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Abstract 

 

Early events associated with chronic inflammation and cancer involve significant 

remodeling of the extracellular matrix (ECM), which greatly affects its composition and 

functional properties. Using lung squamous cell carcinoma (LSCC), a chronic 

inflammation-associated cancer (CIAC), we optimized a robust proteomic pipeline to 

discover potential biomarker signatures and protein changes specifically in the stroma. 

We combined ECM enrichment from fresh human tissues, data-independent acquisition 

strategies, and stringent statistical processing to analyze ‘Tumor’ and matched adjacent 

histologically normal (‘Matched Normal’) tissues from patients with LSCC. Overall, 1,802 

protein groups were quantified with at least two unique peptides, and 56% of those 

proteins were annotated as ‘extracellular’. Confirming dramatic ECM remodeling during 

CIAC progression, 529 proteins were significantly altered in the ‘Tumor’ compared to 

‘Matched Normal’ tissues. The signature was typified by a coordinated loss of basement 

membrane proteins and small leucine-rich proteins. The dramatic increase in the 

stromal levels of SERPINH1/heat shock protein 47, that was discovered using our ECM 

proteomic pipeline, was validated by immunohistochemistry (IHC) of ‘Tumor’ and 

‘Matched Normal’ tissues, obtained from an independent cohort of LSCC patients. This 

integrated workflow provided novel insights into ECM remodeling during CIAC 

progression, and identified potential biomarker signatures and future therapeutic 

targets. 
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Statement of significance of the study 

 

The extracellular matrix (ECM) is a complex scaffolding network composed of 

glycoproteins, proteoglycans and collagens, which binds soluble factors and, most 

importantly, significantly impacts cell fate and function. Alterations of ECM homeostasis 

create a microenvironment promoting tumor formation and progression, therefore 

deciphering molecular details of aberrant ECM remodeling is essential. Here, we 

present a multi-laboratory and refined proteomic workflow, featuring i) the prospective 

collection of tumor and matched histologically normal tissues from patients with lung 

squamous cell carcinoma, ii) the enrichment for ECM proteins, and iii) subsequent label-

free data-independent acquisition (DIA)-based quantification. DIA is a powerful strategy 

to comprehensively profile and quantify all detectable precursor ions contained in the 

biological samples, with high quantification accuracy and reproducibility. When 

combined with very stringent statistical cutoffs, this unbiased strategy succeeded in 

capturing robust and highly confident proteins changes associated with cancer, despite 

biological variability between individuals. This label-free quantification workflow provided 

the flexibility required for ongoing prospective studies. Discussions with clinicians, 

surgeons, pathologists, and cancer biologists represent an opportunity to interrogate the 

DIA digitalized maps of the samples for newly formulated questions and hypotheses, 

thus gaining insights into the continuum of the disease and opening the path to novel 

ECM-targeted therapies. 
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1. Introduction 

Chronic inflammation-associated cancers (CIACs) account for one in four cancers 

worldwide and are responsible for more than 2 million deaths annually [1, 2]. Chronic 

inflammation can be caused by diverse biological, chemical and physical factors [3]. 

Cigarette smoke is one significant risk factor, that can promote lung cancers [3-5], 

including lung squamous cell carcinoma (LSCC) [6]. LSCC, a subtype of non-small cell 

lung cancer (NSCLC), accounts for about a third of all lung cancers. LSCC arises in the 

epithelial cells lining the bronchi, and it progresses through squamous metaplasia and 

dysplasia [7]. Interestingly, at the site of chronic injury, inflammation can favor cell 

plasticity and lead to a remodeling of the tissue microenvironment by altering stromal 

and extracellular matrix (ECM) homeostasis, which in turn can promote a malignant fate 

through poorly understood molecular mechanisms [1]. Additionally, the dynamic ECM 

remodeling can subsequently alter not only ECM composition and stiffness, but also 

initiate a cascade of biochemical and biophysical cues that affect, in turn, cell signaling. 

Ultimately, the ECM plays a key role in promoting tumor proliferation, invasion and 

metastasis [8-10], representing a crucial and promising intervention target for therapies: 

Could ‘repair’ of the ECM be a therapeutic intervention? 

To enable in-depth ECM proteome characterization, Naba et al. pioneered the 

integration of proteomic and bioinformatic datasets to generate a database of ECM and 

ECM-associated proteins, referred to as the matrisome [11, 12]. The core matrisome 

includes collagens, ECM glycoproteins and proteoglycans, whereas the matrisome-

associated proteins are composed of ECM-affiliated proteins, ECM regulators and 

secreted factors. Very recently, McCabe et al. reported an extensive mouse ECM atlas 
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based upon the characterization of the ECM profiles of 25 organs by liquid 

chromatography-tandem mass spectrometry (LC-MS/MS) [13].  

Advances in MS-based proteomics enable great opportunities to investigate ECM 

proteome remodeling in cancers and to identify novel protein biomarkers and 

therapeutic targets. In recent studies, aimed at uncovering ECM remodeling in various 

human cancers, data-dependent acquisition (DDA) label-free quantification approaches 

were employed to investigate glioblastoma and medulloblastoma [14], as well as gastric 

antrum adenocarcinoma [15]. DDA-tandem mass tag (TMT)-based quantification 

workflows were applied to analyze ECM from human pancreatic ductal adenocarcinoma 

[16] and to investigate metastasis in various mouse models of triple-negative mammary 

carcinoma [17, 18]. Finally, Naba et al. used isobaric tags for relative and absolute 

quantitation (iTRAQ)-based DDA quantification to analyze pancreatic islet ECM from a 

mouse model of insulinoma [19]. However, the semi-stochastic sampling and selection 

of precursor ions for MS/MS in DDA mode, in which the most abundant ions are 

selected for fragmentation during any given scan cycle, often lead to missing values and 

reproducibility challenges. For isobaric stable isotope labeling strategies, such as 

iTRAQ [20] and TMT [21], the labeled samples are typically pooled before DDA-MS 

acquisitions, implying that all samples are preferably collected and processed 

simultaneously, which is challenging for actively ongoing human studies, such as with 

prospective cancer patient studies. Other challenges in DDA-based isobaric labeling 

workflows are pairwise comparison ratio compression and quantification accuracy; 

however, strategies have been developed to address these challenges [22-24]. 
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Alternatively, label-free data-independent acquisition (DIA) strategies performed on 

high-resolution, accurate-mass instruments represent a powerful tool to quantify ECM 

proteins across disease stages in prospective clinical cohorts, such as the one studied 

here. DIA relies on the systematic acquisition of MS/MS spectra for all detectable 

peptides contained in wide m/z isolation windows [25, 26]. Generated DIA MS/MS 

spectra are then interrogated using dedicated data processing strategies [27, 28], that 

typically rely on tissue-specific spectral libraries [29, 30], pan-species spectral libraries 

[31, 32] or library-free workflows, such as DIA-Umpire [33], DIA-NN [34] and directDIA 

embedded in Spectronaut software (Biognosys). In recent years, considerable efforts 

have been made to improve software algorithms [34-36], allowing to mine DIA data in-

depth. DIA provides comprehensive and deep profiling of the proteome with highly 

reproducible and accurate quantification performances [37-39]. Numerous cancer and 

pre-clinical studies have been performed using DIA approaches [40, 41]. Krasny et al. 

reported the first application of the DIA/SWATH methodology to profile mouse liver and 

mouse lung matrisomes, and benchmarked the performances of DIA/SWATH vs. DDA 

[42]. The authors reported that DIA/SWATH achieved 54% more matrisomal protein 

identification and improved reproducibility performances compared to DDA-based 

analysis.  

