−∇̂2 + 2e2ω0

) . (3.38)

The reason we have not carried out the integral over ω is the following. As explained in section
3.2, there exist multiple Weyl factors that satisfy the constraint (3.37) while having different
behavior at the degenerate points given by (3.19), which we restate here for convenience

1

2

√
−g (R + 2) = 2π

2g−2+n∑
I=1

(i+ αI) δ
2(z − zI). (3.39)

We must choose our contour of integration for ω to decide which configurations should be
included. A configuration is specified by picking out a preferred choice of αI . There appear to
be two natural choices. We can choose a certain αI as special and the Weyl factor ω0 can be
forced to localize onto such a geometry for all lightcone diagrams. The other obvious option
is to integrate over all possible ω (i.e. all αI). The benefit of choosing a particular αI as
special would be that we would get the closest analogue to Euclidean JT gravity where only
one ω contributes for each point in moduli space Mg,n. For simplicity we will assume that
the Weyl factor localizes to a single configuration, after which we are left with an integral
over the moduli space Mg,n with given measure

ZL =

∫
Wi

[dτ ][dθ][ρdρ]
2π det′(−∇̂2)∫

Σ
d2z

√
ĝ

1

det
(
−∇̂2 + 2e2ω0

) . (3.40)

The integration range is defined in (3.11), and the wavefunctions Wi implement boundary
conditions as discussed around (3.28). The end result is that we must choose a set of
boundary conditions and then evaluate the above integral.

We now discuss the definition of the functional determinants appearing in the above
integral. Even though the integral is over Lorentzian lightcone geometries, we will choose
the functional determinants to be analytically continued and defined on the corresponding
Euclidean lightcone geometries to make them well defined. The Laplacian ∇̂2 is defined with
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respect to the degenerate lightcone metric (3.4). The corresponding determinant det(−∇̂2)
has been studied by [139, 151–153], and in principle it is known in terms of basic objects
on the underlying punctured Riemann surface. However, the second determinant is more
complicated. Using the conformal anomaly we can relate it to det(−∇2 + 2) where ∇2 is
now defined with respect to a constant negative curvature metric g = e2ωĝ with conical
singularities at the splitting points. There has been some recent progress on computing
closely related determinants14 [154], but as of now determinants on singular Riemann surfaces
are not fully understood. Regardless, evaluating the above determinants will introduce some
dependence on the moduli into the above integral.

Relation to Euclidean amplitudes

We would like to discuss the relation of our proposed Lorentzian path integral (3.40) to the
standard Euclidean amplitudes. We first briefly review why the Euclidean JT path integral
gives Weil-Petersson volumes, originally explained in [4]. For simplicity, consider a compact
surface of genus g, the Euclidean path integral over all smooth metrics on this surface reduces
to [4]

Z =

∫
Mg

d(WP)(det P̂ †
1 P̂1)

1/2

∫
Dω δ(ω)

det(−∇̂2 + 2)
, (3.41)

where we have gauge fixed to a smooth metric ĝ of constant negative curvature, and as
a result the Weyl factor localizes to ω = 0. We have written the integral in this way to
compare to (3.38). The measure d(WP) is known as the Weil-Petersson measure. In the
above we have two determinants: (det P̂ †

1 P̂1)
1/2 which originates from gauge fixing and is

theory independent, and det(−∇̂2 + 2) which is special to JT gravity and arises from the
integral over the dilaton Φ. In [4] it was pointed out that the ratio of these determinants is
unity, up to a factor that can be absorbed into the coupling constant S0. We are left with
an integral over the Weil-Petersson measure, which gives us the Weil-Petersson volume

Z =

∫
Mg

d(WP) = Vg. (3.42)

We can similarly ask whether our Lorentzian path integral (3.40) localizes to the Weil-
Petersson measure. Possible issues might arise both from the theory independent measure
(3.31), and from the theory dependent contribution (3.37). However, choosing lightcone
diagrams as the representative metric for the moduli space Mg,n is simply a gauge choice, so
the theory independent measure (3.31) cannot depend on this choice. Indeed, it was pointed
out in [138] that (3.31) secretly contains the Weil-Petersson measure d(WP) in lightcone
coordinates, and that the determinant of the Laplacian det(−∇̂2) roughly comes from the
punctured Riemann surface analogue of the gauge fixing determinant (det P̂ †

1 P̂1)
1/2.

14In [154] various determinants were studied on punctured Riemann surfaces with conical singularities of
opening angles 2π

n+1 with n ∈ Z+. However, in our case we require conical excesses instead of defects so the
results do not appear immediately applicable.
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The only possible issue with recovering the Euclidean amplitudes can therefore be from
the determinant arising from the integral over the Weyl factor in (3.37). However, this
is precisely where we ran into an ambiguity since ω is not constrained to behave in any
particular way at the degenerate points. Therefore the determinant in (3.37) should somehow
depend on the choice of singularity structure at the degenerate points, and it’s unclear if
we get an exact cancellation as in (3.41) for Euclidean JT. Without a better understanding
of determinants on singular surfaces it is difficult to say anything more concrete. However,
since the only deviation comes from a finite set of points we believe it’s quite likely that the
resulting amplitudes computed by (3.40) share similar features with Euclidean JT gravity,
we return to this point in the discussion.

3.4 Discussion

In this work we have proposed a definition for the Lorentzian JT gravity path integral that
includes topology changing configurations. This is accomplished by integrating over metrics
which are Lorentzian signature everywhere except at special points where the metric becomes
degenerate, and where the spatial topology changing transitions occur.

Our proposal is inspired by a formulation of bosonic string theory on singular Lorentzian
worldsheets [43, 44, 137–139], and we followed similar logic to define the Lorentzian JT path
integral. Using lightcone diagrams we analytically continued the Euclidean path integral to
define a Lorentzian path integral over degenerate Lorentzian metrics. This analytic continu-
ation gives a Lorentzian interpretation for the Euclidean path integral genus expansion. We
end with a few comments and potential future directions.

Relation to Euclidean JT and degenerate points

We found that the most serious ambiguity in the definition of our Lorentzian theory is how
to properly treat the degenerate points. There appears to be no standard prescription for
dealing with such points in Lorentzian signature, although see [40] for a recent discussion.
In Euclidean signature the degenerate points can always be removed with a singular Weyl
factor to give a smooth Euclidean metric. However, in Lorentzian signature this cannot
be done since the degenerate points are crucial for the existence of an almost Lorentzian
metric with spatial topology change. This gives us some freedom to choose the behavior of
the metric at such points15 (3.19), and this choice propagates into the final path integral in
(3.40).

As discussed in section 3.3, to understand the relation between Lorentzian and Euclidean
amplitudes we must understand how the ambiguity at the singular points modifies the path
integral measure. Indeed, in both the Lorentzian and Euclidean cases the domain of in-
tegration is given by the moduli space of punctured Riemann surfaces Mg,n, so the only

15This ambiguity does not appear when considering the bosonic string on lightcone diagrams[138] since
we don’t integrate over the Weyl factor.
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difference can arise from the respective measures on this space. Since the determinants on
singular Riemann surfaces appearing in (3.40) are not fully understood it is difficult to give
a conclusive answer. However, it is likely that this ambiguity modifies the path integral
measure, and so we don’t expect the Lorentzian amplitudes to exactly match the Euclidean
amplitudes.

Regardless, we expect the Lorentzian amplitudes to have qualitatively similar behavior
to Euclidean JT gravity amplitudes for reasons of random matrix universality. In [27] it
was shown that wormhole contributions in a wide range of dilaton-gravity models, with
integration measures deviating from pure JT gravity, have universal behavior independent
of the specific details of the theory. Indeed, we do not expect the specific details of the
integration measure to seriously modify universal behavior, such as the existence of a page
curve[5, 6] or the spectral form factor [4, 25, 27].

Towards non-perturbative Lorentzian physics

Non-perturbative Euclidean wormholes have played an important role in a wide variety of
recent calculations, see [4–6, 25, 27, 28, 31, 33] for some selected examples. It would be
interesting to understand the Lorentzian origin of these calculations using the Lorentzian
path integral developed in this work. As an example, it would be interesting to understand
the Replica wormhole computations [5, 6] or the swap entropy [155] using topology changing
Lorentzian wormholes, see also [38, 39]. Additionally, it would be interesting to understand
how the inclusion of topology changing Lorentzian metrics modifies the structure of the JT
gravity Hilbert space[136], and whether there is a canonical quantization interpretation for
Lorentzian topology change.

To address the above questions it will be necessary to introduce asymptotically AdS
boundaries, which amounts to studying lightcone diagrams with boundaries. These diagrams
were studied in the context of open strings[43, 44], but the proof of Giddings and Wolpert
[137] was never extended to them. Thus we cannot claim that these diagrams give a single
cover of the desired moduli space, but it seems quite likely that they do. Regardless, we can
directly define the Lorentzian JT theory with asymptotic AdS boundaries to live on such
lightcone diagrams, but for now we leave an examination of the above questions to future
work.

Simpler representation of moduli space

One of the features of lightcone diagrams is that they provide a particularly simple repre-
sentation for the integral over the moduli space of punctured Riemann surfaces Mg,n. The
standard procedure is to introduce Fenchel-Nielsen coordinates on the moduli space in terms
of which the the domain of integration is incredibly complicated, see [4] for a discussion.



CHAPTER 3. LORENTZIAN TOPOLOGY CHANGE IN JT GRAVITY 59

However, lightcone diagrams have a very simple region of integration (3.11)∫
Mg,n

. . . =
1

S

∏
i,j,k

∫ ∞

0

dτi

∫ 2π

0

dθj

∫ rmax

0

ρkdρk . . . (3.43)

while the integration measure can be quite complicated, see (3.40). It would be interesting
to understand the integration measure in (3.40) in terms of the lightcone coordinates on
the moduli space. It might be possible that in corners of moduli space the measure takes
a simplified form in terms of these coordinates. More generally, it would be interesting to
understand if the ratio of determinants in (3.40) simplifies as in the case of Euclidean JT
gravity.
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Chapter 4

Averaging the symmetric product
orbifold

This Chapter is based on [66] where we study ensemble averaging over a family of two
dimensional conformal field theories and it’s holographic gravitational dual. The AdS/CFT
correspondence states that a given conformal field theory is dual to a theory of quantum
gravity. However, it has recently been appreciated that some simple theories of quantum
gravity, defined by a sum over geometries and weighed by a semiclassical action, are dual to
an average over a suitable ensemble of boundary theories. The clearest example of this is JT
gravity which is a two-dimensional gravity theory dual to an ensemble of one dimensional
quantum mechanical theories [4].

This idea has been extended to a wide class of two-dimensional gravitational theories
[12, 15, 16, 21, 156], and progress has also been made in extending these concepts to higher-
dimensional theories of gravity [46–50]. In more than two bulk dimensions it is a priori
unclear how to construct ensemble averages over dual microscopic theories, so many ap-
proaches have focused on two-dimensional CFTs with a large number of symmetries such as
Narain CFTs [51–56], and WZW models [57–59]. We will consider the former. In [46, 47]
it was demonstrated that averaging over the family of TD Narain CFTs is dual to a bulk
theory given by Chern-Simons coupled to topological gravity. Narain CFTs can be defined
by the action

I =

∫
d2z

(
Gmnδ

αβ∂αX
m∂βX

n + iBmnε
αβ∂αX

m∂βX
n
)
, (4.1)

where the choice of target metric Gmn and Bmn is a choice of moduli and defines the theory.
We denote the Narain CFT partition function by ZTD(m,Σ) where Σ is a two dimensional
Riemann surface on which the theory is defined and m is a particular choice of the moduli
defining the theory. Averaging over the moduli with an appropriate measure, it was found
that the resulting averaged partition function ⟨ZTD(m,Σ)⟩ could be reproduced by a bulk
Chern-Simons calculation. The bulk theory takes the form of 2D copies of abelian Chern-
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Simons with total gauge group G = U(1)D × U(1)D and action given by

SCS =
D∑
i=1

∫
M

(Ai ∧ dAi −Bi ∧ dBi) , (4.2)

where the 2D gauge fields Ai, Bi transform under independent copies of U(1). It was found
that summing over a class of bulk three-manifolds, bulk handlebodies M with asymptotic
boundary ∂M = Σ, precisely reproduces the average over Narain CFTs

⟨ZTD(m,Σ)⟩ =
∑

handlebodies M

ZG(M), (4.3)

where on the right we evaluate the Chern-Simons path integral with action (4.2) on each
handlebody. The subscript G on the partition function denotes the gauge group of the
Chern-Simons theory. We go into additional details on the proposed duality between the
Narain average and a bulk Chern-Simons theory in Section 4.1.

In this paper we will extend this duality by ensemble averaging over a related family
of two-dimensional CFTs, symmetric product orbifolds of Narain CFTs. The process to
construct a symmetric product orbifold is to take N tensor copies of a seed CFT X, and
gauge the SN permutation symmetry exchanging the copies of the theory

SymN(X) = X⊗N/SN . (4.4)

We go into additional details on constructing such theories in Section 4.1. Applying this
procedure to the Narain theories we can construct a family of CFTs, denoted by SymN(TD),
labelled by a choice of integer N and a point in moduli space m. We denote the partition
function of such theories by ZTD≀SN

(m,Σ). Since this family of theories has the same moduli
space as the Narain theories we can again perform the ensemble average over such theories.
We now summarize our main results.

Summary of main results

Ensemble averaging SymN(TD): The goal of this paper is to provide a bulk dual for the
ensemble average of the symmetric product orbifold of Narain CFTs. Following the standard
holographic prescription, the bulk dual should be given by a sum over a suitable set of bulk
geometries. The philosophy we will take in this work is that the rules for the bulk path
integral should be dictated by the boundary ensemble average. In particular, the choice of
which bulk geometries to include is determined by consistency with the boundary answer
[46].

We now restrict our attention to SymN(TD) CFTs defined on a boundary torus with
modular parameter τ . In Section 4.2 we explain how to ensemble average the partition
function of this class of theories ⟨ZTD≀SN

(m, τ)⟩. The final result is given in equation (4.91),
and is a formal expression in terms of the Siegel-Weil Formula (4.20), which we introduce
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and explain in Section 4.1. We expect this average to be holographically dual to a sum over
bulk geometries with an asymptotic boundary torus. We find this is partially realized. The
averaged partition function can be schematically expressed as follows1

⟨ZTD≀SN
(m, τ)⟩ =

∑
handlebodies M ,

vortices

ZBulk(M) + non-semiclassical geometries. (4.5)

In the above we have split the boundary average into two terms. We will refer to the first term
as a “semiclassical” contribution while the second term is a “non-semiclassical” contribution.
We define contributions as semiclassical or not based on whether they can be reproduced by
the standard rules of the gravitational path integral. Let us first explain the bulk origin of
the semiclassical contribution.

Semiclassical Contributions: The semiclassical contribution is reproduced by a standard
gravitational path integral where we sum over handlebody geometries bounding the asymp-
totic torus with the inclusion of “vortices” (analogous to ‘t Hooft loops for discrete gauge
groups) running along the non-contractible cycle of the geometry. We have schematically
represented the contribution of each such geometry by ZBulk(M), which is given by a one-loop
exact Chern-Simons calculation. In the case of a boundary torus, handlebody geometries
are three manifolds of the form D2 × S1. On each handlebody geometry we evaluate the
partition function of a Chern-Simons theory with gauge group U(1)D × U(1)D ≀ SN .

2 The
bulk action of the Chern-Simons theory with this group is given by N copies of the previous
action in equation (4.2)

SCS =
N∑
i=1

∫
M

(
A(i) ∧ dA(i) −B(i) ∧ dB(i)

)
, (4.6)

where we have suppressed the summation over the D indices present in (4.2) for simplicity.
In total the theory has 2DN gauge fields. Evaluating the partition function of this theory is
slightly non-trivial since the structure of the gauge group is a wreath product, and in Section
4.3 we explain how to accomplish this for bulk handlebody geometries.

The final aspect of equation (4.5) that we must explain is the summation over vortices.
A vortex is a gauge theory line operator that we choose to place along the non-contractible
cycle of the handlebody. This operator implements twisted boundary conditions on the

1As we will discuss later in Section 4.1, both the average over the Narain moduli space and sum over
handlebodies can diverge, assuming the degree N of the orbifold group and the boundary genus g are
sufficiently large (in a way that will be made precise below), see also [46]. We will largely ignore these
divergence issues since, even when the sum over handlebodies diverges, the individual summands still make
sense as on-shell bulk partition functions. Of course, if one considers the full microscopic theory without
averaging, no such divergence should appear.

2The notation ≀ indicates that the gauge group takes the form of a wreath product group, which is defined
by taking N copies of U(1)D×U(1)D and gauging the symmetry permuting them. We explain this structure
in Section 4.3.
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gauge fields A(i), B(i) as they travel around the vortex

A(i) → Aπ(i), B(i) → Bπ(i), (4.7)

where π ∈ SN are permutations. The inclusion of vortices amounts to including gauge field
configurations that are singular in the interior of the handlebody, and we explain how to
evaluate the path integral on a handlebody with a vortex insertion in Section 4.3. The
summation over vortices amounts to a summation over all twisted boundary conditions
implemented by permutations π on the gauge fields.

Putting everything together, in sections 4.3 and 4.3 we evaluate the Chern-Simons par-
tition function on handlebody geometries with vortex operator insertions and show that
we precisely reproduce what we denote as the semiclassical contribution to the averaged
partition function

⟨ZTD≀SN
(m, τ)⟩ ⊃

∑
handlebodies M ,

vortices

ZG≀SN
(M) = . (4.8)

In the above figure the vortex is the red line running in the interior of the handlebody.
The Chern-Simons partition function ZG≀SN

implicitly depends on the twisted boundary
conditions the vortex implements. Thus, at least a portion of the ensemble averaged partition
function can be reproduced by a standard bulk theory given by U(1)D × U(1)D ≀ SN Chern-
Simons with the inclusion of bulk vortices.

Non-semiclassical Contributions: Let us now explain the “non-semiclassical” contribu-
tion to equation (4.5). The ensemble average of the partition function ⟨ZTD≀SN

⟩ contains
averages over multiple disconnected products of partition functions of the seed theory. A
useful example is to consider the case of N = 2, where the boundary average contains a
contribution

⟨ZTD≀S2
(m, τ)⟩ ⊃ 1

2
⟨ZTD(m, τ)ZTD(m, τ)⟩ =

∑
geometries

. (4.9)

Where in the above figure we have used the results summarized in Section 4.1 to represent
the average ⟨Z2

TD(m, τ)⟩ as a gravitational path integral with two asymptotic boundary tori
[46]. Generic non-semiclassical contributions arise from geometries of a similar nature, where
for general N the boundary average instructs us to include terms with up to N asymptotic
boundary tori.

While such terms have a geometric interpretation as bulk configurations with multiple
asymptotic boundaries, typically, they do not have a holographic interpretation as a single
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geometry with a single asymptotic boundary. To assign a holographic interpretation to
a bulk wormhole geometry M with n asymptotic boundaries we require that M is suitably
“symmetric”. The precise notion of this symmetry is subtle and we elaborate on it in Section
4.3, but it is reminiscent of the Zn replica symmetry in the context of the replica trick [157].
In the case that M is completely disconnected, the requirement is that the same boundary
cycle is contractible in the interior of each disconnected bulk geometry. Such a symmetry
is highly non-generic, and most wormhole configurations contributing to the average do not
have a simple interpretation. However, a subset of such geometries do have such a symmetry,
and have already been implicitly included in the “semi-classical” Chern-Simons computation,
see Section 4.3.

It’s useful to give a simple example of a geometry that does not have a semiclassical
interpretation. Consider a contribution to equation (4.9) where one torus is filled in with
a handlebody with contractible spatial cycle, while the other is filled in with a handlebody
with contractible time cycle

⟨ZTD≀S2
(m, τ)⟩ ⊃ , (4.10)

where the contractible cycles are identified by the dashed lines in the figure. A holographic
interpretation would require a single bulk geometry with both spatial and time cycles con-
tractible in the interior. A bulk manifold M cannot have both of these cycles contract, and
so such a contribution has no hope of being reproduced by a standard sum over geometries.
To include such contributions we would need to seriously modify the standard rules for the
bulk path integral, and allow different gauge fields AI to live on “independent” manifolds
with different contractible cycles. See Section 4.3 and the discussion in Section 4.6.

Averaging correlators: In Section 4.4 we consider ensemble averaging correlation functions
of twist operators in the symmetric orbifold, focusing specifically on the case of the Sym2(TD)
orbifold. These are non-local operators implementing twisted boundary conditions for the
fundamental fields in the orbifolded theory. Hence, these objects are naturally identified as
being the dual to the vortices of the the bulk Chern-Simons theory mentioned around (4.7).
Following the elegant approach of references [158, 159], the monodromy implemented by
twist fields trivialises on the covering space and it can be shown that the correlation functions
reduce to a product of covering map data and the seed partition function on the (branched)
covering space. For example for the case of the sphere we get (4.179). Therefore the Siegel-
Weil formula may be used in performing the average of the latter resulting in a modular sum.
How is this interpreted from the bulk perspective? Using the identification of vortices and
twist operators we will show that summing over all inequivalent configurations of vortices
ending on pairs of equivalent twist operators reduces to the aforementioned modular sum.
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More specifically, as in [160] we consider vortex configurations, which are rational tangles in
the language of knot theory. Such tangles exhibit handlebodies as branched covering spaces
such that the modular sum can be understood as a sum over hyperbolic metrics.

Averaging Supersymmetric Narain CFTs: In Section 4.5, we consider the ensemble
average over the supersymmetric version of Narain CFTs. We propose that the ensemble
average is holographically dual to a supersymmetric version of U(1)D×U(1)D Chern-Simons,
and we reproduce the boundary ensemble averaged torus partition function from a bulk
supersymmetric Chern-Simons sum over handlebody geometries. Furthermore, we consider
the symmetric product orbifold SymN(TD) of supersymmetric Narain theories and show that,
similar to the non-supersymmetric case, a supersymmetric Chern-Simons theory with gauge
group U(1)D × U(1)D ≀ SN reproduces many “semiclassical” contributions to the averaged
partition function.

Averaging the Tensionless String: The symmetric orbifold SymN(T4) at large N is dual
to type IIB string theory on AdS3 × S3 ×T4 with one unit of pure NS-NS flux (the so-called
‘tensionless string’) [61–65, 161–166]. Part of our motivation for considering the average of
SymN(TD) theories is to understand whether the tensionless string can be ensemble averaged
to produce a semiclassical sum over geometries. We are partially successful, averaging a single
string propagating on an AdS3 background gives a “semiclassical” geometry as defined above.
Averaging over multiple strings on a single background gives rise to the “non-semiclassical”
geometries. We leave a more complete discussion of this to Section 4.6.

In Section 4.1 we review some preliminary results necessary for the rest of the work.
We explain the Narain average/Chern-Simons duality of [46, 47], and we review the basic
construction of symmetric product orbifold CFTs. In Section 4.2 we begin by explaining
how to ensemble average over a symmetric product CFT. We then apply this to the class
of Narain CFTs SymN(TD) to obtain a boundary answer for the average. In Section 4.3 we
interpret the boundary average as a holographic Chern-Simons theory with the inclusion of
bulk vortices. In Section 4.4 we consider correlation functions of twist operators in the CFT,
and we show that a bulk dual is given by a sum over vortex configurations equivalent to a
specific sum over hyperbolic three-manifolds. In Section 4.5 we consider the supersymmetric
extension of the Narain theories, and we provide a bulk dual given by supersymmetric Chern-
Simons theory, with additional details left to appendix A.8. In Section 4.6 we end with a
discussion of our results.

4.1 Preliminaries

In this section we review the necessary technology used throughout the main parts of the
paper. In particular, we review the Narain-ensemble/U(1) gravity duality proposed by [46,
47], as well as the basics of permutation orbifolds. Readers familiar with Narain averaging
and permutation orbifolds should feel free to skip this section.
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Narain averaging and the sum over geometries

Consider a sigma-model with target space a D-dimensional torus TD. The action reads

I =

∫
d2z

(
Gmnδ

αβ∂αX
m∂βX

n + iBmnε
αβ∂αX

m∂βX
n
)
. (4.11)

where Gmn is the metric on the TD target space and Bmn is a two-form field, and the target
coordinates are compact Xm ∼ Xm + 2π. We take the theory to be defined on a Riemann
surface with locally flat metric δαβ, with εαβ being the Levi-Civita symbol. This CFT belongs
to a family of two-dimensional CFT’s with left and right-moving current algebras of type
U(1)D × U(1)D with central charges (cL, cR) = (D,D), namely the Narain family of CFTs.
The moduli space of Narain CFTs is parameterised by D2 parameters encoded in choosing
a target metric Gmn and the two form field Bmn. Equivalently the moduli space is given by
the double quotient space (for more details, see e.g. [167]):

MD = O(D,D;Z) \O(D,D) /O(D)×O(D) . (4.12)

The partition function on a torus with modular parameter τ is given by

ZTD(m, τ) =
Θ(m, τ)

|η(τ)|2D
, (4.13)

where m ∈ MD labels a particular point in the moduli space of Narain CFTs, and η(τ) is
the Dedekind eta function. The only moduli dependence enters through Θ(m, τ) which is
the Siegel-Narain theta function.3 As this moduli space carries a natural measure via the
Zamolodchikov metric,4 one can ensemble-average over the space of Narain CFTs. Since
the only dependence on the moduli enters through Θ(m, τ) we must consider the formal
expression:

⟨Θ(m, τ)⟩ :=
∫
MD

dµ(m)Θ(m, τ) =
ED

2
(τ)

(Im τ)
D
2

, (4.14)

with dµ(m) being the normalized Zamolodchikov measure. The expression for ⟨Θ(m, τ)⟩ is
found by the use of the Siegel-Weil [168–171] formula, and it is given by the real analytic
Eisenstein series Es(τ) which is defined as

Es(τ) =
∑

γ∈Γ∞\SL(2,Z)

(Im γ · τ)s . (4.15)

3The partition function Z(m, τ), the theta function Θ(m, τ), and the Eisenstein series Es(τ) which we
introduce later, also depend on τ . To avoid clutter, we omit this dependence in the notation and keep it
implicit.

4This metric is calculated by computing the two-point function of the exactly marginal operator
O ∼ δGmnδ

αβ∂αX
m∂βX

n + iδBmnε
αβ∂αX

m∂βX
n. This metric is equivalently the Haar measure of

O(D,D;R) descendend to the quotient.
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Here Γ∞ is the subset of the modular group which leaves invariant the imaginary part Im τ ,
and Γ∞\SL(2,Z) is the left quotient [46].5 The sum over modular images can be represented

by matrices γ =

(
a b
c d

)
∈ SL(2,Z) with coprime (c, d) = 1. Using the above we can write

the final expression for the ensemble-averaged torus partition function as a sum over modular
images

⟨ZTD(m, τ)⟩ =
ED

2
(τ)

(Im τ)
D
2 |η(τ)|2D

=
∑

γ∈Γ∞\SL(2,Z)

1

|η(γ · τ)|2D
. (4.16)

The above averaging procedure can be generalized to partition functions on arbitrary Rie-
mann surfaces by using the higher genus analogue of the Siegel-Weil formula. The averaged
partition function of the sigma-model on a genus g surface Σg with period matrix Ω takes
on the form

⟨ZTD(m,Ω)⟩ =
ED

2
(Ω)

(det ImΩ)
D
2

∣∣det′ ∂∣∣D . (4.17)

The determinant det′ ∂ appearing in (4.17) is of the operator ∂ on Σg omitting the zero-
modes. We have introduced the higher genus generalization of the Eisenstein series

Es(Ω) =
∑
Γ0

(det ImΩΓ0)
s , (4.18)

with ΩΓ0 being the period matrix defined with respect to what is known as a Lagrangian
sublattice Γ0. We defer the discussion of Lagrangian sublattices to slightly later in this
section, but for now a particular Γ0 should be thought of as specifying a distinguished set
of asymptotic boundary cycles which will be contractible in the bulk manifold when we
interpret the ensemble average holographically, see Figure 4.1.

The average can also be defined over products of partition functions on disconnected
Riemann surfaces. Suppose we have a product of n partition functions on associated Riemann
surfaces of genus gi with period matrices Ωi. We can form a matrix Ω which is the direct
sum of the period matrices of the respective Riemann surfaces

Ω =
n⊕

i=1

Ωi. (4.19)

The ensemble average over disconnected Riemann surfaces is then given by the following
generalization of the Siegel-Weil formula

⟨ZTD(m,Ω1) . . . ZTD(m,Ωn)⟩ =
ED

2
(Ω)

n∏
i=1

(det ImΩi)
D
2

∣∣det′ ∂Σgi

∣∣D , (4.20)

5The subgroup Γ∞ consists of all SL(2,Z) matrices of the form

(
±1 n
0 ±1

)
. Two matrices γ, γ′ ∈ SL(2,Z)

are considered equivalent in Γ∞\SL(2,Z) if γ = h · γ′ for some h ∈ Γ∞. The sum in (4.15) includes one
matrix from each equivalence class in Γ∞\SL(2,Z).



