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Patient-derived models of IDH1-mutant, hypermutated glioma 

Lindsey Elise Jones 

ABSTRACT 

Gliomas are a group of central nervous system tumors that are classified based upon 

histopathological and molecular features. IDH-mutant low-grade gliomas (LGG) are 

prognostically favorable tumors and are often treated with temozolomide, but can undergo 

malignant progression via TMZ-induced hypermutation. Cell cultures that faithfully model this 

genetically distinct and clinically relevant hypermutated (HM) tumor subgroup are lacking, and 

are necessary to advance our understanding of HM tumors. We established patient-derived cell 

culture and xenograft models of HM oligodendroglioma and astrocytoma that faithfully 

recapitulate the molecular and functional features observed in their tumor of origin. We 

thoroughly characterized these cell lines and established that they are suitable for studying HM 

glioma, IDH-driven phenotypes, TERT promoter- and alternative lengthening of telomeres-

driven cellular immortality, therapy-driven evolution, and intratumoral heterogeneity. These 

models have been widely shared with the neuro-oncology community and accelerated 

research at institutions across the United States. 
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1.1 GLIOMA AND ITS CLASSIFICATION 

Gliomas comprise about 30% of central nervous system tumors, originate from glial 

cells, and occur in the brain or spinal cord. Gliomas are further classified based upon 

histological features that they share with normal glial cells (astrocytes, oligodendrocytes, and 

ependymal cells), and include astrocytoma, oligodendroglioma, or ependymoma. Traditionally, 

glioma subtypes were determined only by histopathological analysis, but revised World Health 

Organization (WHO) guidelines in 2016 incorporated the use of molecular markers (1). Gliomas 

are further stratified, or graded, by histopathological evaluation for cellularity, mitotic activity, 

nuclear pleomorphism, microvascular proliferation, and necrosis. They are graded I to IV, with 

increasing grade being associated with a greater number of aggressive features. Molecular 

subtype and grade are often associated with patient survival, treatment response, and 

malignant potential (2). 

 

1.1.i Diffuse oligodendroglioma and astrocytoma 

Low-grade (WHO grade II), or diffuse oligodendroglioma and astrocytomas are slow 

growing, infiltrative tumors that typically occur in the cerebrum, and often in the frontal lobe, of 

adults (3, 4). Histologically, they are characterized by nuclear atypia of oligodendrocyte-like or 

astrocyte-like cells. Molecularly, they are characterized by point mutations in isocitrate 

dehydrogenase 1 (IDH1) or isocitrate dehydrogenase 2 (IDH2) (5). 80-90% of LGG harbor a 

heterozygous point mutation in IDH1 that yields an amino acid change at the 132nd position 

from an arginine to a histidine (R132H), while 10-20% will harbor other IDH1 or IDH2 mutation 

(6). IDH-mutant tumors have a significantly better prognosis than IDH-wt tumors (7-9). 

Diffuse oligodendroglioma is molecularly characterized by 1p and 19q chromosomal 

arm co-deletions (1p/19q codel), which likely occurs as a single translocation event (10, 11). 

Studies to identify potential tumor suppressor genes on these chromosomal regions have 

found mutations in capicua transcriptional repressor (CIC) and far upstream element binding 
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protein 1 (FUBP1), which are located on 19q and 1p, respectively (5, 12, 13). But, they are only 

mutated in about 50-70% and 15-30% of oligodendrogliomas, respectively, and their role(s) in 

gliomagenesis and/or tumor maintenance are not yet clear. These tumors often present with 

mutation of the telomerase reverse transcriptase (TERT) promoter (TERTp-mutant), which 

increases TERT expression and allows tumor cells to escape replicative senescence (8, 14). 

Diffuse astrocytoma is molecularly characterized as 1p/19q intact. It often harbors loss 

of alpha-thalassemia/mental retardation, X-linked (ATRX) (15), which is associated with the 

alternative lengthening of telomeres (ALT) phenotype, and allows for cellular immortality (16). 

Mutation of tumor protein 53 (TP53), a well-established tumor suppressor gene, occurs in 94% 

of WHO grade II astrocytomas that have IDH and ATRX mutations (17, 18). 

 

1.1.ii Anaplastic astrocytoma and oligodendroglioma, glioblastoma 

Anaplastic (WHO grade III) oligodendroglioma and astrocytoma share the molecular 

alterations of WHO grade II glioma, but histologically demonstrate increased mitotic activity. 

About 4500 patients are diagnosed with grade II or grade III oligodendroglioma or astrocytoma 

annually (19), which we collectively refer to as lower-grade glioma (LGG). Despite clinical 

intervention, which is discussed below, glioma is a disease that recurs. The time to recurrence 

is highly variable, and some LGG can recur as a low-grade tumor, while others undergo 

malignant progression and recur as a higher-grade tumor (20). The frequency of malignant 

progression is variable, and has been reported to range from 17-73% (21). Malignant 

progression is associated with activation of MYC and RTK-RAS-PI3K pathways (22) and 

marked by activation of cell cycle and proliferation (23). 

High-grade glioma, or WHO grade IV astrocytoma, consists of two distinct disease 

entities. WHO grade IV IDH-mutant glioblastoma (GBM), or secondary GBM, is an aggressive 

tumor that evolves from grade II or grade III astrocytoma. Primary GBM, also WHO grade IV, is 
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a distinct tumor entity, is typically IDH wt, has unique molecular alterations, is fast-growing, and 

is associated with poor survival (24). 

 

1.2 ISOCITRATE DEHYDROGENASE 

Mutation of IDH1 or IDH2 is a key molecular alteration in LGG; it is the earliest known 

event in gliomagenesis (7, 25, 26). IDH mutation was first identified in primary GBM, but now 

defines LGG. IDH mutations are missense point mutations, heterozygous, and the majority 

occur at IDH1 R132H (25). Mutant IDH1 R132H can be identified with immunohistochemical 

(IHC) staining of surgical specimens. Suspected LGG that are negative for IDH1 R132H IHC 

should have sequencing of IDH1 codon 132 and IDH2 codon 172 performed, as IDH status is 

important for clinical stratification. 

Normal IDH1 or IDH2 protein forms a homodimer and functions to convert isocitrate to 

α-ketoglutarate. In cancers like glioma and leukemia, mutant IDH1 or IDH2 will form a 

heterodimer with its wt counterpart, where it will still convert isocitrate to α-ketoglutarate, but 

subsequently converts α-ketoglutarate to 2-hydroxyglutarate (2-HG) (27, 28). 2-HG is a 

competitive inhibitor of α-ketoglutarate-dependent dioxygenases (29), which includes the TET 

family of enzymes that are important in DNA demethylation (30). Inhibition of demethylation 

leads to epigenetic disregulation (31), which in IDH-mutant glioma leads to a CpG island 

methylator phenotype, or G-CIMP (32, 33). G-CIMP gliomas have greater progression-free and 

overall survival than their IDH wt counterparts (34-37). In addition to increased DNA 

methylation, 2-HG impairs histone demethylation in glioma, which can block cellular 

differentiation (38), and dysregulate insulators, leading to oncogene activation (39).  

Since IDH mutation is the earliest event in gliomagenesis, it is an attractive therapeutic 

target. Mutant IDH inhibitors have been developed that block 2-HG production and delay 

growth of glioma cells in vitro (40). 2-HG induces a homologous recombination defect that 

yields cells sensitive to PARP inhibitors, suggesting that the FDA-approved PARP inhibitor 
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olaparib may have clinical utility in glioma (41). Additionally, 2-HG inhibits ALKBH-mediated 

DNA repair, which sensitizes cells to alkylating agents (42). 

