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Abstract

Strategic Behavior and Underpricing in Uniform Price Auctions:

Evidence from Finnish Treasury Auctions

We contribute to the debate on the optimal design of multiunit auctions by developing

and testing robust implications of the leading theory of uniform price auctions on the

bid distributions submitted by individual bidders. The theory, which emphasizes market

power, has little support in a dataset of Finnish Treasury auctions. A reason may be that

the Treasury acts strategically by determining supply after observing bids, apparently

taking into account that the auctions are part of a repeated game between the Treasury

and the primary dealers. Bidder behavior and underpricing are affected by the volatility

of bond returns in a way that suggests bidders adjust for the winner’s curse.

Keywords: Multiunit auctions, uniform price auctions, treasury auctions, market power,

demand functions, underpricing, supply uncertainty, seller behavior.

JEL Classification Numbers: D44, G10



1 Introduction

Economists and policy makers have debated the optimal design of multiunit auctions for

decades. Much of the debate has been shaped by Friedman’s (1960) proposition that the US

Treasury could decrease funding costs by using uniform price rather than discriminatory

price auctions. In both auction formats, individual bidders submit collections of bids

(demand schedules) and the securities are awarded in the order of descending price until

supply is exhausted. In uniform auctions, winning bidders pay the “market clearing” (or

stop-out) price for all units awarded; in discriminatory auctions they pay what they bid.

In this paper, we contribute to the debate by examining empirically the leading theory of

uniform auctions. We also shed light on the economic factors that influence bidding and

auction performance. Our results suggest that how a seller implements the auction can

have significant impact on performance.

The theoretical auctions literature has advanced arguments both for and against uni-

form auctions. In support of Friedman’s view, analogously to the result by Milgrom and

Weber (1982) on second-price versus first-price auctions, it has been argued that uniform

auctions reduce the winner’s curse relative to discriminatory auctions and thereby generate

more revenue [e.g. Milgrom (1989) and Bikhchandani and Huang (1993)]. However, mod-

els by Wilson (1979) and Back and Zender (1993), which explicitly incorporate bidders’

demand functions, reach the opposite conclusion. When bidders submit downward sloping

demand schedules, each bidder faces an upward sloping residual supply curve over which

he is a monopsonist. Under uniform pricing, this market power is shown to be optimally

exercised by submitting a decreasing demand function so that the auctioned securities will

be underpriced relative to the secondary market. In a sense, bidders manipulate the clear-

ing price by submitting a few low bids. Equilibrium underpricing can be arbitrarily large.

The Wilson/Back and Zender model is cast in terms of risk neutral players, but the same

market power effect is also at the heart of a model by Kyle (1989) with risk averse players

[see also Wang and Zender (2002)]. It has been argued that since uniform auctions, but

not discriminatory auctions, are susceptible to underpricing from monopsonistic market

power, more revenue can be raised by using discriminatory auctions (see particularly Back

and Zender, 1993).

The empirical literature has compared the revenue raising abilities of uniform and
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discriminatory auctions by looking at the level of underpricing relative to benchmarks

such as contemporaneous when-issued yields or secondary market prices. There is grow-

ing evidence that underpricing is smaller in uniform treasury auctions than in discrim-

inatory treasury auctions [Umlauf (1993), Nyborg and Sundaresan (1996), Malvey and

Archibald (1998), Goldreich (2003)]. Thus it seems that the theoretically predicted mar-

ket power equilibria fail to materialize in practice. However, objections may be raised to

this conclusion. First, any level of underpricing is consistent with the theory; there are

numerous equilibria. One interpretation of the evidence is that bidders simply coordi-

nate on equilibria with a relatively low underpricing, on average. Second, underpricing

as measured by empiricists is not necessarily an accurate reflection of revenue; for exam-

ple, the benchmark may reflect the (expected) auction outcome (Nyborg and Sundaresan,

1996). In this paper, we will therefore examine the market power theory not by looking

at underpricing, but by examining whether observed bidder behavior is consistent with the

theory.

We employ a bidder level dataset of uniform treasury auctions from Finland over the

period 1992-1999. These auctions would appear to be particularly vulnerable to market

power because of the small number of bidders (between five and ten). In addition, the

variation in the number of bidders combined with the fact that the number is known prior

to bidding make these auctions an ideal laboratory for testing the market power theory.

To test the theory, we develop a new methodology which focuses on how market power

may be exercised by individual bidders. The basic idea is to compare the theoretical de-

mand schedules with those that bidders actually submit. We view demand schedules as

distributions and compute summary statistics of the theoretical and empirical bid distrib-

utions at the individual bidder level. The validity of the theory is assessed by comparing

the predicted and observed statistics, particularly by checking whether the empirical sta-

tistics react to exogenous variables as predicted by the theory. While the tests are derived

in the context of uniform auctions, the methodology can be employed in other contexts

where a theory delivers predictions on the specifications of demand or supply functions.

We show that a central property of the market power theory is that at the individual

bidder level the theoretical bid distribution exhibits negative skewness. Intuitively, this

is because bidders have incentives to submit small, low bids in order to reduce the price

they pay for all the units they win. The skewness is also predicted to decrease with
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the number of bidders. We find the opposite. While the empirical bid distributions

tend to be negatively skewed when there are few bidders (5-8), the average skewness

becomes significantly positive when there are many bidders (9-10). Also very troublesome

for the market power theory, we cannot reject the null hypothesis that bid shading (the

discount) and underpricing are unaffected by the number of bidders. Consistent with

bidders exercising some market power, albeit less than suggested by the theory, we find

that demand per bidder is increasing in the number of bidders.

The rejection of the market power theory leaves us with two important questions: First,

what is the primary driver behind bidder behavior and auction performance? Second, what

can explain the rejection?

In our sample, the variable that has the most significant economic impact on bidder

behavior and underpricing across auctions is volatility. An increase in volatility leads to

larger discounts and more underpricing, reduced demand, and increased dispersion. These

findings parallel those of Nyborg, Rydqvist, and Sundaresan (2002) on discriminatory

Swedish Treasury auctions (see also Cammack, 1991). It would therefore appear that

the same basic economic forces are at work in uniform treasury auctions in Finland as in

discriminatory treasury auctions in Sweden. One possibility is that bidders have private

information and rationally adjust for the winner’s curse, as discussed by Nyborg, Rydqvist,

and Sundaresan (2002).1 This view is consistent with the finding cited above that uniform

auctions typically have less underpricing than discriminatory auctions.

Strategic behavior by the seller may explain why the market power theory is rejected.

A special feature of the Finnish auctions is that the Treasury determines supply after

observing the bids. We document that the Finnish Treasury never chooses supply to

maximize revenue given the bids in an auction. The Treasury even cancelled a few auctions

because bids were not deemed to be sufficiently high. This behavior suggests that the seller

thinks of the auction as a repeated game where the bids in subsequent auctions can be

influenced by rejecting revenue increasing bids in the current auction. Bidders may respond

by submitting bids that are more aggressive than what is predicted by theoretical models

with a nonstrategic seller.

The rest of the paper is organized as follows. The Finnish Treasury market and the

1Ausubel (1997) also discusses the winner’s curse in multiunit auctions.
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data are described in Section 2. The market power theory of uniform auctions is surveyed

in Section 3 with an emphasis on drawing out testable restrictions. Section 4 examines

bidder behavior empirically and tests the theory. Section 5 analyzes the seller’s strategic

behavior. Section 6 compares bidding and underpricing in uniform and discriminatory

treasury auctions. Section 7 concludes.

2 Institutional Background and Data

2.1 The Finnish Treasury Bond Market

The Finnish Treasury started issuing securities in 1991. This was motivated by the need to

finance the government budget deficit. The top left panel in Figure 1 shows that the deficit

was very large during the recession in the early 1990s, when GDP growth was negative,

but turned into a surplus towards the end of the decade. As a result, the Finnish Treasury

stopped issuing new securities in 1999 and has been buying back securities since 2000. The

bottom left panel shows the annual number of treasury bond auctions (the dark columns)

and the number of occasions when the Treasury offers additional securities for sale by

fixed price tender (the light columns). The frequency of auctions is approximately evenly

distributed over time except in the beginning and the end of the period. The total number

of auctions is 232 and the number of fixed price tenders 48.2 The top right panel shows

the annual average auction size, which is increasing over time at an average rate of 24%

per year. The large auction amounts in the late 1990s, when the net budget balance was

positive, were used to refinance maturing debt and to exchange foreign with domestic debt.

The bottom right panel shows that the number of primary dealers varies over time. The

primary dealers have an exclusive right and an obligation to bid in the auctions. Finland

introduced a primary dealer system in August 1992. The 25 auctions prior to this date

were open to anybody.3

Regular auctions are held every second Thursday, when one or two treasury bonds are

sold simultaneously. The 232 auctions are spread out over 204 calendar days; 176 days

2The fixed price tenders are held the day after the auction. In these, winning bidders in the auction get

the right to purchase additional securities up to 30% of their auction awards. The price is the auction’s

stop-out price or higher. The Treasury also sells T-bills with up to one year to maturity.
3For a more detailed description of the Finnish Treasury bond market, see Keloharju et al. (2002).
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Figure 1: Finnish Government Net Budget Balance and Treasury Bond Auctions

1990-2000. Top left: Annual net balance of the Finnish government budget. Bottom left:

Annual number of treasury bond auctions (dark bars) along with the number of fixed price

tender (white bars). Top right: Annual average auction size. An approximate exchange

rate is 1 USD for 6 FIM. Bottom right: Number of primary dealers from August 1992 to

1999. Within each year, the minimum number is represented by the dark portion and the

maximum by the dark and the light portions together.
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with a single security for sale, and 28 days with two securities. Thirteen auctions are first

issues of a new security and 219 are reopenings of existing securities which already trade in

the secondary market. The bonds are non-callable, have annual coupons, and have tenors

between 2 and 15 years.

The auction format is sealed, multiple bid, and uniform price. Awarded bidders pay

the stop-out price, which is the price of the lowest awarded bid. Bids are submitted by

phone before 1:00 pm and confirmed by fax afterwards. Auction awards are announced at

1:30 pm. Individual bids are expressed in price per 100 markka of face value, with a tick

size of .05 markka before 7 May 1998 and .02 markka thereafter. The quantity multiple is

1 million markka of face value.

One week before the auction, the Treasury announces which securities will be offered for

sale, but not the amount. Supply is determined after observing the bids. From 1998, the

Treasury announces the maximum amount. The Finnish Treasury does not have an explicit

policy regarding the choice of quantity and stop-out price, and they do not operate with

pre-announced reservation prices. Conversations with one Treasury official revealed that

their actual choices are influenced by i) the long-term revenue target, ii)market conditions,

iii) the Treasury’s own opinion about the true market price, and iv) unwillingness to spoil

the market by accepting too low bids.