In this study, we present an efficient and robust multi-site workflow combining 

prospective collection of fresh human LSCC ‘Tumor’ and matched adjacent 

histologically normal (‘Matched Normal’) tissue specimens from 10 cancer patients, 

ECM enrichment at UCSF, label-free comprehensive DIA quantification and stringent 

statistical processing at the Buck Institute, and finally candidate verification by 
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immunofluorescence-based immunohistochemistry (IHC) at UCSF (Figure 1). This 

workflow was applied to decipher ECM proteome remodeling in LSCC, thus allowing us 

to gain deeper mechanistic insights into how altered ECM can promote tumorigenesis, 

and to identify potential ECM targets whose modulation may restore ECM homeostasis 

and a microenvironment less permissive for malignancy.  

 
2. Materials and Methods 

 

2.1. Chemicals 

LC-MS-grade acetonitrile (ACN) and water were obtained from Burdick & Jackson 

(Muskegon, MI). Reagents for protein chemistry, including sodium dodecyl sulfate 

(SDS), ammonium bicarbonate, iodoacetamide (IAA), dithiothreitol (DTT), sequencing-

grade endoproteinase Lys-C, and formic acid (FA) were purchased from Sigma-Aldrich 

(St. Louis, MO). Sequencing-grade trypsin was purchased from Promega (Madison, 

WI). Glycerol-free PNGase F was purchased from New England BioLabs (Ipswich, MA). 

 

2.2. Collection of Human Samples 

Surgery Samples for ECM Analysis: Fresh tissue specimens corresponding to tumor 

(‘Tumor’) and histologically normal tissue adjacent to tumor (‘Matched Normal’) were 

collected from 5 female and 5 male consented patients diagnosed with lung squamous 

cell carcinoma at McGill University Health Centre (MUHC; Montreal, Quebec, Canada, 9 

patients) or through the Western Division of the Cooperative Human Tissue Network 

(CHTN; Nashville, TN, USA, 1 patient). Sample collection was under protocols of the 

REB-approved biobank (study# 2007-856, lead investigator: Dr. Ferri) and used in the 
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MUHC REB-approved CRUK STORMing project (local study# 2019-5039, lead 

investigator: Dr. Ferri), or under institutionally approved human subject protocol 10-

01532 (University of California, San Francisco; UCSF). Tissue specimens were shipped 

overnight in transport medium (Belzer UW Cold Storage Solution; Bridge to Life Ltd., 

Northbrook, IL) to UCSF where they were processed for ECM proteomic analysis as 

described below. Information about each tissue specimen and patient, referred to as 

L01, L02, L03 …, and L10, is provided in Table S1. 

Samples for Immunohistochemistry Validation: Formalin-fixed paraffin-embedded 

(FFPE) ‘Tumor’ and ‘Matched Normal’ lung specimens used for immunohistochemistry 

were provided by CHTN or by the Department of Pathology at UCSF under human 

subject protocol 10-01532 (UCSF). Information about each tissue specimen is provided 

in Table S1. 

 

2.3. Enrichment for ECM Components 

Fresh lung tissues were minced into small pieces, weighed and flash frozen for storage 

at -80 �C. The ECM fraction was isolated from the frozen tissues using the 

Compartmental Extraction Kit (Millipore, #2145) as per manufacturer’s protocol. Briefly, 

the tissues were homogenized in cold proprietary ‘buffer C’ using a bead mill 

homogenizer. ECM was extracted through step-wise washes with salt solutions and 

detergents to remove soluble proteins. About 1/10 of purified ECM was used to 

determine the purity and efficiency of the ECM protein enrichment by Western blot 

analysis. The ECM and other fractions were assessed using primary antibodies, specific 

for distinct cell fractions: anti-collagen I for ECM (Abcam, #ab138492), anti-beta 1 
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integrin for plasma membrane (Abcam, #ab179471), anti-hnRNPH1 for nucleus 

(Invitrogen, #27610), anti-GAPDH for cytosol (Abcam, #ab128915) and an anti-actin 

antibody for cytoskeleton (Sigma, #A5441) (Figure S1). The remaining ECM 

preparation was stored at -80�C for further quantitative proteomic analysis. 

 

2.4. Solubilization of ECM Proteins 

The extracted ECM pellets were solubilized by agitation for 10 minutes in a solution 

containing 1% SDS, 50 mM DTT and 1X NuPAGE lithium dodecyl sulfate (LDS) sample 

buffer (Life Technologies, Carlsbad, CA), followed by sonication for 10 minutes, and 

finally heating at 85 �C for 1 hour with agitation.  

 

2.5. Protein Digestion and Desalting 

Solubilized samples were run in pre-cast NuPAGE 4-12% gradient acrylamide Bis-Tris 

protein gels (Invitrogen) for 20 minutes to concentrate the proteins in a single band in 

the stacking gel. The gels were fixed with 50% methanol, 7% glacial acetic acid in water 

for 15 min and stained with GelCode Blue Stain (Thermo Fisher Scientific). For in-gel 

digestion, the gel bands were diced, collected in tubes, and dehydrated with a 

dehydration buffer (25 mM ammonium bicarbonate in 50% acetonitrile (ACN) and 

water). The gel samples were dried in a vacuum concentrator, reduced with 10 mM 

dithiothreitol (DTT) in 25 mM ammonium bicarbonate (pH 7-8) and incubated for 1 hour 

at 56 �C with agitation, then alkylated with 55 mM iodoacetamide (IAA) in 25 mM 

ammonium bicarbonate (pH 7-8), and incubated for 45 minutes at room temperature in 

the dark. The diced gel pieces were washed with 25 mM ammonium bicarbonate in 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 6, 2022. ; https://doi.org/10.1101/2022.08.05.503012doi: bioRxiv preprint 



11 
 

water (pH 7-8), and then dehydrated again with the dehydration buffer. Samples were 

dried in a vacuum concentrator, after which the proteins were incubated with 250 ng of 

sequencing-grade endoproteinase Lys-C in 25 mM ammonium bicarbonate (pH 7-8) at 

37 �C for 2 hours with agitation, followed by an overnight incubation with 250 ng 

sequencing-grade trypsin in 25 mM ammonium bicarbonate (pH 7-8) at 37 �C with 

agitation. Subsequently, the digested peptides were further extracted, as gel pieces 

were subjected to water and then two separate additions of a solution containing 50% 

ACN, 5% formic acid (FA) in water. After each addition of solution, the sample was 

mixed for 10 minutes, and then the aqueous digests from each sample were transferred 

into a new tube. These pooled peptide extractions were dried in a vacuum concentrator 

for three hours until completely dry. Proteolytic peptides were re-suspended in 100 µL of 

25 mM ammonium bicarbonate in water (pH 7-8), and spot-checked to ensure a pH of 

7-8. Subsequently, 3 µL (1,500 U) of glycerol-free PNGase F were added, and samples 

were incubated for 3 hours at 37 �C with agitation. This reaction was quenched with 

10% FA in water for a final concentration of 1%, and spot-checked again to ensure a pH 

of 2-3. The quenched peptide samples were desalted using stage-tips made in-house 

containing a C18 disk, concentrated in a vacuum concentrator and re-suspended in 

aqueous 0.2% FA containing indexed retention time peptide standards (iRT, Biognosys, 

Schlieren, Switzerland) [43].  

