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PRIMARY RESEARCH Open Access

Genome-wide enriched pathway analysis
of acute post-radiotherapy pain in breast
cancer patients: a prospective cohort study
Eunkyung Lee1,2* , Cristiane Takita3,4, Jean L. Wright5, Susan H. Slifer6, Eden R. Martin6, James J. Urbanic7,
Carl D. Langefeld7, Glenn J. Lesser7, Edward G. Shaw7 and Jennifer J. Hu2,3*

Abstract

Background: Adjuvant radiotherapy (RT) can increase the risk of developing pain; however, the molecular mechanisms
of RT-related pain remain unclear. The current study aimed to identify susceptibility loci and enriched pathways for
clinically relevant acute post-RT pain, defined as having moderate to severe pain (pain score≥ 4) at the completion of RT.

Methods: We conducted a genome-wide association study (GWAS) with 1,344,832 single-nucleotide polymorphisms
(SNPs), a gene-based analysis using PLINK set-based tests of 19,621 genes, and a functional enrichment analysis of a gene
list of 875 genes with p < 0.05 using NIH DAVID functional annotation module with KEGG pathways and GO
terms (n = 380) among 1112 breast cancer patients.

Results: About 29% of patients reported acute post-RT pain. None of SNPs nor genes reached genome-wide
significant level. Four SNPs showed suggestive associations with post-RT pain; rs16970540 in RFFL or near the
LIG3 gene (p = 1.7 × 10−6), rs4584690, and rs7335912 in ABCC4/MPR4 gene (p = 5.5 × 10−6 and p = 7.8 × 10−6,
respectively), and rs73633565 in EGFL6 gene (p = 8.1 × 10−6). Gene-based analysis suggested the potential involvement
of neurotransmitters, olfactory receptors, and cytochrome P450 in post-RT pain, whereas functional analysis showed
glucuronidation (FDR-adjusted p value = 9.46 × 10−7) and olfactory receptor activities (FDR-adjusted p value = 0.032) as
the most significantly enriched biological features.

Conclusions: This is the first GWAS suggesting that post-RT pain is a complex polygenic trait influenced by many
biological processes and functions such as glucuronidation and olfactory receptor activities. If validated in larger
populations, the results can provide biological targets for pain management to improve cancer patients’ quality
of life. Additionally, these genes can be further tested as predictive biomarkers for personalized pain management.

Keywords: Breast cancer, Radiotherapy, Pain, Pathway analysis, Genetic variants

Background
Breast cancer is the most frequently diagnosed cancer
and the second leading cause of cancer death in Ameri-
can women [1]. Early detection and improved treatment
modalities have led to a remarkable reduction in the
mortality rate of breast cancer patients, and currently
more than 3.5 million breast cancer survivors are living
in the USA [2]. Given that approximately 70% of breast

cancer patients receive adjuvant radiotherapy (RT) after
breast surgery to improve clinical outcomes [3], it is crit-
ical to address cancer survivorship issues relating to RT-
induced symptoms which may affect the quality of life
(QOL). Among many symptoms, pain occurs in up to
60% of breast cancer survivors [4, 5], where more than
half of them report moderate to severe pain [4]. Unman-
aged pain can interrupt planned RT schedules and im-
pact the accurate delivery of therapeutic radiation doses
to tumor tissues, which can thus diminish the potential
benefits of adjuvant RT. Persistent pain after cancer
treatment is also critical, affecting cancer survivor’s func-
tional performance and productivity. Moreover, once
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pain develops, it may last for more than 17 years after
completion of RT [6].
In addition to RT planning and treatment parameters,

age, body mass index (BMI), medication, lifestyle factors
such as smoking and exercise, and coexisting morbidities
can contribute to pain perception during RT [7, 8]; how-
ever, inter-individual genetic variations can also influ-
ence post-RT pain severity. Several studies have reported
genetic variants associated with cancer treatment-related
pain among breast cancer patients. For example, geno-
type AA for interleukin (IL)-13 single-nucleotide poly-
morphism (SNP) rs1295686 was associated with both
pain and lymphedema after breast cancer surgery [9].
Also, SNPs in cytokine genes IFNG1, IL, and NFKB1
have been associated with severe breast pain following
breast cancer surgery [10]. Genetic variations in cytidine
deaminase (CDD) contributed to chemotherapy-induced
neuropathy [11]. Furthermore, variations in cytochrome
P450 (CYP) and vitamin D receptor (VDR) genes have
been associated with aromatase inhibitor-related arthral-
gia [12]. However, there is a scientific knowledge gap
regarding the molecular mechanisms or the genetic vari-
ants influencing pain in patients receiving adjuvant RT.
Thus, to identify susceptibility loci for post-RT pain,

we completed a genome-wide association study (GWAS)
of 1,344,832 SNPs in a prospectively followed cohort of
breast cancer patients undergoing adjuvant RT for breast
cancer. As part of this study, we completed gene-based
association analyses and functional enrichment pathway
analyses to describe the biological profiles underlying
genetic mechanisms of post-RT pain. Gene-based associ-
ation approach considers the joint actions of multiple
SNPs within a gene and assigns a representative p value
for a gene. If a gene contains more than one causative
SNPs with small or moderate effect, then joint effects of
several SNPs within that gene may be more detectable
than single SNP effect. Functional enrichment pathway
analysis, using the gene list produced by gene-based as-
sociation analyses, is complementary to GWAS in find-
ing risk loci as well as interpreting GWAS results in
terms of biological features or function.