The secondary market for a new security opens immediately after the first auction.

When trading becomes sufficiently active, a committee consisting of the Treasury and the

primary dealers promotes the security to benchmark status. The dealers must report all

their transactions in benchmark bonds to the Bank of Finland, and they must also post bid

and ask quotes. Usually, the dealers start posting quotes some time before the benchmark

designation. The bond loses its benchmark status one year before maturity.

2.2 Bid Distribution Data

For this study, the Finnish Treasury has produced a dataset which contains all the bids

in 231 of the 232 auctions. The last auction is missing. Each record provides the price

per 100 markka face value, the yield to maturity, the face value demanded at that price,

and a two-digit dealer code. The code is constant throughout the sample. We shall focus

on the 206 auctions under the primary dealer system when the number of bidders is fixed

6



prior to each auction. In these auctions, the total number of individual bidder demand

schedules is 1,702 and the total number of bids is 4,583.4 The average number of bids per

demand schedule is 2.7, the standard deviation 1.7, the median 2, and the mode 1. The

maximum is 14 bids in one demand schedule.

2.3 Secondary Market Data

The primary dealers post bid and ask yield quotes on the Bloomberg screen for all bench-

mark securities. The posted bid and ask quotes are binding for 10 million markkas. The

primary dealers, in consultation with the Finnish Treasury, determine the maximum posted

spread. At any point in time, this is a constant across different bonds. During the sample

period, the maximum posted spread has been revised only five times and varies between

2, 3, 5, and 10 basis points. Customers may get better quotes in private negotiations with

primary dealers, but these quotes are not posted.

The Bank of Finland collects the posted bid quotes at 1:00 pm every day and computes

the primary dealer average. Combining the bid time series with the maximum posted

spread series, we can construct a time series of posted quotes for each bond. This time

series covers 181 of the 206 auctions. The missing data are from the first few auctions of

each security before dealers start posting quotes. The Bank of Finland also collects daily

transaction yields for trades between dealers and customers, categorized by whether the

dealer buys or sells. For each category, the Bank of Finland computes the equally-weighted

average yield and aggregate trading volume. The average buy and sell yields fall within

the posted quotes. The time series of transactions data covers 153 of the 206 auctions.

In the empirical analysis, we want to compare the bid and sales prices in the auction

with the secondary market transaction price Pj(Yj), where Yj denotes the transaction yield

of security j at the time of the auction. We use the Bank of Finland bond yield series

described above to approximate Yj and then compute Pj(Yj). Our approach is to adjust

the 1:00 pm average posted bid yield quotes by the systematic deviation between posted

quotes and transactions yields. We first pool the time-series and cross-section data and

4One outlying bid is excluded from our data set, it is the lower in a demand schedule of two bids, and

submitted at a price which is more than 35 quantity-weighted standard deviations below the quantity-

weighted mean of the other bids in the auction.
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employ the 7,058 daily observations from August 1992 to April 1999 for which we have

complete bid and ask quotes as well as average dealer-customer buy and sell transaction

yields. We compute two spreads, the bid quote minus the buy yield and the sell yield minus

the ask quote. Since the average buy yield minus the bid quote (1.01 bp) is less than the

average sell yield minus the ask quote (1.82 bp), we conclude that transaction yields are

biased towards the bid quote. The bias suggests that a reasonable approximation of Yj is

the bid quote minus an adjustment for the general level of transactions yields relative to

the bid quote itself. We therefore compute a third spread, namely the bid quote minus the

transaction sell yield, which we refer to as the dealer’s markup, since it reflects a markup

of the price dealers get from customers relative to the dealer’s bid quote. The idea behind

computing the markup using the average dealer-customer sell yield is that dealers buy in

the auction to sell in the secondary market.

As a normalization, we condition the dealer’s markup and the two other spreads on

the maximum posted spread. Table 1 shows that our constructed spreads increase with

the size of the posted spread, which falls over time from 10 bp to 2 bp. We estimate Yj

by subtracting the conditional dealer’s markup from the bid quote.5 For example, if the

posted bid quote at 1:00 pm on the auction day is 5% and the posted spread 2 bp, we

infer Yj to be 5− .0094 = 4.9906%. While this means that we are measuring Yj and thus
Pj with error, we believe the error is reduced relative to relying on the bid quote or the

midpoint of the spread. When bid quotes are missing, the observation is dropped from

our dataset. We do not attempt to extrapolate the missing secondary market yields from

the sparse term structure data in Finland.

3 Theory of Bidder Behavior in Uniform Auctions

In this section, we review the market power theory of uniform auctions. The emphasis is

on drawing out testable empirical implications. We consider in turn the cases that bidders

are risk neutral and that they are risk averse.

5We have not attempted other more complicated procedures to estimate the markup, e.g. using lags,

volatility, or number of dealers to forecast it. One reason is that the autocorrelation in the dealer’s markup

time series is only .08, so there is little to gain from using lags. Another reason is that the transactions

data is missing for about 11% of all trading days. This would give rise to other estimation problems.
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Maximum posted spread (bp)

2 3 5 10

Bid minus buy .41 .84 1.38 1.85

Sell minus ask 1.06 1.26 1.86 6.16

Dealer’s markup .94 1.74 3.14 3.84

#Obs 1,186 3,283 1,969 620

Table 1: Maximum Posted Spread and Constructed Spreads: Average yield spreads

in basis points. The maximum posted spread is from an agreement between the primary

dealers and the Treasury. The buy and sell yields are the average daily transaction yields

for purchases from and sales to customers. The dealer’s markup is the posted bid quote

less the sell yield. Daily data from August 1992 to April 1999.

3.1 Market Power when Bidders are Risk Neutral

The case of risk neutral bidders was first explored by Wilson (1979) and later by Back and

Zender (1993) who introduce supply uncertainty. In their model, there are N identical

bidders, each of whom can buy the entire auction. The auction size, Q, may be random

and is at most Qmax. Bidders have identical valuations of v̄ per unit. One can think of v̄

as the expected secondary market price.6 Wilson and Back and Zender show that there

are numerous equilibria where bidders submit decreasing demand functions which result

in underpricing, i.e., a stop-out price below v̄.

Equilibrium underpricing arises from the price-quantity tradeoff faced by each bidder

when all the other bidders submit decreasing demand functions. In this case, a bidder can

increase his share of the auction by submitting a higher demand function, but this comes

at the expense of raising the stop-out price and thereby decreasing the profit per unit he

buys. For a given stop-out price, the quantity a bidder receives is the residual supply–the

quantity left over after other bidders’ demand has been filled.7 So each bidder is essentially

6Our exposition of the Wilson/Back and Zender model assumes that bidders do not have private

information about the secondary market price. Back and Zender develop their basic argument in a private

information framework, but in equilibrium bidders do not use it. So market power underpricing equilibria

may exist also when bidders are privately informed. Wilson provides an example with private information

where the stop-out price is perfectly revealing, but underpricing still occurs because of market power.
7In the underpricing equilibria, demand functions are strictly decreasing so rationing is not an issue.
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maximizing his profit against an increasing residual supply curve. In short, when the

bidders submit downward sloping demand functions, each of them is a monopsonist with

respect to the residual supply curve he faces. The underpricing equilibria are cemented

by the fact that each bidder can optimally exercise his monopsonistic market power by

submitting a decreasing demand function. So the underpricing equilibria are characterized

by a sort of complicit agreement among bidders to give each other monopsonistic market

power and thus create underpricing.

When the auction size is known, the first order condition of a bidder’s price-quantity

tradeoff needs to be satisfied only at the stop-out price itself. As a result, there are

numerous underpricing equilibria. When supply is uncertain and exogenous, however, the

first order condition must be satisfied along the set of all possible stop-out prices. As a

result, there is a unique class of supply uncertainty robust demand functions, as found by

Back and Zender (see also Kremer and Nyborg, 2004a). We shall focus on these equilibria,

since bidders in the Finnish auctions do not know the supply when they submit their bids.

The unique supply uncertainty robust equilibria are given by:

q(p) = a

µ
1− p

v̄

¶ 1
N−1

, (1)

where a ≥ Qmax/N is the quantity demanded at a price of 0. Given a, the inverse demand

curve is:

p(q) =

"
1−

µ
q

a

¶N−1#
v̄. (2)

Under (1), demand at a price of zero is a, while demand is zero at prices of v̄ and higher.

For N ≥ 3, the demand schedule exhibits strict concavity. The intuition is related to the
price-quantity tradeoff faced by bidders: Given that the stop-out price is below v̄, each

bidder would appear to have an incentive to bid more aggressively to get a bigger share of

the auction. So it must be that a large increase in quantity can only be achieved by a large

increase in price. Furthermore, it must be that a small decrease in price will result in a

large decrease in quantity; otherwise bidders would have an incentive to be more passive.

This is essentially a convexity condition on the residual supply and therefore a concavity

condition on individual demand functions, especially since this must be satisfied along

the continuum of possible stop-out prices [see Kremer and Nyborg (2004a) for further

discussion].

The importance of this is discussed by Kremer and Nyborg (2004a and 2004b).
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Under (1), the stop-out price, which equates demand and supply, is

p0 =

"
1−

µ
Q

aN

¶N−1#
v̄, (3)

where Q is the realized auction size. Total revenue from the auction is thus p0Q and

depends upon v̄, a, N , and Q. Depending on a, underpricing can fall anywhere between 0

and v̄ − r.

3.2 Market Power when Bidders are Risk Averse

3.2.1 CARA Utility and Linear Equilibria

Kyle (1989) presents a model where bidders have CARA utility with risk aversion coeffi-

cient ρ. The post-auction value of the auctioned security, ṽ, is normally distributed with

expectation v̄ and variance σ2. We shall focus on the special case of his model where

players do not have private information and where supply is positive. Kyle’s model then

becomes one where risk averse bidders choose demand schedules as strategies in the same

way as risk neutral bidders in the Wilson/Back and Zender model. By stripping away

private information, we thus emphasize the implications of monopsonistic market power

and risk bearing. Kyle demonstrates that there is a unique linear equilibrium which is

robust to supply uncertainty, namely

q(p) =
N − 2
N − 1

v̄ − p
ρσ2

. (4)

We provide a straightforward derivation of this equilibrium in Appendix 1. The inverse

demand schedule is

p(q) = v̄ − N − 1
N − 2 ρσ

2q. (5)

To isolate the effect of market power from the effect of risk aversion, we can compare (4)

to the corresponding Marshallian (or non-strategic) demand schedule under CARA utility.