 

1.3 TREATMENT OF LOWER-GRADE GLIOMA 

1.3.i Surgery 

The first line of treatment for LGG is often surgery, which aims to increase survival, 

improve quality of life, and obtain tissue for diagnosis. Randomized trials evaluating benefits of 

extensive surgery are lacking, but total or near-total resection is associated with better 

outcomes (43-47). Intraoperative functional mapping (48) and imaging techniques like 

intraoperative MRI (49, 50) and aminolevulinic acid (5-ALA) fluorescence-guided surgery (51) 

can help achieve safe total or near-total resections. Surgery is frequently followed by 

chemotherapy (52), or for patients who are “high risk” (age greater than 40, subtotal resection 

or biopsy only), chemoradiotherapy (53, 54).  

 

1.3.ii Chemotherapy 

PCV (procarbazine, lomustine (CCNU), and vincristine) and temozolomide (TMZ) are 

often used to treat LGG, despite that most of the evidence for their clinical utility has come from 

studies in anaplastic tumors, recurrent tumors, or primary GBM. PCV has been proven 

effective in anaplastic oligodendrogliomas (55, 56). The benefit of TMZ was first shown to 

improve survival in GBM conjunction with radiotherapy (57), and has recently been reported to 

have a survival benefit in newly diagnosed anaplastic astrocytoma (58). TMZ is well-tolerated 

by patients (54, 59), and therefore has been adopted to treat primary LGG. 1p/19q co-deleted 

oligodendrogliomas in particular see pronounced survival benefit with chemotherapy treatment 

(56, 60). 
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1.3.iii Radiotherapy 

The administration of radiotherapy is associated with an increase in progression-free 

survival (PFS) (61). Although the ideal dose of radiotherapy has not yet been established for 

LGG, 50.4 Gy are typically given in fractions of 1.8 Gy, with fewer side effects observed at 

lower dosage (62, 63). The potential long overall survival (OS) of LGG patients raises concerns 

about possible radiation-associated cognitive defects. 

 

1.4 TEMOZOLOMIDE-INDUCED HYPERMUTATION 

1.4.i Mechanism of cytotoxicity 

TMZ introduces methyl adducts onto guanine (G), and methylation at the O6 position 

(O6-meG) is the adduct most associated with cytotoxicity (64, 65). The suicide protein methyl 

guanine methyl transferase (MGMT) can directly remove O6-meG, but is degraded in the 

process. Methylation of the MGMT promoter, which leads to decreased MGMT expression (66, 

67) and subsequent persistence of O6-meG adducts, is associated with increased OS of GBM 

patients treated with chemoradiotherapy with alkylating agents like TMZ (68-70). O6-meG 

causes a mispairing of guanine with thymine (T), which is recognized by the DNA mismatch 

repair (MMR) machinery. The MMR system repairs the T, but leaves behind the O6-meG 

lesions, which allows the O6-meG to mispair with T again. This causes futile cycling of MMR, 

double-strand DNA breaks, and ultimately, cytotoxicity (71, 72). 

 

1.4.ii Loss of mismatch repair 

 Loss of MMR is known to contribute to chemoresistance in many cancer types, 

including hereditary nonpolyposis colon cancer (73) and GBM (74, 75), and has been reported 

to confer chemoresistance in cancer cell lines (76, 77). MMR deficiency can arise from somatic 

tumor mutations (78) and during treatment with alkylating therapy like TMZ (79, 80). MMR 

deficiency is associated with a mutator phenotype (81-83). In TMZ treatment, loss of MMR 
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leads to loss of cytotoxicity (73) and accumulation of G:C>A:T nucleotide transitions in the 

genome (84). 

 

1.4.iii A signature of temozolomide-induced hypermutation 

A hypermutator signature of G:C>A:T nucleotide transitions has been reported before in 

TMZ-treated GBM and cells (80, 85-88). We and others (7, 89, 90) have shown that treatment 

of LGG with TMZ can lead to TMZ-induced mutations in MMR genes, MMR deficiency, and 

subsequent TMZ-induced hypermutation. TMZ-induced hypermutation is accompanied by 

increased MGMT promoter methylation (79), mutations in phosphoinositide 3-kinase (PI3K) 

and protein kinase B (AKT) and retinoblastoma (RB) pathway genes, and malignant 

progression to a higher-grade tumor. Hypermutated (HM) tumors represent a unique clinical 

entity that currently lacks a standard of care. Understanding the evolution of TMZ-induced 

hypermutation and identifying therapies for patients with HM tumors is a key next step, for 

which experimental models of LGG are needed. 

 

1.5 EXPERIMENTAL MODELING OF LOWER-GRADE GLIOMA 

1.5.i Engineered cell models 

Normal human astrocytes have been modified to express E6 and E7 viral oncoproteins 

(NHA/E6/E7), which inactivate p53 and pRB, respectively (91, 92), and will form intracranial 

tumors when hTERT is overexpressed (NHA/E6/E7/hTERT) (93). Overexpression of IDH1 

R132H in the NHA/E6/E7 model yields 2-HG production (94) and an anaplastic astrocytoma-

like model (95), which currently serves as one of the best engineered cell models of LGG. 

However, these cells lack ATRX mutation, a key diagnostic molecular feature of diffuse and 

anaplastic astrocytoma. Additionally, overexpression of mutant IDH1 in NHA/E6/E7IDH1 

R132H cells does not model the 1:1 ratio of mutant IDH1 to wt IDH1 in most glioma patients. 
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We have shown that allelic imbalance of mutant and wt IDH1 can lead to epigenetic 

reprograming in glioma patients (96). 

1.5.ii Mouse models 

Murine models of LGG are limited and often do not involve key diagnostic molecular 

alterations or driver mutations. Chemical methods to induce glioma have yielded GBM-like 

glioma through transplacental delivery of ethyl-nitrosourea in p53-null mice (97). Similarly, 

intracranial injection of 3-methylcholantrene yields a GBM-like glioma, which has produced the 

derivative mouse glioma model GI26 (98). While glial fibrillary acidic protein (GFAP)-controlled 

expression of v-src kinase in mice can produce early lesions that appear low-grade 

astrocytoma-like, later tumors histologically mimic GBM (99). Overexpression of epidermal 

growth factor receptor (EGFR) by S100 control of v-erbB, which transforms EGFR, was found 

to yield oligodendroglioma-like tumors (100), but this model lacks key IDH and TERTp 

mutations. Interestingly, transgenic expression of mutant IDH causes death in mice shortly 

after birth (101), but will form tumors when virally delivered to mice with a genetic background 

lacking cyclin dependent kinase inhibitor 2A (Cdkn2a), phosphate and tensin homolog (Pten), 

and Atrx (102). Additionally, no cases of sporadic, IDH-mutant murine glioma have been 

reported (103). Therefore, no genetic models of murine glioma currently capture the key 

molecular alterations of human LGG. 

 

1.5.iii Patient-derived lines and patient-derived xenografts 

Subsequently, patient-derived cell lines (PDLs) and patient-derived xenograft (PDX) 

models can be used to better model the molecular alterations and expression patterns seen in 

human tumors (104). The first successful brain tumor PDLs were established as neurospheres, 

a culturing system that was originally established to culture primary neural stem cells (105, 

106). Glioma neural stem cell cultures, or GNS cultures, utilize serum-free culture conditions 

and can be grown either in suspension or adherently. Adherent cultures are experimentally 
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more tractable than their suspension culture counterparts, and have been shown to be 

equivalent in their retention of parental tumor features (107). PDLs can also be established in 

serum-containing cultures, but the media in which glioma PDLs are established matters; 

evidence is growing that PDLs derived in serum-free conditions better model their parental 

tumors than those derived in serum (108). 