 

2.6. Mass Spectrometric Analysis 

LC-MS/MS analyses were performed on an Eksigent Ultra Plus nano-LC 2D HPLC 

system (Dublin, CA) combined with a cHiPLC system directly connected to an 
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orthogonal quadrupole time-of-flight (Q-TOF) SCIEX TripleTOF 6600 mass 

spectrometer (SCIEX, Redwood City, CA). The solvent system consisted of 2% ACN, 

0.1% FA in H2O (solvent A) and 98% ACN, 0.1% FA in H2O (solvent B). Proteolytic 

peptides were loaded onto a C18 pre-column chip (200 μm × 6 mm ChromXP C18-CL 

chip, 3 μm, 300 Å; SCIEX) and washed at 2 μL/minute for 10 minutes with the loading 

solvent (H2O/0.1% FA) for desalting. Peptides were transferred to the 75 μm × 15 cm 

ChromXP C18-CL chip, 3 μm, 300 Å (SCIEX) and eluted at 300 nL/min with the following 

gradient of solvent B: 5% for 5 min, linear from 5% to 8% in 15 min, linear from 8% to 

35% in 97 min, and up to 80% in 20 min, with a total gradient length of 180 min. 

All samples were analyzed in technical duplicates by data-independent acquisition 

(DIA), specifically using variable window DIA acquisitions [25, 37, 38]. In these DIA 

acquisitions, 64 windows of variable width (5.9 to 90.9 m/z) are passed in incremental 

steps over the full mass range (m/z 400–1,250), as determined using the SWATH 

Variable Window Assay Calculator from SCIEX (Table S2). The total cycle time of 3.2 

seconds includes a MS1 precursor ion scan (250 msec accumulation time), followed by 

64 variable window DIA MS/MS segments (45 msec accumulation time for each). MS2 

spectra were collected in “high-sensitivity” mode. The collision energy (CE) for each 

segment was based on the z=2+ precursor ion centered within the window with a CE 

spread of 10 or 15 eV. 

 

2.7. DIA Data Processing with Spectronaut 

All DIA data was processed in Spectronaut version 14.10.201222.47784 (Biognosys) 

using a pan-human library that provides quantitative DIA assays for 10,316 human 
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proteins [31]. Data extraction parameters were selected as dynamic, and non-linear iRT 

calibration with precision iRT was selected. Identification was performed using a 1% 

precursor and protein q-value, and iRT profiling was selected. Quantification was based 

on the MS/MS peak area of the 3-6 best fragment ions per precursor ion, peptide 

abundances were obtained by summing precursor abundances and protein abundances 

by summing peptide abundances. Interference correction was selected and local 

normalization was applied. Differential protein abundance analysis was performed using 

paired t-test, and p-values were corrected for multiple testing, specifically applying 

group-wise testing corrections using the Storey method [44]. For differential analysis, 

very stringent criteria were applied: protein groups with at least two unique peptides, q-

value ≤ 0.001, and absolute Log2(fold-change) ≥ 0.58 were considered to be 

significantly altered (Table S3). 

 

2.8. Bioinformatic Analysis 

The Pearson coefficients of correlation were determined between the different replicates 

using the cor() function of the stats package in R (version 4.0.2; RStudio, version 

1.3.1093) and the abundances of all 1,802 quantifiable protein groups as input. Violin 

plots were generated using the ggplot2 package [45]. Partial least square-discriminant 

analysis (PLS-DA) of the proteomics data was performed using the package mixOmics 

[46] in R. An over-representation analysis was performed using ConsensusPathDB-

human (Release 35, 05.06.2021) [47, 48] to determine which gene ontology (GO) terms 

were significantly enriched. The significantly 327 up- and 202 down-regulated protein 

groups were used as inputs and all quantified 1,802 protein groups were used as 
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customized background proteome (Table S3). GO terms identified from the over-

representation analysis were subjected to the following filters: q-value < 0.001 and term 

level ≥ 4. Dot plots were generated using the ggplot2 package [45] in R. 

 

2.9. Immunohistochemistry and Quantification 

FFPE tissue sections (5 μm thick) for six cases of LSCC and matched histologically 

normal lung tissues from two of these cases and four additional matched histologically 

normal lung tissues were deparaffinized and rehydrated in ethanol and water. 

Endogenous peroxidase was inactivated with 3% hydrogen peroxide for 10 min at room 

temperature. After antigen retrieval with citric acid buffer (10 min, 95°C), sections were 

blocked with background sniper (Biocare, BS966) then incubated for 1h at room 

temperature with a knock-out validated recombinant rabbit monoclonal anti-SERPINH1 

(Hsp47) antibody (Abcam, #ab109117) diluted at 1/50 or 1/150 followed by an 

incubation for 1h at room temperature with a secondary goat Alexa FluorTM 488 

antibody (ThermoFisher Scientific, #A11029) diluted at 1/1000. Tissue sections were 

counterstained with DAPI, mounted with VECTASHIELD HardSet Antifade Mounting 

Medium (Vector Laboratories, H-1400) and coverslipped. Sections were then imaged, 

specifically acquiring 5 images per each specimen, at a 20x magnification using a 

Keyence BZ-X800 series microscope. Images were processed with the ImageJ 

software, and Hsp47 abundance was quantified based on fluorescein isothiocyanate 

(FITC) staining using the QuPath (version 0.3.2) software. Plots and statistical analysis 

(Welch’s test) were processed with the Prism (version 9.3.1) software. 

 
3. Results and Discussion 
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3.1. Efficient Proteomic Workflow for Human Lung Extracellular Matrix  

To decipher changes that occur in the ECM of human chronic inflammation-associated 

lung squamous cell carcinoma, a refined multi-site experimental workflow was 

implemented, combining i) fresh human tissue collection immediately after resection 

and pathology assessment at McGill University (or CHTN Western Division in 

Nashville), ii) ECM isolation at UCSF, iii) proteomic analysis, including MS acquisition 

and statistical processing at the Buck Institute, and finally iv) biomarker candidate 

validation via immunofluorescence-based immunohistochemistry of an independent 

cohort of patients at USCF (Figure 1). 