Materials and methods
Study populations
This study analyzed 1112 participants from two cohort
studies which employed the same protocol to evaluate
the impact of molecular genomics on radiosensitivity
among breast cancer patients. The first study population
consisted of a cohort of 513 women with newly diag-
nosed, histologically confirmed breast cancer, recruited
from the Department of Radiation Oncology of the Uni-
versity of Miami (UM) Sylvester Comprehensive Cancer
Center, University of Miami Hospital, and Jackson Me-
morial Hospital between December 2008 and January

2014. We obtained sufficient quantity and quality of
DNA for 458 patients, and among these, 377 patients
with complete genotype and pain data were included in
the current study. The second study population con-
sisted of a nationwide cohort of breast cancer patients
who were enrolled in the Wake Forest (WF) National
Cancer Institute Community Clinical Oncology Program
(CCOP) Research Base 97609 Study. This study enrolled
1000 patients between November 2011 and August
2013. Among these, 728 patients with complete geno-
type and pain data were included in the current analysis.
Protocols were approved by each participating site’s In-
stitutional Review Boards, and written informed consent
was obtained from each study participant before enter-
ing the study.
Each patient completed a baseline questionnaire and

provided blood samples (20 ml) before the initiation of
RT (baseline) and immediately after completion of RT
(post-RT). Blood samples from participants enrolled in
the WF Research Base 97609 study were transported to
the University of Miami via overnight shipping for DNA
extraction and genotyping. All the DNA samples were
stored at − 20 °C until assay.

Radiation treatment
Detailed information on radiation treatment was de-
scribed in the previous papers [13, 14]. In brief, RT was
delivered using 6 or 10 MV standard or partially wide
photon tangents with a forward planned field-in-field
technique to maximize dose homogeneity. In general,
patients received a total dose of 42.4 to 66 Gy to their
intact breast or chest wall for 3 to 7 weeks depending on
both the fractionation scheme and additional boost.

Phenotype definition: post-RT pain
All women enrolled in the study filled out the National
Surgical Adjuvant Breast and Bowel Project (NSABP) B-
39/Radiation Therapy Oncology Group (RTOG) 0413
protocol QOL questionnaire at baseline and post-RT,
which contains four pain severity items (i.e., pain at its
worst, least, average during the past 4 weeks, and now)
from the Brief Pain Inventory (BPI). A pain score was
determined as the mean of these four pain severity items
(from 0 = no pain to 10 = the worst imaginable pain) as
suggested by the BPI developers [15], and moderate to
severe pain (pain score ≥ 4) was considered clinically
relevant [16, 17]. Therefore, cases were defined as those
that had a pain score ≥ 4 at post-RT (n = 326), and the
reference group included those with a pain score < 4 at
post-RT (n = 786).

Genotyping and quality control
Genomic DNA was extracted from frozen whole blood
using the QIAamp DNA Blood Mini kit (Qiagen, Inc.,
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Valencia, CA), and the DNA genotype was screened for
∼ 2,500,000 haplotype tagging SNPs using an Illumina
HumanOmni2.5-8v1 BeadChip (Illumina, San Diego,
CA) according to Illumina protocols at the University of
Miami Hussman Institute for Human Genomics Geno-
typing Core. Both genotype clustering and calling were
performed using Illumina’s GenomeStudio V2011.1 soft-
ware. The genotyping quality control/assurance included
(i) four internal controls in each plate, (ii) randomly
assigned case and reference samples in each plate to
avoid any biases between plates, and (iii) the Hardy-
Weinberg equilibrium (HWE) test to identify problem-
atic SNPs. SNPs were excluded from the analysis if they
had no genotype for > 5% of individuals, were not in
HWE within a reference group (using threshold p <
1.0 × 10−6) or had minor allele frequency < 5%. Subjects
were also excluded if they had > 5% of all variants miss-
ing. The final dataset contained 1,344,832 SNPs with a
genotype call rate of 99.8%. All the quality control pro-
cedures were conducted using PLINK (v1.09) (http://zzz.
bwh.harvard.edu/plink/) [18].

Population substructure
Population substructure was evaluated using principal
component analysis (PCA). To remove outliers, we first
computed the analysis with a randomly selected and
pruned subset of 30,929 common SNPs (LD = 0.5 and
minor allele frequency = 0.05) for the study subjects as
well as four reference populations from the International
HapMap/1000Genomes Project: 85 European-Americans
from Utah (CEU); 88 Yorubans from Ibadan, Nigeria
(YRI); 97 Han Chinese from Beijing, China (CHB); and 89
Japanese in Tokyo (JPT). Next, we computed the analysis
for the study subjects only without the reference popula-
tions merged in to determine principal components (PCs)
for covariates. The first three PCs were included to adjust
for population substructure to minimize spurious associa-
tions and test inflation and improve power to detect true
associations in subsequent analyses. PCA was performed
using EIGENSTRAT v5.0 (https://reich.hms.harvard.edu/
software) [19].

Statistical analysis
Single marker genome-wide association analyses
Pearson’s chi-square test or Fisher’s exact test were used
to find the potential risk factors for post-RT pain, which
compared proportions of patients with post-RT pain by
study variables in univariate analysis. These factors were
further included in the multivariable logistic regression
analysis. The variables that were identified as significant in
multivariable analysis were then included in subsequent
analyses to adjust for potential confounding effects: sur-
gery type (mastectomy vs lumpectomy), age (continuous),
BMI (continuous), smoking (never vs. ever), the number

of comorbidities (0, 1, vs 2+), pre-RT pain score (< 4 vs. ≥
4), and population sub-stratification (PC1, PC2, PC3).
The associations between post-RT pain and genotype

frequency, assuming an additive genetic model for minor
allele counts of SNPs coded as 0/1/2, were assessed
using multivariable logistic regression after adjusting for
aforementioned potential confounders. The odds ratios
(ORs) and 95% confidence intervals (95% CIs) for each
SNP are reported. A quantile-quantile (Q-Q) plot of ob-
served versus expected chi-square test statistics and esti-
mated inflation factor confirmed the tests met the
distributional assumptions. The genome-wide signifi-
cance was set at the standard p < 5 × 10−8 to account for
the number of tests. General data management and stat-
istical analyses were performed using PLINK and R
(http://cran.r-project.org/). A Manhattan plot for the re-
sult was generated using R package, qqman.
We estimated the statistical power using the software

program, PS Power, and Sample Size Program [20].
Given 326 cases and 786 controls with minor allele fre-
quency = 0.24 and alpha = 5 × 10−8, we had 80% power to
detect an OR of 2.41 for an association between a SNP
and post-RT pain.