These PDLs can be injected heterotopically into the flank or orthotopically into the 

cranium of immunocompromised animals to establish PDXs (109). PDXs are ideal for the study 

of glioma because they retain the key molecular alterations of their parent tumors, like PDLs, 

but better recapitulate three-dimensional tumor growth, interaction with normal cell types, and 

can be used for pre-clinical drug screening. They are, however, difficult and timely to establish.  

Ideally, IDH-mutant glioma would be studied through PDLs and PDXs, but IDH-mutant 

PDLs and PDXs have historically been difficult to establish, likely owing to the growth-inhibitory 

effects of 2-HG. Attempts to derive IDH-mutant PDLs are often accompanied by reports of loss 

of the mutant or wt allele (110, 111), which hampers studies of IDH-associated phenotypes in 

vivo. Similarly, models are needed to study the distinct and clinically-relevant tumor subtype of 

HM glioma. Some HM glioma PDLs exist, but none have been published that maintain 

heterozygous IDH mutation and include broad genomic characterization (5, 112, 113). 

 

1.6 RESEARCH PURPOSE 

In order to better understand TMZ-induced hypermutation in IDH-mutant LGG, we need 

well-characterized experimental models that faithfully recapitulate the molecular, functional, 

and evolutionary features of patient tumors. We sought to meet this need through establishing 

and characterizing PDLs and PDXs from patients originally diagnosed with LGG who were 

treated with TMZ and were undergoing operation on a recurrent tumor. 
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CHAPTER 2: PATIENT-DERIVED CELL CULTURES OF IDH1-MUTANT, HYPERMUTATED 

GLIOMA THAT MODEL THE INTRATUMORAL HETEROGENEITY AND FUNCTIONAL 
FEATURES OF THEIR ORIGINATING TUMORS  
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2.1 ABSTRACT 

IDH-mutant low-grade gliomas (LGG) are prognostically favorable tumors but can 

undergo malignant progression via temozolomide (TMZ)-treatment associated hypermutation. 

Patient-derived cell lines (PDLs) that model this genetically distinct and clinically relevant 

hypermutated (HM) tumor subgroup are lacking. Here, we established and characterized three 

PDLs and a total of 9 PDL single-cell derived subclones (scPDLs) of post-treatment surgical 

specimens from two patients originally diagnosed with lower-grade IDH-mutant glioma, 

including an ATRX and TP53-mutant HM glioma (astrocytoma), and a TERT promoter-mutant, 

1p/19q co-deleted HM glioma (oligodendroglioma). We used exome sequencing of the PDLs, 

parent tumor tissue, xenografts, and blood DNA to elucidate the intratumoral heterogeneity 

(ITH) and therapy-driven evolution of these models. These models maintained their subtype-

defining features over many passages, including retention of the heterozygous IDH1 R132H 

mutation and sustained production of 2-hydroxyglutarate (2-HG), highlighting their utility for 

investigating mutant IDH-driven phenotypes. The mutually exclusive mechanisms of telomere 

maintenance were also retained in the respective PDLs, including a TERT promoter mutation in 

the oligodendroglioma PDL, and ATRX mutation and the alternative lengthening of telomeres 

(ALT) phenotype in the astrocytoma PDLs. The PDLs exhibited the mutational signature of 

TMZ-induced mutagenesis, and represent the ITH of their originating HM tumors. To further 

examine the potential of the PDLs for modeling ITH, a critical feature underlying therapeutic 

failures, scPDL were sequenced, revealing branching evolution within the PDLs. PDLs 

exhibited anchorage-independent growth in soft agar, highlighting their utility for drug 

screening. The oligodendroglioma-derived PDL formed infiltrative, intracranial tumors with 

characteristic oligodendroglioma histology, with a relatively long period to tumor formation, 

which mirrors tumor behavior in patients. These self-renewing PDLs and scPDLs faithfully 

represent the genotype and function of the originating HM tumor tissue, while providing new 
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insight into the unprecedented mutational load and ITH of HM glioma. These PDLs may also 

serve as models to discover new therapies to prevent, delay, or treat IDH1-mutant HM glioma. 

2.2 INTRODUCTION 

Low-grade (WHO grade II) and anaplastic (WHO grade III) gliomas are relatively slow 

growing, infiltrative tumors that typically occur in the cerebrum of adults (collectively referred to 

as lower-grade glioma, or LGG). They are classified as astrocytoma or oligodendroglioma by 

histology and molecular markers (1), with oligodendrogliomas harboring mutation of IDH1 or 

IDH2 (IDH-mutant) and co-deletion of chromosomal 1p and 19q arms (5), while astrocytomas 

harbor IDH mutation, are 1p/19q intact, and often have ATRX loss and TP53 mutation. 

Typically, LGG are treated with surgical resection followed by chemotherapy (52), but patients 

considered “high risk” with an age greater than 40 or subtotal resection or biopsy only will 

receive chemoradiotherapy (53, 54), most commonly with temozolomide (TMZ). Despite clinical 

intervention, glioma is a disease that recurs (21). The time to recurrence can be highly variable, 

and some LGG may recur as a low-grade tumor, while others may undergo malignant 

progression and recur as a higher-grade tumor (20). 

 We and others have shown that TMZ-treated LGG can undergo hypermutation after 

treatment (22, 89, 90, 114). Chemotherapy-associated hypermutation in LGG and HGG is 

characterized by an increased mutational burden, and is often accompanied by mismatch 

repair (MMR) deficiency (80, 83, 86, 87, 115, 116). Hypermutation in LGG is characterized by 

mutations in MMR and PI3K-AKT-mTOR signaling genes and is dominated by C:G>A:T 

nucleotide transitions (89). Hypermutation has also been reported in post-treatment primary 

glioblastoma (GBM) (87). Our findings have informed the design of a clinical trial 

(NCT02023905) to address hypermutation in LGG, which highlights the need for clinical 

strategies to study hypermutation and post-treatment glioma. Hypermutated (HM) tumors 

demonstrate intratumoral heterogeneity (ITH), which is a critical feature that underlies 
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therapeutic failure. Additionally, HM tumors have been shown to be good candidates for 

successful immunotherapies due to increased candidate neoantigenic targets. 

 Increasing attention is being drawn to the necessity to thoroughly and longitudinally 

characterize in vitro and in vivo cancer models (117, 118). At least two HM glioma PDLs have 

been reported that maintain heterozygous IDH mutation, though without broad genomic 

characterization. Kelly et al. established a 1p/19q co-deleted cell line, BT-088, that was IDH 

wildtype (wt) and resistant to chemotherapy (112). In 2012, Yip et al. performed whole-genome 

sequencing on BT-088, showing it to be hypermutated (5). Wakimoto et al. established seven 

xenografts with heterozygous IDH1 mutation that maintained 2-HG production through serial 

xenografting (113). Of these seven IDH-mutant xenografts, three were treated with TMZ, and 

two acquired tertiary mutations, suggesting that they might be HM, but were only evaluated for 

select oncogenic mutations. Some of these PDLs have been used in additional studies by this 

group, but have been best metabolically characterized (119, 120). 

 In this study, we provide in-depth genomic and functional characterization of self-

renewing PDL and PDX models of IDH1-mutant HM glioma, and further elucidate the 

evolutionary and therapy-driven features of these genetically distinct but poorly characterized 

and tumors. We established three IDH1-mutant, HM glioma PDLs from two post-treatment 

surgical specimens – two lines (SF10602 GNS and SF10602 FBS) from an ATRX- and TP53-

mutant, HM astrocytoma patient (P137), and one (SF10417 GNS) from a TERT promoter 

(TERTp)-mutant, 1p/19q co-deleted, HM oligodendroglioma patient (P278). 