Approximately 50 mg of fresh lung tissue specimens from 10 patients with LSCC 

were collected by surgical resection, both at the tumor site and at a histologically normal 

site adjacent to the tumor, hereafter referred to as ‘Tumor’ and ‘Matched Normal’, 

respectively. Tissue annotations initially assigned by a surgeon were subsequently 

confirmed by a pathologist. The clinical traits of the 5 female and 5 male cancer patients 

with ages ranging from 57 to 78 years are displayed in Table S1. Fresh and never-

frozen tissue specimens stored in cold UW solution were sent to USCF for further ECM 

enrichment by sequential fractionation based on solubility. The quality of the ECM 

protein enrichment was assessed using Western blotting assays by examining the 

abundance of representative proteins for specific cellular compartments/fractions: 

collagen I for the ECM fraction, β1 integrin for the membrane fraction, heterogeneous 

nuclear ribonucleoprotein H1 (hnRNP H1) for the nucleus fraction, glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) for the cytosol fraction and actin for the 

cytoskeleton fraction (Figure S1). Highly insoluble ECM was enriched as confirmed by 
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the very abundant presence of collagen I observed in the anticipated ECM fractions. 

Representative markers for other cellular compartments were only minimally or not at all 

detected in the ECM fractions, documenting a high efficiency of the ECM isolation 

protocol and a high purity of the isolated ECM proteins. Isolated ECM from ~50 mg of 

each original lung specimen, namely 10 ‘Tumor’ specimens and 10 ‘Matched Normal’ 

specimens, was sent for proteomic analysis to the Buck Institute. Insoluble ECM-

enriched proteins were solubilized applying a rigorous procedure including a solution of 

anionic detergents (1% SDS, 0.5% LDS) and reducing agent (DTT), and samples were 

subjected to sonication (for 10 min) and extended heat treatment (85°C for 1 hour) to 

improve protein solubilization. After concentration in a short migration stacking SDS-

PAGE gel, proteins were in-gel digested via sequential incubations with Lys-C and 

subsequently trypsin, ensuring a high proteolytic digestion efficiency. Extracted tryptic 

peptides were de-glycosylated using PNGase F to release N-linked glycans from the 

ECM proteins in order to facilitate the overall mass spectrometric analysis (Figure 1).  

To circumvent mass spectrometric under-sampling as often observed in DDA-

approaches, an efficient and comprehensive DIA-MS strategy was chosen. Briefly, DIA 

enables us to profile all detectable peptides contained in the samples through the 

unbiased acquisitions of multiplexed MS/MS spectra, thus providing a digitalized map of 

each of the 10 ‘Tumor’ and 10 ‘Matched Normal’ control samples. Duplicate injections 

were performed for each sample on a TripleTOF 6600 mass spectrometer operated in 

DIA mode, using a 64 variable window isolation scheme (Table S2). More specifically, 

each scan cycle was composed of one full range MS scan (m/z 400-1,250) and 64 

MS/MS scans with isolation windows ranging between 5.9 m/z and 90.9 m/z, with 
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smaller windows in highly populated m/z regions and wider windows in less populated 

m/z regions [25, 37, 38]. As a result, DIA MS/MS spectrum complexity is reduced and 

analyte specificity is increased. Collected DIA data were analyzed using a pan-human 

spectral library [31]. Although this publicly available pan-human library was originally 

generated from acquisitions on different LC-MS/MS systems (however, also SCIEX Q-

TOF/TripleTOF systems), non-linear retention time calibrations using iRT regressions 

were achieved very efficiently (Figure S2A). Peptide quantification was performed by 

extracting fragment ion chromatograms from the DIA MS/MS spectra. Here, ~11 data 

points per chromatographic peak were used on average, providing high quantification 

accuracy. This DIA-MS workflow resulted in the identification and quantification of 1,802 

protein groups (Figure 2A) with at least two unique peptides at 1% false discovery rate 

(FDR) (Table S3A). The median protein abundance (based on peak area) span 4.95 

orders of magnitude over the entire dataset (Figure S2B).  

One powerful and unique aspect of this overall project is the prospective recruitment 

of patients, resulting in a continuous tissue collection, and subsequent proteomic 

analysis of tissue specimens. Using a label-free DIA-MS strategy represents a high 

advantage as it offers the flexibility required to prepare and acquire the tissue samples 

in an independent fashion and without any required sample pooling (as necessary for 

isobaric labeling strategies). To account for the technical variability, an efficient 

normalization method, based on a RT-dependent local regression model [49], was 

applied (Figure S2C-D). Briefly, assuming that the systematic bias is not linearly related 

to peptide abundances, the locally weighted scatterplot smoothing (LOWESS) algorithm 
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is applied to perform a linear least squares regression on localized subsets of peptides 

(this algorithm is implemented into Spectronaut). 

Of the 1,802 quantified protein groups obtained by analyzing the ECM-enriched 

fractions, 1,010 protein groups (56%) matched the gene ontology (GO) cellular 

component ‘extracellular’ (Figure 2A). Specifically, 162 protein groups are reported as 

ECM and ECM-associated proteins in the human MatrisomeDB database [50] (Figure 

2B), with 17 collagens, 53 glycoproteins, 14 proteoglycans, 21 ECM-affiliated proteins, 

47 ECM regulators and 10 secreted factors (Table S3A). Strikingly, although 

matrisomal proteins represented 9% of all quantified protein groups in the dataset, their 

peak area-based abundance accounted for 51% of the total protein abundance in the 

‘Matched Normal’ group and 22% in the ‘Tumor’ group (Figure 2C). Indeed, over 50% 

of the quantified matrisomal protein groups (84/162) were present among the first most 

abundant protein groups quartile, with, for instance, collagen alpha-1(VI) chain, collagen 

alpha-2(VI), collagen alpha-3(VI) chain, fibronectin, and vitronectin in the top 10 most 

abundant protein groups (Table S2B). This highlights the efficient enrichment for ECM 

proteins achieved using this workflow. Figure 2D displays violin plots of the Pearson 

coefficients of correlation between the different replicates of each of the ‘Tumor’ and 

‘Matched Normal’ groups. The increased variability in the ‘Tumor’ group compared to 

the ‘Matched Normal’ group revealed here that ECM enrichments from tumors are 

biologically highly heterogeneous across cancer patients, while the ECM from the 

matched histologically normal lung tissues appeared much more homogeneous across 

individuals. 
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Overall, these DIA-MS results already demonstrated the high ECM enrichment 

efficiency and quantification capabilities achieved by this presented workflow to 

comprehensively quantify ECM proteins, enriched from fresh clinical human tissue 

specimens. This label-free DIA strategy provides comprehensive, reproducible, 

sensitive, and accurate quantification of the ECM-enriched samples, while being 

compatible with the prospective and continuous addition of new samples to the cohort. 