Gene-based association analysis
First, a total of 950,621 SNPs were mapped to 19,621
genes according to genomic positions on the Ensembl/
Entrez hg19/GRCh37 Consensus Genes, which were
downloaded on 3 September 2016 from the Figshare, the
online academic digital repository (https://figshare.com/
articles/hg19_GRCh37_Consensus_Genes/103113/4)
[21] using ± 20 kb gene boundaries as delimiters to in-
clude regulatory SNPs [22]. These genes are consistently
annotated across Ensembl and Entrez-gene databases
and have HUGO gene symbol identifiers.
Second, gene-based association analyses were per-

formed using PLINK set-based tests, which required raw
genotype data as input and aggregate p values from the
set of SNPs within a gene accounting for linkage dis-
equilibrium (LD) and gene size with phenotype permuta-
tion. Although its computational burden is high, PLINK
set-based tests are more relevant in the current study
where we are more interested in joint effects of multiple
SNPs with moderate effects. PLINK performs a single
SNP association analysis for each gene accounting for
the covariates. A mean SNP statistic is calculated from
the significant and independent set of SNPs under the
defined p value and LD threshold setting. The empirical
p value for the gene is calculated after repeated analysis
in simulated datasets with permutation of the pheno-
type. The empirical p value indicates the number of
times the test statistics of the simulated gene exceed that
of the original gene. Gene with empirical p value < 2.5 ×
10−6, a Bonferroni-corrected threshold (≈ 0.05/19,621),
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was considered significant accounting for multiple test-
ing corrections. The parameters in PLINK set-based test
for the current study were set at p (p value threshold for
selection of SNPs from a single SNP association) < 0.05,
LD r2 (pair-wise correlation between two SNPs) < 0.5,
mperm (number of permutation) = 10,000, and set-max
(max number of SNPs in a gene) = 99,999.

Pathway analysis
To identify which biological terms/functions are specific-
ally enriched with post-RT pain, we conducted pathway
analysis of the GWAS results. The Kyoto Encyclopedia
of Genes and Genomes (KEGG) and Gene Ontology
(GO) terms were used for functional annotation and en-
richment analyses. In total, 530 pathways with minimum
gene size ≥ 5 were analyzed since small pathways can ex-
hibit spurious associations due to large single locus ef-
fects [23]. A total of 875 genes having p < 0.05 in PLINK
gene-based association analyses were selected for path-
way analysis. Modified Fisher’s exact tests were per-
formed using the web-based gene-enrichment analysis
tool, the Database for Annotation, Visualization and In-
tegrated Discovery (DAVID, https://david.ncifcrf.gov/)
v6.8 [24], and a pathway with the false discovery rate
(FDR) < 0.05 after accounting for multiple testing was
considered significant.

Results
Patient characteristics and post-RT pain
The study population across two datasets consisted of
401 Hispanic Whites (HW, 36%), 357 non-Hispanic
Whites (NHW, 32%), 296 black or African Americans
(AA, 27%), and 58 of other races (5%). Mean (±SD) age
at the time of enrollment was 57.4 ± 10.5 years (range
23.5 – 88.9) and 77% of patients were overweight or
obese. 86% of patients received post-lumpectomy RT,
and 14% had post-mastectomy RT. They were treated
with a mean of 58.6 ± 5.7 Gy radiation dose to either the
whole breast or the chest wall.
A total of 326 (29%) patients showed clinically relevant

post-RT pain. Patient-, tumor-, and treatment-related
factors that may be related to post-RT pain were com-
pared between case and reference groups (Table 1).
Those who were AA or HW women, younger, obese,
ever smoked, had comorbidities ≥ 2, had received mast-
ectomy, conventionally fractionated RT, and whose pre-
RT pain score ≥ 4 were more likely to report post-RT
pain.

Genome-wide single-marker association analyses
Genome-wide single SNP associations were conducted
with 1,344,832 SNPs that passed quality control. The Q-
Q plot (Additional File 1: Fig. S1) showed no evidence
for test statistic inflation due to population substructure

(inflation factor 1.016). None of SNPs achieved a
genome-wide significance level of p < 5 × 10−8 (Fig. 1).
Four SNPs showed associations with post-RT pain at
the marginal significance level of p < 1 × 10−5;
rs16970540 in ring finger and FYVE-like domain con-
taining E3 ubiquitin protein ligase (RFFL) or near to
DNA ligase 3 (LIG3) gene (p = 1.7 × 10−6), rs4584690,
and rs7335912 in ATP-binding cassette, sub-family A,
member 4 (ABCC4)/multidrug resistance protein 4
(MRP4) gene (p = 5.5 × 10−6 and p = 7.8 × 10−6, re-
spectively), and rs73633565 in epidermal growth
factor-like protein 6 (EGFL6) gene (p = 8.1 × 10−6).
The top 30 significant SNPs are summarized in
Table 2. For rs16970540, those who had at least one
minor T allele were 2.2 times more likely to have
post-RT pain compared to those who had C allele
(95% CI = 1.59 – 3.04).

Gene-level association analyses
To identify potential risk genes consisting of multiple
SNPs with a modest functional effect, we performed gene-
based association analyses using PLINK set-based tests,
and the results are listed in Table 3. None of them reached
our Bonferroni significance threshold of p < 2.5 × 10−6.
However, seven genes showed suggestive evidence of asso-
ciation with p < 5.0 × 10−4: EIF4G1, FAM131A, GRID2IP,
NMUR2, OR10V1, CYP4F22, and LECT1.

Pathway analysis
To interpret a gene list derived from gene-based ana-
lysis, functional enrichment analysis was performed
using bioinformatics tool, DAVID, and results are shown
in Table 4. Thirteen biological pathways were enriched
with post-RT pain in breast cancer patients (FDR-ad-
justed p value < 0.05). These 13 biological pathways were
then clustered into two groups: glucuronidation activity
and olfactory receptor activity (enrichment score 4.60
and 3.41, respectively). These biological activities in-
cluded xenobiotic and drug metabolism, ascorbate and
aldarate metabolism, and olfactory signal transduction,
suggesting their roles in underlying mechanisms of post-
RT pain.