 

2.3 RESULTS 

2.3.i Patient characteristics and clinical histories 

Tissue for P137 was acquired from the second recurrence of a female originally 

diagnosed with a grade III astrocytoma. The patient received two rounds of TMZ before this 

second recurrence – one round after surgical resection of the primary tumor, and one round 
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after surgical resection of the first recurrence (Fig 2.1a). Tissue for P278 was acquired from the 

third recurrence of a male patient initially diagnosed with a grade II oligodendroglioma. This 

patient received two rounds of TMZ before this third recurrence – one round prior to resection 

of the first recurrence, and one prior to resection of the second recurrence (Fig 2.1d). PDLs 

were successfully established in GNS and FBS conditions from P137 tissue, while P278 tissue 

yielded a GNS culture. 

 

2.3.ii Patient-derived cell lines faithfully capture and model hypermutated oligodendroglioma 

and astrocytoma biology 

Exome libraries prepared from P137 and P278 tumor, blood (normal), PDL, scPDL, and 

xenograft samples all had coverage of greater than 83X (Table 2.1). Exome sequencing 

revealed all P137 tumor samples had mutations in IDH1, ATRX, and TP53, and all SF10602 

samples to be HM. For this patient, SF10602 GNS (SF10602 GNS P4) was found to be a 

mixture of two subclones, and was split into two groups based on evidence of shared 

mutations with the culture adjacent (CA, SF10602 CA) or SF10602 FBS (SF10602 FBS P2) 

samples. The two distinct populations of SF10602 GNS P4, SF10602 GNS P4-1, and SF10602 

GNS P4-2, and SF10602 FBS cultures had 2276, 2351, and 2925 mutations, respectively, and 

phylogenetic analysis revealed that these cell lines represented independent hypermutation 

events compared to each other and to spatially distinct and adjacent uncultured tissue (Fig 

2.1b). Comparison of mutational profiles suggests that a subclone of SF10602 GNS was 

selected during additional passages in culture and luciferase modification (SF10602 LUC-GNS 

P17), but was related to other single-cell clones derived from SF10602 GNS P21 (clones 8, 20, 

2, 17, and 10). The first recurrence of P137, SF10071, which was post-TMZ treatment, was not 

HM, but did demonstrate some intratumoral heterogeneity (Fig 2.1c). An additional IDH1-
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mutant cell line was derived from the first recurrence of this tumor (SF10071 GNS P9) and 

subjected to exome sequencing, but was not further characterized. 

HM P137 SF10602 samples acquired TMZ-associated C:G>A:T nucleotide transitions 

in MMR and PI3K pathway genes, supporting previous reports of other TMZ-treated, HM 

patients. These mutations led to a dominant mutational signature 11 (Fig 2.2a), which is 

associated with TMZ (121), and a sub-signature 6 in the FBS line and parental tumor (SF10602 

v1), which is associated with MMR deficiency. HM SF10602 samples also had sub-signature 

15, which is also associated with MMR deficiency. P137 SF10071, which was not HM, did not 

show evidence of signatures 11 or 6. Instead, it had a strong mutational signature 1A, which is 

associated with patient age and spontaneous deamination of 5-methyl cytosine. 

P278’s PDL, SF10417 GNS P5, was HM with 5692 mutations. 3967 of these mutations 

are shared with three spatially distinct pieces of the tumor (SF10417 Cy, SF10417 Y, and 

SF10417) that were also HM (Fig 2.1e). SF9818 was an independent hypermutation event with 

1599 mutations. A subclone was selected through culture time and luciferase modification 

(SF10417 LUC-GNS P33), but was closely related to single-cell clones derived from SF10417 

GNS P22 (clones 24, 36, 8, and 20). SF10417 GNS yielded intracranial tumors in nude mice, 

and further evolved in vivo (SF10417 Xeno). A cell line was derived from this mouse tumor 

(SF10417 Xeno-GNS P6) and was genetically similar to its tumor of origin. All P278 tumor 

samples harbored 1p/19q co-deletion and mutations in IDH1, TERTp, CIC, and FUBP1 (Table 

S3). 

HM SF10417 samples from P278 also acquired TMZ-associated C:G>A:T nucleotide 

transitions in mismatch repair (MMR) and PI3K pathway genes, and as a result, had a 

dominant mutational signature 11 and sub-signature 6 (Fig 2.2b). Signature 6 was not seen in 

all samples, including the independent hypermutation event in Recurrence 2. The HM samples 

from this patient with the greatest mutational burdens were close to each other on the 

phylogenetic tree and had sub-signature 1A. TMZ-associated mutational signature data from 
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both patients show that, despite divergence between some samples, all cell lines we 

established were clones that captured the mutational processes driving tumor evolution in the 

patient of origin. 

2.3.iii Patient-derived cell lines faithfully model canonical drivers. 

Despite the complex evolution of these tumors, their derivative PDLs retained canonical 

drivers. SF10602 GNS, SF10602 FBS, and SF10417 GNS maintained heterozygous IDH1 

R132H through culture time and produced 2-HG (Fig. 2.3). While 2-HG production dropped 

over the course of passage time, it was still produced at late passages. 

ATRX-mutant SF10602 GNS and SF10602 FBS were positive for C-circle amplification 

upon the addition of polymerase Φ29 across multiple passages, while ATRX-intact SF10417 

GNS was negative for C-circles (Fig. 2.4a). This is consistent with ATRX loss leading to 

alternative lengthening of telomeres (ALT). The quantity of C-circles increased in SF10602 

PDLs through serial culture (Fig 2.4b). UMUC3, an ALT-negative human bladder transitional 

cell carcinoma cell line, did not show C-circle amplification. U2OS, an ALT-positive human 

osteosarcoma cell line, demonstrated C-circle amplification. Additionally, SF10602 GNS and 

SF10602 FBS showed heterogeneous telomere length as measured by telomere restriction 

fragment analysis (Fig. 2.4c). ALT-negative and TERTp-mutant UMUC3 SF10417 GNS had 

telomeres ranging from ~2-6 kb, consistent with TERTp mutations causing maintenance of 

critically short telomeres, while ALT-positive U2OS, SF10602 GNS, and SF10602 FBS had an 

accumulation of telomeres at 18.8 kb accompanied by a wide length distribution. 

All cell lines demonstrated anchorage-independent growth, which is a key hallmark of 

transformed cell lines that is not always retained patient-derived cultures (Fig 2.5). 

 



 17 

2.3.iv SF10417 GNS forms orthotopic tumors in nude mice 

SF10417 luciferase-modified GNS cells orthotopically implanted into nude mice yielded 

infiltrative tumors in four of nine mice, which recapitulated human oligodendroglioma histology 

(Fig 2.6 a and b), and maintained IDH1 R132H expression, as measured by IHC on formalin-

fixed, paraffin-embedded tissue (Fig 2.6c). A cell line was derived from the tumor shown in Fig 

2.6 a-c, and was re-implanted orthotopically into mice. Serial xenografts also formed tumors in 

three of nine mice that modeled human tumor histological features and expressed IDH1 

R132H, but showed a slightly less infiltrative growth pattern (Fig 2.6d-f). 

In one serial xenograft case, a change in histology was observed in part of the tumor 

(Fig 2.6g), with oligodendroglioma histology (left panel) shifting to one with prominent 

anaplastic features with marked nuclear pleomorphism, macronuclei, and mitotic figures (right 

panel). This change was accompanied by loss of IDH1 R132H (Fig 2.6h). We have reported on 

IDH1 allelic imbalance upon recurrence in human tumors (96). 

Both in vivo passages of luciferase-modified SF10417 GNS formed luminescent 

tumors, as measured with in vivo bioluminescent imaging (Fig 2.6 i and j). The first in vivo 

passage of SF10417 GNS had a very long and variable time-to-endpoint, which mimics the 

slow progression of LGG in patients. Over the course of serial xenografts, the time-to-endpoint 

was cut to nearly a third, with three of nine mice presenting with tumors (Fig 2.6k). 