Standard arguments show that the Marshallian schedule is the linear function

q(p) =
v̄ − p
ρσ2

, (6)

with inverse

p(q) = v̄ − ρσ2q. (7)
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The negative slope is a result of risk aversion, and linearity is a result of CARA utility and

normality. The strategic inverse demand schedule (5) is located below the Marshallian

inverse (7). As N goes to infinity, the strategic equilibrium converges to the competitive

one. As in the case of risk neutral bidders, this illustrates that a feature of supply uncer-

tainty robust equilibria is that market power diminishes when N increases and eventually

vanishes in the limit.

Under the strategic demand schedule, (4), the stop-out price is:

p0 = v̄ − N − 1
N − 2

ρσ2Q

N
. (8)

Under the non-strategic schedule, (6), we get the competitive price:

p0 = v̄ − ρσ2Q

N
. (9)

These formulas show that underpricing, v̄ − p0, is larger when bidders exercise market
power. Furthermore, underpricing increases with the risk aversion coefficient and the

amount of aggregate risk, σ2Q, that must be borne by a given number of bidders. An

increase in N reduces underpricing primarily because more bidders share the aggregate

risk, but also because market power is reduced.

3.2.2 CARA Utility and Nonlinear Equilibria

A surprising result is that Kyle’s equilibrium does not converge to that of Back and

Zender as the risk aversion coefficient goes to zero. The reason for this can be understood

by looking at the general solution to Kyle’s model, which has been shown by Wang and

Zender (2002) to be (in inverse form):8

p(q) =

"
1−

µ
q

a

¶N−1#
v̄ −

"
1−

µ
q

a

¶N−2# µN − 1
N − 2

¶
ρσ2q, (10)

where a is an arbitrary positive constant. These equilibria have the intuitive property

that as ρ goes to zero, they converge to Back and Zender’s equilibria (2). Thus the first

term in (10) is a pure reflection of market power. The second term can be interpreted as

a discount related to risk bearing. The parameter a plays an important role. As long as

a ≤ v̄
ρσ2
, (10) is strictly decreasing and p(a) = 0 ; i.e., demand at a price of 0 equals a, as in

Back and Zender’s equilibrium. If a = N−2
N−1

v̄
ρσ2
, (10) reduces to Kyle’s linear equilibrium.

8See Appendix 1 for a derivation of (10).
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3.3 Graphical Illustration of Market Power Equilibria

The four pictures in Figure 2 illustrate some of the key features and comparative statics

of the different market power equilibria. In particular, they show how the location and

shape of the different equilibrium demand functions are affected by changes in the number

of bidders (top two pictures) and volatility (bottom two pictures).

The top two pictures in Figure 2 show that as the number of bidders increases from

five to ten, the equilibrium demand function shifts out towards the Marshallian one.9

Intuitively, as more bidders enter the auction, competition reduces the scope to exercise

market power. In Kyle’s equilibrium (top right), where bidders are risk averse, total

quantity demanded per bidder increases with N . In Back and Zender’s equilibrium (top

left), where bidders are risk neutral, we see that concavity becomes more pronounced when

N increases. This concavity effect is also a feature of Wang and Zender’s equilibrium (not

shown).

Volatility matters when bidders are risk averse. The bottom two pictures in Figure 2

illustrate the intuitive result that as volatility falls, risk averse bidders’ equilibrium demand

curves shift out. In Kyle’s equilibrium, this translates into increased total demand per

bidder. In Wang and Zender’s equilibrium, demand curves can be convex when volatility

is high, but become increasingly concave as volatility falls. Intuitively, when volatility is

high, risk bearing concerns dominate; but when volatility is low, market power concerns

dominate. To summarize, Figure 2 shows that the effect of decreasing volatility is similar

to that of increasing the number of bidders.

3.4 Empirical Implications

In this section, we derive testable implications from the models presented above. A contrast

between theory and practice is that whereas the theory assumes that bidders submit

“smooth” demand schedules, in practice, bidders submit collections of price-quantity pairs,

implying that observed demand schedules are step-functions. The theoretical demand

schedules should therefore be viewed only as approximations. Furthermore, in our sample,

there is variation in auction size and v̄ from auction to auction and there is also variation in

9In the Back-Zender figure, where bidders are risk neutral, the Marshallian inverse demand function is

simply a horizontal line at p = v̄ = 1.
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Figure 2: Effect of Varying the Number of Bidders and Volatility on Individual

Demand Functions: Common parameters are v̄ = 1 and r = 0.

Top left: Back and Zender (1993) [risk neutral bidders], a = 20.

Top right: Kyle (1989) [risk averse bidders], ρσ2 = .05.

Bottom left: Wang and Zender (2002) [risk averse bidders], a = 20, σ = 0 (no volatility), ρσ2 = .0375

(medium volatility) or ρσ2 = .05 (high volatility).

Bottom right: Kyle (1989) [risk averse bidders], N = 5 and volatility as for Wang-Zender.
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the number of bids submitted by individual bidders within an auction. Instead of trying to

fit discrete empirical demand schedules to the smooth theoretical schedules, our approach

is to compute a number of summary statistics of the predicted demand schedules and of

auction performance which are straightforward to compare with what we see in the data.

We look at eight measures of bidder behavior and auction performance. The first is

the discount, that is, the difference between the expected secondary market price and the

quantity weighted average price of a bidder’s demand schedule. Formally, we define the

discount of demand schedule q(p) to be

Discount = v̄ − p̄ = v̄ − 1

q(r)

Z q(r)

0
p(x) dx, (11)

where p(x) is the inverse demand schedule, r ≥ 0 is the reservation price of the seller, and
p̄ is the quantity weighted average price along the inverse demand schedule for prices at or

above the seller’s reservation price. Note that p̄ is defined by the last term in (11). This is

the appropriate definition since q(r), being the demand at the reservation price, is also the

total demand of a bidder who uses q(p). The discount is similar to, but not the same as

underpricing, which is defined as the difference between the secondary market price and

the auction stop-out price:

Underpricing = v̄ − p0. (12)

Note that if the reservation price is binding, then underpricing is simply v̄ − r.
The next three summary statistics are the standard deviation, skewness, and kurtosis

of the inverse demand schedule. The standard deviation of bids along the schedule is:

Standard deviation ≡ η =

vuut 1

q(r)

Z q(r)

0
(p(x)− p̄)2 dx, (13)

The formulas for skewness and kurtosis are, respectively,

Skewness =
1

η3q(r)

Z q(r)

0
(p(x)− p̄)3dx, (14)

and

Kurtosis =
1

η4q(r)

Z q(r)

0
(p(x)− p̄)4dx, (15)

The sixth measure is total quantity demanded per bidder, q(r), and the seventh is award

concentration (see below). Finally, we also look at the standardized discount, defined as

the discount divided by the standard deviation.
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Table 2 summarizes the predicted values of these eight statistics for i) Back and Zen-

der’s supply uncertainty robust equilibrium, ii) Kyle’s linear equilibrium, and iii) the

corresponding Marshallian demand schedules.10 Statistics for Wang and Zender’s general

solution to Kyle’s model are so complex that they do not fit in the table.11

For the Back and Zender equilibrium, Table 2 reveals the striking result that the un-

known parameter a does not figure in the expressions for the discounts or any of the higher

order moments. Furthermore, skewness, kurtosis, and the standardized discount depend

only on N . Hence these predictions are valid in a cross-section of auctions, even though a,

v̄, and r may vary from auction to auction. The surprising result that a cancels out may

be explained by the fact that the first order condition of a bidder’s price-quantity tradeoff

must be satisfied at every point along a supply uncertainty robust demand function. The

concavity of the demand function seen in Figure 2 can be seen in Table 2 to translate

into a negative skewness for the bid distribution. Moreover, taking the derivative of the

expression for skewness, we see that skewness gets more negative as the number of bidders

increases. This is a robust implication of the equilibrium which holds even if the unknown

parameters a, v̄, and r were to vary systematically with N .

In some of the other comparative statics we can compute from Table 2 for the Back

and Zender equilibrium, a and r do not drop out. For example, the discount and the

standard deviation decrease with the number of bidders, keeping r fixed. The same holds

for underpricing, if we also fix a and assume that the reservation price is not binding. Given

a and r, quantity demanded increases with the number of bidders. In short, additional

bidders induces more aggressive bidding, as a result of diminishing market power. This

assumes that r and a do not vary with N in such a way as to offset this effect.

The Kyle equilibrium and its competitive counterpart offer the surprising results that

10Note that the theoretically smallest possible equilibrium stop-out price is pmin ≡ p(Qmax/N), where
p(q) is given by e.g. (2). So for q > Qmax/N , the functional form of p(q) is irrelevant and arbitrary. The

formulas in Table 2 ignore any such irrelevant demand. One can view r in the formulas as being the

maximum of the actual reservation price and pmin. r can also be viewed as the lowest price for which a

bidder has specified his demand function. When we compute the empirical counterparts to these formulas

in Section 4, we do not omit any bids because there is no reason to expect that bidders submit bids which

have no chance of being awarded.
11Exact expressions are reported in an earlier working paper and are available from the authors upon

request.
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Back and Zendera Kyleb Marshallianc

Market Power, Market Power, Competitive

Risk Neutral Risk Aversion Risk Aversion

Discount v̄−r
N

v̄−r
2

v̄−r
2

Standardized Discount
√
2N−1
N−1

√
3

√
3

Underpricingd v̄
³
Q
aN

´N−1
N−1
N−2

ρσ2Q
N

ρσ2Q
N

Standard deviation
(N−1)(v̄−r)
N
√
2N−1

v̄−r
2
√
3

v̄−r
2
√
3

Skewness -
2(N−2)√2N−1

3N−2 0 0

Kurtosis
3(2N−1)(6−5N+2N2)

(4N−3)(3N−2) 1.8 1.8

Demand per bidder a
³
1− r

v̄

´ 1
N−1 N−2

N−1
v̄−r
ρσ2

v̄−r
ρσ2

Award concentratione 1 1 1

Table 2: Measures of Bidder Behavior and Auction Performance

a. Back and Zender (1993) column uses (2). Model based on risk neutrality and strategic behavior.

b. Kyle (1989) column uses (5). Model based on CARA utility, normal distribution, strategic behavior.

c. Marshallian column uses (7). Model based on CARA utility, normal distribution, competitive behavior.

d. Reservation price is assumed not to be binding. Otherwise, underpricing equals v̄ − r.
e. Award concentration is the modified Herfindahl index, H∗, given by (16).
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the discount and the higher order moments do not depend on volatility, even though

bidders are risk averse. The action is in the quantity demanded. In Kyle’s equilibrium,

quantity demanded increases with N and decreases with volatility. This quantity effect

is a direct consequence of Kyle imposing linearity; this restriction implicitly assumes that

the parameter a increases with N and decreases with volatility, as seen in the expression

for a at the end of Section 3.2.2. The discount is insensitive to volatility because the

reduction in demand is precisely so that total risk, σ2a, is kept constant. The quantity

effect is also the reason why underpricing is decreasing in N and increasing in volatility.