CHAPTER 4. AVERAGING THE SYMMETRIC PRODUCT ORBIFOLD 68

Figure 4.1: A given Lagrangian sublattice Γ0 appearing in the sums in (4.16), (4.17), and
(4.20) will be holographically associated with a choice of asymptotic boundary cycles that
becomes contractible in the interior of the geometry. In this figure we have genus two
handlebody with the drawn cycles contractible in the bulk.

where in the above Ω is no longer the period matrix of a single Riemann surface, but a direct
sum of period matrices of disconnected Riemann surfaces.

Double Torus Average

We will primarily be interested in the Narain average over products of partition functions
on disconnected tori boundaries. In this case the period matrices are just the modular
parameters of the tori Ωi = τi, and Ω = diag(τ1, . . . , τn) is a diagonal square matrix. The
averaged partition function for products of disconnected torus boundaries is then given by
(4.20) with the appropriate diagonal matrix Ω. We explicitly work out the case of two tori
with identical modular parameters τ since it will be used later. Applying (4.18) and (4.20)
to the case Ω = diag(τ, τ) we obtain

⟨ZTD(m, τ)ZTD(m, τ)⟩ = 1

Im(τ)D|η(τ)|4D
∑

Γ0⊂H1(Σ⊔Σ,Z)

(det Im(ΩΓ0))
D/2 . (4.21)

Where we have used that det′ ∂ = |η(τ)|2 on the torus. In the above Γ0 ⊂ H1(Σ ⊔Σ,Z) is a
sum over possible contractible cycles on the two tori. This sum contains a set of contribution
that give the disconnected average ⟨Z(τ)⟩2, in addition to wormhole contributions.

We now explain how to see the contribution of the disconnected average ⟨Z(τ)⟩2 in the
sum. Let A(1),A(2) be the A-cycles of the two tori, while B(1),B(2) are their B-cycles. Take
the contractible cycles specified by Γ0 to be given by independent modular transformations
γi of the A(i) cycles on the two respective torii. This corresponds to a choice of Γ0 and ΩΓ0

given by

Γ0 = SpanZ
(
γ1(A(1)), γ2(A(2))

)
, ΩΓ0 =

(
γ1 · τ 0
0 γ2 · τ

)
. (4.22)

The above choice of Γ0 is decomposable6 and amounts to picking all possible choices of
contractible cycles on the two tori independently, and we postpone an explanation of how to

6Intuitively, a decomposable Γ0 amounts to picking independent contractible cycles on all surfaces[46].
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obtain ΩΓ0 to the next subsection. This choice immediately gives the following contribution
to the average

⟨ZTD(m, τ)ZTD(m, τ)⟩ ⊃ 1

Im(τ)D|η(τ)|4D
∑

γ1,γ2∈Γ∞\SL(2,Z)

Im(γ1 · τ)
D
2 Im(γ2 · τ)

D
2 . (4.23)

By comparing to equation (4.16) we notice that this is the disconnected contribution squared
⟨ZTD(m, τ)⟩2. Wormhole contributions arise from other choices for Γ0, an example of which
is given by

Γ0 = SpanZ
(
A(1) +A(2),B(1) − B(2)

)
. (4.24)

The above choice corresponds to a bulk wormhole geometry of the form Σ × [0, 1], where
Σ is a torus. We examine this case in greater detail in Section 4.3. To summarize, the
average over products of partition functions contains disconnected contributions which can
be identified with special choices of Γ0, alongside wormhole contributions which correspond
to more non-trivial choices of contractible cycles.

Lagrangian Sublattices

We now briefly explain Lagrangian sublattices since they appear in the Eisenstein series
(4.18). Consider a Riemann surface Σg of genus g. The surface has 2g canonical cycles
which are labelled by Ai,Bi with i = 1, . . . , g. The first homology group of the surface
H1(Σg) is generated by these 2g cycles, and we have

H1(Σg) ∼= Z⊕ . . .⊕ Z︸ ︷︷ ︸
2g

. (4.25)

Once we have made a choice of cycles Ai,Bi we can choose a basis of g holomorphic one-forms
ωj by imposing the condition that ∮

Ai

ωj = δij. (4.26)

The period matrix of Σg is then defined to be given by∮
Bi

ωj = Ωij. (4.27)

To all cycles γ, γ′ ∈ H1(Σg) we can associate an intersection number ⟨γ, γ′⟩ that counts the
number of times that γ and γ′ cross. A Lagrangian sublattice is defined to be a primitive7

subgroup Γ0 ⊂ H1(Σg) generated by g cycles Ãi such that their mutual intersection numbers

7A primitive sublattice/subgroup Γ0 of H1(Σ) is defined such that given v ∈ Γ0 there does not exist
an integer n such that v = nu for some u ∈ H1(Σ). This is to exclude situations where the lattice Γ0 is
generated by 2[A] in the case of the torus. Such a lattice would be generated by the cycle that winds twice
around the [a] cycle of the torus. Holographically, such a choice would require demanding the twice wound
[a] cycle be contractible in the bulk.
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vanish ⟨Ãi, Ãj⟩ = 0. That is, for a genus g surface a Lagrangian sublattice is a choice of g
non-intersecting cycles. Once we have picked g cycles to define the Lagrangian sublattice we
must choose a dual pair of cycles B̃i that do not mutually intersect, but intersect the original
cycles once ⟨Ãi, B̃j⟩ = δij. We now define holomorphic differentials ω̃j, constructed out of
the original differentials ωj, such that we have∮

Ãi

ω̃j = δij. (4.28)

The period matrix ΩΓ0 associated to the Lagrangian sublattice is then defined to be∮
B̃i

ω̃j = (ΩΓ0)ij . (4.29)

In the case of multiple disconnected Riemann surfaces the first homology group is given
by a direct sum of the homology groups. For two surfaces of genera g1 and g2 we have
H1(Σg1 ⊔ Σg2 ,Z) ∼= H1(Σg1 ,Z) ⊕H1(Σg2 ,Z). A Lagrangian sublattice is then a group Γ0 ⊂
H1(Σg1 ⊔ Σg2 ,Z) generated by g1 + g2 cycles that have zero mutual intersection numbers.
The period matrix associated to Γ0 is defined in an identical way to the case of a single
surface, and generalizes to any number of disconnected surfaces. The new ingredient with
disconnected surfaces is that the cycles Ãi that define Γ0 can now be linear combinations
of cycles on disconnected surfaces, as explained for the average over two disconnected tori
earlier. To summarize, the sum over Lagrangian sublattices appearing in the Eisenstein
series (4.18) is a sum over all possible choices of non-intersecting boundary cycles.

Holographic Dual: U(1) Gravity

In references [46, 47] a three dimensional bulk dual was proposed for the average over TD

Narain CFTs. It takes the form of a U(1)D ×U(1)D Chern-Simons theory with 2D indepen-
dent U(1) gauge fields Ai, Bi and action

SCS = i

D∑
i=1

∫
M

(
Ai ∧ dAi −Bi ∧ dBi

)
− 1

2

∫
∂M

d2z
√
ggab

(
Ai

aA
i
b +Bi

aB
i
b

)
. (4.30)

In the above we have included the proper boundary term with boundary metric gab, which
corresponds to a choice of boundary Riemann surface. A choice of boundary conditions that
make the variational problem well defined are given by asymptotically fixing Az = 0 and
Bz = 0, see [51, 172, 173].8

In principle to compute the bulk partition function we should specify asymptotic bound-
ary conditions and evaluate the Chern-Simons path integral over all bulk manifolds consistent

8It turns out that the only bulk configurations that contribute also have Az = Bz = 0 on the boundary.
This can be seen by noticing that the holonomy of A,B around the contractible cycle must vanish since the
connection is flat [173].
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with those boundary conditions. However, it was shown in reference [46] that in the case
of a single torus boundary, the bulk partition function defined by summing over only bulk
handlebodies exactly reproduced the Narain average.9 A torus handlebody is a manifold
of the form M ∼= D2 × S1. There is an entire family of distinct handlebodies labelled by
elements of Γ∞\SL(2,Z), with the distinction being which asymptotic cycle of the boundary
torus is contractible in the interior of the handlebody. Summing over the contribution of
each handlebody we find [46]∑

handlebodies M

ZCS(M) =
∑

γ∈Γ∞\SL(2,Z)

1

|η(γ · τ)|2D
, (4.31)

where each term in the sum corresponds to a one-loop partition function of Chern-Simons on
the handlebody specified by γ. We note that each choice of γ picks out a boundary cycle that
is contractible in the interior of the handlebody.10 In terms of the representation of γ given
above equation (4.16), the contractible cycle is given by cτ+d with (c, d) = 1. This precisely
reproduces the Narain average partition function (4.16) on the torus. Similarly, it was shown
in [46] that summing over handlebodies with a single higher genus asymptotic boundary
correctly reproduces the higher genus Narain average (4.17), where the contribution of each
handlebody is again given by the one-loop Chern-Simons partition function.

From the above discussion there are two key points:

• To reproduce the Narain average, the sum over bulk geometries should not include
every manifold with appropriate asymptotic boundary conditions.

• The sum over Lagrangian sublattices in the Siegel-Weil formula identifies which asymp-
totic boundary cycles are contractible in the bulk.

The first point is surprising since naively every bulk geometry should be included, but we take
the perspective that the boundary ensemble average will dictate what bulk geometries we
ultimately include in the sum. For the second point, there are infinitely many three-manifolds
with the same contractible bulk cycles, but U(1) gravity seems to pick out a distinguished
bulk manifold with given contractible cycles. We follow the interpretation of [46] where it
was proposed that this simple theory of gravity cannot resolve finer topological features of
the bulk manifold other than which boundary cycles are contractible in the interior.

In the case of averaging over disconnected partition functions the bulk picture is more
complicated. The average given by (4.20), which we rewrite for convenience, can still be

9The statement that the bulk partition function is given by U(1)2D Chern-Simons theory is rather subtle.
See [46] for a discussion on subtleties related to whether the gauge group of the Chern-Simons theory should
be U(1) or R.

10The sum over Γ∞\SL(2,Z) also appears in pure AdS3 gravity [174], where it is interpreted as the sum
over the family of SL(2,Z) black holes. As an example, the term with γ · τ = τ is the contribution from the
handlebody with the spatial circle contractible in the interior, while the term with γ · τ = −1/τ corresponds
to the handlebody with contractible time circle. In pure AdS3 gravity these handlebodies would correspond
to Thermal AdS3 and the BTZ black hole respectively.
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given a bulk interpretation

⟨ZTD(m,Ω1) . . . ZTD(m,Ωn)⟩ =
∑

Γ0
(det ImΩΓ0)

D
2

n∏
i=1

(det ImΩi)
D
2

∣∣det′ ∂Σgi

∣∣D . (4.32)

Each Lagrangian sublattice Γ0 in the sum again corresponds to a bulk manifold with certain
asymptotic cycles contractible in the interior. This sum includes both disconnected han-
dlebody contributions whose each connected component appeared when averaging a single
partition function, as well as new wormhole contributions where the bulk manifold connects
multiple disconnected boundaries.

For an independent bulk computation of (4.32) we should evaluate the Chern-Simons
path integral on the bulk manifold specified by Γ0. For wormhole geometries there are again
infinitely many bulk manifolds with the same contractible cycles specified by a particular
Γ0, and it’s unclear which one is picked out by the Narain average. Furthermore, we are left
with the problem of evaluating the Chern-Simons partition function on the given wormhole
geometry, for which we know of no general results, but see comments in [46]. We will forgo
these issues and assume the bulk theory is directly defined by (4.32).

Divergence of the Ensemble Average

The average of the TD partition function only converges when D − 1 > g, where g is the
genus of the boundary. In the case of multiple disconnected boundaries this generalizes to

⟨ZTD(m,Ω1) . . . ZTD(m,Ωn)⟩ <∞, D − 1 >
n∑

i=1

gi. (4.33)

We note that the Eisenstein series (4.18) precisely diverges when D − 1 ≤ g. When the
average over moduli space such as (4.14) diverges we cannot, strictly speaking, claim that
the average is given by an Eisenstein series since the average is not well defined. Nevertheless,
we will define the divergent ensemble average for D − 1 ≤ g to be given by the standard
Eisenstein series (4.18), where each term in the sum gives a finite contribution but the full
sum does not converge. From a bulk perspective each term in the sum may be associated
with a finite contribution from a given bulk geometry, but each geometry is not sufficiently
suppressed to make the sum convergent.

From a boundary perspective this is slightly puzzling since for every member of the
ensemble the partition function is well defined, but when the average is performed a new
divergence appears. This can be understood as follows, the Narain CFTs are defined by a
target TD torus. There are points in moduli space where the target torus decompactifies and
we get infinitely many light states that give a divergence to the thermal partition function.
The simplest example of this is D = 1 where the target is a circle S1. As the radius of the
circle goes to infinity we decompactify to target R, and the momentum modes with zero
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Φ(x)

g · Φ(x)

Figure 4.2: An orbifold CFT M/G allows for twisted boundary conditions of fundamental
fields around non-contractible loops.

winding become light. The measure for the ensemble average suppresses these dangerous
corners of moduli space, but when averaging sufficiently many products of partition functions
the growth of light states near decompactification points eventually wins out over the measure
suppression and gives a divergent answer.

Symmetric orbifold CFTs

Orbifolds in general

Before discussing the symmetric orbifold, let us recall some basic facts of orbifold conformal
field theories in general. Let M be a smooth manifold with a discrete symmetry group G.
We can define the quotient space M/G by identifying points

p ∼ g · p , (4.34)

where p is a point in M and g ∈ G. If the action of G has fixed points, then a generic point
of M/G will not locally look like Rn, but will have conical singularities. Such a space M/G
is known as an orbifold.

Now, consider a conformal field theory which is a sigma-model with target space M , i.e.
a CFT whose fundamental fields are maps Φ : Σ → M from some two-dimensional surface
Σ into M . By abuse of notation, we will also refer to this CFT as M . The CFT inherits the
symmetry group G of the target space M , and we can define a new conformal field theory
with target space M/G by starting with the CFT M and ‘gauging’ the discrete symmetry G
of the original theory. Specifically, we demand that the field configurations Φ and g · Φ are
physically equivalent, and in the path integral only integrate over equivalence classes [Φ] of
field configurations under the action of G.

Naively, one can avoid the over-counting by picking a representative of [Φ] in the path
integral and only integrating over those representatives. This would effectively result in
dividing the path integral of the CFT M by an overall factor of 1/|G|. However, picking a
unique representative of [Φ] is only possible locally, and globally one needs to be more careful.
If Σ has a non-contractible loop based at a reference point x ∈ Σ, then it is possible that
Φ(x) obtains a monodromy g upon being transported around this loop (see Figure 4.2). This
is a perfectly allowed field configuration, since Φ(x) and g · Φ(x) represent the same point
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in the target space orbifold M/G, yet such a configuration does not allow one to smoothly
choose a unique representative of the equivalence class [Φ] at every point.

Twisted boundary conditions like those in Figure 4.2 are characterized by assigning a
monodromy g to each loop γ based at a point x, such that transporting the field Φ around γ
returns g(γ) ·Φ(x). The assignment of an element g ∈ G to each loop satisfies the following
properties:

• If γ is the trivial loop, then g(γ) = id.

• The monodromy g(γ) depends only on the homotopy class of the loop γ, i.e. g(γ) is
invariant under smooth deformations of the loop γ.

• Given two loops γ1, γ2 based at the same point, g(γ1 ◦ γ2) = g(γ1)g(γ2), where γ1 ◦ γ2
is the composition of the loops γ1 and γ2.

The above three properties are equivalent to specifying a group homomorphism g :
π1(Σ) → G.11 Each such twisted boundary condition should in principle appear in the
path integral of M/G, and so the path integral should sum over them. The result is that
the path integral of M/G on Σ can be expressed as

Z =
1

|G|
∑

g:π1(Σ)→G

∫
g

DΦ e−S[Φ] , (4.35)

where the subscript g in the path integral instructs us to integrate over field configurations
which obey the twisted boundary conditions. The factor of 1/|G| is again included so that
physically equivalent fields are not overcounted.

Permutation orbifolds

Consider a 2D CFTX whose fundamental fields are labeled collectively by Φ. IfX has central
charge c, we can construct a CFT with arbitrarily large central charge Nc by considering
the N th tensor power of X

X⊗N := X ⊗ · · · ⊗X︸ ︷︷ ︸
N times

. (4.36)

The theory X⊗N contains, as its fundamental fields, N -tuples Φ = (Φ1, . . . ,ΦN) of funda-
mental fields of X. Since X⊗N is constructed from N copies of an identical seed theory the
Hilbert space is an N times tensor product of the original Hilbert space, and there is an
obvious symmetry of permuting the individual copies. Let Ω ⊂ SN be a permutation group
acting on the letters {1, . . . , N}. Then for any permutation π ∈ Ω, there is a natural action
on the fundamental fields of X⊗N given by

π ·Φ = (Φπ(1), . . . ,Φπ(N)) . (4.37)

11We assume that Σ is connected, so that π1(Σ) is independent of the chosen basepoint.
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We can define a new CFT, known as the permutation orbifold or X ≀Ω, by gauging the action
of Ω on X⊗N . That is, we define the orbifold theory

X ≀ Ω := X⊗N/Ω . (4.38)

The use of the wreath product symbol ≀ to denote permutation orbifolds will be clarified
later when we discuss Chern-Simons theories with permutation symmetry.

A special case of a permutation orbifold comes from taking the permutation group Ω to
be the full symmetric group SN . In this case, the permutation orbifold X ≀ SN is called the
symmetric orbifold and is often denoted by SymN(X). We will mostly focus on symmetric
orbifold theories in this paper, but most statements we make generalize in a straightfoward
manner to generic permutation orbifolds.

Partition functions

Let Σ be a Riemann surface of genus one. Its cycles are denoted by A and B, and given
a point z ∈ Σ, we let A · z denote the operation of transporting z along a cycle homotopic
to A. Within the permutation orbifold, as with any orbifold, we impose the gauging of the
discrete group Ω by allowing the fundamental fields Φ to have non-trivial monodromies when
transported around non-contractible loops on Σ. That is, given permutations πA and πB,
we allow the twisted boundary conditions

Φ(A · z) = πA ·Φ(z) ,

Φ(B · z) = πB ·Φ(z) .
(4.39)

Now, given that A · B · A−1 · B−1 is a contractible cycle on the torus (see Figure 4.3), we
should not pick up a monodromy when traversing it. Thus, we have

Φ(z) = Φ(A ·B · A−1 ·B−1 · z) = (πAπBπ
−1
A π−1

B ) ·Φ(z) , (4.40)

which is only consistent if
πAπB = πBπA , (4.41)

i.e. if the permutations πA and πB commute. This is precisely the requirement that the
permutations πA, πB define a group homomorphism π1(Σ) ∼= Z ⊕ Z → SN . Now, from the
general theory of orbifolds, we know that in the path integral of X ≀Ω on Σ we are required
to sum over all twisted boundary conditions πA, πB which commute. That is, the partition
function is given by

ZΩ(Σ) =
1

|Ω|
∑

[πA,πB ]=0

ZπA,πB
(Σ) , (4.42)

where ZπA,πB
(Σ) is the path integral of X⊗N on Σ with the twisted boundary conditions

imposed by πA, πB. For a general choice of πA, πB the fields are not single valued, they
permute amongst themselves as we travel around different cycles of the torus.



CHAPTER 4. AVERAGING THE SYMMETRIC PRODUCT ORBIFOLD 76
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A A
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A

Figure 4.3: The loop A · B · A−1 · B−1 on a torus is contractible. Thus, twisted boundary
conditions πA, πB must satisfy πAπB = πBπA.

Let us now specialize to the case Ω = SN . In order to evaluate the individual summands
in equation (4.42), we use a standard trick in the theory of orbifolds by considering a covering

space Σ̃ on which the fields become single-valued [175]. The space Σ̃ is constructed by taking
N copies of Σ, letting the field Φi live on the ith copy of Σ, and ‘stitching’ together the copies
of Σ via the twisted boundary conditions πA, πB.

The resulting surface Σ̃ is an N -fold covering space of Σ in the topological sense (this
process is easy to visualize in the case of a one-dimensional theory on a circle, see Figure 4.4).
The partition function with twisted boundary conditions reduces to a partition function of
the seed theory X on Σ̃, i.e.

ZπA,πB
(Σ) = Z(Σ̃) , (4.43)

where Z denotes the partition function of X. Therefore, we naively write

ZSN
(Σ)

?
=

1

N !

∑
Σ̃→Σ

Z(Σ̃) , (4.44)

where Z(Σ̃) is the partition function of X on Σ̃.
The above equation is actually not quite right. This is because not all pairs of boundary

conditions (πA, πB) give topologically inequivalent covering spaces. Indeed, if we define
(π′

A, π
′
B) = (ππAπ

−1, ππBπ
−1), the resulting covering space is the same, since the effect of

conjugating by π it simply permutes the sheets of Σ̃ → Σ (the copies of Σ), which is a
homeomorphism. If we let

OπA,πB
=
{
(ππAπ

−1, ππBπ
−1)|π ∈ SN

}
, (4.45)

where we do not double-count equal pairs of permutations, then each covering space Σ̃ → Σ
occurs precisely |OπA,πB

| times in the sum (4.42).12 We define the ‘symmetry factor’ of a

12The set OπA,πB
is the orbit set of the element (πA, πB) ∈ Hom(π1(Σ), SN ) under the SN action which

acts as conjugation. Covering spaces are in one-to-one correspondence with the coset Hom(π1(Σ), SN )/SN

of this action. Readers familiar with mathematical aspects of gauge theory will recognize this coset as the
space of principal SN bundles over Σ, which is just a fancy word for a covering space.
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base

1

2

3

base

1

2

3

Figure 4.4: Twisted boundary conditions on the circle as 3-fold covering spaces. Left: the
fields {Φ1,Φ2,Φ3} satisfy twisted boundary conditions Φ1(2π) = Φ2(0), while Φ3 is single-
valued. Right: The fields satisfy boundary conditions Φ1(2π) = Φ2(0), Φ2(2π) = Φ3(0), and
Φ3(2π) = Φ1(0).

covering space Σ̃ → Σ to be the quotient |Aut(Σ̃ → Σ)| = N !/|OπA,πB
|. Thus,

ZSN
(Σ) =

∑
Σ̃→Σ

Z(Σ̃)

|Aut(Σ̃ → Σ)|
. (4.46)

The factor |Aut(Σ̃ → Σ)| is precisely the degree of the group of deck transformations :

homeomorphisms of the covering space Σ̃ which preserve the projection Σ̃ → Σ.13

For a base space which is a torus, it is a topological fact that the covering spaces Σ̃ → Σ
considered above are always given by disjoint unions of tori. That is, each covering space we
want to consider is given by

Σ̃ = Σ1 ⊔ · · · ⊔ Σn → Σ , (4.47)

where Σi is a torus with modular parameter τi that is not necessarily equal to the initial
modular parameter. Since the partition function of a CFT on a disjoint union of spaces is
the product of the partition functions, we have, for each covering space Σ̃ → Σ,

Z(Σ̃) =
n∏

i=1

Z(Σi) . (4.48)

Thus, in order to calculate the partition function ZSN
(Σ) of the symmetric orbifold theory

X ≀ SN on a torus Σ, one only needs to know the generic torus partition function Z(Σ) for

13Since a covering space can be considered a homomorphism ϕ : π1(Σ) → SN , we can equivalently define a
deck transformation to be an automorphism ψ : SN → SN which leaves ϕ invariant, i.e. for which ψ ◦ϕ = ϕ.
Group theoretically, conjugation by elements of SN defines an action on Hom(π1(Σ), SN ). The group of deck
transformations of a covering space ϕ ∈ Hom(π1(Σ), SN ) is the stabilizer Stab(ϕ) under the SN action. By the

orbit-stabilizer theorem, we have |Stab(ϕ)||O(ϕ)| = |SN | = N !, or N !/|O(ϕ)| = |Stab(ϕ)| = |Aut(Σ̃ → Σ)|.
Note that we do not require Σ to be a torus, and this statement works for any topological space Σ.
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the seed theory X – all of the other data is contained in the combinatorics of the covering
spaces. This simplification does not occur for partition functions of X ≀ SN on higher-genus
surfaces: as we will see later, if Σ has genus g, calculating the partition function ZSN

(Σ)
requires knowing the partition functions of the seed theory X on surfaces of many different
genera.

Example: N = 2

For N = 2, the above discussion can be made very concrete. The only two permutations in
S2 are the identity e and the two-cycle π. Since S2 is abelian, all permutations commute
among each other, and we can immediately write down the sum (4.42) as

Z2(Σ) =
1

2
(Ze,e(Σ) + Zπ,e(Σ) + Ze,π(Σ) + Zπ,π(Σ)) . (4.49)

If we realize the torus Σ as a parallelogram in the complex plane C/{m+nτ}, we can choose
the A-cycle to act as A · z = z + τ and the B-cycle to act as B · z = z + 1. Then Zπ,e is
the partition function of fields (Φ1,Φ2) with Φ1(z + τ) = Φ2(z). This is single valued on the
torus obtained by making the A-cycle twice as long, i.e.

C/{m+ 2nτ} . (4.50)

This is a torus with modular parameter 2τ , and so

Zπ,e(τ) = Z(2τ) . (4.51)

Similarly,
Ze,π(τ) = Z( τ

2
) , Zπ,π(τ) = Z( τ+1

2
) . (4.52)

All of the above covering tori are depicted in Figure 4.5. The partition function Ze,e(τ) is
just the partition function of X⊗2 with no twisted boundary conditions, and so

Ze,e(τ) = Z(τ)2 . (4.53)

Putting the above discussion together, we can write the full X ≀ S2 symmetric orbifold
partition function (4.49) as

Z2(τ) =
1

2
Z(τ)2 +

1

2
Z( τ

2
) +

1

2
Z(2τ) +

1

2
Z( τ+1

2
) . (4.54)

Each term in this sum can be seen as the partition function of the seed theory X evaluated
on a covering space Σ̃ → Σ, see Figure 4.5. A similar, more complicated discussion can be
done for N = 3, which requires 18 pairs of commuting permutations in S3. The end result is

Z3(τ) =
1

6
Z(τ)3 +

1

2
Z(τ)Z(2τ) +

1

2
Z(τ)Z( τ

2
) +

1

2
Z(τ)Z( τ+1

2
)

+
1

3
Z(3τ) +

1

3
Z( τ

3
) +

1

3
Z( τ+1

3
) +

1

3
Z( τ+2

3
) .

(4.55)
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1 2 1
1 2 1

1 2 1

1 1 1
2 2 2

1 1 1

1 2 1
2 1 2

1 2 1

Figure 4.5: The connected covering spaces for the torusN = 2 symmetric orbifold. Individual
cells represent the base torus (with modular parameter τ), and the numbers label which copy
of the seed theory lives on which sheet of the base torus. The permutations πA, πB prescribe
how to stitch together the copies of the seed theory onto the covering space. The covering
space itself is the fundamental domain for which the arrangement of labels 1, 2 is periodic
(shown in red). The fundamental domains in the above examples have modular parameter
τ/2, 2τ , and (τ + 1)/(1− τ) ∼ (τ + 1)/2, respectively.

τ τ

+

2τ

+

τ/2

+

(τ + 1)/2

Figure 4.6: All covering space geometries contributing to the S2 partition function. The
Riemann-Hurwitz formula guarantees that these covering spaces are also tori.