 

3.2. Human Lung Squamous Cell Carcinoma Features ECM Remodeling 

By investigating the quantitative DIA-MS results more closely, it was obvious and 

interesting to discover that both ‘Tumor’ and ‘Matched Normal’ groups were quite 

distinct, and could be clearly clustered apart using a supervised clustering analysis by 

partial least squares-discriminant analysis (PLS-DA) (Figure 3A). Notably, distinct 

clustering was observed for specimens collected from both male and female patients 

(Figure S3). To explore the remodeling of ECM associated with LSCC, very stringent 

significance thresholds, specifically with q-value ≤ 0.001 and absolute Log2(fold-change) 

≥ 0.58, were applied. The differential analysis of all 1,802 protein groups resulted in 529 

significantly changing proteins comparing ‘Tumor’ to ‘Matched Normal’ samples. 

Specifically, this analysis revealed 327 significantly up-regulated protein groups and 202 

significantly down-regulated protein groups (in ‘Tumor’ vs. ‘Matched Normal’) as shown 

in Figure 3B and Table S3B. Among the significantly changing proteins, 49 protein 

groups are well-known components of the core matrisome: 12 collagens, 29 ECM 

glycoproteins, and 8 proteoglycans, whereas 17 protein groups are matrisome-
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associated proteins: 4 ECM-affiliated proteins, 10 ECM regulators, and 3 secreted 

factors [50] (Figure 3C; Figure S4; Table S3B).  

Interestingly, ECM proteins down-regulated in ‘Tumor’ vs. ‘Matched Normal’ included 

collagen alpha-6(VI) chain (COL6A6), nidogen-1 (NID1), laminin subunit β2 (LAMB2), 

decorin (DCN), and perlecan (HSPG2), which are components of the basement 

membrane, a thin and specialized ECM layer. In contrast, serpin family H member 

1/heat shock protein 47 (SERPINH1/Hsp47), a member of the serine protease inhibitor 

(serpin) family, collagen alpha-1(I) chain (COL1A1), periostin (POSTN), annexin A1 

(ANXA1), and tenascin-C (TNC) were significantly up-regulated (Figure 3D), when 

comparing ‘Tumor’ to ‘Matched Normal’.  

Of these significantly up-regulated protein groups, several protein candidates could 

potentially be highly relevant in the context of cancer and disease progression. For 

example, tenascin-C, which showed a 4.16-fold-increase in ‘Tumor’ vs. ‘Matched 

Normal’ with q-value = 2.57e-69 (Figure 3D), is a glycoprotein and member of the 

tenascin family. Tenascin-C is barely expressed in adult tissues, except in specific 

niches, such as at inflammation sites and in the stroma of solid tumors, where it is 

highly abundant [51]. In NSCLC, tenascin-C may participate in tumor immune evasion, 

progression, and recurrence via a mechanism involving the inhibition of tumor-infiltrating 

lymphocyte proliferation and interferon-γ secretion [52].  

Additionally, annexin A1, up-regulated by a factor 4.06 in ‘Tumor’ vs. ‘Matched 

Normal’ with q-value = 5.27e-7 (Figure 3D), is a member of the Ca2+-regulated 

phospholipid-binding protein superfamily, involved in various cellular processes, such as 

inflammation, proliferation regulation, apoptosis, and tumorigenesis [53]. Notably, 
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Annexin A1 appears as prognostic factor for longer overall survival in LSCC by 

suppressing metastasis, but not cancer cell proliferation [54]. 

Tumor ECM is known to be mechanically stiffer and exhibit higher tension compared 

to the ECM of healthy tissues. Collagens, whose organization relies on sophisticated 

crosslinking networks, largely contribute to this phenomenon [8], suggesting that 

COL1A1, here up-regulated by a factor 3.25 in ‘Tumor’ (q-value = 8.81e-6) (Figure 3D), 

could participate in ECM stiffening. Moreover, COL1A1 is associated with hypoxia in 

NSCLC [55]. This protein was also reported to correlate with late LSCC progression, 

and it appears as a potential biomarker of metastasis to lymph nodes [56], poor 

prognosis and chemoresistance [57] in LSCC. 

Periostin was also significantly up-regulated (3.86-fold) in ‘Tumor’ vs. ‘Matched 

Normal’ with q-value = 2.99e-64 (Figure 3D). Periostin is a key player in ECM structure 

and organization, particularly for collagen fibrillogenesis, and it interacts with other 

proteins, such as integrins, fibronectin and tenascin [58, 59]. This protein is primarily 

expressed by cancer-associated fibroblasts (CAFs), located in the stromal 

microenvironment, and has been implicated in LSCC progression, tumor cell 

proliferation and migration [58, 60]. Specifically, Ratajczak-Wielgomas et al. reported 

that periostin in LSCC cancer cells could modulate the expression of the proteinase 

MMP-2, which may further regulate tumor cell invasion, and that periostin expression 

correlates with the incidence of lymph node metastases [61]. Moreover, the authors 

showed a putative interaction between cancer cells and stromal CAFs, which could 

promote cell invasion. Finally, periostin is associated with poor prognosis and tumor 

grade [58, 60], and correlates with the incidence of lymph node metastasis [60, 61]. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 6, 2022. ; https://doi.org/10.1101/2022.08.05.503012doi: bioRxiv preprint 



22 
 

 

To determine the biological processes altered in LSCC, an over-representation 

analysis was performed with ConsensusPathDB database [47, 48]. The gene ontology 

(GO) analysis revealed that processes related to lipid storage and localization, 

lipopolysaccharide-mediated signaling pathway, protein-containing complex remodeling, 

ECM organization, and endoderm development were down-regulated (Figure 3E) in 

‘Tumor’ vs. ‘Matched Normal’ comparison. In contrast, processes related to glucose-6-

phosphate metabolism, glycolysis, ATP generation, chaperon cofactor-dependent 

protein folding, and ribosome assembly were up-regulated (Figure 3F). The alterations 

of these biological processes clearly revealed aberrant ECM remodeling as well as 

alterations of metabolism in tumor cells. More specifically, sugar metabolism is 

reprogrammed in cancer cells as characterized by an exacerbated glucose uptake and 

a strong increase in lactate production, a phenomenon known as ‘the Warburg Effect’ 

[62], which may further impact the tumor microenvironment by favoring cell invasion and 

immunotolerance [63]. Down-regulation of lipid-related processes could be linked to 

alterations in the plasma membrane organization and/or of the lipid metabolism [64]. 

Proteins associated with such biological processes include apolipoprotein A-I (APOA1), 

a component of high-density lipoproteins involved in the transport of cholesterol, 

required for tumor cell viability, which in turn might promote tumor progression [65]. 

Another example is caveolin-1 (CAV1), which can undergo autophagic degradation in 

CAFs to protect adjacent epithelial tumor cells against apoptosis. 
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3.3. Changes in Basement Membrane Proteins, Small Leucine-Rich Proteins, 

Serpins, Desmosomal Proteins and Keratins 

To decipher how ECM is remodeled in LSCC, the dataset was investigated by focusing 

on proteins involved in ECM structure and organization, as well as on specific protein 

families. Figure 4 and Figure S5 display heatmaps of the ‘Tumor’ vs. ‘Matched Normal’ 

significant fold-changes for the ECM abundance of basement membrane proteins, small 

leucine-rich proteins (SLRPs), serpins, desmosomal proteins, and keratins measured 

for each patient. Interestingly, very robust and strong signatures were observed for each 

of the patients. 