There are three parameter free tests: the standardized discount, skewness, and kurtosis

are constants as a result of linearity. The Marshallian demand function shares all of the

Kyle equilibrium’s predictions except for the sensitivity to N .

Volatility has a broader impact in Wang and Zender’s equilibrium, (10), than in the

other equilibria. As seen in Figure 2, as volatility increases, the Wang and Zender demand

function becomes less concave and eventually turns convex. So skewness increases with

volatility. Keeping the parameter a constant, the discount is also increasing in volatility,

since total risk increases. Put in terms of the figure, more weight is placed on lower prices

as volatility rises and so the discount falls. The effect of an increase in the number of

bidders is qualitatively along the same lines as in Back and Zender, (2). In Tables 5 and 6

in Section 4, we present a comprehensive list of the comparative statics of the three market

power equilibria and compare these to the empirical comparative statics from regressions

of the summary statistics on a set of explanatory variables.

Finally, we examine award concentration. With symmetric bidders and no private

information, each bidder receives an equal share of the awards. In the Back and Zender

model, for example, bidder i’s share, θi, equals his demand, (1), evaluated at the stop-out

price, (3), divided by the total auction awards, Q. That is, θi =
qi(p0)
Q

= 1
N
. The Herfindahl

index is then

H ≡
NX
i=1

θ2i =
1

N
.

Since the number of bidders varies over time in our sample, the Herfindahl index may

give the wrong impression of award concentration. For example, if there are five bidders

and one bidder gets all the awards, the Herfindahl index equals 1, which is also the case

when one bidder gets all the awards in an auction with ten bidders. Intuitively, the latter
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case involves more award concentration relative to the benchmark of equal awards to all

bidders. To capture this, we employ a modified Herfindahl index:

H∗ = H ×N. (16)

This measure equals 1 if bidders submit identical demand schedules, as in the models

reviewed above. It is N if one bidder obtains all the awards.

4 Empirical Analysis of Bidder Behavior

This section examines the extent to which the models reviewed above are consistent with

observed bidder behavior and auction performance. We run regressions to examine how the

six endogenous intra-bidder statistics (discount, standardized discount, standard deviation,

skewness, kurtosis, and quantity demanded) and the two endogenous auction statistics

(underpricing and award concentration) vary with three explanatory variables: volatility,

number of bidders, and expected auction size. We also carry out a detailed examination

of the non-linearities in bidders’ demand schedules.

4.1 Descriptive Statistics

Table 3 provides auction day summary statistics of the exogenous variables in Panel (a)

and the endogenous variables in Panels (b)-(d). The 1,702 demand schedules are submitted

in 206 auctions on 175 auction days. For each auction, we compute the equally-weighted

average of all variables and, when two auctions are held simultaneously, their equally-

weighted average. This is a conservative way to eliminate correlations among the error

terms. Hence, we treat each auction day average as an independent observation.

Panel (a) reports on volatility and the number of bidders. Volatility is measured as the

daily standard deviation of bond returns imposing an ARCH(2) structure (see Appendix 2).

Daily volatility averages .346%. The average number of bidders equals 8.1 and varies from

5 to 10, as shown in Figure 1.

Panel (b) reports on the two discount measures and underpricing. The estimation

procedure for the discount starts by observing that the demand schedule submitted by

bidder i in auction j can be represented by the set, {(pijk, qijk)}mk=1, where m is his number
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Variable mean std s.e. min max #Obs

(a) Exogenous

Volatility .346 .157 .012 .110 1.115 175

Number bidders 8.1 2.0 .1 5 10 175

(b) Location

Discount .081 .153 .012 -.397 .920 159

Standardized discount .354 .764 .061 -2.017 4.581 159

Underpricing .041 .144 .012 -.783 .420 156

(c) Dispersion

Standard deviation .065 .049 .004 .003 .279 175

Skewness -.009 .428 .032 -1.623 .888 175

Kurtosis 2.907 1.547 .117 1.000 11.184 175

(d) Quantity

Demand per bidder 235 194 15 16 1,390 175

Aggregate demand 2040 1952 148 80 13,903 175

Auction size 1179 850 64 0 4,000 175

Award concentration 2.519 1.258 0.096 1.007 9.000 172

Table 3: Descriptive Statistics: Auction day averages. The symbol s.e. denotes the

standard error of the mean. Volatility is the conditional standard deviation of daily returns,

using an ARCH(2) model. The location and dispersion measures are intra-bidder variables.

For each auction, we first compute these measures (quantity-weighted) for each individual

bidder’s demand schedule (collection of bids) and then take the equally weighted average

across bidders. We then take the average for each auction day. The intra-bidder discount

is the difference between the secondary market price and the quantity-weighted average

bid price. The standardized discount is the intra-bidder discount divided by the standard

deviation of his bids. Underpricing is the difference between the secondary market price

and the auction stop-out price. All price variables are expressed as a percentage of face

value (i.e. in markkas per 100 markkas of face value). The top three quantity variables

are expressed in millions of markkas of face value. Award concentration is measured by

the modified Herfindahl index (16).
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of bids.12 The quantity weighted average price of these bids is pij =
P
k wijkpijk, where

wijk = qijk/
P
k qijk. The empirical intra-bidder discount which corresponds to (11) is then

DISCij = Pj − pij, (17)

where Pj is the secondary market price of the underlying security at the time of the auction

(see Section 2.3). For each auction, we compute the equally weighted average of all intra-

bidder discounts, (17), and then take the equally weighted average across the auctions held

on the same day. We also measure the standardized discount as the intra-bidder discount

(11) divided by the quantity-weighted standard deviation of his bids:

STDij =

vuut mX
k=1

wijk (pijk − pij)2, (18)

i.e., the standardized discount equals DISCij/STDij . It is not defined for one-bid demand

schedules. Finally, letting p0j denote the stop-out price in auction j, our empirical proxy

for underpricing, (12), is:

UNDERPj = Pj − p0j . (19)

Secondary market prices are available for 159 auction days, but underpricing can only

be estimated in 156 cases since three auctions were cancelled. We see in Panel (b) that the

average discount is positive, .081 percent, and that the treasury securities are underpriced

by .041 percent of face value, on average. The discount is significantly different from

zero with a t-statistic of 6.7, and underpricing with a t-statistic of 3.4. While the point

estimates are small relative to what could occur under the market power theory, they are

nevertheless consistent with it since discounts and underpricing depend on the arbitrary

parameter a. The standard deviation of the discount is large, .153 percent of face value,

and many bids are submitted above the secondary market price. For example, on one

auction day the average bid is .414 percent of face value above the secondary market

price. In Section 6, we compare these estimates with ones from other treasury auction

markets. Finally, the average standardized discount is .354, which is smaller than the

theoretical values implied by Back and Zender (.750 for N = 5 and .484 for N = 10) and

Kyle (1.732).

12The number of bids, m, may vary with i and j. For the sake of readability, we have suppressed this

dependence in the notation.
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Panel (c) reports on the three intra-bidder dispersion measures. The estimation proce-

dure follows that for the discount. The empirical proxy for the quantity-weighted standard

deviation (13) is given by (18) above. The empirical proxies for quantity-weighted skewness

(14) and kurtosis (15) are, respectively:13

SKEWij =
1

STD3ij

"
mX
k=1

wijk (pijk − pij)3
#
, (20)

and

KURTij =
1

STD4ij

"
mX
k=1

wijk (pijk − pij)4
#
. (21)

We can see in Panel (c) that the average intra-bidder standard deviation is about one fifth

of daily volatility. Average skewness is -.009, which is not statistically different from 0 and

therefore consistent with Kyle or any other linear model. However, there is strong evidence

against linearity at the individual bidder level. In the pooled sample of individual demand

schedules, intra-bidder skewness varies from -8.5 to 7.5, with a standard deviation of 1.17.

Average skewness also varies widely across auctions. Further evidence against linearity is

provided by the average kurtosis of 2.907, which exceeds 1.8 with a t-statistic of 9.5.

Finally, Panel (d) looks at four quantity measures. The first row shows that the average

quantity demanded per bidder per auction is 235 million markkas of face value. The second

row shows that aggregate auction demand averages to about 2 billion, and the second row

that the average realized auction size, i.e. quantity sold, is about 1.2 billion. There is

substantial variation in all measures across auctions. Auction size is zero in three auctions

when the Treasury rejected all bids. In the last row, we see that the modified Herfindahl

index, (16), averages to 2.5. So bidders do not receive identical awards. The modified

Herfindahl index with respect to quantity demanded averages to 1.9 with a standard error

of .052, showing that awards are more concentrated than demand.

4.2 Determinants of Bidder Behavior & Auction Performance

In this section, we regress the bidding and auction performance variables on the explana-

tory variables. The results are in Table 4. One of the regressors is the expected auction

13 For one-bid demand schedules, we set skewness equal to zero and kurtosis to one. The rationale is as

follows: A single bid can be regarded as the limit as c goes to zero of two bids of identical sizes at prices

b + c and b − c. The standard deviation is c, the third moment is 0, and the fourth moment c4. Hence,
skewness is zero and kurtosis one. In the limit, as c goes to zero, skewness remains zero and kurtosis one.
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size, since this is necessary to examine the hypothesis that bidders are risk averse. While it

is clear that expected auction sizes are linked to the Treasury’s financing needs, a problem

for us is that auction sizes were not pre-announced–the Treasury only announced max-

imum auction sizes after 1998 and never announced minimum auction sizes. Taking the

point of view of a bidder, we therefore estimate the expected auction size as the average of

the realized sizes of the last three auctions. While this may be a fairly rough estimate, the

major empirical results are robust to various alternative specifications, e.g., forecasting the

auction size using the parameters from the size regression reported below. The regressions

in Panels (a) and (b) are weighted with volatility. The first three regressions in Panel (c)

are adjusted for first-order autocorrelation using the Cochrane-Orcutt transformation. The

award concentration regression is estimated with ordinary least squares.

The overall impression from the regressions in Table 4 is that only volatility affects

the pricing variables, while all three regressors influence the quantity demanded and sold.

Specifically, only volatility is statistically significant in the discount, underpricing, and

standard deviation regressions. In contrast, volatility is not significant in the skewness

and kurtosis regressions, while expected auction size is. The number of bidders has a

significant impact on skewness, but not on kurtosis. None of the regressors are significant

in the standardized discount and award concentration regressions. Below we look more

closely at the individual regressions and discuss where the equilibria presented in Section 3

succeed and where they fail.