General N

A general expression for the SN symmetric orbifold partition function can be found by
working in the grand canonical ensemble

Sym(X) :=
∞⊕

N=0

(X ≀ SN) . (4.56)

Working with Sym(X) allows us to work with all symmetric orbifold theories at once. We
can keep track of the specific orbifold X ≀ SN by introducing a chemical potential p which
keeps track of N . In analogy to second-quantized statistical mechanics, we define the ‘grand
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canonical’ partition function Z(p, τ) by

Z(p, τ) =
∞∑

N=0

pNZN(τ) . (4.57)

In the case of the torus, it can be shown [176, 177] that the grand canonical partition function
has a simple expression in terms of Hecke operators, namely

Z(p, τ) = exp

(
∞∑
k=1

pkTkZ(τ)

)
, (4.58)

where the kth Hecke operator is given by

TkZ(τ) =
1

k

∑
ad=k

d−1∑
b=0

Z

(
aτ + b

d

)
. (4.59)

The relationship between Hecke operators and permutation orbifolds is that (4.59) sums over
all connected covering spaces of the original torus with degree k. The integers a, d in the sum
indicate how many times the covering space wraps around the A and B cycles, respectively.
The integer b then indicates a Dehn twist on the base torus, which is a Dehn twist around the
B cycle of angle 2πb/d on the covering torus. The exponential (4.58) then can be expanded
to include all disconnected covering spaces. Taking the degree N coefficient then produces
the partition function of the symmetric orbifold X ≀ SN , which can be written as

ZN(τ) =
∑

parititons of N

N∏
k=1

1

Nk!
(TkZ(τ))

Nk , (4.60)

where partitions of N sums over Nk such that
∑N

k=1 kNk = N .
Finally, we list an equivalent definition of the Hecke operators in terms of modular trans-

formations. Let Mk denote the space of 2 × 2 integer matrices with determinant k, and let
Γ = SL(2,Z) denote the modular group. The coset Γ\Mk is given by

Γ\Mk =

{(
a b
0 d

) ∣∣∣∣∣ ad = k , b = 0, . . . , d− 1

}
. (4.61)

Thus, we can write

TkZ(τ) =
1

k

∑
γ∈SL(2,Z)\Mk

Z (γ · τ) , (4.62)

where 2× 2 matrices are taken to act on τ in the usual way, i.e.(
a b
c d

)
· τ =

aτ + b

cτ + d
. (4.63)



CHAPTER 4. AVERAGING THE SYMMETRIC PRODUCT ORBIFOLD 81

Higher genus

Finally, we mention the situation for permutation CFTs formulated on surfaces Σ with genus
g > 1. We will focus on the case Ω = SN .

Recall that the uniformization theorem states that every surface Σg with genus g > 1 can
be expressed as a quotient H2/G of the upper-half-plane by a Fuchsian group G.14 Consider
a (connected) covering space Σg′ → Σg of order N . By the Riemann-Hurwitz formula, the
genus g′ of Σg′ is related to the genus g of Σ by

g′ = N(g − 1) + 1 . (4.64)

One can classify such covering spaces in the following way: let H be a subgroup of G with
index [H : G] = N .15 Then the quotientH2/H is a covering space of Σ = H2/G. The covering
map is given by mapping the equivalence class [z]H = {h · z|h ∈ H} to [z]G = {g · z|g ∈ G},
and this map is N -to-1. It can be shown that all connected covering spaces of Σ can be found
in the following way, and the covering spaces are determined uniquely by the subgroups H
up to conjugation by elements of G.

Using the above construction, it has been shown that the grand canonical partition
function Z(p,Σ) of the grand canonical ensemble (4.56) on a higher-genus Riemann surface
Σg = H2/G can be written as [178]

Z(p,H2/G) = exp

 ∑
H⊂G

up to conjugation

p[H:G]

[H : G]
Z(H2/H)

 , (4.65)

where Z(H2/H) is the partition function of the seed theory X on the covering surface
Σg′ = H2/H. The sum in the exponential with fixed value of [H : G] can be thought of as a
higher-genus generalization of the Hecke operators (4.59).

Expanding out (4.65) will generally give terms of the form

n∏
i=1

Z(H2/H1) · · ·Z(H2/Hn) , (4.66)

where H1, . . . , Hn ⊂ G have degrees Ni = [Hi : G], with some combinatorial factors we don’t
care about. Isolating the pN coefficient (i.e. the terms contributing to the SN partition
function) requires

n∑
i=1

[Hi : G] =
n∑

i=1

Ni = N . (4.67)

14A Fuchsian group is a discrete subgroup of SL(2,R), which acts on the upper-half-plane in the usual
way, i.e. (

a b
c d

)
· z = az + b

cz + d
.

15The index of a subgroup H of G is the number of left cosets or equivalently the number |G/H| of right
cosets of H in the group G.
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Since H2/Hi defines a Riemann surface Σg′i
of genus g′i − 1 = Ni(g − 1), we can equivalently

write the above product as
Z(Σg′1

) · · ·Z(Σg′n) , (4.68)

where the genera g′i are constrained by the requirements

n∑
i=1

(g′i − 1) = N(g − 1) and (g′i − 1)|(g − 1) . (4.69)

Thus, calculating the SN orbifold partition function on a surface of genus g requires knowl-
edge of the seed theory partition functions of surfaces of various genera.

Spin structures

We now generalize the above discussion to CFTs with fermionic degrees of freedom. In this,
case, in addition to a surface Σ, one must make a choice of spin structure. A surface of genus
g has 2g non-contractible cycles, and a choice of spin structure on Σ is a choice of periodic or
antiperiodic boundary conditions for fermions on Σ around each cycle.16 There are 22g such
choices of spin structure, and the path integral of a fermionic CFT on Σ is highly dependent
on the choice of spin structure.

Specializing to genus g = 1, the spin structure is labeled by two half integers α, β, such
that a fermion ψ satisfies

ψ(A · z) = e2πiαψ(z) , ψ(B · z) = e2πiβψ(z) . (4.70)

Explicitly, if we choose A to be the cycle along the τ -direction and B to be the cycle along
the 1-direction, we write

ψ(z + τ) = e2πiαψ(z) , ψ(z + 1) = e2πiβψ(z) . (4.71)

We will denote the partition function of a (fermionic) CFT X with spin structure (α , β) and
conformal structure τ as

Z

[
α
β

]
(τ) or Ze⃗ (τ) , (4.72)

where e⃗ = (αβ)T is a column vector.
If we consider the symmetric product of X, a formula similar to (4.58) can be given which

takes into account spin structures. We now must sum over permutations of the N fermions
such that ψ(A · z) = (−1)απA ·ψ(z) and ψ(B · z) = (−1)βπB ·ψ(z). The effect of this is that
the spin structure on the covering space can differ from the base space. The end result is
given by

Z

[
α
β

]
(p, τ) = exp

(
∞∑
k=1

pkTkZ

[
α
β

]
(τ)

)
, (4.73)

16A spin structure can also be defined as a homomorphism ϕ : π1(Σ) → Z2. Since Z2 is abelian, if Σ is
connected this is equivalently a homomorphism ϕ : H1(Σ,Z) → Z2.
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where the fermionic Hecke operator Tk acts as

TkZ

[
α
β

]
(τ) =

1

k

∑
ad=k

d−1∑
b=0

Z

[
aα + bβ
dβ

](
aτ + b

d

)
. (4.74)

Here, we understand the parameters of the spin structure to be added modulo 2. The spin
structure (aα + bβ, dβ) is the spin structure (α , β) pulled back to the covering torus. Note
that if we take γ ∈ Γ\Mk, then the spin structure on the covering space is written as[

α′

β′

]
= γ ·

[
α
β

]
, (4.75)

and so, writing the spin structure as a column vector e⃗ = (αβ)T , we can write the Hecke
operator compactly as

TkZe⃗ =
1

k

∑
γ∈Γ\Mk

Zγ·e⃗ (γ · τ) . (4.76)

4.2 Averaging the symmetric orbifold

As mentioned in the introduction, the fundamental objects of study in this paper are the
permutation orbifolds TD ≀Ω of Narain CFTs. In this section, we compute the averaged torus
partition functions of these orbifolds over the moduli space MD of TD targets. We focus
primarily on the symmetric orbifold case Ω = SN . We begin by computing the averaged
partition function of the TD ≀ S2 orbifold, which is simple enough to write down explicitly,
but still complicated enough to exhibit general features which persist at larger N . We then
turn to the case of N > 2. Finally, we briefly comment on the generalization to higher-genus
surfaces.

Generalities

Before jumping straight into averaging symmetric orbifold partition functions, let us briefly
comment on the general structure one might expect to see. Given a surface Σ, we know that
the symmetric orbifold partition function of some theory X on Σ is expressed by summing
the partition function of the seed theory X on all possible N -fold covering spaces Σ̃ → Σ,
weighted by an appropriate automorphism factor. We again quote the result:

ZN(Σ) =
∑
Σ̃→Σ

Z(Σ̃)

|Aut(Σ̃ → Σ)|
, (4.77)

where the sum is restricted to N -sheeted covering surfaces.
Now, let us assume that X is not a single theory, but an element of some moduli space

m ∈ M. Furthermore, we assume that, as in the case of U(1)-gravity, there is a sense in which
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averaging the partition function Z(Σ,m) over the moduli space M admits a holographic
interpretation in terms of ‘filling in’ the manifold Σ. That is, we assume∫

M
dµ(m)Z(Σ,m) =

∑
∂M=Σ

Zgrav(M) , (4.78)

where we sum over three-dimensional ‘bulk manifolds’ M with boundary Σ, weighted by
some sort of gravitational path integral Zgrav evaluated on M .17 With this assumption in
mind, we can automatically compute the average of the symmetric orbifold partition function
ZN(Σ,m) over the moduli space M, and the result will take the schematic form∫

M
dµ(m)ZN(Σ,m) =

∫
M

dµ(m)
∑
Σ̃→Σ

Z(Σ̃,m)

|Aut(Σ̃ → Σ)|
=
∑
Σ̃→Σ

∑
∂M̃=Σ̃

Zgrav(M̃)

|Aut(Σ̃ → Σ)|
. (4.79)

That is, to average the symmetric orbifold partition function, we first sum over covering
spaces Σ̃ → Σ, and then sum over bulk manifolds M̃ with boundary Σ̃.

In principle, the above procedure is straightforward (although most likely analytically
intractable). However, it leaves much to be desired in terms of the standard holographic
dictionary. Specifically, each term in equation (4.79) is calculated on a bulk manifold which

has boundary Σ̃, while holographically one expects gravitational quantities dual to CFT
data to be computed on manifolds with boundary Σ. Moreover, the automorphism factors
|Aut(Σ̃ → Σ)| don’t have an immediate interpretation in terms of a gravitational path

integral on M̃ .
A natural solution to both of the above problems arises if we think of M̃ not as a true

gravitational bulk manifold, but as a covering space of a gravitational bulk manifoldM with
boundary Σ. As we will discuss in more detail below, if the bulk is described by a gauge
theory which has a discrete SN factor, then the path integral of the gravitational theory on
the bulk M is naturally calculated by passing to a covering space M̃ . In direct analogy to
the symmetric orbifold, we would expect the three-dimensional partition function on M of
a theory with SN gauge symmetry to take the schematic form∑

M̃→M

Zgrav(M̃)

|Aut(M̃ →M)|
, (4.80)

where the sum is over all covering spaces M̃ → M of degree N . The full gravitational
path integral would then be given by summing over all appropriate bulk geometries M with
boundary Σ. In order for this procedure to reproduce the averaged symmetric orbifold
partition function (4.79), we would demand∑

M̃→M

∑
∂M=Σ

Zgrav(M̃)

|Aut(M̃ →M)|
!
=
∑
Σ̃→Σ

∑
∂M̃=Σ̃

Zgrav(M̃)

|Aut(Σ̃ → Σ)|
. (4.81)

17We allow the notion of a ‘bulk manifold’ to be rather vague. In the case of U(1) gravity, this role is
played by Lagrangian sublattices Γ0 ⊂ H1(Σ,Z).
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i

Γ γ

i
Σ̃ M̃

Σ M

2D: 3D:

Figure 4.7: We construct a bulk manifold M̃ by ‘filling in’ the covering space Σ̃. If M̃
is a (branched) covering space of another bulk manifold M with boundary Σ, then M is
interpreted as a bulk geometry in our theory of quantum gravity, and the branch loci of
the covering γ : M̃ → M are interpreted as ‘vortices’ for the bulk gauge theory. For bulks
M̃ which do not cover a bulk M with boundary Σ, a semiclassical interpretation of that
contribution to the gravitational path integral is less clear.

Unfortunately, such a strict prescription has little chance of working. This is because there
are many ways to fill a covering surface Σ̃ with a three-manifold M̃ which itself does not
cover any three manifold M whose boundary is Σ. In other words, given a surface Σ, a
covering Σ̃, and a bulk manifold M̃ bounded by Σ̃, the bottom-right corner of the diagram
in Figure 4.7 does not always exist. However, the opposite statement is always true: given a
surface Σ, a three-manifold M with ∂M = Σ, and a covering space M̃ of M , the boundary
of M̃ is always a covering space of Σ̃. This means that the left-hand side of (4.81) is strictly
contained in the right-hand side, and so at the very least some information of the averaged
symmetric orbifold CFT can be recovered from a bulk theory with gauge group SN .

We will return to the bulk/boundary duality later in Section 4.3, where we explicitly
calculate the two sides of (4.81). We will find that, although the two sides do not match,
one is contained within the other and we find a match between the connected parts of both
sides in the case of a single torus boundary. We will refer to the terms that match as
“semiclassical” contributions, since they can be obtained through the usual rules of the bulk
gravity path integral. We also postulate that the “extra” terms appearing in the right-hand-
side of (4.81) represent quantum gravity corrections that go beyond the usual semiclassical
picture, since it seems difficult to interpret these extra terms as standard bulk geometries.
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Example: N = 2

Let us make some of the general statements made above more explicit by considering the
case of the TD ≀S2 orbifold. As discussed in Section 4.1, the partition function of the orbifold
X ≀ S2 on a torus of modular parameter τ is given by

ZTD≀S2
(τ) =

1

2
ZTD(τ)2 +

1

2
ZTD(2τ) +

1

2
ZTD( τ

2
) +

1

2
ZTD( τ+1

2
) , (4.82)

where Z(τ) is the partition function of X. We will split up the partition function into a
“connected” and a “disconnected” part

ZTD≀S2
(τ) = ZTD≀S2, conn.(τ) + ZTD≀S2, dis.(τ), (4.83)

where connectedness refers to whether the covering space is connected or not. That is, the
connected part only contains terms with a single partition function Z. If X is a Narain
theory X = TD, then we can write the TD ≀ S2 partition function as

ZTD≀S2
(m, τ) =

1

2

Θ(m, 2τ)

|η(2τ)|2D
+

1

2

Θ(m, τ
2
)

|η( τ
2
)|2D

+
1

2

Θ(m, τ+1
2
)

|η( τ+1
2
)|2D

+
1

2

(
Θ(m, τ)

|η(τ)|2D

)2

, (4.84)

where Θ(m, τ) is the Narain theta function evaluated at the point m ∈ MD of the Narain
moduli space. The “connected” and “disconnected” parts are given by

ZTD≀S2, conn.(m, τ) =
1

2

Θ(m, 2τ)

|η(2τ)|2D
+

1

2

Θ(m, τ
2
)

|η( τ
2
)|2D

+
1

2

Θ(m, τ+1
2
)

|η( τ+1
2
)|2D

,

ZTD≀S2, dis.(m, τ) =
1

2

(
Θ(m, τ)

|η(τ)|2D

)2

.

(4.85)

These correspond to contributions to the symmetric orbifold partition function from double-
covers of the torus which are connected and disconnected, respectively. Using the Siegel-Weil
formula (4.14) we have ∫

MD

dµ
Θ(m, τ)

|η(τ)|2D
=

∑
γ∈Γ∞\SL(2,Z)

1

|η(γ · τ)|2D
, (4.86)

and we can immediately write down the average of the connected piece:

⟨ZTD≀S2, conn.(m, τ)⟩ =
1

2

∑
γ∈Γ∞\SL(2,Z)

(
1

|η(γ · 2τ)|2D
+

1

|η(γ · ( τ
2
))|2D

+
1

|η(γ ·
(
τ+1
2
)
)
|2D

)
.

(4.87)
The average for the disconnected part was worked out in Section 4.1, and requires the Siegel-
Weil formula for disconnected surfaces (4.20). The period matrix Ω of the disjoint union
Σ⊔Σ is given by Ω = diag(τ, τ), and following the rules of [46], we can write the average of



CHAPTER 4. AVERAGING THE SYMMETRIC PRODUCT ORBIFOLD 87

τ τ

+

2τ

+

τ/2

+

(τ + 1)/2

Figure 4.8: The “bulk geometries” contributing to the averaged TD ≀ S2 partition function.
The geometry on the left is understood to be a connected three-manifold whose boundary is
the disjoint union of two tori.

the disconnected component as a sum over Lagrangian sublattices Γ0 of the total homology
lattice H1(Σ ⊔ Σ,Z) ∼= H1(Σ,Z)⊕H1(Σ,Z), namely

⟨ZTD≀S2, dis.(m, τ)⟩ =
1

2 Im(τ)2D|η(τ)|4D
∑

Γ0⊂H1(Σ⊔Σ,Z)

(det Im(ΩΓ0))
D/2 , (4.88)

where ΩΓ0 is the period matrix Ω evaluated on the sublattice Γ0 as explained in Section 4.1.
Each Lagrangian sublattice Γ0 is to be associated with a bulk geometry with boundary Σ⊔Σ
such that the boundary cycles Γ0 are contractible in the bulk. Choices of Γ0 correspond to
either “Wormhole” geometries, or completely disconnected bulk geometries.

In both the connected and disconnected case, the averaged partition function has an
interpretation as a sum over geometries shown in Figure 4.8. For the connected piece, ⟨Zconn⟩
is a sum over U(1)2D×U(1)2D Chern-Simons partition functions on geometries with boundary
tori of modular parameter 2τ , τ

2
, or τ+1

2
. The disconnected piece ⟨Zdis⟩ is written as a sum

over both disconnected handlebody geometries and “wormhole” geometries whose boundary
is the disjoint union Σ ⊔ Σ. From a holographic perspective this sum over geometries is
unsatisfactory for two reasons:

• Each geometry comes with a symmetry factor of 1
2
, which, from the point of view of a

bulk Chern-Simons theory has no reason to be there.

• Holographically, we expect the bulk dual of a CFT on a surface Σ to consist of a
gravitational theory on bulk manifold M whose boundary is Σ. However, none of the
geometries mentioned above have boundary Σ, but rather their boundaries are double
covers of Σ.

Thus, we need a way to interpret the contributions of (4.87) and (4.88) in terms of geometries
whose boundary is given by Σ. We now explain under what conditions this can be done.

We will first make some formal statements before giving a more intuitive picture towards
the end of the paragraph. Let us denote one of the bulk geometries contributing to (4.87) and

(4.88) by M̃ and its boundary by Σ̃. Suppose that M̃ has symmetry group G such that if we
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consider the quotient geometry M̃/G we obtain a manifold with desired asymptotic boundary

∂M̃/G = Σ. Then we can holographically interpret the geometry M̃/G as contributing to
the averaged partition function through the usual rules of AdS/CFT. It turns out that we
can give such an interpretation to certain terms in the sum, as we now explain for the case
of N = 2. This is achieved by recalling that the boundaries of all of the above geometries
are covering spaces of the original torus Σ. There exists a 2-to-1 map

Σ̃ → Σ (4.89)

which is the covering map of Σ by Σ̃. This map can be thought of as the quotient map
of a Z2 automorphism (deck transformation) ι : Σ̃ → Σ̃ which projects Σ̃ to the quotient

space Σ̃/ι ∼= Σ.18 One might hope that the bulk geometries M̃ with boundary Σ̃ also inherit
a Z2 automorphism that restricts to ι on the boundary. For many of the bulk geometries
this is indeed the case, such as with the solid tori which fill the connected covering spaces,
shown in Figure 4.8. For these geometries we can define a (possibly singular) bulk manifold

M = M̃/Z2 which has boundary Σ, and thus provides a promising candidate for the bulk
manifold which should appear in the sum over geometries contributing to the averaged
TD ≀S2 partition function. However, as we will explore more in detail later, many of the bulk
geometries appearing in the averaged TD ≀ S2 do not inherit a Z2 automorphism compatible
with the automorphism of the boundary Σ̃. Specifically, the geometries in Figure 4.8 with
connected boundary all inherit the Z2 automorphism of the boundary, and so they can indeed
be thought of as covering spaces of well-defined three-manifolds. However, for the geometries
whose boundaries are disconnected, the Z2 symmetry of the boundary can be ‘broken’ by
specific details of the bulk.

Let us also explain this in a more pictorial way. Consider the concrete case of the potential
wormhole contribution depicted in the leftmost panel of Figure 4.8. The corresponding
boundary contribution, the leftmost panel of figure 4.6, is invariant under swapping of the
two tori. This symmetry of the two coverings leads to the factor 1

2
as explained in Section

4.1. Analogously, we can also consider the second to left panel in Figure 4.6. The upper and
lower half of the torus correspond to the two covering sheets. Again, we observe a symmetry
by exhanging these two sheets. Similar statements can be made about the remaining two
covering surfaces pictured in 4.6. In order to define a theory on a potential quotient three
manifold, we must be able to extend these symmetries of the covering surfaces into the bulk.
It is then clear that for the 3 connected contributions pictured in Figure 4.8 this can be
done. However, for the wormhole contribution it is also clear that this may only be possible
if the two boundary tori are imbued with the same complex structure.

Geometries for which this is not possible can be avoided by either only considering the
average of the connected contribution to the TD ≀ S2 partition function, for which such a Z2

automorphism always exists, or by trying to find a suitable generalization of what is meant

18The S2 orbifold on the torus is a special case since all covering spaces Σ̃ → Σ satisfy Σ ∼= Σ̃/Z2. In
general the relationship between covering and base spaces is not a simple quotient.
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by a ‘bulk geometry with boundary Σ’. We will return to this point in Section 4.3 in the
context of the bulk gauge theory description.

General N

For general N the theory is given by the TD ≀SN orbifold. The partition function for fixed N
can be extracted from the grand canonical partition function in equation (4.58) by extracting
the term proportional to pN in the series expansion. For general N the form of the partition
function is quite complicated and is given by (4.60),

ZTD≀SN
(m, τ) =

∑
parititons of N

N∏
k=1

1

Nk!
(TkZTD(m, τ))Nk , (4.90)

where again partitions of N sum over Nk such that
∑N

k=1 kNk = N . We can immediately
obtain the ensemble average by applying the Siegel-Weil formula (4.20) to the above expres-
sion

⟨ZTD≀SN
(m, τ)⟩ =

∑
parititons of N

〈
N∏
k=1

1

Nk!
(TkZTD(m, τ))Nk

〉
. (4.91)

However, this expression is quite formal since it is a complicated sum over various wormhole
and non-wormhole geometries with up to N asymptotic boundaries. It is useful to split the
partition function into a sum over “connected” and “disconnected” contributions

ZTD≀SN
(m, τ) = Zconn(m, τ) + Zdis(m, τ). (4.92)

The “connected” part of the partition function only includes contributions from connected
covering spaces, and it has a simple expression since it can be extracted from (4.58) by
keeping contributions proportional to pN and a single copy of Z, giving

Zconn(m, τ) = TNZTD(m, τ) =
1

N

∑
ad=k

d−1∑
b=0

ZTD

(
m,

aτ + b

d

)
. (4.93)

The ensemble average over the connected part is simple since there are no wormhole contri-
butions. We find

⟨Zconn(m, τ)⟩ =
1

N

∑
ad=k

d−1∑
b=0

〈
ZTD

(
m,

aτ + b

d

)〉
, (4.94)

=
1

N

∑
ad=k

d−1∑
b=0

∑
γ∈Γ∞\SL(2,Z)

1

|η(γ ·
(
aτ+b
d

)
)|2D

. (4.95)

where the quantity on the right is simply the torus average given in (4.16). We will later
see that we can give this term a holographic interpretation as a Chern-Simons path integral
with vortices, similar to the case of N = 2.



CHAPTER 4. AVERAGING THE SYMMETRIC PRODUCT ORBIFOLD 90

The “disconnected” contribution Zdis(m, τ) is more difficult to write out explicitly, but
it would contain sums over multiple copies of partition functions with different modular
parameters. As an explicit example, from (4.55) we see that for N = 3 the “disconnected”
piece would be given by

Zdis(τ) =
1

6
ZTD(τ)3 +

1

2
ZTD(τ)ZTD(2τ) +

1

2
ZTD(τ)ZTD( τ

2
) +

1

2
ZTD(τ)ZTD( τ+1

2
). (4.96)

We can again apply the Siegel-Weil formula for disconnected surfaces (4.20) to perform the
average over the “disconnected” partition function. This provides a bulk interpretation for
the disconnected piece as a sum over wormhole geometries with up toN asymptotic boundary
tori. Similar to the discussion for N = 2, we are unable to give a holographic interpretation
to the disconnected piece as a sum over bulk geometries with a single asymptotic boundary
torus of modular parameter τ .

Averaging at higher genus

Finally, we make some brief comments on how to generalize the above discussion to sym-
metric orbifold partition functions on higher genus surfaces, only focusing on the connected
component of the partition function. In Section 4.1 we mentioned that the symmetric orb-
ifold partition function on higher genus surface Σg = H2/G can be neatly packaged in the
grand canonical ensemble as a sum over subgroups H ⊂ G where G is the Fuchsian group
acting on the upper-half-plane. Specifically,

Z(p,H2/G) = exp

 ∑
H⊂G

up to conjugation

p[H:G]

[H : G]
Z(H2/H)

 . (4.97)

The connected component of the X ≀ SN orbifold can then be easily extracted by isolating
the pN coefficient in the exponential, namely

ZN,conn(H2/G) =
1

N

∑
H⊂G, [H:G]=N
up to conjugation

Z(H2/H) . (4.98)

This sum is precisely what one would expect: a sum over all connected covering spaces H2/H
of the surface Σ ∼= H2/G. An equivalent yet slightly less algebraic notation would be to write
the connected contribution as

ZN,conn(Σg) =
1

N

∑
Σ̃→Σg

Z(Σ̃) , (4.99)

where the sum is over all genus g′ = N(g − 1) + 1 surfaces which cover Σg.
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We can now consider the ensemble average of this quantity by specifying X = TD. By the
dictionary of [46], we know that the average of the partition function Z(Σ̃) is given as a sum

over all handlebodies bounded by Σ̃ (or equivalently as a sum over all Lagrangian sublattices

Γ0 ⊂ H1(Σ̃,Z)) weighted by the Chern-Simons action on that handlebody. Explicitly,

⟨ZN,conn(m,Σg)⟩ =
1

N

∑
Σ̃→Σg

∑
∂M̃=Σ̃

ZCS(M̃) . (4.100)

While this expression is short and conceptually simple, its practical computation is very
difficult. Specifically, computing the Chern-Simons path integral on the handlebody M̃
requires knowledge of the period matrix Ω̃ of Σ̃, which is difficult to generically compute
[179]. That said, the averaged partition function (4.100) is in principle well-defined, up to
divergence issues in the resulting Eisenstein series.19

4.3 The bulk theory

The torus theory TD possesses affine U(1)DL ×U(1)DR currents, whose zero-modes generate a
global symmetry algebra. These currents are given by the left- and right-moving derivatives
of the worldsheet scalars, namely

Jm = ∂Xm , J
m
= ∂Xm , m = 1, . . . , D . (4.102)

By the standard holographic dictionary, these currents are dual to gauge fields in the bulk,

Jm → Am , J
m → Bm , (4.103)

where A transforms under the left U(1)D and B transforms under the right U(1)D . In
the Narain ensemble, this identification of global symmetries on the boundary with gauge
symmetries in the bulk is all that needs to be done, and we can write the bulk action as a
U(1)D × U(1)D Chern-Simons theory, namely

S =

∫
M
(A ∧ dA−B ∧ dB) . (4.104)

Here, we implicitly perform a sum over the U(1)D indices m, see (4.30). The rules of Narain
averaging then also tell us that the path integral must be summed over bulk geometries M.

19The TD averaged partition function on a surface of genus g′ diverges when D ≤ g′ +1. Since each term
in (4.100) is evaluated on a surface of genus g′ = N(g − 1) + 1, where g is the genus of Σg, we require

D > N(g − 1) + 2 (4.101)

for convergence.
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For the permutation orbifold TD ≀ Ω, things are a bit different. We now have N copies
of each current, and so in the bulk we expect N copies of the gauge fields A,B. Thus, we
postulate the following action:

S =
N∑
i=1

∫
M

(
A(i) ∧ dA(i) −B(i) ∧ dB(i)

)
. (4.105)

Where again the U (1)D indices are implicit. Since the boundary theory contains N copies
of the original U(1)D ×U(1)D symmetry the bulk theory has N copies of the U(1)D ×U(1)D

gauge symmetry
A(i) → A(i) + dλA(i) , B(i) → B(i) + dλB(i) . (4.106)

We must now understand how quotienting by Ω modifies the bulk theory. Before we quotient
the boundary theory by Ω we have a permutation symmetry given by Jm → Jπ(m), J

m →
J
π(m)

. This immediately maps into a symmetry of the bulk Chern-Simons theory A(i) →
A(π(i)), B(i) → B(π(i)). After gauging the permutation symmetry Ω, it is natural to expect the
bulk theory to also carry this gauge symmetry. This promotes the permutation symmetry
of Chern-Simons fields to a gauge symmetry

A(i) → A(π(i)) , B(i) → B(π(i)) . (4.107)

The full gauge group of the bulk dual of the TD ≀ Ω permutation orbifold should then be
the group generated by combinations of the U(1)D ×U(1)D transformations (4.106) and the
permutations (4.107). The group generated by these two transformations is a semidirect
product of (U(1)D × U(1)D)N with the permutation group Ω, and in the mathematical
literature is denoted by the wreath product20

U(1)D × U(1)D ≀ Ω . (4.108)

Armed with the above discussion, a natural duality to propose would be:

Narain-ensemble of TD ≀ Ω orbifolds

⇐⇒
U(1)D × U(1)D ≀ Ω Chern-Simons coupled to topological gravity

(4.109)

Although this gauge group is not discrete, it contains a discrete factor21 of Ω. Thus, the
above theory will exhibit behaviors universal to all discrete gauge theories. One of these is the

20The wreath product is just mathematical notation meaning the gauge group which is generated by
composing (4.106) and (4.107). The relationship between the wreath product symbol ≀ and permutation
orbifolds X ≀Ω is that if a CFT X has symmetry group G, then the permutation orbifold X ≀Ω has symmetry
group G ≀ Ω.