Discussion
This study reported results of the first GWAS of acute
post-RT pain in breast cancer patients who had under-
gone adjuvant RT after surgery. Although no individual
association reached genome-wide significance, collect-
ively our results suggest genetic involvement in acute
post-RT pain. These results, like all large-scale agnostic
search for genetic associations, need validation. At the
completion of RT, about 29% of patients reported having
clinically relevant pain; of this subset, 30% reported
moderate or severe levels of pain at pre-RT, while 70%
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Table 1 Characteristics of study populations by post-RT pain

Variable Categories Post-RT pain

Total No (score < 4) Yes (score≥ 4)

N % N % N % p1 p2

Study population 1112 100 786 71 326 29

Study site UM 377 34 243 64 134 36 0.001 0.340

WFU 735 66 543 74 192 26

Race/ethnicity AA 296 27 194 66 102 34 < 0.001 0.315

HW 401 36 265 66 136 34

NHW 357 32 282 79 75 21

Other 58 5 45 78 13 22

Age at consent (years) < 50 283 25 175 62 108 38 <.0001 <.0001

50–59 372 34 247 66 125 34

≥ 60 457 41 364 80 93 20

BMI (kg/m2) < 25 257 23 208 81 49 19 < .0001 0.002

25–29.99 357 32 263 74 94 26

≥ 30 498 45 315 63 183 37

Smoking history Never 706 64 514 73 192 27 0.033 0.026

Ever 390 35 260 67 130 33

No. of comorbidity3 0 464 42 337 73 127 27 0.035 0.001

1 378 34 275 73 103 27

≥ 2 270 24 174 64 96 36

Tumor stage 0 217 20 159 73 58 27 0.077 –

I 528 47 384 73 144 27

II 234 21 161 69 73 31

III–IV 132 12 82 62 50 38

ER Positive 894 80 632 71 262 29 0.957 –

Negative 217 20 153 71 64 29

PR Positive 767 69 533 69 234 31 0.178 –

Negative 343 31 252 73 91 27

HER2 Positive 143 13 106 74 37 26 0.283 –

Negative 798 72 556 70 242 30

Triple negative No 964 87 687 71 277 29 0.248 –

Yes 134 12 89 66 45 34

Surgery Lumpectomy 959 86 698 73 261 27 < .0.001 0.023

Mastectomy 153 14 88 58 65 42

Chemotherapy No 610 55 441 72 169 28 0.193 –

Yes 502 45 345 69 157 31

Hormonal therapy No 785 71 570 73 215 27 0.029 0.587

Yes 327 29 216 66 111 34

RT fractionation Conventional 972 87 670 69 302 31 0.003 0.414

Hypo 138 13 114 83 24 17

Partial 2 0.1 2 100 . .

RT dose (Gy) < 60 266 24 205 77 61 23 0.010 –

≥ 60 834 75 574 69 260 31

Boost No 121 11 94 78 27 22 0.078 –
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Table 1 Characteristics of study populations by post-RT pain (Continued)

Variable Categories Post-RT pain

Total No (score < 4) Yes (score≥ 4)

N % N % N % p1 p2

Yes 979 88 685 70 294 30

Pre-RT pain score < 4 936 84 715 76 221 24 < .0001 < .0001

≥ 4 151 14 57 38 94 62
1p values from chi-square or Fisher’s exact test. Significant findings are in italics
2p values from multivariable logistic regression adjusting for other variables in tables
3The number of comorbidities, sum of 12 patient-reported comorbid conditions: diabetes, hypertension, heart disease, lung disease, thyroid condition, cirrhosis
liver, stroke, chronic bronchitis, hepatitis, tuberculosis, and 2 others. AA African American; HW Hispanic Whites; NHW = non-Hispanic Whites; BMI body mass index

Fig. 1 Manhattan plot for post-RT pain among breast cancer patients. This figure shows the p values of the SNPs after applying the additive
genetic model in the multivariable logistic regression model by genomic location. No region exceeded genome-wide significance in the sample.
Red line indicates genome-wide significance level of 5 × 10−8 and blue line indicates suggestive level of significance of 1 × 10−5
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had no or mild pain at pre-RT. The most significant fac-
tor associated with post-RT pain was the presence of
pre-RT pain, which is in line with literature reporting
that prior pain is the most significant prognostic factor
for pain persistence [8, 25]. Besides pre-RT pain, other
potential risk factors identified from multivariable re-
gression analyses were included as covariates in the sub-
sequent genetic association analyses to control for
confounding effects. We conducted gene-based associ-
ation analyses and functional enrichment analyses to
identify additional loci complementary to GWAS. We
identified four suggestive susceptibility loci from GWAS,

seven suggestive genes from gene-level analysis, and two
significantly enriched functional pathways associated
with post-RT pain.
First, we reported four suggestive susceptibility loci for

post-RT pain, rs16970540 (17q12), rs4584690 (13q32.1),
rs7335912 (13q32.1), and rs73633565 (Xp22.2) proximal
to three genes. The most significant marker, rs16970540,
is mapped to the 3′-untranslated region (UTR) of RFFL
gene or close to LIG3 in chromosome 17. RFFL encodes
a protein that regulates several biological processes
through the ubiquitin-mediated proteasomal degradation
of various target proteins. In the context of irradiation,

Table 2 Top 30 SNPs from genome-wide association study of post-RT pain among breast cancer patients

Allele

Chr SNP BP Minor Major MAF OR1 95% CI Pvalue1 Nearest gene

17 rs16970540 33,338,447 T C 0.10 2.20 1.59 3.04 1.73E-06 RFFL, LIG3

13 rs4584690 95,680,132 T C 0.18 1.85 1.42 2.42 5.46E-06 ABCC4(MRP4)