Panel (a) shows that discounts and underpricing increase significantly, both statisti-

cally and economically, with volatility. We see that a one standard deviation increase in

volatility (.157%) raises the discount by .050 percent of face value, which is of the same

order of magnitude as the average discount of .081 percent (Table 3). It also raises un-

derpricing by .034 percent of face value, which is close to the average sample underpricing

of .041 percent. In contrast, the number of bidders has no impact on discounts and un-

derpricing. This is hard to reconcile with the market power theory, since market power

should diminish with the number of bidders. More precisely, the result on the discount is

inconsistent with Back and Zender’s equilibrium, (2). It is also inconsistent with Wang

and Zender, (10), when keeping the parameter a fixed, but consistent with Kyle, (5),

where a implicitly varies with N so that discounts do not respond to N . The finding on

underpricing is inconsistent with all three models. This may be a consequence of how the
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Dependent Constant Volatility Number Expected R2 #Obs

variable bidders size

(a) Location

Discount -.037 .318 .003 -.013 .096 159

(-.7) (3.8)a (.5) (-1.0)

Standardized discount .507 .713 -.052 .028 .041 159

(1.6) (1.5) (-1.5) (.4)

Underpricing -.003 .215 -.003 -.009 .054 156

(-.0) (2.4)a (-.4) (-.6)

(b) Dispersion

Standard deviation .038 .161 -.003 -.019 .222 175

(2.2)a (5.9)a (-1.5) (-.4)

Skewness -.678 -.005 .068 .101 .172 175

(-3.6)a (-.0) (3.2)a (2.0)a

Kurtosis 2.374 .436 -.021 .543 .057 175

(3.2)a (.4) (-.2) (2.7)a

(c) Quantity

Demand per bidder 46 -227 21 .702 .296 175

(.6) (-2.9)a (2.5)a (2.9)a

Aggregate demand -380 -2089 289 .713 .399 175

(-.5) (-2.9)a (2.9)a (2.7)a

Auction size -61 -845 134 .397 .419 175

(-.2) (-2.6)a (3.7)a (4.0)a

Award concentration 1.580 .388 .109 -.063 .021 172

(2.9)a (.6) (1.6) (-.3)

Table 4: Determinants of Bidder Behavior and Auction Performance: Each row

represents a single regression, where each endogenous variable is regressed on volatility, the

number of bidders, and expected auction size (moving average of previous three realized

auction sizes and measured in billions of markkas). The other variables are as explained in

Table 3. The price variables are expressed in percent of face value. The volume variables

are expressed in millions of markkas. t-statistics are in parentheses and the superscript a

denotes statistical significance at 5% or better. The regressions in Panels (a) and (b) are

estimated with weighted least squares using volatility as weight, the first three regressions

in Panel (c) are corrected for autocorrelation using the Cochrane-Orcutt transformation,

and the regression on award concentration is estimated with ordinary least squares.
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Treasury sets the stop-out price, which we study in more detail in Section 5. Finally, the

standardized discount is insignificantly related to all three explanatory variables. This

is consistent with Kyle, who predicts that the standardized discount is a constant, but

inconsistent with Back and Zender, who predict that the standardized discount decreases

with the number of bidders.

Panel (b) contains the regressions involving the three intra-bidder dispersion measures.

The skewness regression is of particular interest, since we saw in Section 3 that market

power may manifest itself through skewness. Indeed, this is the only non-quantity regres-

sion where the number of bidders has a significant impact. Skewness increases by .068 for

each extra bidder in the auction and increases by .101 for each billion in expected auc-

tion size. Volatility has no effect. The systematic variation in skewness as the number of

bidders changes suggests that bidders employ non-linear bidding strategies in response to

increased competition. What is really striking here, however, is the sign of the coefficient.

It is the opposite of the negative effect predicted by Back and Zender’s and Wang and

Zender’s equilibria. It is also inconsistent with Kyle’s equilibrium, which predicts that

there should be no effect.

Panel (b) also shows that intra-bidder standard deviation increases by a significant

.0161 percent of face value per .1 percentage point increase in volatility. This stands at

odds with Kyle’s equilibrium, where each risk averse bidder responds to uncertainty by

reducing quantity demanded but not by increasing the dispersion of his bids. There is also

no role for volatility in Back and Zender’s equilibrium, since bidders are risk neutral and

do not have private information. However, Wang and Zender’s equilibrium could generate

this result on standard deviation.

Panel (c) presents the results of the quantity regressions. In the regression on quantity

demanded per bidder, we have normalized the expected auction size regressor by dividing it

by the number of bidders. There are three particularly interesting results. First, demand

decreases with volatility, which is in line with Kyle’s equilibrium. Second, each bidder

demands more when there are more bidders. For each new bidder who enters the auction,

the typical bidder increases demand by a significant 21 million. This behavior is also

consistent with Kyle’s equilibrium. Third, bidders demand more when expected auction

size increases. The striking observation is that they do so without lowering prices, as can

be seen in Panel (a). This is hard to reconcile with the hypothesis that bidders are risk
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averse. Consistent with the interpretation that bidders are risk neutral, bond dealers in the

Finnish treasury market have told us that they consider interest rate risk to be relatively

small because there are only 30 minutes between the auction and the announcement of the

results. To the extent that they are concerned with the risk, they use forward contracts

on Finnish and German bonds to hedge the auction bids. Finally, we see that award

concentration is insensitive to market conditions, as measured by our three regressors.

The empirical comparative statics from the above regression analysis are summarized

in Table 5. A ”+”, ”−”, or ”0” indicates that the regression coefficient is significantly
positive, significantly negative, or not significant at the 5% level, respectively. The table

also compares the empirical findings with the theoretical comparative statics from the Back

and Zender and Kyle models. For each model, we mark with boldface if the predicted sign

equals the empirically observed sign and, at the bottom, we report the number of correct

and incorrect predictions.

Table 5 shows that Back-Zender’s model delivers the right comparative statics in only

4 of 17 cases. Notably, the model fails with respect to the impact of the number of bidders.

Most striking is that skewness varies with the number of bidders with the opposite sign

in the data and the theory. Kyle’s model does better and delivers the right comparative

static result in 13 of 21 cases. Kyle predicts correctly that demand per bidder decreases

with volatility, but cannot explain the general importance of volatility. Kyle also predicts

correctly that demand per bidder increases with the number of bidders, which is suggestive

of bidders having some market power.

Table 6 performs a similar comparative statics exercise for Wang and Zender’s equi-

librium, (10). Since all statistics depend on a, the table does not report comparative

statics with respect to the expected auction size. Because of the complexity of the de-

mand function, unambiguous results do not exist for all statistics. The table therefore

reports numerical values for the summary statistics and shows how the numbers change

with volatility and N . The last column in each panel also notes whether these changes

match the empirical comparative statics.14 We see that Wang and Zender’s equilibrium

14We have also derived exact expressions for the derivatives of the various statistics when r = 0 which

we then have examined numerically and graphically using Mathematica. We have been able to verify that

the comparative statics on N and σ indicated in Table 6 always hold when N varies between 5 and 10,

with the following exceptions: (i) The standardized discount decreases with N except when N goes from
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Observed Back-Zendera Kyleb

sign (Risk Neutral) (Risk Averse)

(a) Discount

Volatility + 0 0

Number 0 − 0

Expected Size 0 ? 0

(b) Standardized discount

Volatility 0 0∗ 0

Number 0 −∗ 0

Expected Size 0 0∗ 0

(c) Underpricing

Volatility + 0 +

Number 0 − −
Expected Size 0 ? +

(d) Standard deviation

Volatility + 0 0

Number 0 − 0

Expected Size 0 ? 0

(e) Skewness

Volatility 0 0∗ 0

Number + −∗ 0

Expected Size + 0∗ 0

(f) Kurtosis

Volatility 0 0∗ 0

Number 0 +∗ 0

Expected Size + 0∗ 0

(g) Demand per bidder

Volatility − 0 −
Number + +c +

Expected Size + ? 0

#Correct n.a. 4 13

#Incorrect n.a. 13 8

Table 5: Comparative Statics: Summary of regression coefficients and comparative

statics from two market power equilibria. Correct prediction is marked with boldface.

a. Back and Zender (1993) column uses (2). Model based on risk neutrality. An asterisk indicates that

the statistic is independent of the parameters a, r, and v̄. In all other cases, these parameters are kept

fixed. “?” indicates ambiguity, since a may be increasing in Q as suggested by the regression results.

b. Kyle (1989) column uses (5). Model based on risk aversion. Linear equilibrium. The parameter r is

kept fixed in the discount, standard deviation, and underpricing comparative statics.

c. Assumes that r > 0. If r = 0, demand per bidder does not vary with N .

27



does fairly well with respect to volatility, but cannot explain the effect on the skewness and

kurtosis or the lack of an effect on the standardized discount. Like Back and Zender, how-

ever, Wang and Zender’s equilibrium fails with respect to the number of bidders, which

is the parameter at the heart of the imperfect competition story. Overall, our findings

suggest that market power is not a key factor.

Varying volatility (N = 7) Empirical Varying N (ρσ2 = 1/30) Empirical

Concave Linear Convex compar. Convex Linear Concave compar.

ρσ2 = 0 ρσ2 = 1
30 ρσ2 = 1

25 statics N = 5 N = 7 N = 10 statics

Discount .143 .5 .571 yes .533 .5 .475 no

Standardized discount .601 1.732 1.839 no 1.805 1.732 1.699 no

Underpricing .0005 .286 .343 yes .442 .286 .187 no

Standard deviation .238 .289 .311 yes .295 .289 .280 no

Skewness -1.898 0 .208 no .125 0 -.076 no

Kurtosis 5.665 1.8 1.731 no 1.770 1.8 1.864 no

#Correct 3 0

Table 6: Numerical Comparative Statics for Wang and Zender (2002): Calcula-

tions use v̄ = 1, r = 0, a = 25, and Q = 50. N and ρσ2 vary so that the inverse demand

schedules move from the convex region, across the linear sub-case (Kyle, 1989), to the

concave region (see Figure 2). The column with zero volatility is the same as Back and

Zender (1993). “yes” (“no”) means that the numerical comparative static matches (does

not match) the empirical ones in Table 4.