2.4 DISCUSSION 

Here, we successfully derived and characterized three PDLs that maintain diagnostic 

molecular features and key oncogenic drivers of astrocytoma and oligodendroglioma. These 

HM PDLs were derived from recurrent, post-TMZ tumors, and show key genetic alterations 

associated with HM (89), such as high mutation burden, C:G>A:T nucleotide transitions in 

MMR and PI3K pathway genes, and a TMZ-associated mutational signature. The evidence of 

mutational signature 11 in the PDLs demonstrates that the differences between samples is a 
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result of subclonal dynamics and in vivo and in vivo selection, and that mutations observed in 

these cell lines originated in the patient. These PDLs and SF10417 xenografts provide 

opportunities to explore how HM tumors evolve under selective pressure, and to elucidate 

neoantigens associated with HM that could serve as novel immunotherapy targets. 

Similarly, mutation of IDH1, particularly at codon 132 in IDH1, is likely the earliest 

genetic event in the development of low-grade glioma (122), and IDH1 R132H leads to the 

production of 2-HG (123). We know that 2-HG inhibits α-ketoglutarate-dependent 

dioxygenases, like TET enzymes (29), and leads to a global increase in DNA methylation 

called G-CIMP (glioma CpG island methylator phenotype) (32, 33). But, we still do not fully 

understand how IDH mutation and 2-HG production contributes to gliomagenesis, tumor 

maintenance, and/or response to targeted therapies. Our PDLs maintain heterozygous IDH1 

R132H through months of in vitro culturing, despite many reports of primary glioma lines losing 

IDH1 wt or mutant alleles in vitro and in vivo (111, 113), or being unable to grow in vitro (110), 

and produce 2-HG. Serial xenografts of SF10417 GNS may provide a way to study allelic 

imbalance of IDH upon recurrence, which has implications for success of targeted therapies.  

Additionally, these PDLs provide models in which to study telomerase- and ALT-

mediated mechanism of cellular immortality, which are relevant to many cancer types and of 

interest to target therapeutically. These cell lines are invaluable resources to the brain tumor 

research community, and have already contributed to advancing the work of others (124-126).  



 19 

 

2.5 TABLES 
 
Table 2.1. Coverage of samples evaluated by exome sequencing. 
Sample Coverage 
P278 Normal 98 
P278 Recurrence 2 98 
P278 Recurrence 3 Y 91 
P278 Recurrence 3 Cy 98 
P278 Recurrence 3 103 
P278 Recurrence 3 GNS P5 102 
P278 Recurrence 3 LUC-GNS P33 130 
P278 Recurrence 3 Xeno 199 
P278 Recurrence 3 Xeno-GNS P6 202 
P278 Recurrence 3 GNS Clone 8 97 
P278 Recurrence 3 GNS Clone 20 100 
P278 Recurrence 3 GNS Clone 24 88 
P278 Recurrence 3 GNS Clone 36 84 
P137 Normal 91 
P137 Recurrence 2 P 111 
P137 Recurrence 2 G 83 
P137 Recurrence 2 v3 118 
P137 Recurrence 2 GNS P9 143 
P137 Recurrence 3 v1 117 
P137 Recurrence 3 CA 115 
P137 Recurrence 3 GNS P4 111 
P137 Recurrence 3 FBS P2 98 
P137 Recurrence 3 LUC-GNS P17 127 
P137 Recurrence 3 GNS Clone 2 90 
P137 Recurrence 3 GNS Clone 8 104 
P137 Recurrence 3 GNS Clone 10 115 
P137 Recurrence 3 GNS Clone 17 113 
P137 Recurrence 3 GNS Clone 20 120 
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2.6 FIGURES 

 
 
Figure 2.1. Extensive branching evolution and intratumoral heterogeneity of HM clones 
in vivo and in vitro.  
(a), the timeline and clinical history of Patient 137 (P137) to scale. Vertical lines indicate 
surgical resection; stars represent radiographic progression; rectangles indicate treatment. 
Months between surgical resections are given below. Diagnosis according to the 2016 WHO 
criteria is given above each surgical time point, and surgeries from which samples were 
sequenced are designated with an SF number. Tumor phylogenies were constructed from 
single-nucleotide variants calls from exome sequencing data and line length is drawn to scale 
with mutational burden. (b), fifteen samples were sequenced for P137, including two distinct 
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hypermutated HM PDLs derived from surgery SF10602; a PDL in GNS medium at passage 4 
(SF10602 GNS P4), and a PDL in FBS at passage 2 (SF10602 FBS P2. A luciferase-modified 
version of the GNS PDL was created and sequenced at passage 17 (SF10602 LUC-GNS P17). 
Two subclones were identified within SF10602 GNS P4, and are designated as SF10602 GNS 
P4-1 and SF10602 GNS P4-2. Additionally, single-cell clones were derived from passage 21 of 
SF10602 GNS, and five were sequenced (SF10602 GNS Clone 8, SF10602 GNS Clone 20, 
SF10602 GNS Clone 2, SF10602 GNS Clone 17, and SF10602 GNS Clone 10). (c), a 
zoomed-in view of the relationship between samples of SF10071, which are to scale, 
compared to the HM samples (not drawn to scale). (d), the clinical history of Patient 278 
(P278). Fifteen samples of P278 were sequenced, including one HM PDL in GNS medium at 
passage 5 (SF10417 GNS P5), and a luciferase-modified version of the GNS PDL at passage 
33 (SF10417 LUC-GNS P33). Single-cell clones were derived from passage 22 of SF10417 
GNS, and four were sequenced (SF10417 GNS Clone 24, SF10417 GNS Clone 36, SF10417 
GNS Clone 8, and SF10417 GNS Clone 20). Additionally, SF10417 GNS formed intracranial 
tumors in mice, and a sample of xenograft was sequenced (SF10417 Xeno). A piece of this 
xenograft was used to establish a serial in vitro GNS culture, and was sequenced at passage 6 
(SF10417 Xeno-GNS P6) (e). FBS, media containing 10% fetal bovine serum. GNS, glioma 
neural stem cell. CA, culture-adjacent. C, G, P, Y surgical specimens that were mapped to 
tumor imaging. v1 and v3, randomly sampled surgical specimens. O, oligodendroglioma; A, 
astrocytoma. TMZ, temozolomide. XRT, radiation therapy. CCNU, lomustine. 
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Figure 2.2. HM samples are dominated by mutational signature 11, a signature 
specifically associated with TMZ treatment (Alexandrov, 2013).  
(a), exome data from all P137 and (b), P278 samples were analyzed for the contribution of 
known mutational signatures. SF10071 samples are not hypermutated and do not show the 
TMZ-associated signature, while P137 SF10602 samples are hypermutated and have a strong 
TMZ-associated signature. All P278 SF9818 and SF10417 samples are hypermutated and 
have a TMZ-associated mutational signature. Eight SF10417 samples have an increased 
enrichment of signature 6, which is associated with mismatch repair deficiency. Eight samples 
also demonstrate an increase in signature 1A which is associated with the endogenous 
mutational process of cytosine deaminase. 
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Figure 2.3. HM cell lines retain heterozygous IDH1 R132H through serial passage and 
continue to produce 2-HG.  
(a), SF10602 GNS retains IDH1 R132H through passage 33, as determined by Sanger 
sequencing and (b), produces 2-HG, as measured by NMR, through passage 29. (c), SF10602 
FBS and maintains IDH1 R132H through passage 26 and (d), produces 2-HG through passage 
17. (e), SF10417 GNS maintains IDH1 R132H through passage 54 and (f), produces 2-HG 
through passage 54. * denotes the location of the heterozygous G>A mutation. 
  