13 rs7335912 95,667,680 G A 0.19 1.80 1.39 2.33 7.81E-06 ABCC4(MRP4)

23 rs73633565 13,477,311 G A 0.16 1.90 1.43 2.52 8.06E-06 EGFL6

18 rs986117 44,128,503 C A 0.36 1.62 1.31 2.01 1.04E-05 LOXHD1

3 rs6800849 11,790,188 A C 0.17 1.84 1.40 2.41 1.15E-05 VGLL4

2 rs13031207 226,076,914 G A 0.23 1.72 1.35 2.20 1.30E-05 DOCK10

17 rs10083888 33,402,980 T C 0.11 2.00 1.47 2.73 1.30E-05 RFFL

7 rs1108228 51,787,366 A G 0.46 1.61 1.30 1.99 1.40E-05 COBL

9 rs10901329 133,924,008 G A 0.43 0.61 0.49 0.76 1.41E-05 LAMC3

15 rs4497630 30,276,341 A G 0.26 0.57 0.45 0.74 1.62E-05 FAM7A3

14 rs11849204 34,332,971 G A 0.11 1.98 1.45 2.70 1.62E-05 NPAS3

11 rs76647546 88,929,531 G A 0.06 2.57 1.67 3.97 1.84E-05 TYR

7 rs12374901 15,024,954 T C 0.43 0.62 0.50 0.77 1.88E-05 DGKB

9 rs10973146 3,706,109 G A 0.06 2.42 1.61 3.65 2.13E-05 GLIS3

13 rs17189292 95,685,572 G A 0.13 1.96 1.44 2.68 2.21E-05 ABCC4(MRP4)

6 rs72904381 83,130,109 C T 0.45 0.63 0.51 0.78 2.30E-05 TPBG

9 rs2275139 133,924,072 C T 0.43 0.62 0.50 0.78 2.35E-05 LAMC3

11 rs10901897 50,199,387 C T 0.34 0.61 0.48 0.76 2.45E-05 LOC441601

2 rs2278358* 43,968,167 A G 0.12 1.90 1.412 2.569 2.49E-05 PLEKHH2

3 rs717228 60,602,895 C T 0.17 0.52 0.38 0.70 2.55E-05 FHIT

4 rs10023531 12,357,990 A G 0.43 1.56 1.27 1.92 2.70E-05 HS3ST1

3 rs79082706 60,614,582 G A 0.16 0.51 0.38 0.70 2.86E-05 FHIT

2 rs1443663 226,074,083 A C 0.25 1.65 1.30 2.10 3.25E-05 DOCK10

13 rs4148524 95,767,333 C T 0.14 1.84 1.38 2.45 3.45E-05 ABCC4(MRP4)

11 rs10082560 50,276,354 C G 0.35 0.61 0.48 0.77 3.49E-05 LOC441601

13 rs12853814 95,720,188 C T 0.13 1.93 1.41 2.64 3.55E-05 ABCC4(MRP4)

17 rs7214759 35,261,346 G C 0.20 1.68 1.31 2.15 3.71E-05 LHX1

7 rs2731551 18,277,585 T C 0.33 1.58 1.27 1.95 3.77E-05 HDAC9

7 rs596699 18,351,391 A C 0.34 1.57 1.26 1.94 3.82E-05 HDAC9

OR and p values from multivariable logistic regression analysis assuming additive genetic model
Chr = chromosome, SNP = single-nucleotide polymorphism, BP = base position based on hg19/GRCh37, MAF =minor allele frequency, OR = odds ratio,
CI = confidence intervals
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Table 3 Top 30 genes from PLINK-set based test of post-RT pain among breast cancer patients

Gene symbol Chr Entrez ID Gene name P (gene) No. SNPs
within a
gene

No. SNPs
with p < 0.05

No. SNPs
with p < 0.05
and R2 < 0.5

Top SNP

EIF4G1 3q27.1 1981 Eukaryotic translation initiation
factor 4 Gamma 1

2.00E-04 28 1 1 rs4912540

FAM131A 3q27.1 131,408 Family with sequence similarity
131 member A

2.00E-04 22 1 1 rs4912540

GRID2IP 7p22.1 392,862 Glutamate receptor, ionotropic,
delta 2 (Grid2) interacting protein
1, delphilin

2.00E-04 31 1 1 rs73674133

NMUR2 5q33.1 56,923 Neuromedin U receptor 2 2.00E-04 22 1 1 rs11739168

OR10V1 11q12.1 390,201 Olfactory receptor family 10
subfamily V member 1

2.00E-04 13 2 1 rs7937162

CYP4F22 19p13.12 126,410 Cytochrome P450 family 4
subfamily F member 22

3.00E-04 54 1 1 rs73514704

LECT1 13q14.3 11,061 Leukocyte cell-derived chemotaxin
1, chondromodulin-1

4.00E-04 23 9 4 rs3759509

LDHAL6B 15q22.2 92,483 Lactate dehydrogenase A like 6B 5.00E-04 38 7 1 rs11852359

PPP2R3B Xp22.33 28,227 Protein phosphatase 2 regulatory
subunit B″beta

0.0007 38 1 1 rs28485241

PRKCDBP 11p15.4 112,464 Protein kinase C delta-binding
protein

0.0007 38 1 1 rs4604857

TRIM64C 11p11.12 646,754 Tripartite motif containing 64C 0.0007 2 1 1 rs1819409

OR52N1 11p15.4 79,473 Olfactory receptor family 52
subfamily N member 1

0.0008 14 10 1 rs11607346

PDE4D 5q12.1 5144 Phosphodiesterase 4D 0.0008 719 41 18 rs1498599

PRPH2 6p21.1 5961 Peripherin 2 0.0008 28 1 1 rs200618579

RFFL 17q12 117,584 Ring finger and FYVE like domain
containing E3 ubiquitin protein
ligase