4.3 Non-Linearity: Skewness, Kurtosis, and Number of Bidders

In this subsection, we take a closer look at the nonlinearity of submitted demand functions

and study how skewness and kurtosis vary with the number of bidders. A bidder’s set of

price-quantity pairs in a generic auction is given by the set {(pk, qk)}mk=1, where m is the

number of bids and the bids are ordered by p1 > p2 > ... > pm.We can think of a demand

schedule with m ≥ 2 as being “discrete-linear” if the bidder’s marginal demand is the

same at every price at which he submits a bid and these prices are spaced equally. We

9 to 10 and aρσ2 is “close” to v̄/2. (ii) The standard deviation increases with σ2 except when aρσ2 is

“small” relative to v̄, and decreases with N except when N = 5 and aρσ2 is “close” to v̄.
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define the standardized difference between adjacent prices to be

d∗k =
pk − pk+1
p1 − pm

Á
1

m− 1 .

There are m − 1 price differences. Under a discrete-linear strategy, d∗k = 1, skewness is

zero, and kurtosis approaches 1.8 from below as N increases.

Table 7 reports our findings. Panel (a) covers the case with few bidders and Panel (b)

with many bidders. Within each panel, the upper sub-panel provides the means of d∗k across

all demand schedules with m = 1, . . . , 8 bids. The lower sub-panel shows the averages of

the intra-bidder standard deviation, skewness, kurtosis, and the number of observations.

In Panel (a), we can see that, for all m, the lowest d∗k exceeds one. This means that the

last price difference is larger than the intermediate price differences. This explains why

skewness is negative. However, in Panel (b), we can see, for all m, that the highest d∗k
exceeds one, which means that the first price difference is larger than the intermediate

price differences. Therefore, skewness turns from negative with few bidders to positive

with many bidders. Moreover, this switching of sign is robust to the number of bids

in a demand schedule; skewness is consistently negative for 5-8 bidders and consistently

positive for 9-10 bidders, regardless of m. Thus Table 7 corroborates our earlier finding

that while skewness is zero on the average, skewness is positively related to the number of

bidders. The tendency to submit one bid which is either much higher or lower than the

other bids also explains why kurtosis is higher than predicted by a discrete-linear strategy.

What explains this behavior? One hypothesis is that the dealers find it easier to

coordinate their bidding when they are few, which is why skewness is negative. But

this would also imply that underpricing and discounts should be larger when the number

of bidders is small, which we do not observe. Another possibility is that the observed

behavior originates with pre-selling of securities by primary dealers to customers, with

the consequence that dealers who do not cover in the auction may get squeezed in the

secondary market. Nyborg and Strebulaev (2004) show that in equilibrium short bidders

submit a bid at a “very high” price for the few units they need to avoid being squeezed.

It is possible that this became more of an issue when more dealers entered the market.

A third possibility is that the positive skewness reflects customer bids. Dealers have told

us that one major institutional investor frequently instructed them to submit “market

orders”.
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(a) Few bidders, 5 ≤ N ≤ 8
m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8

d∗1 1.000 .935 .989 1.116 .829 .947 1.468

d∗2 1.065 .853 .756 .786 .914 .863

d∗3 1.156 .882 .890 .820 1.059

d∗4 1.246 1.292 .825 .775

d∗5 1.207 .797 .541

d∗6 1.700 1.195

d∗7 1.097

F-test n.a. n.a. 7a 8a 8a 4a 4a .3

St. deviation .000 .055 .078 .106 .157 .138 .145 .277

Skewness .000 -.104 -.249 -.174 -.232 -.521 -.874 -.155

Kurtosis 1.000 2.875 3.214 3.489 3.530 2.773 6.340 4.224

#Obs 120 115 66 60 40 12 9 3

(b) Many bidders, 9 ≤ N ≤ 10
m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8

d∗1 1.000 1.039 1.156 1.402 1.355 1.650 1.744

d∗2 .961 .899 .831 .926 1.068 .885

d∗3 .955 .798 .923 .745 .845

d∗4 .970 .899 .703 .678

d∗5 .898 .770 .835

d∗6 1.065 .802

d∗7 1.208

F-test n.a. n.a. 7a 19a 26a 5a 7a 2a

St. deviation .000 .070 .078 .099 .117 .133 .175 .229

Skewness .000 .038 .105 .180 .285 .347 .238 .323

Kurtosis 1.000 3.743 4.081 3.742 4.486 4.693 3.456 4.101

#Obs 385 305 258 171 77 38 17 11

Table 7: Intra-Bidder Dispersion, Skewness, and Kurtosis: Demand schedules of up

to eight individual bids. Upper sub-panels: Average standardized price differences. Lower

sub-panels: Average intra-bidder standard deviation, skewness, kurtosis. Super index a

denotes significance level 5% or better.
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5 Strategic Seller Behavior

Our findings thus far suggest that bidders act more competitively than predicted by the

market power theory. One possible reason is that the theory assumes that supply is

exogenous, while in practice the Finnish Treasury determined the supply after observing

the bids. In this section, we explore the strategic behavior of the seller, with an adjunctive

view to see how it might affect bidder behavior and market power.

5.1 Theory

The theory of uniform auctions reviewed in Section 3 shows that there can be multiple

equilibria with very different levels of underpricing, depending on the value of the para-

meter a. The seller’s preferred equilibrium arises when a =∞ which implies that demand

curves are infinitely elastic and there is no underpricing (p0 = v̄). This contrasts with the

bidders’ preferred equilibrium where a = Qmax/N . In this case, the seller would be giving

away the securities for free if the auction size were Qmax. The seller can avoid some bad

outcomes by imposing a reservation price r > 0. Furthermore, Back and Zender (2001)

show that the seller can reduce equilibrium underpricing by choosing the supply ex post to

maximize revenue. If the seller behaves this way, in equilibrium bidders submit demand

functions such that revenue is maximized at Qmax and the stop-out price is at least
15

p0 ≥
µ
N − 1
N

¶
v̄. (22)

The demand schedule (1) is still equilibrium, but the lower bound on a increases to

a ≥
µ
Qmax

N

¶
N(

1
N−1).

When there are N = 10 bidders, which is the maximum in our data set, (22) allows

underpricing to be anything between 0 and 10%. The observed level of underpricing in

our data, .041%, falls within this range and is therefore consistent with the theory. The

question remains, however, whether it is an ex post revenue maximization rule or something

else which lies behind this level of underpricing. It is therefore interesting to explore what

the Treasury actually does.

15If the seller is willing/able to sell an infinite amount, McAdams (1999) argues that underpricing from

market power could be eliminated by the “maximize ex post revenue” rule.
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5.2 Stop-Out Price and Marginal Revenue Maximization

Our approach is motivated by the idea that the seller may wish to choose the stop-out

price based on the revenue it will generate. Figure 3 provides an example of the Treasury’s

typical behavior, using the auction held on 14 October 1993 for a bond maturing in 1996.

In this auction, bids were submitted at ten different price levels, p1 < p2 < · · · < p10. The
average number of price levels across all auctions is 9.4. For each price level, l, we compute

total demand, Ql, and the total revenue the Treasury could obtain if that price level were

chosen as the stop-out price: {p1Q1, p2Q2, ..., p10Q10}. The figure depicts the normalized
revenue curve, where the total revenue for each price level is expressed as a fraction of the

maximum revenue which could be generated in the auction, given the submitted bids.

Figure 3 illustrates four important and general facts. First, revenue is maximized at

the lowest price level, p10. In 200 of the 206 auctions, this is the case.
16 Second, the

revenue maximizing price level, p10, is not picked as the stop-out price, something which

holds true in each and every auction in our sample. So the Treasury does not follow

the strategy studied by Back and Zender (2001) and McAdams (1999). Third, marginal

revenue is maximized at an internal price level (neither the highest nor the lowest price

level). The marginal revenue at level l is defined as the increase in total revenue that could

be generated by lowering the stop-out price from level l to l − 1:17

MRl = pl−1Ql−1 − plQl.

The maximum marginal revenue occurs at the highest price level in 14 auctions and at the

lowest price level in 4 auctions, but is otherwise, in 188 auctions, located somewhere in

the middle. Fourth, the chosen stop-out price coincides with the price at which marginal

revenue is maximized.

To examine the generality of the fourth point, we compute the normalized total and

marginal revenues for each price level within each auction and compare these with the

16In the remaining six auctions, the maximum would be attained at the second lowest bid (five cases)

or the third lowest bid (one case). These six auctions have in common that the marginal demands at the

lowest price are relatively small. Specifically, they are (in millions of markkas) 1, 1, 5, 10, 10, 15, and 60.
17Note that marginal revenue is usually defined as the extra revenue from increasing the price. We find

it intuitive to define marginal revenue in terms of decreasing the price because this captures the idea that

the seller is looking at the tradeoff between underpricing (decreasing price) and revenue. Our marginal

revenue measure is essentially with respect to the level of underpricing.
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Figure 3: Normalized Revenue Curve. Auction held on 14 October 1993 of a treasury

bond maturing in 1996. There are ten price levels in this auction, going from high price

(level 1) to low price (level 10). Total revenue for each price level is expressed as a fraction

of the maximum revenue that could be achieved in the auction. The stop-out price is

chosen by the Treasury to be the fourth highest price level. Total revenue is maximized

at the 10th price level, and marginal revenue is maximized at the 4th price level.

Treasury’s choice of stop-out price. The results are in Table 8. In the table, p∗0 denotes

the price level with the highest marginal revenue, p∗−1 denotes the price level immediately

above, p∗1 denotes the price level immediately below, etc. The second column shows the

normalized marginal revenue as an average across all auctions in our sample, for five

different price levels centered around p∗0. We see that this average is 36% at the maximal

marginal revenue price level, p∗0. Given that the average number of price levels across

auctions is 9.4, this illustrates that a typical auction has a price level where marginal

revenue is considerably higher than at other price levels, like price level 4 in Figure 3. One

can think of the demand function as exhibiting a kink, or a precipitous drop, at this price
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Price Average normalized Frequency Frequency among Ave marg rev

Level marginal revenue stop-out rationed auctions if rationed

p∗−2 .085 .049 .000 n.a.

p∗−1 .108 .034 .190 .202

p∗0 .360 .438 .571 .457

p∗1 .132 .197 .048 .212

p∗2 .094 .133 .000 n.a.

#Obs 206 203 21 21

Table 8: Marginal Revenue and Stop-Out Price: For each auction, we identify the

price level with the largest marginal revenue, p∗0. The table reports the following statistics

across all auctions for this price level and the two immediately above and below: Average

normalized marginal revenue, frequency chosen as stop-out price, percentage of rationed

auctions with the indicated price level as the stop-out, and the average normalized marginal

revenue across the rationed auctions. There are 206 auctions in total, 203 auctions where

the Treasury sold some bonds, and 21 auctions where the Treasury rationed bids placed

at the stop-out price.

level. Alternatively, one can think of the inverse demand function as having a large flat

at this price level.18 The third column contains the key piece of information; namely how

frequently the five price levels are chosen as the stop-out price. We see that p∗0 is chosen in

43.8% of the 203 completed auctions (recall that 3 auctions in our sample were cancelled).