Thus, abundance of basement membrane proteins, including collagen alpha-1(IV) 

chain (COL4A1), collagen alpha-2(IV) chain (COL4A2), collagen alpha-1(XVIII) chain 

(COL18A1), heparan sulfate proteoglycan 2/perlecan (HSPG2), eight laminin subunits – 

subunit α3 (LAMA3), α4 (LAMA4), α5 (LAMA5), β1 (LAMB1), β2 (LAMB2), β3 (LAMB3), 

γ1 (LAMC1), and γ2 (LAMC2), nidogen-1 (NID1), and proteoglycan 4 (PRG4), 

decreased in ‘Tumor’ compared ‘Matched Normal’ lung samples (Figure 4). Agrin 

(AGRN) and nidogen-2 (NID2) were also highly confidently down-regulated and close to 

the fold-change cutoff (q-value < 0.001 for both proteins; Table S3). The basement 

membrane is a thin layer of the ECM located at the base of polarized epithelial cells. It 

is composed of two independent networks of laminins and type IV collagens linked 

together by the glycoprotein nidogen and the heparan sulfate proteoglycan perlecan, as 

well as additional proteins including agrin and type XVIII collagens, which tether growth 

factors [66]. The basement membrane is involved in supporting the tissue architecture, 

maintaining cell polarity and signal transmission to epithelial cells via integrin receptors 
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and segregating the epithelium from the stroma. Thus, the observed loss of basement 

membrane proteins is in accordance with its breaching, which is required for tumor cells 

to invade the stroma [67, 68].  

In a similar fashion, a coordinated loss of SLRPs was observed in LSCC, specifically 

for asporin (ASPN), biglycan (BGN), decorin (DCN), lumican (LUM), mimecan (OGN), 

and prolargin (PRELP) (Figure 4). SLRPs represent a subgroup of proteoglycans, that 

is divided into four classes based on gene and protein homology: ASPN, BGN, and 

DCN belong to class I, LUM and PRELP to class II, and OGN to class III [69]. SLRPs 

are involved in various processes including ECM assembly regulation, collagen 

fibrillogenesis, sequestration of growth factors, cell-matrix interactions, and cell 

behaviors by interacting with plasma membrane receptors, such as toll-like receptors, 

tyrosine kinase receptors, and other matrisomal factors [70]. For example, decorin acts 

as a tumor suppressor by limiting tumor growth, angiogenesis, tumor cell mitophagy, 

and regulating the immune and inflammatory response [71]. While decorin and biglycan 

are the closest SLRPs, biglycan shows opposite activities by promoting inflammation, 

angiogenesis, tumor cell proliferation, migration, and metastasis, although tumor 

suppressive effects of this SLRP were also reported [71, 72]. Lumican binds to 

collagens to prevent degradation by proteinases, such as matrix metalloproteinases 

(MMPs), and is observed to have both pro- and anti-tumoral properties by regulating cell 

proliferation and invasion [72, 73]. Understanding the effects and interplay of these 

different SLRPs, that show significantly lower abundance in LSCC ‘Tumor’ vs. ‘Matched 

Normal’, may thus be of high relevance.   
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Strikingly, the overall loss of the core matrisome and matrisome-associated proteins in 

the ‘Tumor’ vs. ‘Matched Normal’ stroma, as illustrated for the basement membrane 

proteins and SLRPs, explains the >2-fold decrease of the matrisomal protein 

abundance relative to the total protein abundance in the ‘Tumor’ group compared to the 

‘Matched Normal’ group (Figure 2C).  

In our study, the observed alterations in protein abundance in the ECM for serine 

protease inhibitors (serpins) in LSCC were different for different family members: serpin 

family B member 6 (SERPINB6) was significantly down-regulated in ‘Tumor’ vs. 

‘Matched Normal’ (ratio = 0.59 with q-value = 2.24e-4), whereas both serpin family B 

member 5/maspin (SERPINB5) and SERPINH1 (also referred to as heat shock protein 

47, HSP47) were significantly up-regulated in ‘Tumor’ vs. ‘Matched Normal’ 

(SERPINB5: ratio = 1.91 with q-value = 8.20e-9; SERPINH1: ratio = 2.35 with q-value = 

7.84e-15) (Figure 4; Figure S5). SERPINB6 interacts with cathepsin G in monocytes 

and granulocytes to inhibit this inflammation-related protein and interacts with other 

trypsin-like proteases as well [74]. SERPINB5 has a tumor suppressive activity [74]. In 

LSCC, this protein may be associated with cancer development by regulating the p53 

signaling pathway [75]. SERPINH1 is an endoplasmic reticulum protein with chaperone 

activity which ensures proper folding and ultimately conformation of type I procollagen 

trimer [76]. SERPINH1 is dysregulated in a large number of cancers and might play a 

role in tumor immunity [77]. For instance, in breast cancer, Hsp47/SERPINH1 is a key 

player in cancer progression by promoting the secretion and deposition of ECM 

proteins, e.g. collagens and fibronectin [78], as well as of metastasis by regulating the 

cancer cell-platelet interaction via a collagen-dependent mechanism [79].  
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The ECM-enriched fractions contain residual highly insoluble remnants of stromal 

and epithelial cells, that were reproducibly co-isolated with ECM proteins. This was 

revealed by robust observations of keratins, which are epithelium intermediate 

filaments, involved in cell mechanical stability and integrity. Out of the 17 significantly 

altered keratins, 15 were up-regulated in ‘Tumor’ vs. ‘Matched Normal’ (Figure S5; 

Table S3), namely keratin, type I cytoskeletal 4, 5, 6A, 6B, 7, 8, 13, 14, 15, 16, 17, 18, 

19, 75 and 80 (KRT4-8 and KRT13-19, KRT75 and KRT80). Two keratins, keratin, type 

I cytoskeletal 2 epidermal (KRT2) and keratin, type I cytoskeletal 9 (KRT9) were down-

regulated. The observed global upregulation of keratins in this study highlights the 

strong keratinization process observed during LSCC, as also previously reported in 

laser microdissected tumor cells [80]. Interestingly, keratinization might be associated 

with smoking, a risk factor of lung CIAC, and keratinization correlates with poor clinical 

outcome in LSCC [81].   

In addition, a coordinated, significant gain of desmosomal proteins was observed in 

‘Tumor’ vs. ‘Matched Normal’, with the up-regulation of desmoglein-2 (DSG2), junction 

plakoglobin (JUP), desmoplakin (DSP) and plakophilin-3 (PKP3) (Figure 4; Table S3). 