0.0008 27 10 4 rs16970540

OR4C12 11p11.12 283,093 Olfactory receptor family 4
subfamily C member 12

0.0010 1 1 1 rs4242812

MMADHC 2q23.2 27,249 Methylmalonic aciduria and
homocystinuria, CblD type

0.0011 17 1 1 rs13027589

OR4A47 11p11.2 403,253 Olfactory receptor family 4 subfamily
A member 47

0.0011 6 3 2 rs7103557

MPO 17q22 4353 Myeloperoxidase 0.0012 19 1 1 rs8178409

OSBP 20q13.33 9885 Oxysterol-binding protein 0.0012 9 1 1 rs4938923

ANAPC13 3q22.2 25,847 Anaphase promoting complex
subunit 13

0.0012 18 1 1 rs75858178

CEP63 3q22.2 80,254 Centrosomal protein 63 0.0013 29 1 1 rs75858178

ROD1 9q32 9991 Regulator of differentiation 1 0.0014 33 20 2 rs10817314

SLC20A2 8p11.21 6575 Solute carrier family 20 member 2 0.0015 33 2 1 rs7845666

MAP4K3 2p22.1 8491 Mitogen-activated protein kinase
kinase kinase kinase 3

0.0016 52 1 1 rs17508058

MGST3 1q24.1 4259 Microsomal glutathione
S-transferase 3

0.0016 60 3 1 rs55977919

CLRN2 4p15.32 645,104 Clarin 2 0.0017 719 41 18 rs1498599

FOLH1 11q14.3 219,595 Folate hydrolase 1 0.0017 11 5 3 rs679470

GUCY1A3 4q32.1 2982 Guanylate cyclase 1 soluble
subunit alpha

0.0018 77 1 1 rs62327005

UNC119B 12q24.31 84,747 Unc-119 lipid-binding chaperone B 0.0018 27 1 1 rs12825376

Chr = chromosome
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RFFL negatively regulates p53/tumor protein 53 (TP53),
the expression of which can be activated by radiation,
directly, or indirectly through its ubiquitination [26].
The loss of TP53 function was related to sensitivity
to ionizing radiation. The fraction of p53-positive fi-
broblasts was significantly higher in cultures from
RT-sensitive patients compared to RT-resistant pa-
tients after in vitro irradiation [27]. Thus, RFFL can
mediate radiation sensitivity via regulation of TP53.
On the other hand, LIG3 encodes a protein that cata-
lyzes the joining of DNA ends and is involved in
DNA replication, recombination, and repair. LIG3
corrects defective DNA strand-break repair and sister
chromatid exchange following RT through base exci-
sion repair and alternative non-homologous end-
joining pathways. Polymorphisms near the LIG3 gene
(rs3744355, rs2074518, and rs3744357) have been re-
ported to be associated with acute breast skin toxicity
following RT both in a Japanese cohort (n = 399) and
a European Caucasian cohort (n = 480) [28, 29]. It is
possible that acute skin toxicity may lead to acute
post-RT pain [30]. Thus, LIG3 gene may not be specific to
pain, and they can rather be applied to a more common
genetic susceptibility to acute RT-induced normal tissue
toxicities.

The next significant markers, rs4584690 and rs7335912,
were mapped to ABCC4/MRP4 gene, and three additional
signals from the list of top 30 SNPs were also mapped to
this gene. The Manhattan plot shows a stack of points in
chromosome 13 (Fig. 1), which implies a possible haplo-
block structure and suggests a potential strong association
of ABCC4/MRP4 with post-RT pain. The range of pair-
wise LD among five SNPs was 0.89–1.00 in CEU popula-
tion according to the SNAP (https://data.broadinstitute.
org/mpg/snpsnap/match_snps.html) (Additional File 2:
Fig. S2). ABCC4/MRP4 encodes a protein that is a mem-
ber of ATP-binding cassette (ABC) transporter superfam-
ily as well as a member of multidrug resistance-associated
proteins (MRPs). ABCC4/MPR4 transports most prosta-
glandins (PGs), which can sensitize spinal neurons to pain.
In an animal study with mrp4-knockout mice, Lin et al.
showed that a deficiency of mrp4 function led to a signifi-
cant reduction of extracellular PG levels and consequent
altered inflammatory nociceptive responses via modulat-
ing cAMP-mediated signaling pathway [31]. In a human
candidate gene approach study, ABCC4 rs9524885 has
been associated with reduced pain among patients with
non-small cell lung cancer [32].
Additionally, we searched gene regulation databases

using HaploReg v4.1 (https://pubs.broadinstitute.org/

Table 4 Top pathways enriched in patients with post-RT pain in breast cancer patients from DAVID functional annotation module
analysis

Cluster Category Term No. genes
in a term

Fold
enrichment1

p value2 FDR3

1 GOTERM_BP_DIRECT GO:0052697~xenobiotic glucuronidation 9 19.81952 3.45E-10 9.46E-07

GOTERM_BP_DIRECT GO:2001030~negative regulation of cellular glucuronidation 8 19.81952 6.14E-09 8.43E-06

GOTERM_BP_DIRECT GO:1904224~negative regulation of glucuronosyltransferase activity 8 19.81952 6.14E-09 8.43E-06

GOTERM_BP_DIRECT GO:0045922~negative regulation of fatty acid metabolic process 8 17.61735 2.64E-08 2.42E-05

GOTERM_BP_DIRECT GO:0052695~cellular glucuronidation 8 10.57041 3.62E-06 0.001983

GOTERM_BP_DIRECT GO:0052696~flavonoid glucuronidation 9 8.494079 4.53E-06 0.002071

GOTERM_MF_DIRECT GO:0015020~glucuronosyltransferase activity 9 7.057233 2.18E-05 0.019001

GOTERM_MF_DIRECT GO:0001972~retinoic acid binding 8 6.818583 1.04E-04 0.04456

KEGG_PATHWAY hsa00053:Ascorbate and aldarate metabolism 9 6.071802 6.39E-05 0.016351

KEGG_PATHWAY hsa00040:Pentose and glucuronate interconversions 10 5.159047 8.29E-05 0.007101