21Indeed, U(1)D ×U(1)D ≀ Ω is equivalent to (U(1)D ×U(1)D)N ×Ω as a topological space (but not as a
group).



CHAPTER 4. AVERAGING THE SYMMETRIC PRODUCT ORBIFOLD 93

A(π(a))A(a)

Figure 4.9: The effect of including a vortex associated to a permutation π in the bulk dual
of TD ≀ Ω.

existence of twist operators in the bulk, which in three-dimensional discrete gauge theories
take the form of one-dimensional vortices [180, 181]. We now explain the bulk partition
function of this theory and how gauging by Ω introduces new features such as vortices.

The Chern-Simons path integral with action (4.105) and gauge group G ≀SN , where G is
some Lie group, on a bulk manifold M is given by

ZG≀SN
=

1

N !

∑
bundles

∫
DADB e−SCS[A,B] . (4.110)

The factor of N ! comes from taking permutations of the fields to be gauge equivalent. We
take this into account by integrating over all possible fields A,B but divide by N ! not to
overcount. In the path integral we are to integrate over gauge connections on all G ≀ SN

bundles over M . Typically, the total gauge group is a Lie group and so there exists only
a single trivial bundle. However, if the gauge group contains a discrete factor, such as SN ,
then there are additional bundles that must be included in the path integral [182, 183]. This
is one of the new features when dealing with gauge theories with discrete groups. As we will
see slightly later, the effect of including the sum over bundles is that we must include gauge
field configurations where the fields A,B are twisted as we travel around the non-contractible
cycles in M .

We will find that to match to the boundary ensemble average we will need to include
gauge field configurations that also have non-trivial monodromies around the contractible
cycles in M , but these are not reproduced by the sum over bundles above. However, there
is a way to include such configurations by including codimension two “vortices” in the path
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integral. We thus claim that the correct bulk path integral of interest is given by

ZBulk ≡
1

N !

∑
M

∑
bundles,
vortices

∫
DADB e−SCS[A,B]V , (4.111)

where we have modified the path integral by inserting an additional vortex operator V . We
specify what the summation over vortices means slightly later. A vortex is a line operator
embedded into the manifold M which enforces that the gauge fields A,B pick up certain
monodromies as they travel around the vortex. The sum over vortices needs to be put in by
hand, and we take the philosophy that the summation over vortex configurations should be
chosen to match the boundary answer. In the bulk path integral we also sum over a set of
bulk manifolds M with given asymptotic boundary structure, and the specific choice of bulk
manifolds M will be clarified later.

In the remainder of this section we go into additional details regarding the summation
over bundles and vortices. We then explain the bulk path integral calculation in the case
of N = 2 with an asymptotic torus boundary, and we clarify which terms in the boundary
ensemble average are reproduced by the bulk calculation. We discuss the case of larger N
and higher genus boundaries, and we comment on bulk non-handlebody contributions.

Topological theories with finite gauge group

Before fully exploring our proposed bulk theory, let us first make some general remarks
about topological field theories with finite gauge group [183], see [184] for an expository
introduction.

A field theory with a discrete gauge group Ω is formally very similar to 2D orbifold CFTs.
Indeed, an orbifold CFT can be formulated as a 2D theory with discrete gauge group. In
three-dimensions, we can similarly consider field theories whose gauge groups are discrete.
Let M be some three-manifold. If the field content of the theory is Φ, then gauging the
group Ω amounts to identifying

Φ(p) ∼ g · Φ(p) (4.112)

at all points p. Again, just as in the orbifold CFT case, this leads to interesting behavior
when M is not simply-connected. In this case, we can imagine transporting Φ around some
non-contractible loop γ based at p. It is perfectly fine if Φ itself is not single-valued, but
rather picks up a monodromy ϕ(γ) ∈ Ω upon being transported around γ. That is,

Φ(γ · p) = ϕ(γ) · Φ(p) , (4.113)

where Φ(γ · p) is shorthand for the value of Φ after being transported along γ. Since Φ and
ϕ(γ) · Φ are physically equivalent, the above should be a perfectly allowed configuration in
the path integral.

Similarly to the discussion in Section 4.1, the assignment of a twisted boundary condition
to each loop γ must be consistent with the process of concatenation of loops. That is,
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the twisted boundary conditions must form a homomorphism ϕ : π1(M) → Ω. Moreover,
for any g ∈ Ω, the homomorphisms ϕ(γ) and g−1ϕ(γ)g represent the same physical field
configuration, since it is related to ϕ simply by a global field redefinition Φ → g · Φ. That
is, contributions to the path integral are defined only up to conjugation by elements of Ω
(this is the Ω group action on the map ϕ). Mathematically, the set of such twisted boundary
conditions are in one-to-one correspondence with the representation variety

Hom(π1(M),Ω)/Ω , (4.114)

which is equivalently the moduli space of flat Ω-bundles on M .22

We can also consider a fully topological theory whose only content is the discrete gauge
group Ω. The field content of the theory is trivial, and the only nontrivial observables are
the partition functions on M . It is given as a sum over all homomorphisms ϕ : π1(M) → Ω
(i.e. twisted boundary conditions) weighted by the automorphism group Aut(ϕ) of that
homomorphism. That is, the partition function of the TQFT with gauge group Ω is simply:

ZΩ(M) =
∑

ϕ:π1(M)→Ω
up to conjugation

1

|Aut(ϕ)|
. (4.115)

As a trivial example, if M ∼= S3 is the three-sphere, then π1(S
3) is trivial, hence the only

choice for ϕ is ϕ(idπ1(S
3)) = idΩ and we simply have

ZΩ(S
3) =

1

|Ω|
. (4.116)

Now, we are specifically interested in the case of Ω = SN . As we discussed in Section
4.1, a set of twisted boundary conditions ϕ : π1(M) → SN can be identified with a covering

space M̃ →M , and the group of automorphisms becomes the group of deck transformations
Aut(M̃ → M). Thus, the SN topological gauge theory on M computes a weighted sum
over all covering spaces of M of degree N , weighted by the order of the group of deck
transformations. Explicitly,

ZSN
(M) =

∑
M̃→M
degree N

1

|Aut(M̃ →M)|
. (4.117)

The above construction can be rather nicely extended to the case of not a finite gauge
group, but a gauge group G ≀ SN where G is some Lie group and ≀ is the wreath product
defined above. In this case, the path integral is over all gauge connections on G ≀SN bundles
over M . Now, topologically, a G ≀ SN bundle E → M is equivalent to a G bundle E → M̃
over the SN bundle M̃ → M (i.e. a degree N covering space of M).23 Thus we can trade

22Since Ω is discrete, all Ω-bundles are flat.
23This statement is already implicit in [185].
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the path integral of a G ≀SN gauge theory for a sum over path integrals of a G gauge theory
on the covering spaces of M . The final result is

ZG ≀SN
(M) =

∑
M̃→M
degree N

ZG(M̃)

|Aut(M̃ →M)|
. (4.118)

Another way to view the above construction is to take N copies of a gauge theory on G,
and then to gauge the SN permutation symmetry of the resulting product theory. This
is equivalent to defining a gauge theory with gauge group G ≀ SN , and the arguments for
computing path integrals in symmetric orbifold theories from Section 4.1 carries over, and
we arrive at (4.118), in direct analogy to the logic that allowed us to derive equation (4.46).24

To summarize the above discussion, the summation over non-trivial bundles appearing
in equation (4.111) induces a summation over non-trivial boundary conditions on the gauge
fields around the non-contractible cycles inM . This can be rewritten as a sum over covering
spaces of M given by equation (4.118). Note that this does not induce twisted boundary
conditions around the contractible cycle. To include such configurations we need to include
bulk vortices, which we now discuss.

Vortices

Another property of gauge theories with discrete gauge groups is the presence of so-called vor-
tices. As explained above, vortices are codimension-2 objects which impose twisted boundary
conditions on gauge fields transported around them. These are the 3-dimensional analogues
of twist fields in orbifold CFTs, and as we will see in Section 4.4 are holographically dual to
twist fields.

Informally, a vortex (often also called a monodromy defect [188] or a Gukov-Witten op-
erator [189]) is a codimension-2 extended object in a gauge theory which has the property
that being transported around it induces a monodromy of the gauge group Ω. This is anal-
ogous to the Aharonov-Bohm effect, in which the wavefunction of a charged particle picks
up a phase upon being transported around a solenoid. In the case of a gauge theory with
a discrete gauge group, a field Φ picks up a monodromy Φ → g · Φ upon being transported
around the vortex.

Formally, a vortex is a codimension-2 sublocus L of a three-manifold M which carries
charge [g], where [g] is some conjugacy class of elements of the discrete gauge group Ω.25 We

24In fact, given any TQFT Z, not just gauge theories, one can construct a ‘symmetric product’ theory
by formally averaging Z over covering spaces, see [186]. Such TQFTs are useful, for example, in computing
generalizations of Hurwitz numbers, see also [187].

25We assign a charge to V in terms of conjugacy classes of Ω because otherwise the vortex V would not
be a gauge-invariant object. This is because gauge transformations would act on a charge g as hgh−1. This
generically changes the group element g, but leaves it in the conjugacy class. This is spelled out more
concretely in Section 4.4 in the context of orbifold twist fields. For abelian groups like those considered in
[160] this problem does not arise.
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can formally write a vortex operator V[g],L of charge [g] associated to a sublocus L by the
operator

V[g],L =
∑
σ∈[g]

Vσ,L , (4.119)

where we sum over permutations σ in the conjugacy class [g], which makes the operator gauge
invariant. In discrete gauge theories the vortex operator cannot typically be represented in
terms of fundamental fields of the theory. It’s action is implemented by imposing twisted
boundary conditions on the fields as they are transported around the vortex: transporting
the fields AI , BI around Vσ,L enforces the twisted boundary condition AI → Aσ(I) and
BI → Bσ(I).

We can combine vortex operators with the non-trivial sum over bundles to implement
twisted boundary conditions around multiple cycles. Suppose our bulk manifold is a torus
with boundary cycles a, b, and that a vortex operator imposes twisted boundary conditions
around the a cycle given by πa, while a non-trivial bundle imposes twisted boundary con-
ditions πb around the b cycle. There will only exist non-trivial gauge field configurations if
[πa, πb] = 0. That is, going around the same set of cycles in different orders gives the same
boundary conditions for the fields. The end result is that when summing over bundles and
vortices the only contributions come from combinations with consistent boundary conditions.
For a general bulk manifold M this condition is formalized as follows.

The partition function of a discrete gauge theory on M in the presence of a vortex L
of charge [g] is defined similarly to the partition function on M alone. Let ℓ ∈ π1(M \ L)
be a generator of the fundamental group of M \ L which winds once around L. Then the
path integral in the presence of the vortex is defined by summing over all homomorphisms
ϕ : π1(M \ L) → Ω (up to conjugation) such that ϕ(ℓ) lies in the conjugacy class [g].
Specifically,

ZΩ(M ;L, [g]) =
∑

ϕ:π1(M\L)→Ω
up to conjugation

ϕ(ℓ)∈[g]

1

|Aut(ϕ)|
. (4.120)

Again, we can specialize to the case where Ω is the permutation group SN . Conjugacy
classes of SN are labeled uniquely by cycle-types of permutations. Let us denote the charge
associated to L with [π] and let us assume that [π] is the conjugacy class of permutations
with cycle-type w1, . . . , wk, where

w1 + · · ·+ wk = N . (4.121)

Then a homomorphism ϕ : π1(M \ L) → SN with ϕ(ℓ) ∈ [π] defines a covering space of M
which is branched over L with branching structure given by the cycle type w1, . . . , wk. In
the language of Figure 4.9, this branched covering space M̃ → M is the N -fold cover such
that the gauge fields are single-valued. Thus,

ZSN
(M ;L, [π]) =

∑
M̃→M

branched over L

1

|Aut(M̃ →M)|
, (4.122)
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where the branching over L has branching structure w1, . . . , wk.
Just as in the case without vortices, we can also enrich the above partition function by

considering a topological gauge theory with group G ≀ SN , where G is any Lie group. The
partition function then becomes a sum over G partition functions on branched covers of M
over L, i.e.

ZG≀SN
(M ;L, [π]) =

∑
M̃→M

branched over L

ZG(M̃)

|Aut(M̃ →M)|
. (4.123)

Note that this is essentially the three-dimensional generalization of the covering space con-
struction for calculating correlation functions of twist fields in two-dimensional CFTs [158,
175].

The upshot of the above construction is that the introduction of a vortex into a topological
G ≀ SN gauge theory amounts to computing partition functions on the branched cover M̃ of
M over the branching locus L. This is completely analogous to the case in 2D orbifold CFTs,
where correlation functions of twist fields are computed by passing to the branched cover,
branched at the points where the twist fields are inserted [175]. In fact, as we will see, this
analogy is made precise in the holographic setting, and we will find that vortices in G ≀ SN

gauge theory which intersect the boundary ∂M are dual to twist fields in the symmetric
orbifold CFT. We delay this discussion to Section 4.4.

Below we will perform some calculations of the bulk U(1)D × U(1)D ≀ SN Chern-Simons
theory. We will start by taking the simple case of a torus boundary and N = 2, where we
can be quite explicit. We then move on to the case of a torus boundary but for generic
N . Finally, we will make comments about the calculation of bulk partition functions on
3-manifolds with higher-genus boundaries.

Example: N = 2

Let us now turn to calculating the G≀SN Chern-Simons partition functions on bulk manifolds
where G = U(1)D × U(1)D. For now, let us work with the simple case N = 2. We fix an
asymptotic boundary Σ which is a torus of modular parameter τ . As discussed above, we
can reduce the problem of calculating U(1)D × U(1)D ≀ S2 partition functions to the task of

computing U(1)D × U(1)D partition functions on degree 2 covering spaces M̃ of M .
Let us start by letting M be a handlebody, i.e. a solid torus. Then π1(M) ∼= Z, and

there are precisely two covering spaces for a given M : the covering space which is simply
two disconnected copies of M , and the handlebody whose asymptotic boundary is a torus of
modular parameter 2τ . We know that the Chern-Simons partition function on a handlebody
with contractible spatial cycle and modular parameter τ is simply

ZG(M) =
1

|η(τ)|2D
, (4.124)
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and so we have

ZG≀S2(M) =
1

2

1

|η(τ)|4D
+

1

2

1

|η(2τ)|2D
, (4.125)

where the factors of two come from the automorphism factors of the covering spaces.
Now, we can also introduce a nontrivial vortex. Let L run along the non-contractible

cycle of M . The only nontrivial conjugacy class of S2 is [(1 2)], and there are precisely two
covering spaces of M branched over L with that structure: a handlebody with modular
parameter τ/2 and a handlebody with modular parameter (τ +1)/2. Thus, the the partition
function of the G ≀ S2 Chern-Simons theory on M with vortex L is given by

ZG≀S2(M ;L) =
1

2

1∣∣η( τ
2
)
∣∣2D +

1

2

1∣∣η( τ+1
2
)
∣∣2D . (4.126)

In a theory of quantum gravity it is natural to sum over bulk manifolds with fixed
asymptotic boundary, which in the case of the handlebodyM is given by a sum over modular
images of the boundary torus. The natural partition function after coupling G ≀ S2 Chern-
Simons theory to topological gravity is then given by

ZBulk =
1

2

∑
γ∈Γ∞\SL(2,Z)

 1

|η(γ · τ)|4D︸ ︷︷ ︸
disconnected

+
1

|η(2 γ · τ)|2D
+

1∣∣η(γ·τ
2
)
∣∣2D +

1∣∣η(γ·τ+1
2

)
∣∣2D︸ ︷︷ ︸

vortex

 . (4.127)

In the above we have identified the term associated with a disconnected covering space of the
torus, as well as the contributions arising from including the vortex. The last three terms
represent covering spaces M̃ which are connected, the last two of which are branched over
the vortex L. All of the covering spaces, both with and without vortex, are shown in Figure
4.10.

Comparing to the symmetric orbifold

We would like to compare the above bulk calculation to the Narain-averaged symmetric
orbifold result, which we recall takes the form

⟨ZTD≀S2
(m, τ)⟩ = 1

2

∑
γ∈Γ∞\SL(2,Z)

(
1

|η(γ · (2τ))|2D
+

1∣∣η(γ · ( τ
2
))
∣∣2D +

1∣∣η(γ · ( τ+1
2
))
∣∣2D
)

+
1

2
⟨ZTD(τ,m)2⟩ , (4.128)

where the second line is the disconnected part of the partition function. Comparing the
connected parts of (4.127) and (4.128), we see that the modular parameters in the sum do
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τ

L

τ

τ τ 2τ τ/2 (τ + 1)/2

Figure 4.10: The four double covering spaces of a solid torus M without a vortex (on the
left) and with a vortex (on the right). The connected covering spaces are also solid tori with
modified modular parameters, while the disconnected covering space is simply M ⊔M .

not quite match. However, it is an algebraic fact that these two sums actually coincide, i.e.

∑
γ∈Γ∞\SL(2,Z)

(
1

|η(2 γ · τ)|2D
+

1∣∣η(γ·τ
2
)
∣∣2D +

1∣∣η(γ·τ+1
2

)
∣∣2D
)

=
∑

γ∈Γ∞\SL(2,Z)

(
1

|η(γ · (2τ))|2D
+

1∣∣η(γ · ( τ
2
))
∣∣2D +

1∣∣η(γ · ( τ+1
2
))
∣∣2D
)
,

(4.129)

see, for example, Theorem 6.9 and 6.10 of [190]. Thus, the connected part of the U(1)D ×
U(1)D≀S2 Chern-Simons theory coupled to 3D gravity precisely reproduces the Narain average
of the connected part of the symmetric orbifold theory TD ≀ S2.

The disconnected part

Now that we have shown that the connected parts of the Narain-averaged symmetric orbifold
and topological gravity partition functions agree, let us move on to the disconnected part.
The disconnected part of the symmetric orbifold partition function is given by〈

ZTD≀S2, dis.(τ)
〉
=

1

2

〈
ZTD(m, τ)2

〉
=

1

2|η(τ)|4D Im(τ)D

∑
Γ0

(det ImΩΓ0)
D/2 , (4.130)
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τ

Figure 4.11: A vortex configuration for U(1)D × U(1)D ≀ S2 Chern-Simons theory on a solid
torus. The double-cover of this geometry is topologically Σ× I.

where

Ω =

(
τ 0
0 τ

)
(4.131)

is the period matrix of the double cover Σ⊔Σ of the boundary torus Σ, and the sum is over
Lagrangian sublattices of H1(Σ ⊔ Σ,Z) (see Section 4.1). Intuitively, the sum is over bulk

manifolds M̃ with boundary Σ⊔Σ such that the sublattice Γ0 is contractible in M̃ . On the
other hand, the disconnected piece of the bulk G ≀ S2 partition function (4.127) is

ZBulk,dis. =
1

2

∑
γ∈Γ∞\SL(2,Z)

1

|η(γ · τ)|4D
=

1

2|η(τ)|4D Im(τ)D

∑
γ∈Γ∞\SL(2,Z)

Im(γ · τ)D , (4.132)

where we have used the fact that |η(τ)|4 Im(τ) is modular invariant.
Clearly, (4.130) and (4.132) are not equal. However, the sum in (4.130) actually contains

the full sum (4.132). Let A(1) and A(2) be the A-cycles of the two boundaries, while B(1)

and B(2) are their B-cycles. Then the Lagrangian sublattices of the form

Γ0 = SpanZ
(
γ(A(1)), γ(A(2))

)
, (4.133)

where γ ∈ Γ∞\SL(2,Z) is a modular transformation which acts on the homology cycles of
Σ in the usual way, contribute

(det ImΩΓ0)
D/2 = Im(γ · τ)D , (4.134)

and thus reproduce the elements in the sum (4.132). This makes sense, given that sublattices

(4.133) correspond to manifolds M̃ which are the disjoint union M ⊔M of two handlebodies
of modular parameter γ · τ , which are precisely the covering spaces that appeared in the
disconnected part of the Chern-Simons partition function. Thus, although (4.130) is not
precisely reproduced by (4.132), we have the inclusion〈

ZTD≀S2, dis.(τ)
〉
⊃ ZBulk, dis. , (4.135)

where by ⊃ we mean that the sum on the left-hand-side contains all elements of the sum on
the right-hand-side.
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Figure 4.12: The three-manifold M̃ = Σ×I has an orientation-preserving involution given by
rotating the geometry around it’s center axis by angle π. The fixed points of this involution
are the two circles shown in red, which run through the bulk. The quotient M̃/Z2 (light
blue) is a solid torus with two vortices running through the non-contractible cycle.

So what about the other geometries contributing to (4.130) which aren’t reproduced by
the Chern-Simons calculation? It turns out that at least the T 2×I wormhole can be recovered
from the Chern-Simons theory if we include more complicated vortex configurations.26 For
example, (4.130) contains the Lagrangian sublattice

Γ0 = SpanZ
(
A(1) +A(2),B(1) − B(2)

)
, (4.136)

which geometrically corresponds to a bulk manifold M̃ ∼= Σ× I. This manifold can actually
be included in the Chern-Simons calculation if we include a two vortex configuration as shown
in Figure 4.11. The two vortices in the figure individually act on the fields by the swap [(1 2)].
The branched covering space of this vortex configuration has two boundaries, since one does
not pick up a monodromy upon being transported along a cycle at the boundary, and it is
not difficult to see that the topology of the covering space is indeed Σ× I (see Figure 4.12).
One can also come up with stranger covering spaces which are not topologically Σ × I by,
for example, applying Dehn twists to the vortex in Figure 4.11.

So now the natural question is: are there contributions to (4.130) which cannot be recov-
ered by a sufficiently complicated vortex configuration on the bulk Chern-Simons theory?
As we will show, the answer is actually yes. Both the averaged symmetric orbifold and the
Chern-Simons theory are summing over geometries in two different ways. The symmetric
orbifold theory is summing over covering spaces Σ̃ of the boundary manifold Σ, and then
summing over fillings (Lagrangian sublattices) of M̃ . The Chern-Simons theory is summing

fillings (Lagrangian sublattices) of M and (branched) covering spaces M̃ of M . Every con-

tribution to the Chern-Simons theory, so long as M̃ is specified by a Lagrangian sublattice
of its boundary, computes a contribution to the symmetric orbifold partition function, since
Σ̃ := ∂M̃ is always a covering space of Σ. However, given a covering space Σ̃ of Σ and a

26Strictly speaking, the Chern-Simons calculation on the T 2 × I wormhole has not yet been carried out
and matched to the expected boundary answer.
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bulk three-manifold M̃ specified by a Lagrangian sublattice of Σ̃, it is not always true that
M̃ is a covering space (branched or otherwise) of a three-manifold M with boundary Σ. Put
pictorially, the diagram

Σ̃ M̃

Σ

ĩ

Γ
(4.137)

does not always have a completion of the form

Σ̃ M̃

Σ M

ĩ

Γ Γ

i

(4.138)

where Γ : M̃ →M is a (branched) covering map.

In order for M̃ to be a covering space of a three-manifold M whose boundary is Σ,
we need the Lagrangian sublattice Γ0 to be ‘compatible’ with the covering space structure
of Σ̃. The covering space Γ : Σ̃ → Σ comes equipped with a group of automorphisms
(deck transformations), which are self-homeomorphisms ϕ of Σ̃ such that Γ(ϕ(p)) = ϕ(p)

for all p ∈ Σ̃. This group Aut(Σ̃ → Σ) can be thought of as the set of symmetries of the

covering space Σ̃. Now, we specify a bulk manifold M̃ by picking a Lagrangian sublattice
Γ0 ⊂ H1(Σ̃,Z), and it is clear that M̃ can only inherit the symmetries of Σ̃ if the group

Aut(Σ̃ → Σ) leaves the Lagrangian sublattice Γ0 invariant.27

A natural condition for M̃ →M to be a covering space respecting the structure of Σ̃ → Σ
is for the Lagrangian sublattice Γ0 to be invariant under the action of the deck transforma-
tions Aut(Σ̃ → Σ).28 We emphasize, however, that this is not a sufficient condition, and that

there could be Lagrangian sublattices Γ0 which are invariant under the group Aut(Σ̃ → Σ),

but for which the desired covering space M̃ →M does not exist.
Let us now return to the S2 symmetric orbifold example. The sum in equation (4.130)

is over all Lagrangian sublattices Γ0 of H1(Σ ⊔ Σ,Z). The group of deck transformations of
the covering map Σ⊔Σ → Σ is simply Z2, generated by swapping the two copies of the tori.

27An element ϕ ∈ Aut(Σ̃ → Σ) has a natural action ϕ∗ : H1(Σ̃,Z) → H1(Σ̃,Z) given by simply pushing-
forward one-cycles with ϕ.

28In the case that Σ̃ is a regular covering of Σ and M̃ → M is not branched, this is straightfoward. A
regular covering Σ̃ → Σ has precisely the structure of a principal G = Aut(Σ̃ → Σ) bundle. The diagram

4.138 requires that M̃ → M is also a principal G bundle, i.e. the deck transformations of M̃ should be
those of Σ̃. Put another way, if M̃ does not admit an action of the deck transformations G, then there is
an obstruction for a base space M to exist. We suspect that a similar logic exists if Σ̃ is not regular and
M̃ →M is branched. We thank Ivano Basile for pointing this out to us.
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A(1)

EBTZTAdS

B(2)

Figure 4.13: The geometry corresponding to the choice of Lagrangian sublattice (4.140) is
a disjoint union of thermal AdS3 and the BTZ black hole. Such a geometry does not have
an interpretation when we have a single bulk manifold M , but it can be included in the
gravitational path integral if we allow different gauge fields AI to live on independent bulk
manifolds MI with the “same” asymptotic boundary.

In terms of the homology, this acts as:

ϕ∗(A(1)) = A(2) , ϕ∗(B(1)) = B(2) . (4.139)

According to the discussion above, only Lagrangian sublattices which are left invariant under
the action of ϕ∗ have a chance of being computed by a Chern-Simons calculation on a bulk
manifold M . As an example of a Lagrangian sublattice which does not work, take

Γ0 = SpanZ
(
A(1),B(2)

)
. (4.140)

This sublattice corresponds to a three-manifold which is a disjoint union of thermal AdS3

and the Euclidean BTZ black hole. Of course, there is no three-manifold with single torus
boundary whose 2-fold cover is a disjoint union of thermal AdS3 and Euclidean BTZ, and so
this Lagrangian sublattice has no chance of being reproduced by a Chern-Simons calculation.
Indeed, Γ0 is not invariant under the deck transformation ϕ∗, as

ϕ∗(Γ0) = SpanZ
(
A(2),B(1)

)
̸= Γ0 . (4.141)

As another example, we can take the sublattice

Γ0 = SpanZ
(
A(1) + γ(A(2)),B(1) − γ(B(2))

)
, (4.142)

for some modular transformation γ. This sublattice corresponds to a wormhole with topology
Σ×I for which one boundary has modular parameter τ and the other has modular parameter
γ(τ). The deck transformation ϕ∗ only leaves Γ0 invariant if the modular parameter is trivial,
i.e. γ = id, for which we simply recover the double-vortex configuration in Figure 4.11.

While the average of the disconnected component of the symmetric orbifold partition
function contains bulk geometries which do not inherit the Z2 automorphism present in the
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2D theory, we note that such bulk geometries come in pairs. For example, the two Lagrangian
sublattices

Γ
(1)
0 = SpanZ

(
γ(A(1)), ρ(A(2))

)
, Γ

(2)
0 = SpanZ

(
ρ(A(1)), γ(A(2))

)
(4.143)

transform into one another under the Z2 automorphism swapping the two boundary tori.
More generally, geometries contributing to (4.130) either transform as singlets under the Z2

automorphism, or as doublets. Sublattices Γ0 which transform as singlets correspond to bulk
geometries M which inherit the boundary automorphism, and thus can be realized as the
double cover of a manifold M/Z2, which we think of as a bulk geometry with bulk vortices.