a c

db

e

f

0

5

10

15

2-
H

G
 (f

m
ol

/c
el

l)

P27 P54
0

2

4

6

8

2-
H

G
 (f

m
ol

/c
el

l)

P10 P29 

2-
H

G
 (f

m
ol

/c
el

l)

0.0

0.2

0.4

0.6

0.8

1.0

P11 P17

Passage 2

*

*

Passage 5

*

Passage 33

*
Passage 54

*

SF10602 FBS SF10417 GNS

Passage 26

*

Passage 4

*

SF10602 GNS



 25 

 

 
Figure 2.4. ATRX-mutant SF10602 GNS and SF10602 FBS are positive for the alternative 
lengthening of telomeres (ALT) phenotype.  
ATRX-mutant SF10602 GNS and SF10602 FBS cultures are positive for C-circle amplification 
upon the addition of polymerase Phi29 across multiple passages, while ATRX wt SF10417 
GNS is negative for C-circles. A human bladder transitional cell carcinoma cell line (UMUC3) 
and a human osteosarcoma cell line (U2OS) serve as negative and positive controls for C-
circle amplification, respectively. Signal intensity in (a) was (b), quantified (in arbitrary units) 
and plotted. Signal correlates linearly with input DNA, and increases with increasing passage of 
the PDLs. (c), telomere restriction fragment length analysis shows an accumulation of long 
telomeres in the ALT+ cells, and a heterogeneous telomere length distribution, another 
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hallmark of ALT. The ALT- cells (SF10417 GNS P36 and UMUC3) show a tighter and shorter 
length distribution. L, ladder. 
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Figure 2.5. HM cell lines demonstrate anchorage-independent growth. 
1000 cells each of (a), SF10602 GNS, (b), SF10602 FBS, and (c), SF10417 GNS were seeded 
into soft agar and stained with crystal violet after four weeks, and yielded an average of 185, 
117, and 218 colonies, respectively. 
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Figure 2.6. SF10417 GNS establishes infiltrative, IDH1-mutant intracranial tumors with 
histologic features characteristic of oligodendroglioma in nude mice. 
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300,000 cells were implanted into the right cerebrum of five-week old female nude mice. (a), 
H&E staining of a coronal section of mouse brain demonstrating the infiltrative nature of the 
tumor (1.25X magnification). (b), the tumor recapitulates oligodendroglioma histologic features 
(400X magnification), and (c), is positive for IDH1 R132H, by IHC (1.25X magnification). A cell 
line was established from this tumor and re-implanted in five-week old female nude mice, 
where (d), it again formed infiltrative tumors (1.25X magnification), that (e), recapitulate 
oligodendroglioma histology (400X magnification), and (f), are positive for IDH1 R132H by IHC 
(1.25X magnification). (g), one of three serial xenografts tested demonstrated a change in 
histologic appearance in one part of the tumor (center panel, 100X magnification), from 
oligodendroglioma-like (left panel, 400X magnification) to prominent anaplastic features with 
marked nuclear pleomorphism, macronuclei, and high numbers of mitotic figures (right panel, 
400X magnification), which (h), was accompanied by loss of IDH1 R132H staining (100X 
magnification). Both (i), passage 1 and, (j), passage 2 xenografts formed luminescent tumors. 
(k), upon first xenotransplantation, SF10417 GNS formed tumors in four of nine mice over a 
protracted time period, consistent with the generally slower growth of this tumor subtype. Upon 
serial xenotransplantation, SF10417 GNS formed tumors in three of nine mice in a reduced 
time period. 
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CHAPTER 3: MATERIALS AND METHODS  
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3.1 SAMPLE ACQUISITION 

 Fresh surgical specimens were acquired from patients undergoing surgical resection for 

recurrent glioma after temozolomide treatment by the Neurological Surgery Brain Tumor 

Center at the University of California, San Francisco (UCSF). Research was approved by the 

Institutional Review Board at UCSF and sample use was approved by the Committee on 

Human Research at UCSF. Informed consent was obtained from all patients, and procedures 

performed in this study are in accordance with the 1964 Helsinki declaration and its later 

amendments. 

3.2 DERIVATION OF PATIENT-DERIVED CELL LINES 

 Tumor tissue was dissociated with papain (Worthington) for 30 minutes. The 

suspension was passed through a 70 µM cell strainer, twice, then a 40 µM cell strainer, twice, 

to achieve a single-cell suspension. Single cells were placed into two media conditions: 1) 

serum-free, glioma neural stem cell (GNS) medium (107, 127, 128), supplemented with EGF 

(animal-free, Peprotech), bFGF (animal-free, Peprotech) and PDGF-AA (animal-free, 

Peprotech), or 2) 10% FBS (FBS). GNS media comprised of Neurocult NS-A (Stem Cell 

Technologies) supplemented with N2 (Invitrogen), B27 (without vitamin A, Invitrogen), 100 

µg/mL streptomycin and 100 units/mL penicillin “G” (UCSF Cell Culture Facility), 2 mM L-

glutamine (UCSF Cell Culture Facility), and 0.1 mg/mL sodium pyruvate (UCSF Cell Culture 

Facility). 10% FBS media comprised of DMEM/Ham’s F-12 1:1 Mix (UCSF Cell Culture Facility) 

supplemented with 10% FBS (Hyclone, characterized), and 100 µg/mL streptomycin and 100 

units/mL penicillin “G.” PDLs were grown in a humidified environment at 37 °C with 5% CO2. 

The passage of the PDL used is denoted in each experiment. PDLs were determined to be 

mycoplasma free by testing with the MycoAlert PLUS kit (Lonza). 
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3.3 SINGLE CELL CLONING 

Clones of SF10602 GNS and SF10417 GNS were derived by sparsely seeding 500 

cells into laminin-coated 15 cm tissue culture dishes. Colonies formed from single cells were 

isolated with cloning cylinders and Accutase (Innovative Cell Technologies). 20 clones were 

derived from SF10602 GNS and 31 from SF10417 GNS. Five SF10602 GNS and four 

SF10417 GNS clones with different growth rates were selected for exome sequencing. 

3.4 DNA ISOLATION 

 Cells were detached from culture flasks with Accutase, pelleted, and washed with 

phosphate-buffered saline before pelleting and snap-freezing. DNA was extracted and cleaned 

from thawed cell pellets and snap-frozen tissue with phenol, chloroform, and isoamyl alcohol as 

previously described (89). DNA was resuspended in TE (Teknova) and stored at 4 °C. 

3.5 EXOME SEQUENCING AND MUTATION CALLING 

 Whole exome capture was performed with SeqCap EZ Exome V3 (Nimblegen) and 

sequenced on HiSeq 2500 instrumentation (Illumina). Genomic alignment was performed and 

mutations were called against normal samples as previously described (89). 

3.6 CONSTRUCTION OF TUMOR PHYLOGENIES 

 Tumor phylogenies were constructed using ordinary least-squares minimum evolution 

from a distance matrix of Manhattan distances, as previously described (129). 

3.7 MUTATIONAL SIGNATURE ANALYSIS 

Missense mutations called from whole exome sequencing for each sample were used 

as input for the mutational signature-calling tool, deconstructSigs (130). Resulting mutational 

signatures, as defined by Alexandrov et al.,(121) were quantified by their proportional 

contribution. 
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3.8 IDH1 SANGER SEQUENCING 

 IDH1 status was validated by PCR with a 2X Phusion High-Fidelity master mix (New 

England Biolabs, NEB) and Sanger sequencing (Quintara Biosciences), as previously 

described (89). PCR sequences were aligned to a reference sequence using Sequencher 

(Gene Codes).  