Furthermore, plakophilin-1 and 2 (PKP1, PKP2) and desmocollin-2 (DSC2) were also 

up-regulated, however with slightly lower fold-change or just above the q-value cutoff of 

0.001 (PKP1: ratio = 1.18 with q-value = 7.72e-9; PKP2: ratio = 1.56 with q-value = 

0.0012; DSC2: ratio = 1.42 with q-value = 5.81e-4) (Figure S5). Desmosomes are 

intercellular junctions located on the lateral sides of plasma membranes and involved in 

cell-cell adhesion and resistance to mechanical stress. These structures are composed 
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of desmosomal cadherins, such as desmocollins and desmogleins, desmosomal plaque 

proteins, such as desmoplakins and plakoglobins, as well as plakophilins. Notably, 

PKP1, KRT15 and DSG3 have been recently validated as novel markers to differentiate 

LSCC and lung adenocarcinoma, another NSCLC subtype, PKP1 and DSG3 being 

associated with poor prognosis [82]. In addition, PKP1 overexpression contributes to 

cell proliferation and survival in LSCC by positively regulating MYC translation [83]. Our 

study, presented here, highlights the relevance of the desmosomal protein assembly as 

part of LSCC.  

 

Altogether, the significant and robust changes in the ECM of tumor tissues revealed 

a conserved signature in LSCC characterized by the concomitant loss of basement 

membrane proteins and SLRPs and the increase in SERPINH1, as well as other 

significant changes relative to keratin and desmosome protein family members.  

 

3.4. SERPINH1 ECM Levels are Dramatically Increased in LSCC 

To validate the highly significant up-regulation of SERPINH1 observed in LSCC ‘Tumor’ 

vs. ‘Matched Normal’ as determined by the mass spectrometric ECM analysis (2.35-fold 

increase; q-value of 7.84e-15), we employed an orthogonal method relying on IHC. 

Immunofluorescence-based IHC was conducted on an independent cohort of patients 

with LSCC from CHTN and UCSF. Samples for IHC were tumor tissues from six cancer 

patients with LSCC, two matched normal lung tissues from two of the cancer patient 

cases, and four additional histologically normal lung tissue specimens adjacent to lung 

cancers (Table S1). Figure 5A displays representative IHC images, demonstrating the 
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strong up-regulation of SERPINH1 in cancer stroma in LSCC tissues, while it was 

barely detected in ‘Matched Normal’ tissues. Quantification was based on the 

percentage of area with positive FITC staining in five independent images for each 

specimen (Figure 5B). The quantitative analysis of stained tissue sections confirmed 

the dramatic up-regulation of SERPINH1 in LSCC ‘Tumor’ tissues compared to 

‘Matched Normal’ tissues. A mean of 0.39% SERPINH1-positive area was obtained in 

the six ‘Matched Normal’ specimens; SERPINH1 increased 10.36-fold (p-value = 

0.0116) to 4.05% SERPINH1-positive area in the six ‘Tumor’ specimens. While 

SERPINH1 was previously reported as a factor influencing tumor immunity and 

metastasis [77-79], further investigations need to be performed to determine the 

biological significance of SERPINH1 in LSCC and perhaps more broadly in multiple 

CIAC tumor types.  

 

4. Concluding Remarks 

In summary, our work presents an efficient, robust and multi-laboratory proteomic 

workflow to gain in-depth insights into ECM remodeling in LSCC by prospectively 

collecting fresh tumor and patient-matched histologically normal tissue adjacent to 

tumor from patients, enriching for insoluble ECM components, performing a refined 

ECM protein solubilization, applying comprehensive label-free DIA quantification and 

stringent statistical filtering. The unbiased DIA strategy offers the possibility to capture 

highly confident and robust protein changes, overcoming the biological individual-to-

individual variability, while providing the flexibility required to prospective studies and 

sample collection scheduling. It is worth noting that one can consider applying this ECM 
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proteomic workflow to any type of cancer or, more globally, diseases of interest. 

Although this study was conducted on cohorts with a limited number of patients, namely 

10 patients for the discovery ECM proteomic analysis, it suggests that potential protein 

candidates can be further assessed and validated by orthogonal methods, such as 

Western blotting and IHC assays, on independent cohorts thus generalizing the 

observations. In this study, the application of immunofluorescence-based IHC confirmed 

in a second cohort the dramatic increase in Hsp47/SERPINH1 abundance identified by 

MS in the tumor stromal microenvironment of a first cohort of LSCC patients. In 

addition, the application of label-free global DIA strategy for the discovery step is an 

asset for the easy and efficient development of targeted parallel reaction monitoring 

(PRM) assays on similar MS platforms as validation step and further translation into true 

clinical cohort measurements. Moreover, as small amounts of material are needed for 

the presented workflow, MS-based proteomics can be further integrated with additional -

omics technologies, such as (epi)genomics, transcriptomics, and CODEX, performed on 

the same tissue specimens in order to achieve a multifaceted tissue assessment. The 

combination of this compelling approach with regular discussions between surgeons, 

pathologists, cancer biologists and -omics scientists represents a cornerstone to 

formulate new hypotheses, and thus to gain deeper mechanistic insights into the 

continuum of disease processes and identify novel and promising stromal-targeted 

therapies. 
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Figure Legends 

 

FIGURE 1. Study Design and Proteomic Pipeline for ECM Analysis of Lung 

Squamous Cell Carcinoma. ‘Tumor’ and ‘Matched Normal’ fresh tissue specimens 

were collected from 10 patients with lung squamous cell carcinoma by the Ferri team at 

McGill University Health Centre (QC, Canada) or through the Cooperative Human 

Tissue Network Western Division (TN, USA). Fresh samples in UW Cold Storage 

Solution were sent to the Tlsty team at UCSF (CA, USA) for enrichment for insoluble 

extracellular matrix (ECM) proteins. ECM-enriched samples were further processed by 

the Schilling team at the Buck Institute (Novato, CA); proteins were solubilized, in-gel 

digested with Lys-C and trypsin, and extracted proteolytic peptides were de-

glycosylated with PNGase F. All resulting samples were analyzed in duplicate on a 

nanoLC-TripleTOF 6600 system (QqTOF) operated in data-independent acquisition 

(DIA) mode, and data were processed with Spectronaut (Biognosys). Finally, 

candidates were validated on independent cohorts by immunofluorescence-based 

immunohistochemistry by the Tlsty team. 

 

FIGURE 2. Proteomic Analysis of ECM and Matrisome Components from Human 

Lung Squamous Cell Carcinoma. (A) 1,802 protein groups with at least two unique 

peptides were identified, including 1,010 protein groups matching the Gene Ontology 

(GO) Cellular Component “extracellular” term. (B) 162 of these quantified protein groups 

are reported in the human MatrisomeDB [50]. (C) Average protein abundance relative to 

the total protein abundance of the matrisomal (colored) and non-matrisomal (grey) 
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protein groups. Abundance is based on the MS/MS peak area of the 3-6 best fragment 

ions per precursor ion. Protein abundances were obtained with summing 

peptide/precursor abundances as described in the Methods section. (D) Violin plots of 

the Pearson coefficients of correlation between the ‘Matched Normal’ or ‘Tumor’ 

replicates. The Pearson correlation compares all MS acquisitions within one condition to 

each other (one by one). The filled diamonds represent the average value of the 

coefficients: 0.76 for the ‘Matched Normal’ group and 0.61 for the ‘Tumor’ group. High 

heterogeneity of the ‘Tumor’ ECM enrichments across cancer patients (right plot) 

contrasts with a more homogeneous profile for ‘Matched Normal’ ECM enrichments (left 

plot). 