It is tempting to also think of pairs (Γ
(1)
0 ,Γ

(2)
0 ) of sublattices which transform as Z2

doublets as also corresponding, in some abstract sense, to the ‘double cover’ of a generalized
bulk geometry (or ‘microgeometry’, borrowing the terminology of [65]). Such a generalized
notion of a bulk geometry is not entirely far-fetched, and has been considered before in the
context of pure 3D gravity (see the discussion in Section 4.2 of [174], and also Section 3.1
of [191]). In that case, holomorphic factorization of the CFT dual to pure gravity required
the introduction of geometries for which the left- and right-moving boundary gravitons lived
on separate bulk geometries with the same boundary. Analogously, it is possible that the
theory of quantum gravity dual to the Narain-averaged symmetric orbifold includes, in its
sum over ‘geometries’, contributions for which separate copies of the Chern-Simons gauge
fields probe different classical bulks with the same boundary.

General N

Now that we have seen the details of how the Narain-averaged symmetric orbifold and
U(1)D ×U(1)D ≀ SN Chern-Simons theory are related for N = 2, let us turn our attention to
generic N . We find it convenient to work in the grand canonical ensemble. We define the
grand canonical partition function of the symmetric orbifold to be

Z(τ, p) =
∞∑

N=0

pNZTD≀SN
(τ) , (4.144)

which, as we have seen, admits a nice expression in terms of Hecke operators

Z(τ, p) = exp

(
∞∑
n=1

pnTnZTD(τ)

)
. (4.145)

We can also define the grand canonical ensemble of the bulk Chern-Simons theory by spec-
ifying a solid torus M with boundary modular parameter τ , as well as a vortex locus L,
which we keep implicit, which runs along the non-contractible cycle of M

ZCS(M, p) =
∞∑

N=0

pNZG≀SN
(M). (4.146)
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As in the case of N = 2, we propose that the correct thing to do is to include the vortex
L in the definition of the bulk partition function and to allow it to take any charge. That
is, the U(1)D × U(1)D ≀ SN partition function is computed by summing over all degree
N covering spaces of M branched along L with any allowed branching structure. Since
π1(M\L) ∼= π1(∂M) (i.e. M\L retracts onto ∂M) the covering spaces of M branched over
L are in one-to-one correspondence with the (unbranched) covering spaces of the boundary
torus. This means the combinatorial counting of bulk and boundary covering spaces matches.
The grand canonical partition function includes both connected and disconnected covering
spaces, and through standard combinatorial arguments it is given by the exponential of the
connected covering spaces

ZCS(M, p) = exp

(
∞∑
n=1

pnTnZG (τ)

)
. (4.147)

Indeed, the connected covering spaces are simply handlebodies whose boundaries are N -fold
covering spaces of the boundary torus ofM . From the above we can extract a formula for the
partition function of the G≀SN Chern-Simons theory with a vortex along the non-contractible
cycle by keeping all terms with a power of pN which is

ZG≀SN
(M) =

∑
parititons of N

N∏
k=1

1

Nk!
(TkZG(τ))

Nk , (4.148)

where the partitions of N are
∑N

k=1 kNk = N . This can be compared to the boundary
partition function given in equation (4.60). The connected part of the partition function is
given by

ZG≀SN ,conn.(M) = TNZG(τ) . (4.149)

Which can also be obtained by recalling that the Hecke operator TN sums over all connected
covering spaces of the original torus. To obtain the bulk partition function we additionally
need to sum over all bulk handlebodies M , which is implemented by the sum over modular
images.

We claim that the averaged free energy of the grand canonical symmetric orbifold exactly
equals the free energy of the grand canonical Chern-Simons theory, summed over all solid
tori M , i.e. ∫

MD

dµ logZ(τ, p) =
∑
M

logZCS(M, p) . (4.150)

This is equivalent to stating that the connected covering space contribution to the symmetric
orbifold is exactly reproduced by the bulk Chern-Simons theory. To check this claim, note
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that the averaged symmetric orbifold free energy takes the form∫
MD

dµ logZ(τ, p) =
∞∑
n=1

pn ⟨TnZ(τ)⟩

=
∞∑
n=1

pn

n

∑
γ∈Γ∞\SL(2,Z)

∑
γ′∈SL(2,Z)\Mn

1

|η(γ · γ′ · τ)|2D
,

(4.151)

where Mn is the set of all 2 × 2 integer matrices and we have used the definition (4.62) of
the nth Hecke operator. Now, the sum over geometries in the Chern-Simons free energy is
implemented by a sum over modular images of the boundary torus. We have∑

M

logZCS(M, p) =
∑

γ∈Γ∞\SL(2,Z)

∞∑
n=1

pnTnZG(γ · τ)

=
∞∑
n=1

pn

n

∑
γ∈Γ∞\SL(2,Z)

∑
γ′∈SL(2,Z)\Mn

1

|η(γ′ · γ · τ)|2D
,

(4.152)

where we have again used the definition of the Hecke operator Tn. Equations (4.151) and
(4.152) appear to yield different results, since the summand of one includes the modular
parameter γ · γ′ · τ , while the other includes γ′ · γ · τ . However, it turns out29 (see Theorem
6.9 and 6.10 of [190]) that the sums (4.151) and (4.152) are composed of all the same terms,
simply shuffled around. That is,∑

γ∈Γ∞\SL(2,Z)

∑
γ′∈SL(2,Z)\Mn

1

|η(γ · γ′ · τ)|2D
=

∑
γ∈Γ∞\SL(2,Z)

∑
γ′∈SL(2,Z)\Mn

1

|η(γ′ · γ · τ)|2D
. (4.153)

This proves the claim of (4.150).
Since the free energy of the grand canonical partition function (either in the case of the

symmetric orbifold or of Chern-Simons) computes the connected contribution, we have the
following result:

The ensemble average of the connected part of the TD ≀SN orbifold torus partition
function is equal to the connected part of the U(1)D ×U(1)D ≀ SN Chern-Simons
partition function, summed over all handlebodies bounded by the CFT torus for
all N . 〈

ZTD≀SN , conn.(τ)
〉
= ZBulk, conn.. (4.154)

As we have seen in the N = 2 example, however, the disconnected parts of the two theories
cannot so easily be matched.

29It turns out that given γ1, γ
′
1 there exists a γ2, γ

′
2 with γi ∈ Γ∞\SL(2,Z) and γ′i ∈ Mn\SL(2,Z) such

that γ1 · γ′1 = γ′2 · γ2. This decomposition is unique, and summing over all possible γ1, γ
′
1 is equivalent to

summing over all possible γ2, γ
′
2 [190]. Hence, the two sums are equivalent.
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Disconnected Part

We now briefly comment on what portion of the disconnected partition function the Chern-
Simons calculation reproduces. We restrict to a torus handlebody M with a single vortex
operator running along the non-contractible cycle L. As explained earlier, since π1(M\L) ∼=
π1(∂M) the branched covering spaces of M exactly match the covering spaces of the bound-
ary torus. The disconnected part of the bulk Chern-Simons partition function is given by
discarding the connected covering spaces from the full answer in equation (4.148) and sum-
ming over modular images

ZBulk, dis. =
∑

γ∈Γ∞\SL(2,Z)

∑
parititons of N

N−1∏
k=1

1

Nk!
(TkZG(γ · τ))Nk , (4.155)

where now we sum over disconnected partitions of N by imposing
∑N−1

k=1 kNk = N . Similarly,
the contribution of disconnected covering spaces to the boundary ensemble average is given
by (4.60) 〈

ZTD≀SN , dis.(τ)
〉
=

∑
parititons of N

〈
N−1∏
k=1

1

Nk!
(TkZ(τ))

Nk

〉
, (4.156)

where we must use the disconnected Siegel-Weil formula (4.20) to evaluate the average. One
of the contributions to the above average will be given by filling in the “same cycle”, specified
by a modular parameter γ, on each disconnected covering torus in (4.156). More precisely,
these are the configurations where the preimage of the cycles on the covering tori map to
the same cycle on the base torus.

This precisely matches the bulk computation in (4.155) after using Theorem 6.9 of [190]
to commute the sum over modular images with the Hecke operator sum. However, the other
terms appearing in the boundary average will not be reproduced by the bulk computation.
We therefore have that the bulk Chern-Simons computation is strictly contained within the
boundary average 〈

ZTD≀SN , dis.(τ)
〉
⊃ ZBulk, dis.. (4.157)

Higher-genus boundaries

Let us now make a few comments about the case of geometries whose boundaries have genus
g ≥ 2. We only comment on the connected components.

In the symmetric orbifold theory on a surface Σg of genus g, the connected component
of the partition function can be expressed as

ZTD≀SN ,conn.(m,Σg) =
1

N

∑
Σ̃→Σg

ZTD(m, Σ̃) , (4.158)

where the sum is over all connected unramified covering surfaces Σ̃ → Σg of degree N . As
in the case of the torus, these covering spaces are constructed by summing over all twisted
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L

∂M = Σg

Figure 4.14: A handlebody M is a singular foliation of its boundary Σg. The leaves of
the foliation become singular at the ‘center’ L of M , which roughly resembles Σg with the
contractible cycles collapsed to points. In the Chern-Simons theory dual to the Narain-
averaged symmetric orbifold, we treat L as the locus of permutation gauge vortices.

boundary conditions around the cycles of Σg, with the requirement that around contractible
cycles the resulting boundary conditions are trivial. As noted above, such surfaces have
constrained topology, and specifically have genus

g′ = N(g − 1) + 1 , (4.159)

We argued in Section 4.2 that the average of this connected component over the Narain
moduli space is given as a sum of the U(1)D × U(1)D Chern-Simons partition function on

handlebodies whose boundaries are the covering surfaces Σ̃g′ :〈
ZTD≀SN ,conn.(m,Σg)

〉
=

1

N

∑
Σ̃g′→Σg

∑
∂M̃=Σ̃

ZG(M̃) . (4.160)

We can now try to interpret the above sum in terms of Chern-Simons theory. Let M be
a handlebody bounded by Σg. Next, let L be the codimension 2 locus shown in Figure 4.14.
The fundamental group π1(M\L) is isomorphic to the fundamental group of the boundary
of M , i.e.

π1(M \ L) ∼= π1(Σg) . (4.161)

Since covering spaces are classified by choices of consistent twisted boundary conditions
around different cycles, that is homomorphisms ϕ : π1(Σg) → SN , we have that covering
spaces of M branched over L have the same structure as covering spaces of Σg.

30 Further-

more, the covering spaces M̃ will also be handlebodies. There is one subtlety regarding the
singular locus L. Earlier we demanded that vortex operators were defined along a dimen-
sion one submanifold of M , but L is not a manifold so it is not obvious in what sense a
vortex operator can be associated to L. However, it remains perfectly consistent to impose

30The isomorphism π1(M \L) ∼= π1(Σg) is due to the fact that a handlebody can be foliated by copies of
its boundary, up to a singular locus given by L. That is, M \ L is homeomorphic to Σg × [0, 1), see [172].
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A1 A2 A3

B1 B2 B3

Figure 4.15: A genus 3 surface which double covers a genus 2 surface. The deck trans-
formation acts as a product of two reflections (shown), and maps the homology cycles as
A1,B1 → A3,B3 and fixes A2,B2.

twisted boundary conditions on the bulk Chern-Simons fields as they travel around L. Since
π1(Σg) ∼= π1(M\L) a choice of twisted boundary conditions on Σg descends to a consistent
set of monodromies for the gauge fields as they travel around different cycles of L, and we
define our bulk theory by demanding such monodromies.

Coupling our Chern-Simons theory to topological gravity results in summing over all
handlebodies M with boundary Σg. Summarizing, we have the bulk contribution∑

∂M=Σg

ZCS,conn.(M) =
1

N

∑
∂M=Σg

∑
M̃→M

branched over L

ZG(M̃) . (4.162)

This formula, however, will not reproduce the full symmetric orbifold answer (4.160), even
at the level of the connected parts. Algebraically, this is rather straightfoward to see: the
sum over handlebodies M̃ in (4.160) amounts to summing over Lagrangian sublattices of

H1(Σ̃,Z), which can be repackaged into a sum over the quotient space Pg′\Sp(2g′,Z), where
Pg′ is the parabolic subgroup of Sp(2g′,Z). On the other hand, the sum over handlebodies
in (4.162) is over Lagrangian sublattices of H1(Σg,Z), which in turn is a sum over images of
a fixed sublattice under the action of Pg\Sp(2g,Z). Since g′ > g when g ≥ 2 (and N ≥ 2),
these sums can’t possibly be equal. On the other hand, when g = 1 (i.e. for the torus
partition function), we always have g′ = g, and the sums contain all of the same terms.

The more geometrical reason for the fact that not all geometries appearing in the average
of the symmetric orbifold partition function can be recovered from the Chern-Simons theory
was already discussed in Section 4.3. We can think of the symmetric orbifold calculation
as finding a (connected) branched covering space Σ̃ → Σg, and then choosing a Lagrangian

sublattice Γ0 of H1(Σ̃,Z), which in turn defines a handlebody M̃ . However, if Γ0 does not

fill in the cycles of Σ̃ in a symmetric way (i.e. such that Γ0 is invariant under the deck

transformations Aut(Σ̃ → Σg)), then M̃ will not be the branched cover of some 3-manifold
M whose boundary is Σg. As a simple example, let us take g = 2 and take the two-fold
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covering space shown in Figure 4.15. The covering surface has genus g′ = 2g − 1 = 3, and
its homology cycles are labeled by Ai,Bi for i = 1, . . . , 3 (also shown in Figure 4.15). The

deck transformation group is Aut(Σ̃ → Σ2) ∼= Z2, and simply consists of the operation of
swapping the two sheets of the cover. On the homology elements, the nontrivial element
ϕ ∈ Aut(Σ̃ → Σ2) acts as

ϕ∗(A1) = A3 , ϕ∗(A2) = A2 , ϕ∗(B1) = B3 , ϕ∗(B2) = B2 . (4.163)

Any Lagrangian sublattice Γ0 which is not invariant under this group of deck transformations
has no hope of describing a bulk manifold M̃ which is a covering space of a manifoldM with
boundary ∂M = Σ2. For example, the sublattice

Γ0 = SpanZ (A1,A2,B3) (4.164)

is Lagrangian but is clearly not invariant under the deck transformations of Σ̃.
In the case of the torus, this simply doesn’t happen for connected covering spaces. This

is because the set of deck transformations of a connected covering space acts trivially on
homology, i.e. all Lagrangian sublattices of the covering space are invariant under deck
transformations. This explains, at least qualitatively, why we were able to get a match
between the connected parts of the symmetric orbifold calculation and the bulk Chern-
Simons theory in the case of a genus one boundary.

Non-handlebody contributions

Among the gravitational contributions considered so far, all have arisen either from handle-
bodies with genus-g boundaries, potentially with vortices in the bulk. We now show that
for surfaces of genus g ≥ 2, the Narain-averaged partition function of TD ≀ SN will also in-
clude smooth bulk geometries which are not handlebodies. We work again with N = 2 for
simplicity.

Consider a surface Σg of genus g, and consider the TD ≀S2 partition function. It will take
the form

ZTD≀S2
(m,Σg) =

1

2
ZTD(m,Σg)ZTD(m,Σg) + · · · , (4.165)

where we are concentrating only on the contribution from the double cover Σg ⊔ Σg → Σg

(of course, there will be other contributions, but we will not need them for our purposes).
Upon averaging over the Narain moduli space, we have〈

ZTD≀S2
(m,Σg)

〉
=

1

2
⟨ZTD(m,Σg)ZTD(m,Σg)⟩+ · · · . (4.166)

As we know, the average of Z(Σg)Z(Σg) is computed by summing over all Lagrangian sub-
lattices Γ ⊂ H1(Σg ⊔ Σg,Z), weighted by an appropriate one-loop determinant. A special
class of sublattices Γ are constructed by picking a basis (Ai,Bi) for the homology group of
Σg, and letting

Γ = SpanZ

(
A(1)

i +A(2)
i ,B(1)

i − B(2)
i

)
, (4.167)
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where the (1) and (2) superscripts differentiate between the two copies of Σg. This is the

Lagrangian sublattice associated to a manifold which is topologically of the form M̃ ∼= Σg×I.
For g ≥ 2, such manifolds are hyperbolic with metric

ds2 = dρ2 + cosh2 ρ ds2Σg
, (4.168)

where the coordinate ρ ∈ R is the coordinate along the interval. Furthermore, for special
choices of complex structure on Σg the boundary admits a fixed point free Z2 involution
which reverses the orientation of Σg. Combining this boundary involution with the bulk
reversal ρ→ −ρ we obtain a bulk involution ι [191, 192]. This involution acts without fixed
points, and we can consider the quotient manifold

M := M̃/ι . (4.169)

As noted in [191, 192], this geometry is smooth and hyperbolic with boundary Σg, but is
not a handlebody. Specifically, it has the following properties. Given the inclusion map
i : Σg ↪→ M, the induced map i∗ : π1(Σg) ↪→ π1(M):

• is injective. This means that the non-contractible cycles of Σg do not become con-
tractible when viewed as cycles of M.

• is not surjective. This means that there are non-contractible cycles of M which are
not visible from the boundary Σg.

The first property means that M is not associated to any Lagrangian sublattice Γ0 ⊂
H1(Σg,Z). The second property means that there are generators of the fundamental group
which do not exist on the boundary. This is why M is able to be both smooth and have a
connected double cover M̃ which has a disconnected boundary.

By the standard U(1)-gravity dictionary, we should be able to associate the contribution
of the sublattice (4.167) in the averaged partition function (4.166) to the path integral of

U(1)D×U(1)D Chern-Simons theory on the wormhole geometry M̃ . This, in turn, should be
reproduced by the U(1)D×U(1)D ≀S2 partition function on M with a nontrivial monodromy
around the ‘internal’ generator(s) of π1(M) (i.e. the generator(s) of π1(M) which are not
inherited from π1(Σg)).

We emphasize that the gravitational instanton associated to (4.167) appears to be a
smooth bulk manifoldM with a connected boundary, but which is not a handlebody. This is
worth emphasizing, since U(1) gravity with a connected boundary (i.e. the bulk dual of the
non-orbifolded Narain ensemble) includes only handlebodies in its sum over geometries.31 It
would be thus be interesting to explore further in what sense the ensemble average of TD ≀SN

CFTs includes more generic gravitational instantons which are not visible in U(1) gravity,
but which are generally expected to be included in a more general theory of three-dimensional
quantum gravity (for example, semiclassical gravity).

31Strictly speaking, U(1) gravity only classifies bulk geometries by their associated Lagrangian sublattice,
which for connected boundaries are in one-to-one correspondence with handlebodies.
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σπ(x)

Vπ

Figure 4.16: A twist field σπ(x) is holographically dual to a vortex Vπ in the bulk which ends
at the point x.

4.4 Averaging correlation functions

In the previous sections, we have considered the ensemble average of partition functions
of permutation orbifolds TD ≀ Ω (mostly for Ω = SN) and showed that a large family of
contributions can be recovered from a Chern-Simons theory with gauge group U(1)D ×
U(1)D ≀Ω coupled to topological gravity. In this section, we consider correlation functions of
permutation orbifolds and explore their bulk interpretations.

Before jumping into calculations, let us briefly summarize the main idea. In Section 4.3,
we found that the averaged partition function of the symmetric orbifold CFT is partially
reproduced by a sum over bulk geometries which include nontrivial vortices. Roughly, these
vortices are holographically dual to the twisted-sector states of the orbifold theory on the
boundary, see Figure 4.16. Now, let us consider a correlation function of twist fields32

⟨σπ1(x1) · · ·σπn(xn)⟩ ,

where πi ∈ SN are permutations specifying the monodromy of fundamental fields around
the point xi. Just as in the case of the partition function of the symmetric orbifold, such
correlators are determined by passing to a covering space Σ → CP1 which is branched over
the points x1, . . . , xn, such that the branching structure is induced by the monodromies
π1, . . . , πn. Upon averaging, one is then instructed to sum over bulk geometries M̃ filling in
Σ, specified by a choice of Lagrangian sublattice of H1(Σ,Z).

Holographically, one would expect this correlator to be dual to a bulk computation in-
volving vortices Vπi

ending at the points xi on the boundary. Such vortices will need to
end somewhere in the bulk, and in principle one should sum over all bulk configurations
of the vortices. In terms of the bulk G ≀ SN Chern-Simons theory, the calculation of the
path integral in the presence of a nontrivial vortex configuration corresponds to passing to
the branched covering of H3 over the locus of the vortices, with the branching structure

32The exact definition of twist fields is discussed in detail below.
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x1x2

x3 x4

Figure 4.17: The bulk geometry dual to the four-point function of twist fields in the sym-
metric orbifold. In principle, the vortices can branch and tangle in complicated ways in the
bulk.

determined by the monodromy specified on the components of the branching locus. Given
that the vortices end on the boundary at the points x1, . . . , xn, a branched cover of H3 will
induce a branched cover of the boundary. However, the precise organization of the vortices
in the bulk can drastically effect the topology of the 3-dimensional branched covering. Thus,
each topological choice of configuration of vortices in the bulk will specify a 3-manifold M̃
which is a branched covering of H3, and whose boundary is a branched covering Σ of CP1

branched at x1, . . . , xn with monodromies π1, . . . , πn.
The above discussion suggests that it is possible to reproduce the Narain average of

symmetric orbifold correlators by summing over topologically distinct vortex configurations
in G ≀ SN Chern-Simons theory on H3. However, this is not always possible. For the same
reasons discussed in Section 4.3, while it is always true that a branched cover M̃ over H3

always has boundary Σ which is a branched cover of CP1, the converse is much more difficult
to satisfy. Given a branched cover Σ → CP1, it is not always the case that a given 3-manifold
M̃ with boundary Σ admits the structure of a branched cover of H3 (or any other 3-manifold
with boundary CP1 for that matter).

For the examples we explicitly consider in this section, however, this turns out to not be
an issue. Specifically, in this section we consider the symmetric orbifold TD ≀ S2, for which
there is a unique twist operator σ(1 2).

33 We consider the correlation functions of the form〈
σ(1 2)(x1) · · ·σ(1 2)(xn)

〉
. (4.170)

Just as in [160], we find that the Narain averages of these correlators are indeed reproduced
by a sum over bulk vortex configurations in U(1)D×U(1)D ≀S2 Chern-Simons theory, for which

33It is possible to consider TD ≀ SN theories with N > 2. We leave this to future work.
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the vortices are constrained to lie in rational tangles.34 As such, we are able to reproduce
the averaged symmetric orbifold correlation function via a bulk Chern-Simons calculation.35

Correlators in permutation orbifolds

Before considering the ensemble average of correlation functions, let us first review the
calculation of correlation functions in permutation orbifolds. For the rest of this section, we
only concern ourselves with correlators of fields on the sphere (CP1) for simplicity.

As an orbifold theory, a permutation orbifold X ≀ Ω contains non-local operators known as
twist-fields which implement a monodromy on the fundamental fields of the theory. Denoting
by Φ = (Φ(1), . . . ,Φ(N)) the collective fundamental fields of the tensor theory X⊗N , a twist
operator σπ associated to a permutation π ∈ Ω is defined by the monodromy relation

Φ(e2πiz + ζ)σπ(ζ) = (π ·Φ)(z + ζ)σπ(ζ) , (4.171)

where
π ·Φ = (Φ(π(1)), . . . ,Φ(π(N))) . (4.172)

On their own, twist fields σπ are not gauge-invariant.We can see this as follows. Consider
the monodromy of an element (ρ ·Φ) (z) around the twist field σπ(ζ). The twist field acts
on Φ(z):

(ρ ·Φ) (e2πiz+ζ)σπ(ζ) = (ρ · π ·Φ) (z+ζ)σπ(ζ) =
(
ρ · π · ρ−1 · (ρ ·Φ)

)
(z+ζ)σπ(ζ) . (4.173)

From this we can infer the action of the twist fields on the field (ρ ·Φ) (z), which lies on the
same gauge slice as Φ(z):

(ρ ·Φ) (e2πiz + ζ)σπ(ζ) = (ρ ·Φ) (e2πiz + ζ)σρπρ−1(ζ) . (4.174)

Where on the RHS the twist field acts on (ρ ·Φ) and on the LHS on Φ(z). Hence under an
overall permutation ρ ∈ Ω, twist fields transform as

σπ → σρπρ−1 . (4.175)

From a twist field σπ, we can construct a gauge-invariant twist field σ[π] by

σ[π] = N[π]

∑
ρ∈[π]

σρ , (4.176)

34Our analysis differs slightly from that of [160], in that they consider orbifolds of the form TD/Zn, which
are qualitatively different from symmetric orbifolds. As such, their bulk theory is of the form U(1)D ×
U(1)D ⋊ Zn.

35We emphasize that for N > 2, the analysis does not work out so cleanly, and not every term in
the averaged correlation functions will be reproducible by a bulk Chern-Simons calculation on a classical
background.
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where N[π] = 1/
√

|[π]| is a normalization factor so that σ[π] is canonically normalized.36

Note that σ[π] only depends on the conjugacy class of π in Ω. A generic correlator of gauge-
invariant twist fields thus takes the form〈

n∏
i=1

σ[πi](xi)

〉
=

n∏
i=1

(
N[πi]

) ∑
ρ1,...,ρn∈Ω

〈
n∏

i=1

σρiπiρ
−1
i
(xi)

〉
. (4.177)

That is, the correlators of gauge-invariant twist fields can be expressed purely in terms
of an appropriate sum over correlators of the ‘pure’ twist fields σπ. From now on, we
calculate only the correlators of pure twist fields σπ, keeping in mind that we should sum
over conjugacy classes to obtain a gauge-invariant result. Expression (4.177) will in general
have disconnected contributions, meaning contributions for which some terms of the right
hand side factorize. Here we focus on the connected part of the correlators. This can be done
by looking at correlators for which the group elements that appear in the twist fields generate
a transitive subgroup of the permutation group acting on the elements of {1, 2, ..., N} that
appear in the correlator (see e.g. [193]).

Given a set of twist fields σπi
, we can compute the (sphere) correlation function

⟨σπ1(x1) · · ·σπn(xn)⟩ (4.178)

in the following way [158, 159]. Within the path integral, the twist fields define twisted
boundary conditions of the fundamental field on the punctured sphere CP1 \ {x1, . . . , xn},
and so we can pass to a covering space Σ of CP1 which is ramified over the points xi such
that the fundamental fields are single-valued on Σ.37 The covering space Σ is related to
the base sphere via a holomorphic map Γ : Σ → CP1, and so we can exploit the conformal
symmetry to pull back the fields of the seed theory X to the covering space Σ, at the expense
of a conformal anomaly in the path integral measure when X has non-zero central charge.
The result is that the correlation function of twist fields is given by

⟨σπ1(x1) · · ·σπn(xn)⟩ = e−SL[ΦΓ]ZX(Σ) , (4.179)

where ZX(Σ) is the partition function of the seed theory on the surface Σ. The genus of
the covering surface Σ is fixed by the Riemann - Hurwitz formula. Specifically, it is given in
terms of the genus g of the base surface, the number M of distinct elements of {1, 2, ..., N}
that appear in the correlator and the lengths of the cycles wj, j = 1, 2, ..., n. Concretely, we
have

g′ − 1 =M(g − 1) +
1

2

n∑
j=1

(wj − 1) . (4.180)

36Here, by ‘canonically normalized’ we mean that the two-point function satisfies ⟨σ[π](x1)σ[π](x2)⟩ =

1/(x1 − x2)
2h(π)), where h(π) is the conformal weight of the twist field.

37Note that, unlike in previous sections, we are now using Σ as opposed to Σ̃ to refer to the covering
space, since the base space is already specified to be CP1.
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Since we focus on sphere correlators, g = 0 and thus

g′ = 1−M +
1

2

n∑
j=1

(wj − 1) . (4.181)

Here, the Liouville action SL is given by

SL[Φ] =
c

48π

∫
Σ

d2z
√
g (−Φ∆Φ+RΦ) , (4.182)

where c is the central charge of the seed CFT X, R is the scalar curvature on Σ, and ∆
is the Laplacian on Σ.38 The conformal anomaly is found by evaluating this action on the
scalar

ΦΓ = log |∂Γ|2 . (4.183)

This corresponds to a metric on the covering space

ds2 = eΦΓdz dz (4.184)

where z, z are local coordinates on the covering space.