3.9 TERT PROMOTER SANGER SEQUENCING 

 TERT promoter (TERTp) mutational status was tested as previously described (131). 

Part of the TERTp encompassing the common mutations 124 and 146 base pairs upstream of 

the transcription start site was amplified by PCR with a GC Rich PCR System (Roche) and 

Sanger sequenced. PCR sequences were aligned to a reference sequence using Sequencher. 

3.10 MEASUREMENT OF 2-HG 

 Metabolites were extracted from 1.5-2.5x107 cells using the dual-phase extraction 

method, magnetic resonance spectra (MRS) acquired, and spectral processing done as 

previously described (94). 

3.11 COLONY FORMATION ASSAYS 

 Growth in soft agar is a well-established phenotype of transformed cells (132). 1000 

cells were seeded into 0.35% (w/v) ultra-low melting point agarose (Invitrogen) in GNS or FBS 

media between layers of 0.7% ultra-low melting point agarose in 6-well plates (93). After 4-5 

weeks, colonies were stained with 0.005% crystal violet (Sigma) and counted under a 

microscope. 

3.12 C-CIRCLE ASSAY 

 A C-circle assay was performed as previously described (133) on DNA that were stored 

in TE at 4 °C. Briefly, DNA was digested with RsaI and HinfI (NEB) and amplified with Φ29 
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DNA polymerase. DNA was dotted onto a nylon membrane, crosslinked, and labeled with 32P-

(CCCTAA)3. 

3.13 TELOMERE RESTRICTION FRAGMENT LENGTH ANALYSIS 

 Telomere restriction fragment length analysis was done was previously described (134). 

Purified genomic DNA, isolated with phenol/chloroform/isoamyl alcohol (SF10602 GNS, 

SF10602 FBS, SF10417 GNS) or a DNeasy Blood and Tissue kit (Qiagen, UMUC3 and U2OS) 

was digested with HinfI, AluI, HaeIII, RsaI, HhaI, and MspI (NEB) and then resolved on an 

agarose gel. The gel was denatured, dried, and prehybridized. Telomeres were visualized on a 

Phosphorimager screen after hybridization to a 32P-(CCCTAA)3 probe. 

3.14 LUCIFERASE INTRODUCTION 

SF10417 GNS and SF10602 GNS were modified to stably express luciferase for use in 

in vivo bioluminescent imaging by infection with Firefly Luciferase Lentifect Purified Lentiviral 

Particles (Genecopoeia) at an MOI of 7. Cells were exposed to 150 µg/mL luciferin (D-luciferin, 

Gold Biotechnology) and imaged on an IVIS Spectrum (Perkin Elmer) to confirm stable 

expression. 

3.15 INTRACRANIAL XENOGRAFTS 

Animal experiments were performed to comply with current laws of the country and the 

University of California, San Francisco Institutional Animal Care and Use Committee approved 

all animal protocols (IACUC protocol AN111064-03B to Dr. Theodore Nicolaides, and IACUC 

protocol AN175997-01 to Dr. Tomoko Ozawa at UCSF). All animals were housed under aseptic 

conditions and had access to food and water ad libidum. 

Primary xenografts were established in five-week old female athymic mice (Simonsen). 

Mice were anesthetized with 100 mg/kg ketamine and 10 mg/kg xylazine, an incision made in 

the scalp, and a hole made in the skull with a 25G needle, through which 300,000 luciferase-
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modified cells were injected into the caudate putamen, as previously described (109, 135). 

Serial xenografts were established in five-week old female athymic mice (Harlan). Mice were 

anesthetized with 2-3% isofluorane, an incision made in the scalp, and a hole made with a burr 

drill through which 300,000 cells were delivered stereotactically to 1.5 mm anterior and 1.5 mm 

lateral of bregma, and 2.5 mm deep. 

 Mice were monitored daily until they reached a moribund state or demonstrated 15% 

weight loss, at which point they were euthanized with CO2 inhalation followed by cervical 

dislocation, and brains were immediately removed.  

3.16 IN VIVO BIOLUMINESCENT IMAGING 

Tumor burden was tracked by in vivo bioluminescent imaging. After 150 mg/kg luciferin 

was injected intraperitoneally, mice were anesthetized using 2-3% isofluroane and 

bioluminescence was recorded after 10 minutes on the IVIS Spectrum (Perkin Elmer). 

LivingImage software was used to draw regions of interest around the cranium and to record 

the luminescent reading in photons/s/sr/cm2 (109). 

3.17 TISSUE PROCESSING AND ANALYSIS 

After removal from euthanized animals, brains were divided into pieces and 1) placed 

into GNS media for dissociation into culture, 2) flash-frozen for DNA isolation, and/or 3) fixed 

overnight in 10% neutral buffered formalin. Fixed tissue was embedded in paraffin and 

sectioned according to routine pathology procedures. 

H&E staining was performed, and IHC was performed using a VENTANA BenchMark 

XT (Roche) or VENTANA Discovery Ultra by the UCSF Brain Tumor Center Tissue Core. 

Briefly, on the BenchMark, antigen retrieval was performed at 95 °C for one hour, the sample 

was incubated with a 1:100 dilution of an anti-IDH1 R132H mouse monocolonal antibody 

(Histobiotec DIANOVA DIA-H09) for one hour at room temperature, detected with the ultraView 

Universal HRP DAB detection kit (Roche), and stained with hemotoxylin and bluing for twelve 
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and four minutes, respectively. On the Discovery Ultra, antigen retrieval was performed at 95 

°C for 56 minutes, the sample was incubated with a 1:100 dilution of an anti-IDH1 R132H 

mouse monocolonal antibody (Histobiotec DIANOVA DIA-H09) for one hour at room 

temperature, detected with the Discovery ChromoMap-DAB kit (Roche), and stained with 

hemotoxylin and bluing each for four minutes. 
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4.1 CONTRIBUTIONS TO THE FIELD OF NEURO-ONCOLOGY 

The successful establishment and characterization of these three IDH1-mutant, HM 

PDLs that retain their key driver mutations and diagnostic molecular features is a novel 

resource to the neuro-oncology community. These cell lines provide opportunities to study 

mutant IDH1-related epigenomic changes and tumor metabolism, telomerase- and ALT-

mediated mechanisms of telomere maintenance and cellular immortality, subclonal dynamics, 

ITH, mechanisms and consequences of hypermutation, and in vivo evolution. These PDLs, or 

their DNA, RNA, and protein samples, have already been shared for studies with eighteen 

laboratories across seven institutions (Table 4.1). They have proven instrumental as models of 

patient-derived, IDH1-mutant glioma by contributing to novel discoveries in three published 

manuscripts and a fourth manuscript recently accepted for publication that enhance our 

understanding of the regulation of replicative immortality in GBM (126), how oligodendroglioma 

interacts with its microenvironment (124), that IDH mutation is important for driving ALT in 

glioma, and that an IDH mutation-associated upregulation of DNA damage response makes 

astrocytomas resistant to radiotherapy (Table 4.2). 

 Additionally, the orthotopic xenografts formed in nude mice formed by SF10417 GNS 

faithfully recapitulate the histological features of human glioma. Their long and variable time-to-

endpoint, while experimentally challenging, is analogous to time-to-recurrence in LGG patients 

after surgical resection and/or chemoradiotherapy. Another practical asset is that SF10417 

GNS can reproducibly passage from in vitro to in vivo and back. Our sharing of  our 

characterization and cell lines before our own publication speaks to our desire to expand the 

value of our contribution by enhancing the scientific discoveries of other groups and 

institutions. Rigorous characterization and open sharing of resources in the neuro-oncology 

community benefits scientists, clinicians, and most importantly, patients. 
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4.2 FUTURE DIRECTIONS 

4.2.i Xenograft studies 

Upon serial xenograft, the time-to-endpoint of SF10417 xenografts was reduced 

dramatically, although the penetrance did not increase. Exome sequencing on passage two 

xenografts and their derivative cell lines could be used to elucidate mutated genes or pathways 

that are enriched during in vivo selection and recurrence. Subsequent rounds of in vivo 

passaging may continue to yield a time-to-endpoint that is more experimentally tractable, as 

seen in our latest results. 