This illustrates the generality of the finding in Figure 3 that the Treasury tends to pick

the stop-out price to coincide with the price level where marginal revenue is at its largest.

Another interesting feature of the Treasury’s behavior is that it rationed marginal

demand at the stop-out price in 21 auctions. The fourth column in Table 8 answers the

question as to how many of these rationed auctions coincide with a stop-out price around

p∗0. We see that p
∗
0 is the stop-out price in 57.1%, or 12, of these auctions. The fifth column

tabulates the average normalized marginal revenue at the five price levels for the rationed

auctions. Comparing these numbers with those in the second column supports the view

18As one might expect, p∗0 tends to be located reasonably close to the quantity weighted average price

of the aggregate demand function. On average, p∗0 exceeds the auction mean by .032% of face value.
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that rationing tends to happen when marginal demand at the stop-out price is high. For

p∗0, marginal revenue increases from 36.0% in the sample as a whole (second column) to

45.7% in the sample of rationed auctions (fifth column). This increase is economically

large, but not statistically significant due to the small number of observations.

The choice of the stop-out price as the price at which marginal revenue is maximized

makes intuitive sense when one considers that the Treasury holds a sequence of auctions.

What may be surprising is that the Treasury is able to raise the money it needs (to fund

the budget deficit) without going below the maximum marginal revenue point more fre-

quently. This could be a result of the Treasury having outside options to borrow elsewhere

instead of borrowing expensively in the auction. It could also be that the Treasury’s policy

induces bidders to be more competitive than suggested by the market power theory. If

bidders know that the seller will set the stop-out price where marginal revenue is at the

highest, then a single bidder would have an incentive to concentrate demand on that price.

However, if all bidders concentrate their demand on the same “consensus” price, rationing

will occur. In this case, to avoid rationing, a bidder might find it preferable to concentrate

his demand one tick above the others’ “consensus” price. As a result, price competition

would ensue and market power would break down. The argument is analogous to Kremer

and Nyborg (2004a), who analyze the impact of price and quantity discreteness on mar-

ket power equilibria. The idea is that the seller’s marginal revenue maximization policy

may work the same way as increasing the quantity multiple.19 An important part of the

argument is that the Treasury can credibly commit to this policy. It may well be that the

fact that the auctions in our sample essentially constitute a repeated game between the

Treasury and the primary dealers plays an important role in communicating this policy

and making it credible.

19The quantity multiple in Finland is not sufficiently large to eliminate market power equilibria (Kremer

and Nyborg, 2004a). However, using the average quantity awarded to bids at the stop-out price (when

the stop-out price is the marginal revenue maximizing price) of 495 million markkas as the implicit

quantity multiple, Kremer and Nyborg’s analysis would predict underpricing less than 1 tick in our

sample. Interestingly, the sample average underpricing is .86 ticks.
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5.3 Underpricing and Auction Size

Within any given auction, the Finnish Treasury faces a price-quantity tradeoff. In this

subsection we show that there is no evidence of such a tradeoff across auctions. There is

no relation between underpricing and realized auction size. When demand is strong, the

Treasury sells more securities, and when demand is weak, it holds back supply.

To control for duration (and therefore indirectly for volatility), we work with yields

rather than prices.20 Within each auction, bids are sorted by yield levels which are ordered

from the lowest to the highest yield. For each yield level l in auction j, we compute the

difference between the bid yield and the secondary market yield (see Section 2.3):

BID MARKUPlj = ylj − Yj . (23)

At the chosen stop-out yield, y0j , the markup represents underpricing measured in yield.

For each yield level, we compute the aggregate quantity bid up to this yield and standardize

by the expected auction size:

Xlj =
Qlj − Q̄j
Q̄j

.

For each auction, the locus of points (BID MARKUPlj ,Xlj) essentially sketches out the

aggregate (standardized) demand function.

We pool the data across all auctions and estimate the following regression:

BID MARKUPlj = β0 + β1Xlj + β2X
2
lj + β3X

3
lj + εlj . (24)

This provides a characterization of the average aggregate demand schedule. A cubic func-

tional form has been chosen because visual inspection shows that the aggregate demand

curve within individual auctions tends to be S-shaped. The independent variable is highly

skewed, so we adopt the transformation

Xlj = ln

Ã
1 +

Qlj − Q̄j
Q̄j

!
. (25)

The regression coefficients evaluated at the stop-out yield characterize the seller’s policy.

The tradeoff policy says that β1 > 0. The strong no-tradeoff hypothesis says that β1 =

β2 = β3 = 0.

20We have also carried out the analysis in this subsection using prices and reach the same conclusions.
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β0 β1 β2 β3 R2 #Obs

All yield levels .0300 .0178 -.0035 -.0007 .200 1,388

(15.7)a (9.6)a (-3.1)a (-3.7)a

Stop-out only .0064 -.0005 .0024 -.0001 .014 175

(2.5)a (-.1) (.8) (-.1)

Table 9: Treasury Policy. Estimation of (24) with ordinary least squares using the

markup at each yield level as dependent variable and the standardized aggregate demand

defined by (25) as independent variable. t-statistics are below in parentheses with super-

index a denoting significance level 5% or better.

The regression results are reported in Table 9. In the regression using all yield levels,

β1 is positive. Hence, the aggregate inverse demand schedule (with yields on the y-axis) is

upward sloping. Within an auction, therefore, the Treasury faces a tradeoff between yield

and quantity. The estimated values for β2 and β3, both significantly negative, tell us that

this tradeoff is nonlinear. This contrasts with the regression using only the observations

at the stop-out yield. Here, only the constant is significantly different from zero.21 This

shows that while the auctioned securities are underpriced on the average, across auctions

the Treasury is not trading off underpricing, here measured in yield, and quantity. In

other words, the outcome of the repeated game played between the Treasury and bidders

is to keep the yield markup (underpricing) unaffected by quantity sold. There may be

several reasons for this. First, bidders tend to respond to larger expected auction sizes

by increasing quantity demanded without lowering discounts. This helps the Treasury to

sell larger quantities without lowering prices. Second, since the Treasury tends to pick

the stop-out price where the marginal demand is the largest, it has scope for varying the

quantity in an individual auction without changing the price. Our findings imply that the

expected auction size does not affect the price level with the largest marginal demand and

revenue.

21Lack of cross-section variation in the independent variable does not explain the insignificant coefficients

in the stop-out sample, because the standard deviation of Xi is .749 in the stop-out sample compared

with 1.505 in the full sample.
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6 Uniform versus Discriminatory Auctions

Which auction format is revenue superior? The US Treasury switched from discriminatory

to uniform auctions in October 1998 after several years of experimentation because of

performance improvements.22 The Finnish Treasury chose the uniform format for its bond

auctions because it believed that this would be more conducive to competition–not less!–

than discriminatory auctions and ultimately lead to higher auction revenues. This belief

was based on interviews with potential bidders and the experience of other countries.

However, many countries still employ discriminatory auctions.23

Empiricists have approached the revenue question by estimating the level of underpric-

ing. Panels (a) and (b) in Table 10 summarize some of the US and international evidence,

respectively. The benchmark in the US studies is the when-issued yield; elsewhere, it is the

secondary market price. Our study, like most studies, find that treasury securities are un-

derpriced in the auctions. The Finnish underpricing of .041 percent of face value translates

into .78 basis points in yield space, which is somewhat larger than in the US. Securities

sold in uniform auctions appear to be less underpriced than those sold in discriminatory

auctions. One must be careful when comparing the studies using prices, however, because

the durations of the auctioned securities vary from study to study.24

We will compare uniform auctions in Finland with discriminatory auctions in Sweden.

For both countries, we have detailed information on auctions in different duration bands.

A straight comparison of mean underpricing finds it being lower in Swedish discriminatory

auctions (.020 percent of face value) than in Finnish uniform auctions (.041). However,

these numbers are not directly comparable for two reasons. First, the Swedish sample

includes treasury bills and bonds, whereas the Finnish sample includes bonds only. Second,

the Swedish auctions are benchmarked against pure bid quotes and the Finnish auctions

against transaction-adjusted bid quotes (see Section 2.3). Since transactions often happen

within the bid-ask spread, this means that the estimation procedure used for the Swedish

22See Malvey and Archibald (1998), in particular, the foreword by Lawrence Summers who was then

the Deputy Secretary of the Treasury.
23Countries that regularly use discriminatory auctions to sell treasury securities include the UK, Italy,

Canada, Germany, and Sweden.
24For example, in the studies by Bjønnes on Norwegian Treasury auctions, time to maturity ranges from

one to eleven years in the uniform auctions and from 16 to 365 days in the discriminatory auctions.
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Discriminatory Uniform

Underp. #Obs Underp. #Obs Benchmark Country Authors

(a) Yields and rates (basis points)

1.3a 364 – – bid quote US Spindt and Stolz (1992)

.37a 66 – – bid quote US Simon (1994)

.27a 76 .09 15 transactions US Nyborg and Sundaresan (1996)

.55a 66 .21 44 bid quotes US Malvey and Archibald (1998)

.61a 105 .40a 178 transactions US Goldreich (2003)

(b) Prices (percent of face value)

.018a 181 -.003 26 transactions Mexico Umlauf (1993)

.028 56 – – bid quote Japan Hamao and Jegadeesh (1998)

.020a 458 – – bid quote Sweden Nyborg, Rydqvist and Sundaresan (2002)

.036a 68 .133a 34 midpoint Norway Bjønnes (2001), (2002)

Table 10: Underpricing in Treasury Auctions: Panel (a). Underpricing (underp.) is

the quantity weighted average yield or rate paid in the auction less the when-issued yield

or rate. Panel (b). Underpricing is the secondary market price less the quantity weighted

average price paid in the auction. The benchmark column describes what underpricing is

measured relative to. Index a denotes significance level 5% or better.

data understates the discount and underpricing relative to the Finnish estimates.25 To deal

with the first problem, we break up the data into different duration bands and perform

the comparison on this basis. As we shall see, this also makes the second problem less of

an issue.