Narain-averaging correlators

Let us now specify our CFT to be a Narain theory X = TD. We write the correlators of
twist fields in TD ≀ Ω as

⟨σπ1(x1) . . . σπn(xn)⟩ = e−SL[ΦΓ]Z(m,Σ) , (4.185)

where Z(m,Σ) is the partition function of the TD theory on the surface Σ. We can now
average this result over the moduli m and we find∫

MD

dµ(m) ⟨σπ1(x1) . . . σπn(xn)⟩ = e−SL[ΦΓ]

∫
MD

dµ(m)Z(m,Σ) . (4.186)

However, the average of the partition function Z is readily written down in terms of a sum
over Lagrangian sublattices of H1(Σ,Z), i.e.∫

MD

dµ(m) ⟨σπ1(x1) . . . σπn(xn)⟩ = e−SL[ΦΓ]
∑

Γ0⊂H1(Σ,Z)

ZCS(Γ0) , (4.187)

where ZCS(Γ0) is shorthand for the U(1)D × U(1)D Chern-Simons partition function on the
bulk manifold defined by the Lagrangian sublattice Γ0. In the case that Σ is a connected

38In our conventions, we have
√
g∆Φ = ∂(

√
g ∂Φ) + ∂(

√
g ∂Φ).
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surface, we can instead express the averaged correlation function in terms of a sum over
handlebodies bounded by Σ, namely∫

MD

dµ(m) ⟨σπ1(x1) . . . σπn(xn)⟩ = e−SL[ΦΓ]
∑

handlebodies
∂M=Σ

ZCS(M) . (4.188)

In the rest of this section, we will consider examples of such correlators and interpret them in
terms of correlators of vortices of U(1)D ×U(1)D ≀ Ω Chern-Simons theory on the hyperbolic
ball. Completely analogously to [160], we find that the sum over geometries on the covering
space can be interpreted as a sum over configurations of bulk vortices.

Four-point functions

We begin with the simplest nontrivial example: the four-point function of the twist field
σ(1 2) in the orbifold TD ≀ S2. Since S2

∼= Z2, this analysis is very similar to that of [160].
Without loss of generality, we can use the SL(2,C) isometry on the sphere to place three

points at 0, 1,∞ and leave the fourth point arbitrary. That is, we consider the correlator

⟨σ(1 2)(0)σ(1 2)(1)σ(1 2)(u)σ(1 2)(∞)⟩ . (4.189)

Since S2 is abelian, this is actually a fully gauge-invariant correlator. This correlator is also
connected as the permutation (12) acts in a transitive way on the elements {1, 2}. The
covering space on which the fundamental fields are single-valued is given by the torus whose
modular parameter is related to the cross-ratio u via the modular λ function [175]. That is,

u(τ) = 1− λ(τ) = 1− ϑ2(τ)
4

ϑ3(τ)4
. (4.190)

The explicit form of the covering map Γ is

Γ(z) =
p(z; τ)− p(1

2
; τ)

p( τ
2
; τ)− p(1

2
; τ)

, (4.191)

where p is the Weierstrass function. Given the form of the covering map, the conformal
anomaly e−SL[ΦΓ] can be explicitly worked out and, after regularization, takes the form [175]

e−SL[ΦΓ] =
1

22c/3|u(1− u)|c/12
. (4.192)

Therefore overall :

⟨σ(1 2)(0)σ(1 2)(1)σ(1 2)(u)σ(1 2)(∞)⟩ =
(

1

22c/3|u(1− u)|c/12

)(
Θ(m, τ)

|η(τ)|2D

)
. (4.193)
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Putting everything together, the average of the four-point function of σ(1 2) is computed using
the Siegel-Weil formula, and we find∫

MD

dµ(m) ⟨σ(1 2)(0)σ(1 2)(1)σ(1 2)(u)σ(1 2)(∞)⟩

=
1

22c/3|u(1− u)|c/12
∑

γ∈Γ∞\SL(2,Z)

1

|η(γ · τ)|2D
,

(4.194)

where τ is obtained from u by inverting (4.190) and the central charge c is just the dimen-
sion D of the torus target.39 Specifically, τ admits a closed-form expression in terms of
hypergeometric functions

τ =
2F1(

1
2
, 1
2
, 1 : u)

2F1(
1
2
, 1
2
, 1 : 1− u)

. (4.195)

The bulk interpretation

As in [160], we can interpret the sum over modular images in (4.194) in terms of U(1)D ×
U(1)D ≀ S2 Chern-Simons theory in the following way. Consider the CFT sphere on which we
calculate the correlation functions to be the boundary of the ball H3. We extend each twist
field σ(1 2) as a vortex in the bulk which meets the boundary at the point xi. Each vortex
in the bulk implements a monodromy A(1) → A(2) in the bulk gauge field. Since a vortex
cannot just end at one point, we need to join pairs of boundary points by vortices. Let us
choose for the moment a vortex which joins the point at x = 0 with the point at x = 1
and another which joins x = u with x = ∞. The two strands are in principle allowed to
cross and link in the bulk in an arbitrary fashion, so long as they do not cross. For example,
the ‘trivial’ configuration T0 on the left of Figure 4.19 connects 0 to 1 and u to ∞ in the
simplest way possible – with no crossings in the bulk. The bulk geometry found by taking
the double branched cover of the ball over the vortex T0 has the property that the cycle
generated by a loop encircling u and ∞ is contractible in the bulk. For an illustration, see
Figure 4.18. Indeed, as was noted in [160], the branched cover of the geometry in Figure
4.18 is a handlebody with torus boundary.40

In [160], the sum over modular images in equation (4.194) was argued to arise from a
sum over vortex configurations in the bulk which are topologically ‘rational tangles’. A
rational tangle is a vortex configuration which is obtained by applying successive exchanges
(braidings) of the points 0, 1, u,∞ on the trivial tangle T0. For example, the three tangles
shown in Figure 4.19 are the trivial tangle T0, the tangle obtained by starting with T0 and
braiding the ends at 1, u around each other twice, and the tangle obtained from T0 by braiding
the ends at u,∞ three times. Note that the direction of swapping matters.

39We keep the central charge c arbitrary since, for example, for Narain theories with supersymmetry, the
central charge is instead c = 3D/2.

40This can be seen by ‘cutting open’ the hyperbolic ball along branch cuts associated to the vortices and
gluing a second copy along the same branch cuts, see Figure 2 of [160].
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u

∞1

0

Figure 4.18: An illustration of the (non)contractibility of loops encircling points on the
sphere. The green loop is contractible when continued in the bulk whereas the red loop is
not (it has to cross the orange and blue vortices that live inside the sphere).

0

1 u

∞ ∞0

1 u

∞0

1 u

Figure 4.19: Some rational tangles contributing to the four-point function of twist fields in
the averaged TD ≀ S2 orbifold.

Mathematically, a rational tangle is obtained from the trivial tangle T0 in the following
way: Let B4(S

2) be the braid group of points on the sphere. There is a natural action
of B4(S

2) on the ends of the vortices at x = 0, x = 1, x = u, and x = ∞. A basis of
generators for B4 are the ‘standard braids’ σ1, σ2, σ3 which swap the pairs (0, 1), (1, u) and
(u,∞) respectively (with specified orientation) as in Figure 4.20. All rational tangles can be
seen as the action of an element of B4(S

2) on the trivial tangle T0.
The braid group B4(S

2) is generated by σ1, σ2, σ3, which satisfy the following relations:

σ1σ3 = σ3σ1 , σ1σ2σ1 = σ2σ1σ2 , σ2σ3σ2 = σ3σ2σ3

σ1σ2σ3σ3σ2σ1 = 1 .
(4.196)

The last of these relations is specific to the braid group on the sphere. Note that the braid
group does not act on rational tangles faithfully. In particular, the combination σ1σ

−1
3 acts

trivially on any rational tangle since it corresponds to a reflection about the East-West axis
as in Figure 4.21, see [194].

Let N ⟨σ1σ−1
3 ⟩ be the normal subgroup of B4(S

2) generated by σ1σ
−1
3 .41 Since this is

41That is, N ⟨σ1σ−1
3 ⟩ is the smallest normal subgroup of B4(S

2) which contains σ1σ
−1
3 .



CHAPTER 4. AVERAGING THE SYMMETRIC PRODUCT ORBIFOLD 121

σ1

0

1 u

∞

σ2

1 u

∞0

σ3

u

∞0

1

σ3σ1
=

σ1σ3

0

1 u

∞

σ1σ2σ1
=

σ2σ1σ2

0

1 u

∞

σ1σ2σ
3
3σ2σ1 = 1

0

1 u

∞

Figure 4.20: The action of the braid of points on the sphere B4(S
2). The two circles depict

cross sections of two-spheres. Inside the smaller two-sphere the strands could be arbitrarily
tangled. The first row shows the action of the generators, the second depicts some of the
relations that these generators satisfy. In the last drawing, the strands can be “untangled”:
the one that connects to 1 from the front of the inner S2 and the one connected to u behind
the inner S2.

0

1 u

∞

σ−1
3−−→

0

1 u

∞

σ1−→

0

1 u

∞

Figure 4.21: The action of σ1σ
−1
3 on the tangle obtained by acting with σ2

3. We see that this
corresponds to the same tangle. One can see this for example by drawing the first tangle as
seen from ”behind the page”.
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a normal subgroup, the quotient B4(S
2)/N ⟨σ1σ−1

3 ⟩ is a group which acts in a well-defined
manner on the space of tangles. This quotient effectively imposes σ1 ∼ σ3 in the defining
relations (4.196) of the braid group. It turns out that this quotient is nothing more than the
modular group, i.e.

B4(S
2)/N ⟨σ1σ−1

3 ⟩ ∼= PSL(2,Z) . (4.197)

The isomorphism is seen by the direct matrix identification

σ1, σ3 →
(
1 1
0 1

)
, σ2 =

(
1 0
−1 1

)
. (4.198)

Finally, note that not even B4(S
2)/N ⟨σ1σ−1

3 ⟩ acts faithfully on the space of rational tangles.
This is because σ1 · T0 = T0. Thus, the set of operations which acts faithfully on the set of
rational tangles is

(Br(S
2)/N ⟨σ1σ−1

3 ⟩)/ ⟨σ1⟩ ∼= Γ∞\PSL(2,Z) . (4.199)

Thus, the sum over rational tangles produces a sum over the coset Γ∞\SL(2,Z). This sum
also precisely reproduces the sum over Lagrangian sublattices, since each rational tangle
admits a combination of the cycles shown in Figure 4.18 which becomes contractible in the
bulk. Furthermore, the branched double cover of each rational 2-tangle is a handlebody with
torus boundary.42

Higher-point functions

The above analysis tells us how to interpret the four-point function of twist fields in the S2

permutation orbifolds in terms of rational tangles of vortices in the bulk. Let us now consider
the case of higher-point functions. In order to have a non-vanishing correlation function, we
require that the number of twist field insertions is even, and so we consider the correlator

⟨σ(1 2)(x1) · · ·σ(1 2)(x2g+2)⟩ , (4.200)

where g is some non-negative positive integer. The covering space associated to this corre-
lation function is a genus-g hyperelliptic curve defined by the equation

Σg =

{
(x, y) ∈ CP1 × CP1

∣∣∣∣ y2 = 2g+2∏
i=1

(x− xi)

}
. (4.201)

Indeed, around the point x = xi, the solutions y(x) have a square-root branch cut, as required
by the form of the correlator. The correlation function can be expressed as

⟨σ(1 2)(x1) · · ·σ(1 2)(x2g+2)⟩ = e−SL[ΦΓ]Z(Σg) , (4.202)

42This follows either from the fact that the double cover of T0 is a torus handlebody and the fact that all
rational 2-tangles are homeomorphic to T0. Intuitively, the action of the braid group on T0 can be thought
of as implementing Dehn surgery on the double cover of T0. In the mathematics literature, this is often
referred to as the ‘Montesinos Trick’ [195].
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where Γ is the covering map

Γ :Σg → CP1

(x, y) 7→ x .
(4.203)

This gives a double cover of CP1 by Σg since each value of x has two values of y satisfying
(4.201). Here and in what follows we will not be explicit about the form of the conformal
anomaly.

Upon ensemble averaging, we have∫
MD

dµ(m) ⟨σ(1 2)(x1) · · ·σ(1 2)(x2g+2)⟩ = e−SL[ΦΓ]
∑

γ∈P\Sp(2g,Z)

ZCS(γ · Ω) , (4.204)

where Ω is the period matrix of Σg, and ZCS(γ · Ω) is shorthand for the expression

ZCS(γ · Ω) = (det Im(γ · Ω))D/2

(det Im(Ω))D/2| det′ ∂̄Σg |D
, (4.205)

which is the U(1)D×U(1)D Chern-Simons partition function on a handlebody bounded by Σg

[46]. The sum over modular images of Ω under the action of P\Sp(2g,Z) defines a sum over
different inequivalent handlebodies with boundary Σg. For later convenience, we introduce
a basis for the homology group of Σg by choosing the branch cuts in equation (4.201) to be
between neighboring points x2i−1 and x2i for i = 1, . . . , g + 1, and choosing the A and B
cycles of Σg as in Figure 4.22. Just as in the case of the four-point function, we can interpret
the sum over handlebodies as a sum over rational tangles of vortices in the bulk. We do this
in the following way: let T0 be the ‘trivial’ tangle defined by connecting x2i−1 to x2i as shown
in Figure 4.23. The double cover of the ball branched over this surface will be a genus g
handlebody such that the A cycles of Σg (those surrounding the branch cuts between x2i−1

and x2i) are contractible in the bulk. Now, let us pick out the point x2g+2 to be special.
We can generate all rational tangles connecting the points x1, . . . , x2g+2 via actions of the
braid group B2g+1 (where we treat the points x1, . . . , x2g+1 as individual strands, keeping
x2g+2 fixed) on the trivial tangle T0. Via the double cover Γ : Σg → CP1 associated to this
configuration of points, the action of the braid group on the configuration X can be shown to
induce an action on the fundamental group π1(Σg) or, similarly, its abelianization H1(Σg,Z).
Specifically, if we let σk ∈ B2g+1 be the element of the braid group which swaps the points
xk and xk+1 (with specified orientation), and we pick a homology basis Ai,Bi on Σg, then
we can take the action of the braid group on H1(Σg,Z) to be (breaking up cases for k even
and odd)

σ2i · Ai = Ai + Bi ,

σ2i · Bi = Bi ,

σ2i · Ai+1 = Ai+1 − Bi ,

σ2i−1 · Bi−1 = Bi−1 +Ai ,

σ2i−1 · Ai = Ai ,

σ2i−1 · Bi = Bi −Ai .

(4.206)
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x1 x2 x3 x4 x5 x6 x7 x8

Figure 4.22: The homology basis of the genus g surface Σg. The red and blue curves represent
the A and B cycles respectively. In the preimage, the red cycles are given by the branch
cuts between xi and xi+1.

x1

x2
··

·

x2i−1

x2i

· · ·

x2g+1

x2g+2

Figure 4.23: The trivial tangle T0.
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180◦

z1 z2 z3 z4 z5 z6

Figure 4.24: A handlebody filling in the hyperelliptic curve Σg (g = 2 shown). The hyperel-
liptic involution induces a 180◦ rotation around the symmetry axis, and the fixed points of
this rotation are g + 1 intervals. The Z2 quotient of the handlebody under the hyperelliptic
involution is homeomorphic to a ball with g+1 vortices. The points zi are the preimages of
the points xi in the correlator (4.202). Since a tangle is homeomorphic to the trivial tangle if
and only if it is rational, the double-cover of a rational (g+1)-tangle is always a handlebody.

Furthermore, all other actions are trivial. This action defines a representation ρ : B2g+1 →
Aut(H1(Σg,Z)) ≃ GL(2g,Z) of dimension 2g of the braid group by integer matrices. Further-
more, it is not hard to see that the above action preserves the intersection form ⟨Ai,Bj⟩ = δij,
and thus the representation of the braid group is actually via symplectic matrices. That is,
there is a homomorphism

ρ : B2g+1 → Sp(2g,Z) . (4.207)

This is known as the symplectic representation of the braid group [196]. Given an element
σ ∈ B2g+1, the symplectic representation ρ(σ) acts on the period matrix of Σg as

Ω → σ · Ω = (AΩ +B)(CΩ +D)−1 , (4.208)

where A,B,C,D are the block entries of ρ(σ) as a symplectic matrix.
Now, while the action of the braid group on the 2g + 2 endpoints of the g + 1 vortices

induces Sp(2g,Z) transformations on the period matrix Ω of the hyperelliptic curve Σ, it
is also possible to show that the resulting rational tangle (obtained by acting on the trivial
tangle with the braid group) indeed has a double cover which is a handlebody of genus g,
whose boundary is Σg.

43 Each rational tangle in the G ≀ S2 Chern-Simons theory, therefore,
reproduces a handlebody in the sum (4.204). However, it is not clear that every element of
the sum (4.204) over handlebodies is reproduced by a rational tangle of vortices in the Chern-
Simons theory. Indeed, this is not the case. To see this, consider the image of the symplectic
representation ρ. For g = 1, 2 this image is indeed the full modular group Sp(2g,Z), but for
g ≥ 3, ρ(B2g+1) is only a finite-index subgroup of Sp(2g,Z) [196]. Thus, for g ≥ 3, i.e. for
n-point functions of twist fields with n ≥ 8, the sum over rational tangles cannot reproduce
the correct sum over the symplectic group.

43This follows again by the Montesinos trick – braid group actions on the trivial tangle lift to Dehn twists
on the branched double cover, and so the double cover of any rational (g + 1)-tangle is related to a genus g
handlebody by a Dehn twist, and is therefore also a genus g handlebody.
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The reason why is because many handlebodies in the sum (4.204) do not respect the
covering map structure of the boundary. Specifically, the covering map Γ : Σg → CP1

has the structure of a Z2 quotient by the so-called hyperelliptic involution ι, which sends
(x, y) → (x,−y) in equation (4.201). Given a choice of Lagrangian sublattice Γ ⊂ H1(Σg,Z)
it is not guaranteed that the hyperelliptic involution extends to a symmetry of the bulk
(when ι does extend to a symmetry of the bulk, it is represented by a 180◦ rotation around
a fixed axis [197, 198], see Figure 4.24).44 Those handlebodies M which admit an extension
of the hyperelliptic involution are then branched covers M → M/ι of 3-balls, for which
the branching loci are rational tangles. Those handlebodies M for which the hyperelliptic
involution does not extend into the bulk cannot, as far as we know, be thought of as 2-
fold branched covers of a 3-manifold with spherical boundary, and thus represent another
example of terms in the averaged symmetric orbifold theory which cannot be recovered by
a semiclassical Chern-Simons calculation in the bulk.

The conformal anomaly

In the above discussion, we demonstrated how, in certain special cases, the ensemble average
of correlators of twist fields in the symmetric orbifold can be reproduced by an appropriate
sum over vortex configurations in a bulk U(1)D ×U(1)D ≀SN Chern-Simons theory. In doing
so, we only discussed the origin of the Eisenstein series appearing in the averaged correlation
function from the Chern-Simons perspective, and we ignored the conformal anomaly which
appears in the symmetric orbifold correlators. Let us now briefly comment on the origin of
this prefactor from the Chern-Simons side.

First, let us recall the origin of the conformal anomaly in the symmetric orbifold setting.
The 2-sphere CP1 can be locally taken to have fiducial metric dx dx. In calculating the
correlator of twist-fields on CP1, each contribution is given by an appropriate covering map
Γ : Σ → CP1. The associated contribution to the symmetric orbifold path integral arises
from calculating the correlation functions of the pullback of the twist fields under Γ on the
surface Σ. If Γ has the correct branching properties, then the pullbacks of these fields are
untwisted, and the calculation reduces to the computation of a TD correlator on Σ, see [158].

Importantly, in this construction, the path integral on Σ is evaluated with respect to the
pullback metric

Γ∗(dx dx) = |∂Γ(z)|2 dz dz , (4.209)

where z is a local coordinate on Σ. This metric can be locally put back into the form of the
fiducial metric dz dz via a Weyl rescaling e−Φ with

Φ = log |∂Γ|2 . (4.210)

This Weyl rescaling comes at the cost of the conformal anomaly

exp
(
− c
6
SL[Φ]

)
= exp

(
− c

48π

∫
Σ

d2z
√
g

(
−1

2
Φ∆Φ +RΦ

))
, (4.211)

44For low genera (g = 1, 2), however, the hyperelliptic involution always extends into the bulk.
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where the metric g on Σ is the fudicial metric dz dz, or more accuraltely theWeyl-transformed
metric e−ΦΓ∗ (ds2CP1

)
.

On the Chern-Simons theory side, the conformal anomaly arises in a nearly identical
way. Let us for the moment consider G ≀SN Chern-Simons theory for some generic group G.
Given a bulk manifold M with spherical boundary ∂M = CP1 (in our case M = H3 is the
3-ball), we can consider the Chern-Simons path integral with vortex locus L. To compute

this path integral, we must consider the branched cover M̃ of M branched along the vortex
locus L. Let γ : M̃ → M be the appropriate branched covering. We define Γ = γ|∂M to

be the induced branched covering Γ : Σ → CP1 on the boundaries, where Σ = ∂M̃ . Now,
we can gauge fix the Chern-Simons path integral by explicitly choosing a metric g on M .
Then the G ≀ SN Chern-Simons path integral is given by the G Chern-Simons path integral
evaluated on M̃ with metric γ∗g.

The Chern-Simons path integral is not completely independent of the choice of metric,
and in particular depends on the boundary value of the metric on a specific bulk manifold.
It is convenient to locally pick g|∂M = dx dx. Then the induced boundary metric on M̃ is
simply the pullback of the boundary metric of M by γ, which is exactly the metric (4.209).

We can perform a Weyl transformation by e−Φ on the metric on M̃45 in order to bring the
boundary metric of M̃ into canonical form. However, the path integral of Chern-Simons
theory is also not invariant under such transformations, and picks up a conformal anomaly
[199]

exp

(
−dim(G)

12
SL[Φ]

)
= exp

(
−dim(G)

96π

∫
Σ

d2z
√
g

(
−1

2
Φ∆Φ +RΦ

))
, (4.212)

where the integral is over the boundary Σ = ∂M̃ evaluated with the Weyl-transformed
boundary metric. For the case of U(1)D ×U(1)D ≀ SN Chern-Simons theory, this reproduces
the correct conformal anomaly of the symmetric orbifold theory since

dim(G) = 2D = 2c . (4.213)

The fact that the Chern-Simons theory picks up the same conformal anomaly as a boundary
TD CFT is, of course, to be expected. By the CS/WZW correspondence [200, 201], the
partition function of U(1)D × U(1)D Chern-Simons theory on a smooth handlebody with
boundary conditions specified in Section 4.1 should reproduce the vacuum character |χvac|2
of a (non-chiral) U(1)D WZW model on the boundary. The vacuum character of a WZW
model, however, picks up the appropriate conformal anomaly under Weyl transformations
of the boundary metric.

45Here, Φ is understood to be a scalar field on M̃ which reduces to log |∂Γ|2 on the boundary.
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4.5 Adding supersymmetry to the Narain ensemble

Narain averaging with supersymmetry

In this section we consider ensemble averaging the supersymmetric variants of the Narain
theories. The supersymmetric TD theories are obtained by simply adding D free fermions
to the bosonic theory. Each fermion is a partner to one of the D free scalars. As discussed
in 4.1, we must make a choice of boundary conditions for the fermions as they traverse
nontrivial cycles. For a CFT on a torus we label the spin structure by two half integers α, β
such that

ψ(A · z) = e2πiαψ(z) , ψ(B · z) = e2πiβψ(z) , (4.214)

where again we take A to be the τ -cycle while B is the 1-cycle. The supersymmetric TD

partition function on the torus with a choice of spin structure is then given by

ZTD

[
α
β

]
(τ) = Zferm

[
α
β

]
(τ)DZTD(τ) = | det ∂α,β|D

ΘD(m, τ)

|η(τ)|2D
, (4.215)

where we have split the partition function into the bosonic and fermionic parts. Here, ∂α,β is
the Dirac operator acting on spin (1

2
, 0) fermions with spin structure α, β. The determinant

of these operators are given by theta functions. Specifically,

∣∣det ∂α,β∣∣ = 1

|η(τ)|
×


|ϑ1(τ)| , α = β = 0 ,

|ϑ2(τ)| , α = 1
2
, β = 0 ,

|ϑ3(τ)| , α = β = 1
2
,

|ϑ4(τ)| , α = 0 , β = 1
2
.

(4.216)

The exact form of the theta functions will not matter much in what follows. It suffices to
remark on their modular properties. The partition function Zferm of a single free fermion,
given by the above determinant, satisfies the modularity property

Zferm

[
aα + bβ
cα + dβ

](
aτ + b

cτ + d

)
= Zferm

[
α
β

]
(τ) , (4.217)

when acted on by an element of SL(2,Z). The partition function of the supersymmetric
Narain theory can now be readily averaged, since only the theta function ΘD depends on
the Narain moduli. The result is∫

MD

dµZTD

[
α
β

]
(τ) = Zferm

[
α
β

]
(τ)D

∑
γ∈Γ∞\SL(2,Z)

1

|η(γ · τ)|2D
. (4.218)

The above partition function is recovered straightforwardly from the partition function of
N = (1, 1) Chern-Simons theory, summed over geometries. The boundary fermions in the
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Chern-Simons theory have specified spin structure on the boundary, namely the same spin
structure specified for the Narain CFT.

As explained around equation (4.16), each element of the sum over geometries is specified
by a choice (c, d) of coprime integers such that the cycle cA+dB becomes contractible in the
bulk. Because the fermion picks up a sign of (−1)2α around the A-cycle and (−1)2β around
the B-cycle, the monodromy around the contractible cycle is given by (−1)2(cα+dβ). This
flies in the face of the usual intuition that the boundary fermions must satisfy antiperiodic
boundary conditions around a contractible bulk cycle. This only occurs if cα + dβ is half-
integer.

To be concrete, let us take the boundary theory to be in the NS sector, i.e. α = β = 1/2.
Then in the bulk geometry associated to (c, d), the boundary fermion is periodic when c+ d
is even, and antiperiodic when c+ d is odd. We can break up the sum over geometries into
two sums:

Zferm

[
1
2
1
2

]
(τ)D

∑
(c,d)=1
c+d odd

1

|η(γ · τ)|2D︸ ︷︷ ︸
‘good’ boundary conditions

+Zferm

[
1
2
1
2

]
(τ)D

∑
(c,d)=1
c+d even

1

|η(γ · τ)|2D︸ ︷︷ ︸
‘bad’ boundary conditions

. (4.219)

The ‘good’ boundary conditions correspond to the fermions being anti-periodic around the
contractible cycle, while the bad correspond to the opposite. We give an explanation of this
from the bulk perspective in the next subsection.

We can also consider the symmetric product orbifold of this supersymmetric theory, the
only modification being the inclusion of the fermion partition function. It is easier to directly
consider the grand canonical partition function in equation (4.73) which we showed can be
written in terms of supersymmetric Hecke operators Tk

Z

[
α
β

]
(p, τ) = exp

(
∞∑
k=1

pkTkZTD

[
α
β

]
(τ)

)
. (4.220)

We can average the above partition function in the same way we carried out the bosonic
average. Since the fermions do not depend on the moduli they factor out of the average. It
is convenient to consider the average of the connected part of the partition function∫

MD

dµ logZ

[
α
β

]
(p, τ) =

∞∑
k=1

pk
〈
TkZ

[
α
β

]
(τ)

〉

=
∞∑
k=1

pk

k

∑
ad=k

d−1∑
b=0

Zferm

[
aα + bβ
dβ

](
aτ + b

d

)D 〈
ZTD

(
aτ + b

d

)〉
,

(4.221)

where we have split it up into the bosonic part which the average acts on, and the fermionic
part. We will again reproduce the above average by performing a summation over bundles
and vortices, now including fermions.
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The bulk dual

The natural candidate bulk theory is a supersymmetric version of Chern-Simons. We will now
briefly explain this supersymmetric theory, leaving our conventions and additional details to
appendix A.8. In [202] supersymmetric Chern-Simons in flat Minkowski space was considered
in the presence of a boundary. The boundary broke half the supersymmetry down to N =
(1, 0). In the conventions of [202] the flat space action is given by

S
N=(1,0)
CS =

∫
M

d3x(ϵµνρAµ∂νAρ + λλ)− 1

2

∫
∂M

d2x
√
h(hmnAmAn + χ−γ

m∂mχ−). (4.222)

In the above λ, χ are Majorana fermions and the notation χ± means we project the fermion
onto it’s top/bottom component respectively. The boundary is located at x3 = 0 and the
coordinates on the boundary are given by (x1, x2) indexed by the label m, the boundary
metric is h and γ are the gamma matrices.

Due to the presence of the boundary, the action is not invariant under the most general
supersymmetry transformation. However, it is invariant under half of the supersymmetry
transformations N = (1, 0).46 These transformations are given by

δAµ = (λγµϵ+) + (ϵ+∂µχ−),

δλa = −ϵµνρ(γρϵ+)a∂µAν , (4.223)

δχ− = (γµϵ+)Aµ = (γmϵ+)Am.