KEGG_PATHWAY hsa00860:Porphyrin and chlorophyll metabolism 11 4.706058 7.16E-05 0.009189

KEGG_PATHWAY hsa05204:Chemical carcinogenesis 13 3.081485 8.48E-04 0.053271

KEGG_PATHWAY hsa00982:Drug metabolism - cytochrome P450 12 3.189229 0.001097 0.055041

2 GOTERM_BP_DIRECT GO:0050911~detection of chemical stimulus involved in sensory
perception of smell

37 2.020171 8.21E-05 0.031689

GOTERM_MF_DIRECT GO:0004984~olfactory receptor activity 37 1.992656 1.09E-04 0.03161

KEGG_PATHWAY hsa04740:Olfactory transduction 36 1.730048 0.001446 0.060346

GOTERM_MF_DIRECT GO:0004930~G-protein coupled receptor activity 48 1.589467 0.0017 0.312315
1The fold enrichment is defined as the ratio of the two proportions; one is the proportion of genes in your list belong to certain pathway, and the other is the
proportion of genes in the background information (i.e., universe genes) that belong to that pathway
2p values from modified Fisher’s exact test
3FDR, false discovery rate from Benjamini and Hochberg
DAVID = Database for Annotation, Visualization and Integrated Discovery, GO = Gene Ontology, KEGG = The Kyoto Encyclopedia of Genes and Genomes
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mammals/haploreg/haploreg.php) to explore the poten-
tial roles of SNPs rs16970540, rs4584690, rs7335912,
and rs73633565 as expression quantitative trait loci
(eQTLs); rs16970540 exhibited direct eQTL effects (in
total 19 hits) in regulating expressions of LIG3 in 12 tis-
sues including blood, skin, nerve, and breast mammary
tissues. According to GTEx Portal (https://www.gtexpor-
tal.org/home/), for instance, those who were heterozy-
gous (CT) or homozygous (TT) for the minor allele of
rs16970540 showed higher expression of LIG3 in breast
tissue compared to those homozygous (CC) for the ref-
erence allele (OR = 2.63 per allele, p = 5.1 × 10−8).
In gene-based association analyses, we found seven sus-

ceptibility genes for post-RT pain: EIF4G1, FAM131A,
GRID2IP, NMUR2, OR10V1, CYP4F22, and LECT1. This
suggests the involvement of neurotransmitters, olfactory
receptor genes, and cytochrome P450 in post-RT pain.
Among these genes, Neuromedin U Receptor 2 (NMUR2)
has been found to have a role in nociception and inflam-
mation. NMUR2 encodes a receptor protein for Neurome-
din, which is a neuropeptide that is widely distributed in
the central nervous system. Neuromedin U receptors are
a group of Gq/11-protein-coupled receptors. In animal
studies, NMUR2-null mice showed a reduced thermal
nociceptive response in the hot plate tests and a signifi-
cant reduction in acute chemo-nociception following cap-
saicin or formalin injection [33], by inhibiting T-type
Ca2+ channel currents via pertussis toxin-sensitive pro-
tein kinase A pathway in a dose-dependent manner in
mouse small dorsal root ganglion neurons [34]. However,
one recent study reported that NMUR2 did not play a
role in the development of mechanical hypersensitivity
following nerve injury by showing that there were no
significant differences in heat hyperalgesia between
wild-type and NMUR2-null mice [35]. Further studies
are needed to confirm the involvement of NMUR2 in
mechanical hypersensitivity in humans, including pa-
tients with cancer.
To date, several genome-wide association studies of pain

have been reported. According to the NHGRI-EBI GWAS
Catalog [36, 37], a total of eight studies reported 30 SNPs
associated with any pain. Among these eight studies, four
studies reported nine SNPs reaching a genome-wide sig-
nificance (p values ≤ 5 × 10−8) [38–41], while the other
four studies identified suggestive susceptibility loci with p
values ≤ 5 × 10−6 [42–45]. In 2013, Kim et al. reported the
first GWAS of pain that identified rs2562456 in ZNF429
gene to be significantly associated with acute post-surgery
pain (N = 112; p = 2.0 × 10−10) [38]. In 2013, a large study
with 7099 Europeans reported another genome-wide sig-
nificant SNP, rs13361160 in CCT5 gene for widespread
pain (p = 1.2 × 10−8). However, this significance was atten-
uated when it was combined with the replication sample
of 9469 Europeans (p = 4.7 × 10−7) [44].

In 2016, Reyes-Gibby et al. reported another genome-
wide significant SNP, rs3862188 in RP11-634B7.4 gene
for severe pre-treatment pain in head and neck cancer
patients (N = 1368; p = 3 × 10−8) [39]. Reyes-Gibby et al.
identified 2 years later additional four SNPs which had
statistically significant associations with neuropathic
pain in head and neck cancer patients (N = 1043;
rs10950641, p = 3 × 10−14; rs4804217, p = 3 × 10−9;
rs6796803, p = 6 × 10−9; rs4775319, p = 1 × 10−8) [40].
These findings suggest that statistical power may in-
crease when GWAS targets specific types of pain such
as neuropathic pain. Another approach to increase stat-
istical power would be a meta-analysis. A recent study of
meta-analysis of individual data from 15 cohorts (N =
158,000) reported three SNPs significantly associated
with chronic back pain (rs12310519, p = 5 × 10−19;
rs7833174, p = 4 × 10−13; rs4384683, p = 2 × 10−10) [41].
Susceptibility genes identified previously [36, 37] for
any type of pain traits included CD3E, HMGB1P46,
C5, DDC, DIS3L2, ESRRG, GFRA2, DOK2, GPD2,
IL1R1, LCLAT1, MCM3, PRKCA, RORA, SNX8, SOX5,
TESC, and ZSCAN20 [36]. None of these genes
reached the pre-defined significance level of p < 2.5 ×
10−6 in our study.
We identified 13 enriched biological pathways for