Table 11 contains the comparison. Panel (a) reports the mean discount for both uniform

and discriminatory auctions, broken down by seven duration bands as well as for the

pooled sample of treasury bonds. Panels (b)-(d) do the same for underpricing, standard

deviation, and volatility. We see that for each duration band, bidders in Finnish uniform

auctions submit their bids at lower discounts and disperse their bids less than in Swedish

discriminatory auctions. The pooled sample means are also statistically significantly lower

for the uniform auctions. This translates into consistently lower underpricing for uniform

auctions, except for two year bonds. In the pooled sample of all bonds, the average

25Since the bid-ask spread tends to be much larger in Finland, using the pure bid-quote for the Finnish

data will not resolve the issue of comparability.
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Format Duration (years) All t-test #Obs

2 3 4 5 6 7 8 diff.

a) Discount (percent of face value)

Discriminatory .073 .189 .154 .252 .478 .442 .295 .306 4.1a 93

Uniform .036 .026 .020 .059 .123 .181 .062 .081 159

b) Underpricing (percent of face value)

Discriminatory -.001 .061 .017 .086 .204 .195 .109 .120 1.6 93

Uniform .019 .010 .004 .043 .028 .128 .067 .041 156

c) Standard deviation (percent of face value)

Discriminatory .040 .067 .086 .122 .162 .148 .149 .126 7.8a 93

Uniform .021 .044 .050 .063 .077 .095 .078 .065 175

d) Volatility (percent of price)

Discriminatory .259 .334 .408 .546 .600 .509 .888 .496 4.5a 93

Uniform .174 .238 .337 .314 .439 .399 .361 .346 175

Table 11: Comparison of Uniform and Discriminatory Auctions: Means for intra-

bidder discount and standard deviation as well as underpricing and volatility for all trea-

sury bonds, broken down into seven duration bands. The variables are as explained in

Table 3. The table compares uniform auctions in Finland with discriminatory auctions in

Sweden (Nyborg, Rydqvist, and Sundaresan, 2002, Table 4). ”All” refers to the pooled

sample mean of the variables (across auction day averages). The t-test compares the means

for discriminatory and uniform auctions in the “All” column. Super index a denotes sta-

tistical significance level 5% or better.

underpricing is .041 percent of face value in Finland and .120 in Sweden. The t-statistic

for a differences in means test is 1.6, which translates into a significance level of 11% for

a two tailed test and 5.5% for a one-tailed test. Keeping in mind the negative bias in the

measured underpricing levels (and discounts) under the Swedish discriminatory auctions,

we think this is fairly strong evidence that underpricing is lower in the Finnish sample.

This could be due to volatility being lower in the Finnish market [Panel (d)]. However,

dividing discounts, underpricing, and standard deviation by volatility, we find that the

volatility adjusted means are also consistently smaller in Finland.26 This suggests that it

26The exceptions are volatility adjusted underpricing for two and eight year bonds and standard devi-
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is the uniform format rather than the lower volatility that lies behind our findings.

Finally, we compare the regression results in Table 4 above with those obtained by

Nyborg, Rydqvist, and Sundaresan (2002, Table 5) for Swedish discriminatory auctions.

The empirical results are similar. In both markets, volatility has a significant positive im-

pact on underpricing, discount, and standard deviation; and a negative impact on quantity

demanded. These regression coefficients also have the same order of magnitude in the two

studies, as does the means of volatility and the endogenous variables. Furthermore, in both

markets, auction size has at most a negligible effect on these variables, with the exception

of quantity demanded, which is increasing in auction size.27 These findings are consistent

with the hypothesis that private information and the winner’s curse are important factors

under either format. The lower underpricing in the uniform auctions are then consistent

with the view that uniform auctions result in a lower underpricing because they reduce

the winner’s curse.

7 Conclusions

This paper analyzes bidder behavior and underpricing in uniform price treasury auctions

with a small number of bidders. We derive and test implications of the theory of uniform

price auctions which emphasizes market power. The finding that individual bidders’ de-

mand increases when there are more bidders is consistent with the argument that bidders

exercise market power. However, the observations that discounts and underpricing are

unaffected by the number of bidders (which is exogenous) are not. Moreover, the specific

equilibria of Back and Zender (1993), Kyle (1989), and Wang and Zender (2002) cannot

explain the observed non-linearities in bidders’ demand schedules. Most problematically

for the market power theory, the skewness of individual bid functions is increasing in the

number of bidders, as opposed to decreasing as predicted by the theory. Finally, risk bear-

ing does not seem to influence bidder behavior. As auction size increases, bidders willingly

purchase larger quantities without lowering the prices at which they bid.

A reason for why the market power theory of uniform auctions is rejected may be that

ation for eight year bonds.
27Nyborg, Rydqvist, and Sundaresan (2002) do not report on skewness and kurtosis and they do not

study the impact of variation in the number of bidders.
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the seller acts strategically with respect to the amount sold, rather than being passive as

assumed in the theory. We have documented that the Finnish Treasury appears to have

a policy which can best be described as one of maximizing marginal revenue. It may well

be that this policy creates incentives for bidders to concentrate their demand around a

“consensus” price. In turn, this may create competition for marginal units and thereby

help break the noncompetitive equilibria along the lines of Kremer and Nyborg’s (2004a)

analysis of a discretized uniform price auction. The fact that the auctions are held repeat-

edly may play a role here by serving as a mechanism which communicates the Treasury’s

policy to the market and makes it credible.

Another possibility is that the Treasury may have outside options to borrow from differ-

ent sources or to use different mechanisms if it is not happy with the bids it receives in the

auction. Furthermore, the theory treats the auction as a one-shot game while the treasury

auctions in our data are repeated. It seems implausible that the Treasury would be willing

to tolerate very low prices in the auction without either disciplining primary dealers or tak-

ing its business elsewhere. As we know, in some auctions the Treasury deemed bids to be

so low that it decided to sell nothing. Such threats could serve to weaken primary dealers’

willingness and ability to coordinate on an underpricing equilibrium. A contrasting view

is that repetition could enhance bidders’ market power by facilitating coordination among

them, as emphasized in the experimental study by Goswami, Noe, and Rebello (1996) who

find that subjects play Back-Zender type equilibria when they are allowed to communi-

cate before the auction, but not otherwise. Weighing these views against each other, our

evidence suggests that the Treasury’s power to discipline dealers dominates the effect of

dealers’ enhanced ability to coordinate. Studying multiunit auctions as repeated games

between the seller and the buyers seems to be an important direction for future research.

Our findings point to the implementation of a multiunit auction as an important factor

in determining performance. Strategic behavior on the part of the seller may overcome

apparent deficiencies in the auction design. This may also explain why uniform auctions in

the US, for example, have performed well. The US Treasury does not give itself the extreme

flexibility with respect to determining supply as the Finnish Treasury did, but it “reserves

the right to accept or refuse to recognize any or all bids”.28 The threat of reducing supply if

28See ftp.publicdebt.treas.gov/gsr31cfr356.pdf, §356.33 Reservation of rights.
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bids are too low provides the US Treasury with protection against very low prices. Knowing

this, dealers may not find it worthwhile to pursue underpricing equilibria. Consistent low-

balling by a dealer may also lose him his primary dealer privileges.

Finally, this paper reinforces the findings of many other studies that volatility has

significant impact on bidder behavior in treasury auctions. When volatility increases,

bidders increase discounts, reduce quantity demanded, and increase the dispersion of their

bids. This is the same reaction as in Sweden’s discriminatory price treasury auctions

(Nyborg, Rydqvist, and Sundaresan, 2002). This is noteworthy because market power

should not be a concern in these auctions (Back and Zender, 1993) and there is little

evidence that risk aversion is a significant driver of bidder behavior in Sweden either. Our

findings on volatility are consistent with the view that bidders have private information

and are concerned with the winner’s curse. But if bidders face the winner’s curse, we are

left with a puzzle as to why discounts do not increase with the number of bidders.
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8 Appendix 1: Equilibria in Kyle’s Model

This appendix shows the derivation of the equilibrium demand schedules in Kyle (1989)

when bidders do not have private information. The approach follows Kremer and Ny-

borg (2004a). We suppose initially that the supply, Q, is known, but we shall see that

the results are robust to supply uncertainty. When all other bidders use q(p), the “final”

bidder’s optimization problem can be written (because of CARA utility and normality):

max
p
(v − p)(Q− (N − 1)q(p))− 1

2
σ2ρ(Q− (N − 1)q(p))2,

where (Q− (N − 1)q(p)) is the residual supply. The first order condition is:

−(Q− (N − 1)q(p))− (N − 1)(v̄ − p)q0(p) + σ2ρ(Q− (N − 1)q(p))(N − 1)q0(p) = 0.

Using symmetry and market clearing, Nq(p) = Q, the first order condition is:

−q(p)− (N − 1)(v̄ − p)q0(p) + σ2ρq(p)(N − 1)q0(p) = 0. (26)

This is an ordinary differential equation which is independent of Q. Therefore, the solu-

tion to the differential equation will work for any Q. In other words, we obtain supply

uncertainty robust equilibria. There are many possible solutions. To get Kyle’s solution,

posit a linear equilibrium: q(p) = γ − γp. Plug q0(p) = −γ into (26). We get

q(p) =
(N − 1)(v̄ − p)γ
σ2ρ(N − 1)γ + 1 .

This implies that
(N − 1)γ

σ2ρ(N − 1)γ + 1 = γ.

Solving this for γ, we obtain

γ =
N − 2

(N − 1)σ2ρ .
Thus we get Kyle’s solution (4).

The general solution to (26) is not known, but we can obtain the general solution in

inverse form by writing (26) as follows:

p0(q)q − (N − 1)[v̄ − p(q)] + (N − 1)σ2ρq = 0. (27)

The general solution to (27) is Wang and Zender’s (2002) equilibrium (10), where a > 0.

Note that the general solution is a polynomial function of order N − 1 and therefore for
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N > 5, we are unable to find a general closed form solution for q(p). (As is well known,

Abel’s classical theorem shows that there is no general formula for the roots of a polynomial

of degree 5 or higher).

9 Appendix 2: Volatility Estimation

We estimate conditional volatility as an ARCH(2) process of bond returns, which have

been calculated from end-of-day bid quotes. The cross-section and time series data are

stacked. The level of the coefficients are about half of those from the Swedish data.

Let Pt be the bond price at time t and A is the one-day accrued interest for a coupon

bond. We assume that bond returns follow a random walk with constant drift a:

Pt − Pt−1 +A
Pt−1

= a+ et. (28)

The cross-section and time series data are pooled. The volatility of the error term is as

e2t = α0 + α1e
2
t−1 + α2e

2
t−2 + φ1DURt + νt. (29)

The estimated coefficients are (standard errors in brackets):

α0 α1 α2 φ1

-0.0017 0.2959 0.2784 0.0179

(0.0013) (0.0187) (0.0182) (0.0005)

When a new security is auctioned, there are no bond prices from the secondary market

before the auction. In those cases, we use the prices of the traded T-bond with dura-

tion that most closely mimics the duration of the new T-bond. When a new T-bond is

auctioned, we use the average winning auction yield to compute duration.
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