Where ϵ+ is a two component spinor projected onto only it’s top component. In the path
integral we must choose boundary conditions that satisfy the variational principle and that
are left invariant under the above supersymmetry transformations. It was found in [202,
203] that one such choice of boundary conditions is given by fixing given by A− = 0 and
2γ2λ+ + ∂−χ− = 0, where we have defined A± = A1 ± A2 and ∂± = ∂1 ± ∂2. The boundary
action in terms of these fields is given by47

S
N=(1,0)
bdy =

1

2

∫
∂M

d2x(A+A− + χ−γ
2∂−χ−). (4.224)

The second boundary condition we fixed, relating χ− and λ+, guarantees that our boundary
condition for the gauge field is invariant under the ϵ+ supersymmetry transformation δA− =
0. Similarly, the other boundary condition 2γ2λ+ + ∂−χ− = 0 is also invariant under ϵ+
transformations. We don’t need to set any additional boundary conditions because the
second term in the boundary action (4.224) varies into an equation of motion for χ− on the
boundary. One of the interesting features of this theory is that there is a dynamical boundary
fermion χ−, decoupled from the other fields, without any corresponding bulk action.

46The action is invariant under these transformations without having to impose any boundary conditions
on the fields. This approach was advocated as “supersymmetry without boundary conditions” in [202].

47For this one uses the identity γ1χ− = −γ2χ−.
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Similarly, there is a N = (0, 1) supersymmetric Chern-Simons theory invariant under ϵ−
transformations, given by the action

S
N=(0,1)
CS =

∫
M

d3x(ϵµνρAµ∂νAρ + λλ) +
1

2

∫
∂M

d2x
√
g(gmnAmAn + χ+γ

m∂mχ+). (4.225)

In the above λ, χ+ are again Majorana fermions, except now χ has been projected onto the
top component. The boundary action can be re-written as

S
N=(0,1)
bdy =

1

2

∫
∂M

d2x(−A+A− + χ+γ
2∂+χ+). (4.226)

A consistent choice of boundary conditions is given by A+ = 0 and (−2γ2λ− + ∂+χ+) = 0.
We can consider the combined action

S = S
N=(1,0)
CS − S

N=(0,1)
CS , (4.227)

where in total the bulk theory has N = (1, 1) supersymmetry with each half realized inde-
pendently by one of two theories. The total action will depend on two independent Chern-
Simons fields A,B, two independent auxiliary fields λ1, λ2 and two, fermions χ± which have
been projected onto the top/bottom component and effectively function as single component
fermions. When considering the partition function of the total theory it will factorize into a
contribution from the independent Chern-Simons fields, the two copies of the auxiliary fields
λi, and the boundary fermions χ−, χ+. Since we are integrating over the auxiliary fields λi
there is no restriction on the field configurations the boundary fermions take.

After analytically continuing to Euclidean signature and defining the theory on a bulk
handlebody with an asymptotic boundary torus the full partition function is given by the
product of contributions of: U(1)×U(1) Chern-Simons, a holomorphic and anti-holomorphic
2d free fermion, and an overall normalization given by integrating over the auxiliary λi.
Dropping the normalization given by the auxiliary fields gives the partition function

Zferm

[
α
β

]
(τ)ZCS(τ) =

∣∣det ∂α,β∣∣ 1

|η(τ)|2
. (4.228)

where the first factor comes from the Chern-Simons contribution and the second comes from
the free fermions.

We take D copies of the above theory and perform a summation over all bulk handle-
bodies. The choice of asymptotic boundary conditions fixes the spin structures α, β around
two particular boundary cycles A,B. When summing over bulk handlebodies the standard
prescription is to only include handlebodies which can inherit the spin structure specified at
the asymptotic boundary [174]. That is, if the cycle cA+ dB is contractible then it must be
true that the fermions are anti-periodic around that cycle. However, in our case the fermions
reduce to a boundary term, and so we do not have such a constraint since the spin structure
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does not need to be extended to the entire handlebody. Summing over all handlebodies,
taking into account that the fermions give identical contributions due to (4.217), we find

ZBulk(τ) = Zferm

[
α
β

]
(τ)D

∑
γ∈Γ∞\SL(2,Z)

∣∣∣∣ 1

η(γ · τ)2

∣∣∣∣D . (4.229)

We see that the bulk supersymmetric Chern-Simons theory precisely reproduce the boundary
ensemble average.

Let us now explain how the above is modified when we consider the symmetric product
orbifold of the supersymmetric Narain theories. We are again interested in implementing
twisted boundary conditions along the contractible and non-contractible cycles for both the
gauge fields and the fermions.

Let’s first consider the non-contractible cycle. In the case of the gauge fields we found that
our gauge group was given by (U(1)D ×U(1)D) ≀SN , and the summation over non-trivial SN

bundles gave us twisted boundary conditions for the gauge fields along the non-contractible
cycle. The story for the fermions is similar. Fermions are sections of a spinor bundle with
fiber denoted by S, and before quotienting the SN symmetry the N fermions takes values
in this spinor bundle. After quotienting we take the fiber of the spinor bundle to be given
by S ⊗ {1, . . . , N}, and we must sum over all non-trivial bundles. The group SN acts on
the fiber by permutations acting on the the set {1, . . . , N}. This implements a sum over all
possible twisted boundary conditions for the fermions ψI → e2πiαψπ(I) when the SN portion
of the fiber is non-trivial, identical to the case of the gauge fields in Section 4.3.

For the contractible cycle, we can again use a vortex operator V to implement twisted
boundary conditions for the fermions. We implement the action of the operator by specifying
the monodromies it implements on the fermions, namely ψI → e2πiβψπ(I) as we travel around
the contractible cycle. Summing over all possible choices of vortices, similar to the gauge
theory case in section 4.3, gives a summation over all twisted boundary conditions along the
contractible cycle.

Combining these two ingredients together we find that a summation over bundles and
vortices again implements the twisted boundary conditions necessary for the symmetric
product orbifold. Since the fermions and gauge fields both transform in the adjoint of the
discrete gauge group they acquire the same monodromy AI → Aπ(I) and ψI → e2πiαψπ(I) as
they travel around a vortex. Since the fields acquire the same monodromies it immediately
follows that that, identical to the bosonic case, performing a summation over bundles and
vortices implements a summation over all degree N covering spaces of the base torus.

If we consider the grand canonical partition function of the supersymmetric Chern-Simons
theory on handlebodyM , since we are summing over covering spaces, we find that it is again
given by the exponential of connected covers

ZSCS(M, p) = exp

(
∞∑
k=1

pkTkZ

[
α
β

]
(τ)

)
. (4.230)
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Comparing to the boundary answer in equation (4.221), we immediately have that the con-
nected covering space contributions match between the bulk and the boundary theories after
summing over handlebodies M∫

MD

dµ logZ

[
α
β

]
(τ, p) =

∑
M

logZSCS(M, p) . (4.231)

4.6 Conclusions and discussion

In this work our goal was to provide a bulk dual for the ensemble average over SymN(TD)
CFTs. In the case of a torus boundary, we showed that a Chern-Simons theory with gauge
group

(
U(1)D × U(1)D

)
≀SN , with the inclusion of bulk vortices, reproduces what we denoted

as the “semiclassical” portion of the boundary average. However, there remain many terms
that do not have a clear semiclassical interpretation.

We argued that some of these terms can be included by appropriately modifying the rules
of the gravity path integral. For instance, disconnected handlebodies that break replica sym-
metry can be reproduced by letting independent gauge fields AI live on “independent” bulk
manifolds MI with distinct contractible cycles but the “same” asymptotic boundary, see the
discussion around equation (4.143). Furthermore, we argued that the simplest wormhole ge-
ometry in equation (4.136) can be reproduced by having two vortices in the bulk. It’s possible
that other wormholes can also be reproduced by more complicated vortex configurations.

We will briefly contrast our results with the expectations for pure AdS3 gravity [174,
204]. With a boundary torus, the only classical saddle-points for the Einstein-Hilbert action
are handlebody geometries. However, in [160] it was argued that another reasonable class
of geometries to include are conical defect geometries which are singular orbifolds. We note
this is quite similar to what we have found. We also sum over handlebody geometries and
the gauge theory analogue of conical defect geometries, since the bulk vortices make the field
strength singular at the vortex. In addition, in AdS3 gravity it is expected that additional
off-shell geometries should be included [16, 48] in the path integral. While off-shell geometries
seem to differ from the non-semiclassical geometries we have found, it is interesting that we
also find contributions beyond simple handlebodies.

Ensemble Averaging Strings

As mentioned in the introduction, one motivation to consider the ensemble averaged sym-
metric orbifold comes from string theory. It has recently been shown that the tensionless
string theory on AdS3 × S3 ×T4 is precisely dual to the (super) symmetric orbifold SymNT4

CFT at large N [61–65]. The tensionless string has string length equal to the AdS length,
and so the theory is far from any sensible semiclassical limit. While all observables of the
theory can be calculated through worldsheet path integrals, there is no known sense in which
the string partition function can be approximated by a gravitational path integral with a
sum over smooth bulk geometries. One hope is that a suitable sum over geometries may
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Figure 4.25: A cartoon representation of a worldsheet propagating within the bulk in the
tensionless limit. The dynamics of the string are constrained to the boundary of spacetime.

emerge if we average over the moduli of the tensionless string. We now explain how this is
partially realized.

The natural partition function for the tensionless string is given by the grand canonical
ensemble of Sym(T4) [65]. The genus-one partition function of the grand canonical ensemble
is given by48

Z(p, τ) = exp

 ∞∑
k=1

pkTkZ(τ)︸ ︷︷ ︸
worldsheets

 . (4.232)

The Hecke operators Tk enumerate over connected covering spaces that cover the boundary
of AdS3. Holographically, the connected covering spaces are to be interpreted as worldsheets
of strings propagating in the target AdS3 which wind the boundary k times. The argument
of the exponential only includes contributions with a single string on the AdS3 background.
The grand canonical partition function Z, after expanding the exponential, then includes
any number of disconnected strings propagating on the AdS3 background. The free energy
F = logZ is then, in this sense, a ‘first quantized’ partition function of the string theory,
while the partition function Z can be thought of as a ‘second quantized’ quantity.

Within the main text, we considered averaging both the connected and disconnected
contributions of the symmetric orbifold, or equivalently we considered the averages of both
the first and second quantized partition functions. From the point of string theory, these
averages have the following interpretation:

• First quantized average: Averaging the string theory at the level of the worldsheet

48Here and in what follows we ignore spin structures.
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sigma model on AdS3×S3×T4. This results in considering only an average of the free
energy F = logZ, which in turn is given by

⟨F (p, τ)⟩ =
∞∑
k=1

pk ⟨TkZ(τ)⟩ . (4.233)

As discussed in Section 4.3, this average is reproduced by a sum over torus handlebodies
of the free energy of the grand-canonical U(1)D×U(1)D ≀SN Chern-Simons theory with
vortices in the bulk.

• Second quantized average: Averaging the string theory at the level of the second
quantized theory of strings, i.e. at the level of string field theory on AdS3 × S3 × T4.
The resulting partition function is

⟨Z(p, τ)⟩ =

〈
exp

(
∞∑
k=1

pkTkZ(τ)

)〉
. (4.234)

As we have seen throughout this paper, the resulting expansion can be reproduced
partially by bulk U(1)D × U(1)D ≀ SN Chern-Simons quantities on semiclassical bulk
geometries, but many of the terms in the average cannot be recovered this way, and
are thought of as arising from ‘generalized’ geometries.

Of course, from the point of view of string theory, these are both completely valid course-
grainings of the T4 compactification. It’s interesting to note that a single string (4.233)
propagating on AdS3 has a simple ensemble averaged interpretation in terms of a sum over
handlebodies with vortices. When we average over multiple strings (4.234) on one back-
ground we get additional “non-semiclassical” geometries connecting the strings, for which
we have no standard holographic interpretation.

One subtlety with the above is the issue of convergence. As explained in Section 4.1,
the average of TD and therefore of the Sym(TD) partition functions only converges when
D > g + 1. For the specific case of the tensionless string, D = 4, this means that most
contributions to the grand canonical average diverge. However, the first quantized average
(4.233) converges. Nevertheless it is still tempting to consider each individual term in the
average as arising from a bulk geometry. A bulk interpretation of the divergence is that the
sum over wormhole geometries diverges when we have too many asymptotic boundaries.

Semiclassical Limit

It would be interesting if there was an appropriate semiclassical limit of ⟨ZTD≀SN
(τ)⟩ where the

dominant geometry is given by the
(
U(1)D × U(1)D

)
≀ SN Chern-Simons theory, as opposed

to one of the more mysterious contributions. We do not have a coupling constant we can
tune, but there does appear to be a natural notion of a semiclassical limit for the Narain
average which is given by sending D → ∞ [46, 205].
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For N = 2 this can be argued very explicitly. The proper limit is to take D → ∞ while
holding the temperature τ = iβ sufficiently large or small. In this limit, the contribution of
wormholes to ⟨Z2⟩ is exponentially suppressed relative to the handlebodies [205]. Further-
more, it’s straightforward to see that the disconnected handlebodies that dominate ⟨Z2⟩ will
be replica symmetric in the large D limit.49 The symmetric disconnected covers are captured
by the Chern-Simons calculation, and therefore we find in this limit

lim
D→∞

lim
β→∞

⟨ZTD≀S2
(iβ)⟩ =

∑
handlebodies M ,

vortices

ZG≀S2(M) +O(β−cD), (4.235)

where the subleading terms are exponentially suppressed in D, with c some constant [205],
relative to the dominant term in the semiclassical contribution. An obvious generalization
of this equation is true when β → 0. Thus, at least in this limit a semiclassical geometry
dominates the average. It would be interesting to know if this holds for general N , which
would require understanding whether disconnected symmetric handlebodies dominate ⟨ZN⟩
in the large D limit.

Open Questions and future directions

We will end with a discussion of some open questions and possible future directions.

OPE Randomness Hypothesis: In [206] the OPE randomness hypothesis was proposed.
This amounts to a generalization of ETH to an ansatz for the OPE coefficients of chaotic
CFTs. The proposal conjectures that OPE coefficients involving heavy operators are ran-
dom variables obeying an approximately Gaussian distribution. Both the TD and Sym(TD)
theories should evade these proposals since the theories are not chaotic. The symmetry cur-
rents furnish selection rules which should lead to deviations away from the aforementioned
subleading non-Gaussianities. It would be interesting to determine the statistics of the OPE
coefficients in the Narain ensemble.

Deforming Towards Supergravity: There is a general expectation that the tensionless
regime can be deformed to the semiclassical supergravity regime [207] by turning on an ex-
actly marginal operator in a twisted sector of the orbifold theory, see for example [208–213].
It would be interesting to understand if it is possible to ensemble average over the Narain
moduli space with this marginal deformation turned on. One potential approach would be
to use conformal perturbation theory, and our discussion of correlators in Section 4.4 might
be useful for such an approach. It would be very interesting to see how the sum over bulk
geometries is modified as we move away from the tensionless point.

49This is because non-replica symmetric disconnected covers are subleading due to the Hawking-Page
transition at large/small temperatures.
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Averaging the D1/D5 moduli space: As mentioned above, symmetric product orbifold
theories SymN(TD) live in a larger moduli space than that of their Narain seed theory, and
specifically for seed theories of central charge c ≤ 6, symmetric product orbifolds admit
marginal deformations by twist fields, which break the orbifold structure. One special such
example is the D1/D5 system compactified on T4 [207], whose moduli space contains the
‘orbifold point’ SymN(T4) along with its Narain moduli, as well as four exactly marginal
operators in the twist-2 sector.50 It would be interesting to consider an average over the
full 20-dimensional moduli space of the D1/D5 CFT. Such a computation, however, would
require knowledge of unprotected quantities on the full D1/D5 moduli space, which are cur-
rently poorly understood beyond low-orders in conformal perturbation theory.

Large N and Phase Transitions: The grand canonical ensemble of Sym(T4) is dual to
the tensionless string with any number of strings propagating on the background geometry.
It was argued in [64] that at large N the grand canonical partition function is dominated
by a configuration of strings that wind ∼ N times around the AdS3 boundary. This corre-
sponds to the average of the grand canonical ensemble being dominated by Chern-Simons
with gauge group G ≀ SN with large N . In the case of a single winding string this would
correspond to a geometry with a single vortex, whereas multiple winding strings would par-
tially be reproduced by multiple disconnected covering spaces with multiple vortices. It was
shown that there are phase transitions between different stringy configurations as the chem-
ical potential was tuned [63], it would be interesting to better understand these transitions
from the perspective of the Chern-Simons geometries considered in this work.

Stringy Ensemble-Averaging: In this work we have attempted to construct an effective
theory of a course-grained string theory. In view of the universal complexity of full-fledged
UV compactifications there may be some logic in considering some form of course-graining
as a starting point. It would be highly interesting to seek out other examples of string
compactifications amenable to some form of ensemble averaging. See [160] for work in this
direction.

50These operators roughly correspond to introducing a non-zero ‘t Hooft coupling λ.
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[52] Alfredo Pérez and Ricardo Troncoso. “Gravitational dual of averaged free CFT’s over
the Narain lattice”. In: JHEP 11 (2020), p. 015. doi: 10.1007/JHEP11(2020)015.
arXiv: 2006.08216 [hep-th].

[53] Joris Raeymaekers. “A note on ensemble holography for rational tori”. In: JHEP 12
(2021), p. 177. doi: 10.1007/JHEP12(2021)177. arXiv: 2110.08833 [hep-th].

[54] Meer Ashwinkumar et al. “Chern-Simons invariants from ensemble averages”. In:
JHEP 08 (2021), p. 044. doi: 10 . 1007 / JHEP08(2021 ) 044. arXiv: 2104 . 14710
[hep-th].

[55] Anatoly Dymarsky and Alfred Shapere. “Quantum stabilizer codes, lattices, and
CFTs”. In: JHEP 21 (2020), p. 160. doi: 10 . 1007 / JHEP03(2021 ) 160. arXiv:
2009.01244 [hep-th].

https://doi.org/10.1088/1361-6382/ac2134
https://arxiv.org/abs/2011.09444
https://arxiv.org/abs/2011.09444
https://arxiv.org/abs/1904.01911
https://doi.org/10.1016/0550-3213(73)90622-6
https://arxiv.org/abs/2210.04906
https://arxiv.org/abs/2006.04855
https://arxiv.org/abs/2006.04839
https://arxiv.org/abs/2006.08648
https://arxiv.org/abs/2203.06511
https://doi.org/10.1007/JHEP08(2022)195
https://doi.org/10.1007/JHEP08(2022)195
https://arxiv.org/abs/2201.05093
https://doi.org/10.1007/JHEP05(2022)090
https://arxiv.org/abs/2102.12509
https://doi.org/10.1007/JHEP11(2020)015
https://arxiv.org/abs/2006.08216
https://doi.org/10.1007/JHEP12(2021)177
https://arxiv.org/abs/2110.08833
https://doi.org/10.1007/JHEP08(2021)044
https://arxiv.org/abs/2104.14710
https://arxiv.org/abs/2104.14710
https://doi.org/10.1007/JHEP03(2021)160
https://arxiv.org/abs/2009.01244


BIBLIOGRAPHY 142

[56] Anatoly Dymarsky and Alfred Shapere. “Comments on the holographic description
of Narain theories”. In: JHEP 10 (2021), p. 197. doi: 10.1007/JHEP10(2021)197.
arXiv: 2012.15830 [hep-th].

[57] Junkai Dong, Thomas Hartman, and Yikun Jiang. “Averaging over moduli in de-
formed WZW models”. In: JHEP 09 (2021), p. 185. doi: 10.1007/JHEP09(2021)185.
arXiv: 2105.12594 [hep-th].

[58] Viraj Meruliya, Sunil Mukhi, and Palash Singh. “Poincaré Series, 3d Gravity and
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[170] André Weil. “Sur la formule de Siegel dans la théorie des groupes classiques”. In:
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Appendix A

Appendix

A.1 JT Gravity With Conical Defects

A.2 Useful Formulas

In this Appendix we will collect useful identities that will be relevant in the main text.

Legendre polynomials

The Legendre polynomials Pn(x) play a crucial role in the minimal string theory string
equation. Pn(x) is a polynomial of order n defined by

Pn(x) ≡
1

2nn!

dn

dxn
(
x2 − 1

)n
, (A.1)

where n is an integer. The normalization is chosen such that Pn(1) = 1. These polynomials
can also be written as a particular case of hypergeometric function

Pn(x) = 2F1

(
−n, n+ 1, 1,

1− x

2

)
. (A.2)

The following relation is also useful

Pn+1(x)− Pn−1(x)

2n+ 1
= (x− 1) 2F1

(
−n, n+ 1, 2,

1− x

2

)
(A.3)

and the derivative of this combination of polynomials is given by

d

dx
(Pn+1(x)− Pn−1(x)) = (2n+ 1)Pn(x). (A.4)

This is precisely the combinations appearing in the string equation of the undeformed min-
imal string.
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Integrals: The following integrals are particularly relevant since they appear in the calcu-
lation of the minimal string density of states from the string equation. Having in mind this
application, we call p = 2m− 1 and introduce an arbitrary parameter κ. Then the following
identities hold ∫ E

κ

du√
E − u

Pm−1

(u
κ

)
=

2
√
2κ

p
sinh

(
p

2
arccosh

(
E

κ

))
, (A.5)

and, taking L to be an integer,∫ E

κ

du√
E − u

∂uPL

(u
κ

)
=

√
2κ√

E2 − κ2
cosh

(
2L+ 1

2
arccosh

(
E

κ

))
− 1√

E − κ
. (A.6)

When computing disk partition functions the two integral representation of Bessel func-
tions are very useful ∫ ∞

1

dt e−st 2

p
sinh

(p
2
arccosh(t)

)
=

1

s
Kp/2(s) (A.7)

and ∫ ∞

1

dt e−st cosh
(
p
2
arccosh(t)

)
√
t2 − 1

= Kp/2(s) (A.8)

Finally another useful identity

Pm(x)− Pm−2(x)

2m− 1
+

m−1∑
n=1

λn

n!
∂n−1
x Pm−n−1(x) = (1− 2λ)m/2

Pm(
x√

1−2λ
)− Pm−2(

x√
1−2λ

)

2m− 1
. (A.9)

This identity can be proven using the representation of the Legendre polynomial as a contour
integral used in [92].

Large order limit: It will be relevant in order to take the JT limit to consider the large
order limit of these Legendre polynomials. In particular we will use the following relation

Pm−n−1

(
1 +

8π2

(2m− 1)2
u
)
→ I0(2πα

√
u), n =

2m− 1

2
(1− α) (A.10)

where we take m → ∞ with 0 < α < 1 and u fixed. To prove this we can rewrite the
Legendre polynomial as a hypergeometric function, take the m → ∞ limit of the Taylor
expansion in u, and then recognize precisely the Taylor coefficient of the Bessel function on
the right hand side.

A related useful limit will be

2m− 1

8π

[
Pm

(
1 +

8π2

(2m− 1)2
u
)
− Pm−2

(
1 +

8π2

(2m− 1)2
u
)]

→
√
u I1

(
2π

√
u
)
, (A.11)

where we take m→ ∞. For a proof of this limit see [22].
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Bessel function identities

The modified Bessel functions of the first kind In(x) appear from taking the JT limit of the
minimal string theory string equation. They satisfy the symmetry property I−n(x) = In(x)
and the following recurrence relation(

1

x

d

dx

)m (
x−nIn(x)

)
= x−(n+m)In+m(x) (A.12)

which occur in the derivation of the JT with defects string equation.

Integrals: The following integral of the modified Bessel functions appears in the calculation
of the JT with defects density of states from the string equation∫ E

0

du

2
√
E − u

(
a√
u

)n+1

In+1

(
a
√
u
)
=

√
π

2

(
a√
E

)n+1/2

Ln+1/2

(
a
√
E
)
. (A.13)

where Lν is the modified Struve function, evaluated at half-integer order. These functions
are related to the more familiar modified Bessel functions by

Ln+1/2(x) = I−n−1/2(x)−
1

2n

√
2

π

n∑
m=0

(−1)m(2m)!

n!(n−m)!
xn−2m−1/2. (A.14)

The Bessel functions at half-integer order actually have elementary form [93]

I−n−1/2(x) =
1√
2πx

n∑
m=0

(n+m)!

m!(n−m)!
(2x)−m

(
(−1)mex + (−1)ne−x

)
. (A.15)

A useful way of writing the above summation is as follows

I−n−1/2(x) = (−1)n
√

2

πx

(
pn (1/x) coshx+ qn−1 (1/x) sinhx

)
(A.16)

where we define the finite polynomials

pn (x) =
∑

0≤m≤n:
m=n mod 2

(n+m)!

m!(n−m)!
(x/2)m, qn (x) =

∑
0≤m≤n+1:

m=n+1 mod 2

(n+ 1 +m)!

m!(n+ 1−m)!
(x/2)m. (A.17)

It is easy to see that pn and qn have degree n, are vanishing for n < 0 and have definite
parity.
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Laplace transforms: The Bessel functions are related to elementary functions via the
following useful Laplace transforms. When computing the partition function from the JT
with defects density of states we have the following integral: for any ν > −1,∫ ∞

0

dE e−βE

(
a√
E

)ν

Iν

(
a
√
E
)
= 2−νβ−ν−1e

a2

4β . (A.18)

On the other hand, for any ν > −1/2,∫ ∞

0

dφ e−φy

(
φ√
u

)ν

Iν(
√
uφ) =

2νΓ(ν + 1/2)√
π

(
y2 − u

)−ν−1/2
. (A.19)

The case ν = −1 is special and evaluates to∫ ∞

0

dφ e−φy

√
u

φ
I−1(

√
uφ) = y −

√
y2 − u. (A.20)

These expressions are used in simplifying the JT with defects string equation.

A.3 Disk one-point function: Normalization

In this Appendix we compare the minimal string bulk one point function calculation to the
matrix model prediction originally computed by [214], finding agreement as expected. We
leave out the technical details, referring the interested reader to [22, 214, 215]. We mostly
follow the conventions of [22] for the continuum calculations.

Liouville approach: First we will compute the continuum partition function to leading
order in the deformation to the action IMS → IMS − τnTn. Then we will call ZMS

0 (ℓ) the disk
partition function in the undeformed minimal string and ZMS

1 (ℓ) = τn⟨Tn⟩ℓ the linear order
correction in τn. In both cases the continuum calculation factorizes into a Liouville part and
a minimal model matter part.

The undeformed minimal string disk partition function with boundary length ℓ, following
the conventions of [22], is given by

ZMS
0 (ℓ) =

8π

b

(
πµγ(b2)

) 1
2b2

(1− b2)

Γ(b−2)

∫ ∞

κ

dµB e−ℓµB sinh

(
1

b2
arccosh

µB

κ

)
(A.21)

=
8π

b

(
πµγ(b2)

) 1
2b2

1

Γ( 1
b2
− 1)

1

ℓ
K 1

b2
(κℓ). (A.22)

The linear order contribution is given by the fixed length tachyon one point function. Fol-
lowing the conventions of [22] it is given by

ZMS
1 (ℓ) = τn⟨Tn⟩ℓ = τn

4π

b

(
πµγ(b2)

)−iP/b Γ (1 + 2iP b)

Γ (−2iP/b)
K 2iP

b
(κℓ)× ⟨O1,n⟩1,1, (A.23)
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where P = i(1 − nb2)/(2b), Kν is the modified Bessel function of the second kind, and the
matter one point function O1,n is evaluated with identity brane boundary conditions and the
identity operator normalized as ⟨O1,1⟩1,1 = 1. The matter one point function can be found
from the modular S-matrix of the minimal model and is equal to [216]

⟨O1,n⟩1,1 =

√√√√S1,n
1,1

S1,1
1,1

= in−1

√
sin (πnb2)

sin(πb2)
. (A.24)

It is convenient to write the final answer in terms of the leg-factor

Leg(n) =
in−1

2

√
πγ(nb2)

µ(πµγ(b2))n
Γ( 1

b2
− 1)

Γ( 1
b2
− n)

. (A.25)

The normalized tachyon one point function is now given by

ZMS
1 (ℓ)

ZMS
0 (ℓ)

= τn Leg(n)
κℓK p

2
−n(κℓ)

K p
2
(κℓ)

, (A.26)

where we used that b2 = 2/p and rewrote the Liouville momentum P in terms of the min-
imal model operator n. This is the continuum prediction of the normalized disk one-point
function. Now we will compare it with the matrix model approach.