post-RT pain, which were clustered into two groups by
DAVID functional annotation module: glucuronidation
and olfactory receptor activities. Glucuronidation
activity is involved in detoxification and xenobiotic me-
tabolism of substances such as drugs, bilirubin, and
fatty-acid derivatives. Glucuronidation transfers
glucuronic acid component of uridine diphosphate
(UDP)-glucuronic acid to a substrate by UDP-
glucuronosyltransferase to make substances more
water-soluble, so they can be excreted from body or
less toxic. The ascorbate and aldarate metabolism path-
way include glucuronidation in the upstream processes
of ascorbate synthesis. Ascorbate, which is well known
as vitamin C, plays a critical role as an antioxidant in
many biological processes such as detoxification of ex-
ogenous compounds. Vitamin C has a beneficial effect
on pain relief in different pain conditions including
cancer pain by decreasing oxidative stress and/or in-
flammation, which can both be caused by anti-cancer
treatments [46, 47]. Ascorbate also functions as a cofac-
tor for a family of enzymes involved in the biosynthesis
of neurotransmitters and neuropeptide hormones that
can modulate pain transmission.
Olfactory receptor activity can be aligned with our

findings of OR10V1 as one of the genes associated with
post-RT pain. We also found three additional olfactory
receptor genes (OR52N1, OR4C12, OR4A47) included in
the top 30 genes. Recently, Reyes-Gibby et al. have re-
ported that genetic variants in RP11-634B7.4 gene,
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which is annotated as antisense to the three olfactory re-
ceptor genes, OR13G1, OR6F1, and OR14A2, were sig-
nificantly associated with severe pre-treatment pain
among patients with head and neck cancer at genome-
wide significance levels [39]. The olfactory receptors are
members of G-protein-coupled receptors, which are in-
volved in signal transduction and play important roles in
many physiological processes including sensory percep-
tion, regulation of behavior and mood, regulation of im-
mune system activity and inflammation, and tumor
growth and metastasis. The authors speculated that ol-
factory receptor genes may be involved in pain pathway
via activating downstream mitogen-activated kinases
(MAPK) signaling pathway [48], by linking to their pre-
vious finding of MAPK1/ERK2 as a novel target gene for
cancer pain [49]. In fact, there have been many animal
experiments to modulate neuropathic cancer pain by
inhibiting MAPK signaling pathway using upstream ef-
fectors, such as R419, adenosine monophosphate-
activated protein kinase activator [50], and bisphospho-
nates [51]. Considering that majority of breast cancer
pain is neuropathic in nature [52, 53], the investigation
of a functional mechanism which connects olfactory re-
ceptors, MAPK pathway, and pain perception in breast
cancer patients may seem worthwhile. More studies in
larger populations are needed to validate our findings.
This study has several strengths and limitations. To

the best of our knowledge, this is the first report of
GWAS of post-RT pain among breast cancer patients of
different race and ethnicity. Considering that majority of
GWAS data currently available are for NHW, the results
from diverse race/ethnic background have more poten-
tial for generalizability. Second, the ascertainment of
outcome variables was relatively homogeneous com-
pared to large consortium-based studies because we ob-
tained self-reported pain severity data using the same
questionnaires from all participating centers. The first
limitation of this study is the relatively small sample size,
which might have limited the statistical power of the
analysis. Based on our findings of rs16970540, with
minor allele frequency of 0.1, OR of 2.2, and type 1 error
rate of 5 × 10−8, we had only 17% statistical power to be
able to reject the null hypothesis. We will need 694 cases
and 1673 controls to have at least 80% of statistical
power. So, a larger joint GWAS with multiple cohorts is
warranted to validate our findings. In addition to limited
statistical power, the failure of GWAS may be attributed
to the complex nature of the phenotype, post-RT pain,
we evaluated. Pain is a more complex functional end-
point, which is affected by multiple genes within a path-
way rather than a simple Mendelian disease. We
employed gene-based association analyses and pathway-
based analyses to increase statistical power as well as to
find additional genetic loci underlying molecular

mechanisms of post-RT pain. Another limitation would
be the lack of replication with an independent dataset.

Conclusion
In the current study, we conducted GWAS, gene-
based association analyses, and pathway-based func-
tional enrichment analyses to evaluate the genetic risk
loci for acute post-RT pain among breast cancer pa-
tients. We identified two biological processes, glucur-
onidation activity and olfactory receptor activity, in
addition to the potential role of LIG3, ABCC4/MPR4,
and EGFL6 from GWAS, were involved in post-RT
pain, which showed that post-RT pain is a polygenic
trait. Post-RT pain can be affected by DNA damage/
repair, transporter and receptor activity in signal
transduction, and cellular detoxification via glucuroni-
dation activity. Larger studies are warranted to
validate our findings to facilitate the discovery of
underlying genetic/molecular mechanisms of pain re-
lated to cancer treatments. The results can ultimately
contribute to the development of prevention and/or
intervention strategies to improve cancer pain man-
agement and QOL in cancer patients.

Additional files

Additional file 1: Figure S1. Q-Q plots for post-RT pain. This figure
shows the quantile-quantile plots of observed versus expected p values
on the −log10 scale, showing the conformity of the observed results to
expectations under the null. Black lines indicate the distribution of observed
p value versus expected p value, and red lines indicate the null distribution.
Lambda confirms appropriate control of population substructure; (a) 1.649
before adjustment, (b) 1.017 after adjusting for population substructure with
the first 3 PCs, and (c) 1.016 after further adjusting for all potential
confounders identified in Table 1. PCs: principal components. (DOCX 32 kb)

Additional file 2: Figure S2. Regional association plot for rs4584690
on chromosome 13 located nearby ABCC4/MRP4 gene. The y axis is
−log10 of p values and x axis is the genomic location of each SNP.
Linkage disequilibrium coefficients were derived from hg19 (1000
Genomes March 2012, European population) and local estimates of
recombination rates are from HapMap samples (2008–03_rel22_B36;
ftp://ftp.ncbi.nlm.nih.gov/hapmap/). The plot was generated using
LocusZoom (http://locuszoom.org/). (DOCX 123 kb)
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