4.2.ii Allelic imbalance of IDH 

Interestingly, during a second in vivo passage, one tumor formed by SF10417 GNS 

showed loss of IDH1 staining in part of the tumor, which was accompanied by a change in 

cellular morphology. We and others have observed this phenomenon previously in patients and 

xenografts (96, 136-141), and it deserves additional study as it may impact patient response to 

targeted therapies. Additional in vivo studies may shine light on the frequency of allelic 

imbalance of IDH, and may provide a mechanism through which to investigate the impact of 

IDH inhibitors on the frequency and biological consequences of IDH allelic imbalance. 

4.2.iii Development of immunotherapies 

Hypermutated tumors are predicted to be candidates for successful treatment with 

immunotherapies due to their neoantigen load (142, 143), but brain tumors have proven 

recalcitrant to immunotherapy due to low levels of immune cells in brain tumors, T-cell 

exhaustion (144), and the challenge of the blood-brain barrier. Despite these unique 

challenges, initial studies in GBM have shown promise for oncolytic virus treatment (145), the 

ability of chimeric antigen receptor T-cells (CAR-T) to illicit an immune response in the brain 

(146), and mixed, but hopeful results for vaccination approaches (147, 148). Our patient-
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derived models of HM glioma can enhance the experimental studies that serve as the 

foundation for these clinical trials: their faithful retention of key driver mutations can be 

experimentally used to test efficacy of CAR-Ts; sequencing of their high mutation burden can 

be used to computationally identify neoantigens; their ability to move between in vitro and in 

vivo studies makes it possible for preclinical therapeutics identified in cell cultures to be tested 

in immunocompetent orthotopic xenografts (149, 150). 

4.2.iv Drug screening 

The PDLs characterized in this work are well adapted to tissue culture conditions. GNS 

lines require laminin coating, specialized media, and growth factors, but grow adherently and 

therefore could be grown in multi-well formats. The stability and growth characteristics of these 

lines make them candidates for use in drug screening panels, which is a promising approach 

being used by one of the labs who received our PDLs. Drug screening could be used to identify 

specific chemotherapeutic agents or combination(s) of agents that successfully treat rapidly-

growing, aggressive HM tumors. There is currently no standard of care for managing patients 

with HM glioma, and identifying drug(s) that kill HM glioma cells has the potential to 

significantly improve patient outcomes. Additionally, drug screens that identify novel 

compounds with efficacy against cells with IDH mutation, telomerase-mediated telomere 

maintenance, or ALT-mediated telomere maintenance may have implications for many other 

tumor types. 

4.2.v Characterization of additional patient-derived models of glioma and associated stromal 

cells 

During the course of this study, I derived many additional PDLs from patient tissue 

(Table 4.3). The majority of cultures attempted were from recurrent tumors, and cultures were 

successfully established in both GNS and FBS media. Some cultures established were not 

tumor cells (as determined by Sanger sequencing to determine IDH status); these tumor-
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associated stromal cells have been studied by others, and the field could benefit from further 

samples and studies (151-157). Additional characterization of patient-derived tumor lines could 

yield additional in vitro and in vivo models of HM glioma that maintain key driver and diagnostic 

mutations. 
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4.3 TABLES 
 
Table 4.1. Laboratories to which cells or their DNA, RNA, or protein have been distributed. 
Principal Investigator Institution Location 
Dr. Rajit Binda Yale University New Haven, CT 
Dr. Maria Castro University of Michigan Ann Arbor, MI 
Dr. Robert Jenkins Mayo Clinic Rochester, MN 
Dr. Khalid Shah Harvard University Cambridge, MA 
Dr. Hai Yan Duke University Durham, NC 
Dr. Chun Zhang Yang National Cancer Institute Rockville, MD 
Dr. Jing Wu National Cancer Institute Rockville, MD 
Dr. Diane Barber University of California, San Francisco San Francisco, CA 
Dr. Elizabeth Blackburn University of California, San Francisco San Francisco, CA 
Dr. Daniel Lim University of California, San Francisco San Francisco, CA 
Dr. Hideho Okada University of California, San Francisco San Francisco, CA 
Dr. Michael Oldham University of California, San Francisco San Francisco, CA 
Dr. Claudia Petrisch University of California, San Francisco San Francisco, CA 
Dr. Anders Persson University of California, San Francisco San Francisco, CA 
Dr. Russ Pieper University of California, San Francisco San Francisco, CA 
Dr. Sabrina Ronen University of California, San Francisco San Francisco, CA 
Dr. David Rowitch University of California, San Francisco San Francisco, CA 
Dr. Valerie Weaver University of California, San Francisco San Francisco, CA 
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Table 4.2. Publications resulting from the use of the cell lines described in this work. 
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Table 4.3 Additional primary cell lines derived during the course of this study. 

 
 
 

SF # Tumor/Stromal Media Grade at Culture Primary/Recurrence 
SF10071 Tumor Serum-free GBM Recurrence 
SF10324 Stromal 10% FBS O III Recurrence 
SF10276 Stromal Serum-free O III Recurrence 
SF10417 Tumor Serum-free O III Recurrence 
SF10577 Stromal 10% FBS GBM Recurrence 
SF10589 Stromal 10% FBS A III Recurrence 
SF10602 Tumor Serum-free GBM Recurrence 
SF10602 Tumor 10% FBS GBM Recurrence 

SF10942-1 Tumor Serum-free GBM Recurrence 
SF10942-1 Stromal 10% FBS GBM Recurrence 
SF10942-2 Tumor Serum-free GBM Recurrence 
SF10942-2 Tumor 10% FBS GBM Recurrence 
SF10497 Stromal Serum-free     
SF10947 Stromal 10% FBS O II Recurrence 
SF10982 Tumor Serum-free GBM Recurrence 
SF10982 Stromal 10% FBS GBM Recurrence 

Autopsy-S1 Stromal 10% FBS   Recurrence 
Autopsy-S2 Stromal 10% FBS   Recurrence 
Autopsy-S3 Stromal 10% FBS   Recurrence 
Autopsy-S4 Stromal 10% FBS   Recurrence 

SF11069 Stromal 10% FBS O III   
SF11077 Tumor Serum-free GBM Recurrence 
SF11253 Stromal Serum-free O III Recurrence 
SF11253 Stromal 10% FBS O III Recurrence 

SF11294-L 
+ AGI-5198 Tumor Serum-free GBM Recurrence 
SF11294-L Stromal Serum-free GBM Recurrence 
SF11294-L Stromal 10% FBS GBM Recurrence 
SF11294-M 
+ AGI-5198 Tumor Serum-free GBM Recurrence 
SF11294-M Stromal Serum-free GBM Recurrence 
SF11294-M Stromal 10% FBS GBM Recurrence 

SF11383 Stromal Serum-free O II Primary 
SF11468 + 
AGI-5198 Stromal Serum-free A II Primary 
SF11477 Tumor Serum-free O II Recurrent 
SF11477 Stromal 10% FBS O II Recurrent 
SF11479 Stromal Serum-free O III Primary 

SF11479 + 
AGI-5198 Tumor Serum-free O III Primary 
SF11506 Stromal Serum-free     
SF11506 Stromal 10% FBS     
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