Matrix Model: From the matrix model we will compute the correction to the disk
partition function to linear order in λn. We expand both the density of states ρ(E) =
ρ0(E)+ ρ1(E)+O(λ2n) and the partition function ZMM(ℓ) = ZMM

0 (ℓ)+ZMM
1 (ℓ)+O(λ2n). To

this order the string equations for any deformation n is given by

F(u) =
p

16π2

[
Pm

(u
κ

)
− Pm−2

(u
κ

)]
+ λnPm−n−1

(u
κ

)
+O(λ2n) (A.27)

The undeformed disk density of states is

ρ0(E) =
p

2πκ

∫ E

κ

du√
E − u

Pm−1

(u
κ

)
=

2
√
2κ

2πp

p

16π2

p

κ
sinh

(
p

2
arccosh

(
E

κ

))
, (A.28)

and the partition function is

ZMM
0 (ℓ) =

∫ ∞

κ

dE ρ0(E)e
−ℓE =

√
2κ

2π

p2

16π2

1

κℓ
Kp/2(κℓ). (A.29)

To order ∼ λn we get a contribution from the linear order correction to the string equation
and also from the linear order correction to E0 applied to the density of states coming from
the zeroth order string equation.
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Lets consider first the latter. The contribution from the order λ0n term in the string
equation is

1

2π

∫ E

E0

du√
E − u

∂uF0(u) = ρ0(E)−
1

2π

∫ E0

κ

du√
E − u

∂uF0(u). (A.30)

Now define E0 = κ + δE0, where δE0 is of order λn, and expand to linear order in δE0.
Therefore the second integral above is over a small range. We can approximate

1

2π

∫ E

E0

du√
E − u

∂uF0(u) = ρ0(E)−
δE0∂uF0(κ)

2π
√
E − κ

+O(λ2n). (A.31)

Finally, if we expand the equation for E0, the string equation F0(E0)+λnF1(E0)+O(λ2) = 0,
to linear order in λn and use the fact that F0(κ) = 0, we obtain

F0(κ) + δE0∂uF0(κ) + λnF1(κ) +O(λ2n) = 0 ⇒ δE0 = −λnF1(κ)

∂uF0(κ)
. (A.32)

In our case, the string equation is given by (A.28). Therefore F1(u) = Pm−n−1(u/κ) and
F1(κ) = 1, giving δE0∂uF0(κ) = −λn. Inserting this in equation (A.31) we get the linear
order correction from the shift in the edge of the spectrum as

1

2π

∫ E

E0

du√
E − u

∂uF0(u) = ρ0(E) +
λn

2π
√
E − κ

+O(λ2n). (A.33)

Adding all terms, the final answer for the linear order density of states is

ρ1(E) =
λn
2π

∫ E

κ

du√
E − u

∂uPm−n−1

(u
κ

)
+

λn

2π
√
E − κ

(A.34)

= λn

√
2κ

2π
√
E2 − κ2

cosh

(
p− 2n

2
arccosh

(
E

κ

))
. (A.35)

Notice that after a change of variables E(s) = κ cosh (2πbs), this equation becomes precisely
the density of states (2.60) obtained from the Liouville one-point function. The partition
function can be easily computed using the identity (A.8), obtaining

ZMM
1 (ℓ) =

∫ ∞

κ

dE ρ1(E)e
−ℓE =

√
2κ

2π
λnK p

2
−n(κℓ). (A.36)

Putting the two results together we can compute the ratio between the zeroth and linear
order partition function

ZMM
1 (ℓ)

ZMM
0 (ℓ)

= λn
16π2

p2
κℓK p

2
−n(κℓ)

K p
2
(κℓ)

. (A.37)

This is the prediction from the matrix model.
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Comparison: Now we can compare the continuum result (A.26) with the matrix model
calculation (A.37). Demanding that both results agree gives the following identification
between the parameter in the string equation λn and the parameter in the action τn given
by

λn = τn Leg(n)
p2

16π2
, (A.38)

with Leg(n) given by (A.25). This dictionary between the string equation and the coupling
of the deformation in the action can also be obtained by comparing the matrix model sphere
correlation functions with the one computed by Liouville. This is done for example in [217]
and also [92] and it matches with the identification (A.38) obtained from the fixed length
disk correlator.

A.4 String equation simplification

In this Appendix, we will show that the string equation for JT gravity with general defects
(2.67) can be written as in (2.79)

F(u) =

∫
C

dy

2πi
eφy
(
y −

√
y2 − u− 2W (y)

)∣∣∣∣
φ=2π

, W (y) =
∑
i

λie
−2π(1−αi)y, (A.39)

which is an inverse Laplace transform evaluated at φ = 2π. The contour C is taken to be
along to the imaginary direction with all singularities to the left. For simplicity, we will
restrict to a single defect species α and evaluate the formula by Taylor expanding in the
coupling λ

y −
√
y2 − u− 2W (y) = y −

√
y2 − u+

∞∑
L=1

λL

L!

2L−1Γ(L− 1/2)√
π

e−2πL(1−α)y

(y2 − u)L−1/2
.(A.40)

Using (A.20) the first term evaluates to the string equation for pure JT gravity∫
C

dy

2πi
eφy
(
y −

√
y2 − u

)∣∣∣∣
φ=2π

=

√
u

2π
I1(2π

√
u). (A.41)

For L ≥ 1, we can make use of the formula (A.19) to write(
2
√
u

φ

)L−1 ∫
C

dy

2πi
eφy

2L−1Γ(L− 1/2)√
π

(y2 − u)−L+1/2 =

(
φ√
u

)L−1

IL−1(
√
uφ) (A.42)

and that for a ≥ 0

f(φ− a)Θ(φ− a) =

∫
C

dy

2πi
eφyf̃(y)e−ay. (A.43)
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The answer at O(λL) is then(
φ− 2πL(1− α)√

u

)L−1

IL−1

(
(φ− 2πL(1− α))

√
u
)
Θ(φ− 2πL(1− α)), L ≥ 0. (A.44)

Substituting this back into the sum and setting φ = 2π, we find

F(u) =

√
u

2π
I1(2π

√
u)+

⌊ 1
1−α

⌋∑
L=1

λL

L!

(
2π(1− L(1− α)√

u

)L−1

IL−1

(
2π(1−L(1−α))

√
u
)

(A.45)

which is precisely the string equation for a single species (2.65). The string equation for an
arbitrary number of species follows from an analogous calculation, resulting in the replace-
ments λL → Πiλ

ℓi
i and L(1 − α) →

∑
i ℓi(1 − αi) with ℓi = 0, 1, . . . , L and L =

∑
i ℓi. This

is precisely (2.67), as claimed.
Although we performed a Taylor expansion in λ, we note that the truncation of the series

due to the step functions implies that this derivation holds for arbitrary large values of the
couplings.

A.5 Density of states with general defects

In this Appendix, we will explicitly evaluate the disk density of states for JT gravity with
general defects (2.66), which we reproduce here for convenience

ρ(E) =
eS0

2π

⌊ 1
1−α

⌋∑
L=0

λL

L!

∫ E

E0

du

2
√
E − u

(
2π(1− L(1− α))√

u

)L

IL

(
2π
(
1−L(1−α)

)√
u
)
, (A.46)

from which we can compute the partition function

Z(β) =
1

2π

∫ ∞

E0

dE ρ(E)e−βE. (A.47)

For the case of E0 = 0, we will evaluate these expressions exactly to all orders in λ. For
E0 ̸= 0, we will only write down the perturbative expansion.

Case E0 = 0

Let us first consider the case with E0 = 0. A single defect species can never satisfy this
condition, so E0 ̸= 0 always in that case. Nevertheless, for the sake of notational convenience,
we will perform the calculations with a single defect species and make the replacements
λL → Πiλ

ℓi
i and L(1− α) →

∑
i ℓi(1− αi), with ℓi = 0, 1, . . . , L and L =

∑
i ℓi, at the end.
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In this case, the integral in the density of states formula can be evaluated exactly using
(A.13) and (A.14) and the result is

ρ(E) =
eS0

2π

⌊ 1
1−α

⌋∑
L=0

λL

L!

√
π

2

(
2π
(
1− L(1− α)

)
√
E

)L−1/2 [
I−L+1/2

(
2π
(
1− L(1− α)

)√
E
)

−
L−1∑
m=0

(−1)m(2m)!

(L− 1)!(L− 1−m)!

(
2π
(
1− L(1− α)

)√
E
)L−2m−3/2

]
. (A.48)

This form of the density of states will be useful when we discuss the E0 ̸= 0 case in the
perturbative coupling regime in the next section. From (A.16) and (A.17), we see that the
low energy behavior at O(λL) is such that a divergent contribution of cosh

(
#
√
E
)
/EL−1/2

∼ 1/EL−1/2 in the first term is precisely cancelled by a contribution of −1/EL−1/2 in the
second term, leading to the expected square-root behavior

ρ(E) = eS0

⌊ 1
1−α

⌋∑
L=0

λL

(L!)2
2Lπ2L(1− L(1− α))2L

√
E +O(E3/2). (A.49)

These expressions generalize those found in [15, 16].
The partition function can be computed from the Laplace transform of (A.48) given in

(A.18) and the exact answer is

Z(β) =
eS0

4
√
π

⌊ 1
1−α

⌋∑
L=0

λL

L!

2L

β3/2−L

(
e

π2(1−L(1−α))2

β −
L−1∑
m=0

1

m!

(
π2 (1− L(1− α))2

β

)m)
(A.50)

=
eS0

4
√
π

⌊ 1
1−α

⌋∑
L=0

λL

L!

2L

β3/2−L
e

π2(1−L(1−α))2

β

1−
Γ
(
L, π

2(1−L(1−α))2

β

)
Γ(L)

 , (A.51)

where we have used the series representation of the incomplete Gamma function at integer
order

Γ(n, x) = (n− 1)! e−x

n−1∑
m=0

xm

m!
. (A.52)

It is interesting to note that in the large temperature regime β → 0, the exponential terms
dominate and we have

e−S0Z(β) ≈ 1

4
√
π

⌊ 1
1−α

⌋∑
L=0

λL

L!

2L

β3/2−L
e

π2(1−L(1−α))2

β (A.53)

=
e

π2

β

4
√
πβ3/2

+ λ
e

π2α2

β

2
√
πβ1/2

+ λ2
β1/2

2
√
π
e

π2(2α−1)2

β Θ(2π(2α− 1)) +O(λ3).(A.54)
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In fact, we will show below for the case E0 ̸= 0 that the exponential contributions are exact
in the perturbative regime at each order of the coupling where the defect merging condition
is satisfied.

Case E0 ̸= 0

Let us now move on to the general case with E0 ̸= 0. We will again focus on a single defect
species, though the results generalize easily to any number of species.

In this case, we need to perform the integral in the density of states from E0 to E. Since
we have already found the exact answer for the integral from 0 to E, all that remains is to
compute the integral from 0 to E0 and subtract it from the previous answer. In practice,
this is difficult as the integral in general does not have a closed form. In addition, one needs
to solve for E0, defined as the largest root to the equation F(E0) = 0, which in this case is
a highly nonlinear equation involving sums of modified Bessel functions.

To avoid these issues, we will focus only on the perturbative coupling regime where things
simplify greatly. Since we know that E0 = 0 for pure JT gravity, i.e. λ = 0, the leading
contribution to E0 must be O(λ). The integral from 0 to E0 is thus over a small range,
and we can Taylor expand the integrand and evaluate the integral perturbatively in E0. To
extract the contribution at O(λL), one needs to solve for E0 perturbatively up to O(λL−1)
from the string equation. In general, this can be done iteratively as the solution at a given
order depends only on the solution at lower orders. While all of this can be done explicitly,
it is rather tedius in practice and we will not do it here.

Fortunately, there is a quick way of extracting the answer up to O
(
λ⌊

1
1−α

⌋) by demanding
(A.48) match the exact answer (2.77) at α = 1. In that case, we found that the density of
state reduces to that of pure JT gravity with the spectral edge shifted to E0 = −2λ. The
Taylor expansion in λ is

ρ(E) =
eS0

4π2
sinh

(
2π

√
E + 2λ

)
=
eS0

2π

∞∑
L=0

λL

L!

√
π

2

(
2π√
E

)L−1/2

I−L+1/2

(
2π

√
E
)
. (A.55)

Comparing this to (A.48) at α = 1, we see that the polynomials in 1/
√
E must be precisely

the contributions of the integral from 0 to E0. We conclude that up to O
(
λ⌊

1
1−α

⌋), the density
of states is

ρ(E) ≈ eS0

2π

⌊ 1
1−α

⌋∑
L=0

λL

L!

√
π

2

(
2π
(
1− L(1− α)

)
√
E

)L− 1
2

I−L+ 1
2

(
2π
(
1− L(1− α)

)√
E
)
. (A.56)

Finally, the partition function is, up to the same order,

Z(β) =
eS0

4
√
π

⌊ 1
1−α

⌋∑
L=0

λL

L!

2L

β3/2−L
e

π2(1−L(1−α))2

β +O
(
λ⌊

1
1−α

⌋+1
)
. (A.57)

It is easy to show using the string equation that the higher order terms take the form of
finite polynomials in β−1/2.
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Figure A.1: Building the Lorentzian constant negative curvature pair of pants with geodesic
boundaries by identifying points x, x′. The dashed lines are geodesics that form a figure
eight with a singular point between them. The geometry on the right is smooth everywhere
except at the point x ∼ x′.

A.6 Lorentzian pair of pants

In this section we explain how to construct the constant negative curvature Lorentzian pair
of pants1. This can be accomplished with an identification similar to the one used for the
flat pants in figure 3.3. We start with the Lorentzian R = −2 cylinder which is the analytic
continuation of the double trumpet

ds2 =
−dτ 2 + dσ2

cosh2 τ
, τ ∈ (−∞,∞) , σ ∈ [0, b1]. (A.58)

From the identification σ ∼ σ+ b1 we have a spatial geodesic of length b1 at τ = 0. We now
pick two points x, x′ at constant τ but at different values of σ, and we connect these points
with two geodesics traversing both sides of the cylinder, see figure A.1. The geodesics will
have lengths b2, b3 such that b1 ≥ b2 + b3. Solving for the geodesic lengths in terms of x, x′,
it’s possible to show that we can find x, x′ to give any geodesic lengths b2, b3 satisfying this
constraint. We now identify the points x ∼ x′ and discard the portion of the geometry above
the geodesics to get a Lorentzian pair of pants with a singular point at x ∼ x′.

When the geodesics meet at x, x′ there is a jump in the tangent vector, so there is a delta
function in the Extrinsic curvature of the boundary curve at those points. This is taken into
account in the Gauss-Bonnet theorem through the jump angles αi, of which there are two
in the above construction

1

2

∫
√
gR +

∑
i

αi = 2πχ. (A.59)

We’ll absorb the jump angles into a delta function contribution to the Ricci scalar at the point
x ∼ x′. The above is the Euclidean version of the Gauss-Bonnet theorem, the analytically
continued version for almost Lorentzian metrics is given by (3.10) [140, 141]

1

2

∫ √
−gR = −2πiχ. (A.60)

1We thank Don Marolf for suggesting this construction.
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and we see that the effect of the jump angles is to cancel out the bulk volume contribution
as explained in section 3.2. The scalar curvature of the pair of pants is then given by

1

2

√
−g (R + 2) = (2πi+ α) δ2(x). (A.61)

where we have relabeled the sum of jump angles as just α. One way to see that the imaginary
delta function contribution appears after the identification of x ∼ x′ is to note that without
the Weyl factor in (A.58) this is the construction of the flat Lorentzian pants, where this
contribution can be explicitly evaluated[140]. We can also attach pant legs to the boundaries
b2 or b3 as follows. Consider a Lorentzian cylinder with two geodesic boundaries where one
boundary has a corner so that the geometry exists. We can glue the boundary with the
corner to the pants at b2 or b3 making sure the corner coincides with the point x ∼ x′. This
will give additional contributions to the α term, and gives Lorentzian pants with any desired
geodesic boundary lengths.

A.7 Details on punctured Riemann surfaces and

measures

In this section we include some additional details on punctured Riemann surfaces and on
the integration measure. A punctured surface Σ is defined by taking a compact surface Σ
of genus g and removing n distinct points Σ = Σ\{z1, . . . , zn}, after which Σ is no longer
compact and its Euler characteristic is given by χ(Σ) = 2 − 2g − n. When performing
an integral over a punctured surface the punctures do not contribute to the integral. The
moduli space of punctured Riemann surfaces can be constructed by considering equivalence
classes of singular Euclidean metrics on Σ [139]. We consider metrics that behave as

ds2 =
ci

|z − zi|2
dzdz̄ + . . . (A.62)

near the punctures at zi, where ci is some constant. We consider all such metrics related
by smooth Weyl transformations to be in the same conformal equivalence class. The set
of all such equivalence classes gives us the moduli space of punctured Riemann surfaces
Mg,n. In the literature it is also common to include additional singular metrics in the
conformal equivalence class[137, 149, 151], such as the lightcone diagram metrics described
in section 3.2. These metrics are related to other metrics in the equivalence class through
Weyl transformations that are singular at isolated points, see [44] for an explicit example at
genus zero.

The path integral over metrics on a genus g surface with n punctures was analyzed in
[138] and is given by∫

Dg
Vol

=

∫
Mg,n

[dm]
det ⟨µα, ϕβ⟩
det (ϕα, ϕβ)

1
2

(det P̂ †
1 P̂1)

1/2

∫
Dωe−26SL[ω,ĝ]. (A.63)
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Where on the left side Vol is the volume of the diffeomorphism group of the punctured
surface, and we have gauge fixed to a metric ĝ on the right. Compare this to equation
(3.29) in the main text2. In the above integral m is a coordinate on the moduli space and
(det P̂ †

1 P̂1)
1/2 comes from gauge fixing to the representative metric ĝ, and in total the above is

the integration measure for the moduli space Mg,n. For a detailed explanation of the various
determinants in the above measure see [138, 148, 149]. In the main text we introduced the
shorthand notation dµ for the integration measure for simplicity, we now define it in terms
of the above objects for easier comparison to the literature[138, 148, 149]∫

Mg,n

dµ ≡
∫
Mg,n

[dm]
det ⟨µα, ϕβ⟩
det (ϕα, ϕβ)

1
2

(det P̂ †
1 P̂1)

1/2. (A.64)

Gauge fixing to the lightcone metric ĝ, the various determinants in the above integral
were worked out in [138] (see equations (2.22) and (4.7-4.8) in [138], see also section V.G in
[149]). The product of determinants significantly simplifies, and we find the final result∫

Dg
Vol

=

∫
[dτ ][dθ][ρdρ]

2π det′(−∇̂2)∫
Σ
d2z

√
ĝ

∫
Dωe−26SL[ω,ĝ]. (A.65)

Compare this to equations (3.31) and (3.32). The prime on the determinant indicates that
we remove zero modes.

A.8 Supersymmetric Chern-Simons

In this section we include additional details on our conventions and onN = 1 supersymmetric
U(1) Chern Simons in the presence of a boundary, closely following [202, 203]. We first discuss
our conventions for Lorentzian signature supersymmetry. The gamma matrices satisfy the
standard algebra

{γµ, γν} = 2ηµν , γµγν = ηµν + γµν = ηµν − ϵµνργρ, (A.66)

(the first of the right equations is a definition for γµν and they are explicitly given by

γ1 =

(
0 −1
1 0

)
, γ2 =

(
0 1
1 0

)
, γ3 =

(
1 0
0 −1

)
. (A.67)

The metric takes the form ηµν = diag(−1, 1, 1), and the spacetime coordinates are xµ =
(x1, x2, x3) where x1 is the time component, while the boundary is located at x3 = 0. We will
use indicesm,n to indicate components restricted to the boundary xm = (x1, x2). All spinors
considered are Majorana λ

a ≡ Cabλb where C = −C⊺ is the charge conjugation matrix.

2Note that in (3.25) we are integrating over Mg instead of punctured surfaces Mg,n. The integration
measure slightly differs between the two cases, see section 3 of [138].
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Spinor indices are contracted top right to bottom left: λχ = λaχa, λγ
µχ = λa(γµ) b

a χb,
where the gamma matrices implicitly have the index structure (γµ) b

a . Spinor indices a, b are
raised and lowered with the antisymmetric charge conjugation matrix C: λa = Cabλb, which
is defined through CγµC−1 = −(γµ)⊺. We introduce projection operators P± = 1

2
(1 ± γ3)

and define fields χ± with P±χ = χ±, which projects onto the top or bottom component of
the spinor respectively.

N = (1, 0) Lorentzian Chern Simons

We first discuss the case of N = (1, 0) supersymmetric U(1) Chern Simons in the presence
of a boundary in Minkowski space. The action can be constructed through the use of spinor
superfields,3 including appropriate boundary terms it is given by [202, 203]

S
N=(1,0)
CS =

∫
M

d3x(ϵµνρAµ∂νAρ + λλ)− 1

2

∫
∂M

d2x
√
h(hmnAmAn + χ−γ

m∂mχ−). (A.68)

In the above λ, χ are Majorana fermions, with χ− = P−χ being a purely boundary fermion.
The dynamical boundary fermion χ− is unusual, and is required to cancel the boundary
terms produced by the susy variation. We also have the boundary metric hmn. The full susy
variations under ϵ are given by [202]

δAµ = −(ϵγµλ) + (ϵ∂µχ),

δλa = −ϵµνρ(γρϵ)a∂µAν , (A.69)

δχa = (γµϵ)aAµ.

However, the action (A.68) is only invariant up to a boundary term under a general variation
(see (A.86)). For the full action to be invariant we must restrict to variations ϵ+ = P+ϵ, which
means the supersymmetry is broken down to N = (1, 0) in the presence of the boundary.
This is true even without imposing any boundary conditions on the fields. The explicit susy
variations under ϵ+ are

δAµ = −(ϵ+γµλ) + (ϵ+∂µχ−),

δλa = −ϵµνρ(γρϵ+)a∂µAν , (A.70)

δχ− = (γmϵ+)Am,

and the action is invariant under this subset of transformations. Using the above, we can
obtain the following variations

δA− = ϵ+
(
2γ2λ+ + ∂−χ−

)
, (A.71)

δ
(
2γ2λ+ + ∂−χ−

)
= γ2ϵ+∂+A−. (A.72)

3The spinor superfield formalism includes an additional complex scalar that is the superpartner of χ,
but it does not end up contributing to the action. We exclude it below, but see [202].
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where we have defined the notation A± = A1 ± A2, ∂± = ∂1 ± ∂2 which is distinct from the
spinor ± projection notation and used γ1λ+ = γ2λ+. For a good variational principle, the
boundary conditions we impose are A− = 0 and 2γ2λ+ + ∂−χ− = 0 [202, 203]. We see that
the ϵ+ transformations leave these boundary conditions invariant. The boundary kinetic
term for χ− does not need to be cancelled for a good variational principle since it gives the
equations of motion. In the path integral with these boundary conditions the integral over
χ− is effectively not constrained since we also integrate over λ+, thus χ− is essentially a
free dynamical one-component boundary fermion. The integral over λ will give some overall
normalization constant since it is non-dynamical.

Similarly, we can construct an action with N = (0, 1) invariant under ϵ− transformations
by modifying the boundary term

S
N=(0,1)
CS =

∫
M

d3x(ϵµνρAµ∂νAρ + λλ) +
1

2

∫
∂M

d2x
√
g(gmnAmAn + χ+γ

m∂mχ+), (A.73)

where λ, χ+ are again Majorana fermions, and χ+ has been projected onto it’s top component.
In this case the variations under ϵ− are given by

δAµ = −(ϵ−γµλ) + (ϵ−∂µχ+),

δλa = −ϵµνρ(γρϵ−)a∂µAν , (A.74)

δχ+ = (γmϵ−)Am.

Which immediately gives us the variations

δA+ = ϵ−
(
−2γ2λ− + ∂+χ+

)
, (A.75)

δ
(
−2γ2λ− + ∂+χ+

)
= −γ2ϵ−∂−A+. (A.76)

Proper boundary conditions in this case correspond to A+ = 0 and −2γ2λ− + ∂+χ+ = 0
which are both preserved under ϵ− transformations. In the main text we defined a total
theory given by the difference of the above actions

S = S
N=(1,0)
CS − S

N=(0,1)
CS , (A.77)

so that the bulk theory has the full N = (1, 1) supersymmetry realized by different sectors.
Since χ−γ

m∂mχ+ = χ+γ
m∂mχ− = 0 the boundary fermion term for the above action can be

rewritten in a simple form ∫
∂M

d2xχγm∂mχ, (A.78)

which makes it clear that we have a dynamical 2d free fermion on the boundary. The
gauge fields do not interact with the fermions so the full path integral will simply be a
product of the Chern-Simons contribution and the fermion contribution. In each case, the
boundary fermions χ± are projected onto the top/bottom component and function as single
component spinors, so individually their partition functions will contribute a determinant of
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either a holomorphic or anti-holomorphic derivative after analytic continuation to Euclidean
signature.

There is one additional subtlety to address, the above theories were defined on a flat
background. However, for our purposes we are interested in supersymmetric Chern-Simons
on a manifold with an asymptotic boundary torus. In general such manifolds do not admit
flat metrics, so we need to consider the theory on a curved background [218]. While Chern-
Simons is itself background independent, the supersymmetric version depends on a choice of
background metric g through the quadratic bulk fermion term. Ignoring the boundary term,
the action is of the form

S =

∫
M

d3x(ϵµνρAµ∂νAρ +
√
g λλ). (A.79)

However, the metric dependence is quite mild since the fermion is non-dynamical, and it
produces an overall normalization for the partition function. Nevertheless, to preserve su-
persymmetry we need to choose a bulk metric g that satisfies the killing spinor equations.
The end result is that the supersymmetry transformations will mildly depend on the back-
ground metric [218]. In the case of bulk handlebodies we can choose g to be given by the
corresponding AdS3 metric [219] and supersymmetry will be preserved, but for more general
three-manifolds that appear when considering wormhole geometries little is known.

Details of the variations.

In this subsection we include additional details details4 on the variation of the supersymmetic
Chern-Simons action in equation (A.68). For convenience we split the action into a bulk and
boundary piece

S =

∫
M

d3x
(
ϵµνρAµ∂νAρ + λλ

)
, (A.80)

S∂ = −1

2

∫
∂M

d2x
(
AmAm + χ−γ

m∂mχ−
)
. (A.81)

Where we used hmn = diag (−1, 1), where Latin indices m,n are again boundary indices and
take values in {1, 2}. Varying with the full supersymmetric variations (A.69) we find

δS = 2

∫
M

d3xϵµνρ∂νAρ (−ϵγµλ+ ϵ∂µχ) +

∫
∂M

d2xϵ3mnAm (−ϵγnλ+ ϵ∂nχ) (A.82)

+ 2

∫
M

d3xϵµνρ∂νAρ (ϵγµλ) . (A.83)

4Some useful identities include λχ = χλ, λγµϵ = −ϵγµλ, and since the spinors are Majorana we have

λ
a
χa = Cabλbχa.
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The second line cancels the first term, and we can rewrite the remaining bulk term as a
boundary term to obtain

δS = −
∫
∂M

d2xϵ3nmAn (ϵγmλ+ ϵ∂mχ) . (A.84)

The variation of the boundary term gives

δS∂ =

∫
∂M

d2x
(
Am (ϵγmλ− ϵ∂mχ) +

(
∂mχ−ϵA

m − ∂mχ−ϵ
mµργρϵAµ

))
. (A.85)

The variation of the full action (A.68) is thus a total boundary term

δS
N=(1,0)
CS =

∫
∂M

d2x
(
−ϵ3nmAn (ϵ∂mχ+ ϵγmλ) + Am

(
∂mχ−ϵ

)
− ϵmµνAµ

(
∂mχ−γνϵ

))
+

∫
∂M

d2xAm (ϵγmλ− ϵ∂mχ) . (A.86)

Now we specialize to P+ϵ = ϵ+ variations. We immediately have the following cancellations.
The third term cancels the last term since χ−ϵ+ = ϵ+χ, while the first term is cancelled by
fourth term since in the fourth term only χ−γ3ϵ+ = χ−ϵ+ survives. Finally, the second term
cancels the fifth term since we have ϵ3nmγm = γ3γn and ϵ±γ

3 = ∓ϵ± due to the factor of the
charge conjugation matrix C in ϵ. Note again that no special choice of boundary conditions
was needed to make the action invariant under ϵ+ variations.

The variation of the N = (0, 1) supersymmetric Chern-Simons action under ϵ− works
similarly, and we obtain

δS
N=(0,1)
CS =

∫
∂M

d2x
(
−ϵ3nmAn (ϵ∂mχ+ ϵγmλ)− Am

(
∂mχ+ϵ

)
+ ϵmµνAµ

(
∂mχ+γνϵ

))
+

∫
∂M

d2xAm (−ϵγmλ+ ϵ∂mχ) . (A.87)

Specializing to P−ϵ = ϵ− variations we again find that all the boundary terms cancel in a
similar way as in (A.86).
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