 

FIGURE 3. ‘Complete’ Remodeling of the ECM in Lung Squamous Cell Cancer. (A) 

Supervised clustering analysis using partial least squares-discriminant analysis (PLS-

DA) performed on protein groups quantified in the ‘Matched Normal’ (brown) and 

‘Tumor’ (pink) samples. (B) Volcano plot of the 1,802 quantified protein groups showing 

202 down-regulated and 327 up-regulated protein groups for ‘Tumor’ vs. ‘Matched 

Normal’ comparison. (C) 66 significantly altered protein groups are reported in the 

human MatrisomeDB [50] and are listed in Figure S4. Specific proteins from these 

significantly altered protein groups are listed in (D). (E-F) Dot plots showing the 

ConsensusPathDB [47, 48] Gene Ontology (GO) biological processes enriched for 

protein groups significantly down-regulated (E) and up-regulated (F) in ‘Tumor’ vs. 

‘Matched Normal’. 
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FIGURE 4. Alteration of Core Protein Signatures in Lung Squamous Cell 

Carcinoma across Patients. Heatmap showing log2-fold protein changes (‘Tumor’ vs. 

’Matched Normal’) for each individual LSCC patient referred to as L01, L02, L03 …, and 

L10 assessing Core Protein Signatures. (A) Thirteen basement membrane proteins and 

(B) six small leucine-rich proteins were significantly down-regulated in ‘Tumor’ vs. 

‘Matched Normal’, while (C) SERPINH1 (Hsp47) and (D) desmosomal proteins were 

significantly up-regulated across patients. For all displayed proteins, all Q-values (not 

displayed) were smaller than 9.38e-8, when comparing ‘Tumor’ to ‘Matched Normal’ 

group (Table S3).  

 

FIGURE 5. Dramatical Upregulation of SERPINH1 (Hsp47) in Lung Squamous Cell 

Carcinoma (LSCC) Compared to Histologically Normal Lung (NL) Tissues. (A) Six 

cases of lung squamous cell carcinomas and matched histologically normal lung tissues 

from two of these cases and four additional histologically normal lung tissue specimens 

adjacent to lung cancers were probed for SERPINH1 level by immunofluorescence-

based immunohistochemistry (IHC). (B) Left: SERPINH1 level was quantified based on 

the percentage of area with positive (FITC; green) staining in 5 independent images per 

specimen (pixels with positive staining above baseline threshold/total number of pixels 

per image). An example of pseudo-colorized positive area (pink) is shown for a matched 

set of specimens. Right: Plot corresponding to averaged values of positive staining of 5 

images for each of 12 human specimens (6 ‘Matched Normal’ and 6 ‘Tumor’). Statistical 

analysis was carried out as described in the Methods section. Magnification: 20x.    
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Supplementary Figure Legends 

 

FIGURE S1: ECM Isolation and Quality Control. Approximately 50 mg of tissue from 

the ‘Matched Normal’ and ‘Tumor’ tissues of lung squamous cell carcinomas, obtained 

by the Ferri team (MUHC) or the CHTN Western Division, was homogenized and the 

different compartment fractions were extracted based on the instruction of a 

compartmental protein extraction kit (Millipore, #2145). For each sample, 12 µL of total 

tissue extract, 24 µL of intermediate fractions, and 1/10 of ECM isolated from 50 mg of 

tissue were used to examine levels of representative proteins for each compartment. 

Images of ‘Matched Normal’ (N) and ‘Tumor’ (T) tissues from MUHC patients L01 and 

L05 are shown. Insoluble ECM was enriched as documented by the high levels of 

Collagen I in the expected ECM fractions. Representative markers for other cellular 

compartments (cytoplasmic: GAPDH; nuclear: hnRNP H1; membrane: β1 integrin; 

cytoskeleton: Actin) were barely detected in these ECM fractions supporting high purity 

of the isolated ECM fraction. Isolated ECM from 50 mg of each tissue was processed 

for further proteomic analysis. 

 

FIGURE S2: Quality Control and Performance of the DIA-MS Workflow. (A) 

Retention time calibration obtained for a replicate of the ‘Matched Normal’ group. Pink 

dots correspond to peptides used for the calibration, and the black line to the non-linear 

calibration curve. (B) Rank plot showing the protein abundance of the 1,802 quantifiable 

protein groups. Abundances are depicted as median values. Pink dots correspond to 

matrisomal protein groups. (C-D) Boxplots of precursor abundance are displayed for 
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each run (four runs associated with each patient) before (C) and after (D) local 

normalization. 

 

FIGURE S3: Proteomic Data Clustering - Assessment of Patient Gender. 

Supervised clustering analysis using partial least squares-discriminant analysis (PLS-

DA) performed on protein groups quantified in the ‘Matched Normal’ (shades of yellow) 

and ‘Tumor’ (shades of grey) samples collected on five female and five male patients 

with lung squamous cell carcinoma.  

 

FIGURE S4: Remodeling of the Matrisomal Proteins in Lung Squamous Cell 

Cancer. List of the 66 protein groups significantly altered in ‘Tumor’ vs. ‘Matched 

Normal’, that are reported in the human MatrisomeDB [50]. 

 

FIGURE S5: Heatmaps for Significantly Altered Serpins, Keratins and 

Desmosomal Proteins in LSCC across Individual Patients. Heatmap showing log2-

fold protein changes (‘Tumor’ vs. ’Matched Normal’) for each individual LSCC patient 

referred to as L01, L02, L03 …, and L10 assessing Core Protein Signatures. (A) 

SERPINB5 and (B) fifteen keratins were significantly up-regulated, while (A) SERPINB6 

and (B) two keratins were significantly down-regulated in ‘Tumor’ vs. ‘Matched Normal’. 

In all displayed cases, Q-values (not displayed) were smaller than 2.24e-4, when 

comparing ‘Matched Normal’ group to ‘Tumor’ group (Table S3). (C) Schematic 

illustration of organization of keratins and desmosome proteins identified in the ECM 

fraction as insoluble remnants of stromal and epithelial cells.  
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Figure 1
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Figure 3

UniProt ID Gene 
Name

Log2 
(FC) Q-value

A6NMZ7 COL6A6 -3.57 1.67 e-15

P14543 NID1 -2.80 5.56 e-96

P55268 LAMB2 -2.64 5.61 e-132

P07585 DCN -2.57 6.14 e-30

P98160 HSPG2 -2.56 < 1.00 e-253

P50454 SERPINH1 1.23 7.84 e-15

P02452 COL1A1 1.70 8.81 e-06

Q15063 POSTN 1.95 2.99 e-64

P04083 ANXA1 2.02 5.27 e-07

P24821 TNC 2.06 2.57 e-69

E. Down-regulated GO biological 
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