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ABSTRACT 
 

A mixture of general-use and of some custom-designed plastic parts, fabricated on 
inexpensive layered manufacturing machines, is used to construct of a variety of 
sculptural maquettes. This article describes the design and fabrication of a set of 
modular parts that permit the assembly of tubular sculptures as well as constructivist 
realizations of mathematical knots and links. 

 
Keywords:   Tubular building blocks; “LEGO®-Knots”;  fused-deposition modeling. 

 

1 INTRODUCTION  

For many millennia, from the Venus of Willendorf [18] to the Greek and Roman marble statues, 
sculpting was a subtractive process; material was selectively removed from an original body of wood, 
stone, or ivory to free up a smaller, more artistic shape contained within. 

During the last two centuries constructive sculpting techniques have come into their own, where 
individual pieces of material are assembled and held together with bolts, welds, string, or some kind 
of adhesive glue. This allowed the construction of more complex sculptures, made from different 
materials, and possibly containing movable parts. 

In the last two decades a new revolution has taken place. The emergence of rapid prototyping 
machines based on layered manufacturing techniques permits the fabrication of extremely complex, 
partially hollow geometries that cannot be made with subtractive machining, because the inner parts 
of such shapes are not reachable by any existing machine tool. The fact that the price of such 
machines has dropped by two orders of magnitude in the last twenty years has made these machines 
available to the general public. A large audience can now create their own custom-made parts, either 
on their own inexpensive rapid-prototyping machines, or through an on-line service such as 
Shapeways [13]. This offers new possibilities also for artists.  

Thanks to layered manufacturing, many more people can now experiment with various conceived 
geometries and quickly produce small maquettes for little costs and with fast turn-around times.  
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2 MODULAR AND RECONFIGURABLE ART 

At the 1981 Design Automation Conference, in Nashville TN, Sculptor Frank Smullin [14] presented a 
reconfigurable sculpture Fit to be Tied (Fig.1a).  Nine obliquely cut tube segments were held together 
with bolted flanges. Initially they were laid out and connected as a single straight pipe lying on the 
ground. Subsequently the angled joints were reconnected with a 180º azimuth change, and the 
construction was transformed into a curled-up trefoil configuration. Other artists, such as Richard 
Zawitz [19] in his Museum Tangle (Fig.1b) have used modular tubular elements to make sculptural 
forms that can be deformed smoothly and continuously. 

 

        
                      (a)                                       (b)                                        (c)                               (d) 

Fig. 1:  Sculptures built from modular tube segments:  Fit to Be Tied  by Frank Smullin (1980);  
(b) Museum Tangle  by Richard Zawitz (1982);  (c, d) Borsalino  by Henk van Putten (2013). 

 
The work reported in this article was originally inspired by two pieces of art work by Henk van Putten 
[17] (Fig.1c,d) exhibited in the art exhibit of the 2013 Bridges conference in Enschede, Netherlands. The 
overall shape is based on some simple modules, generated by sweeping a square cross section along a 
circular arc [16]. Combining several such elements with different bending angles and sweep radii leads 
to intriguing geometrical sculptures, in which the modularity may not be immediately obvious. While 
these sculptures were designed based on a few geometrical modules, they were not really constructed 
from individual modular elements but were machined or fabricated as composite shapes. 

After the 2013 Bridges conference an exploration was started to see whether it was practical to 
create some physical “snap-together” parts representing the key modular shapes, so that one could do 
real-time “hands-on sculpting” and compose many different shapes from these parts in a matter of 
minutes. This led to project “LEGO®-Knots” presented at the 2014 Bridges conference in Seoul [12].  

2.1 Basic Borsalino Geometry 

                 
                          (a)                                                (b)                                                    (c) 

Fig. 2:  Borsalino geometry:  (a) CAD model of Borsalino; (b) calculating the connector radius;  
(c) Borsalino assembled from nine plastic pieces. 

 
This exploratory effort started out with the design of the two parts needed for the construction of the 
Borsalino shape (Fig.1c) as explained by Henk van Putten [16]. All parts are basically sweeps of a 
square cross section along sweep curves that form circular arcs. The Borsalino needs two building 
blocks (Fig.2a): the three (orange) end-caps that form tight 180º turns, and the six (green and cyan) 
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connector pieces, which exhibit gentler bends through an angle of 45º. To form the tight, smoothly 
connected Borsalino configuration, the sweep radius, r, of the end-cap has to be half the side, s, of the 
square cross section, and the bending radius, R, of the medial axis of the connector has to be 1+√2 
times larger. By solving the quadratic equation derived from Figure 2b, which is the enlarged upper 
right corner of Figure 2a, one obtains:      

R2 + R2 = (r+R)2;    R2 – 2*R*r – r2 = 0;    R = r + r*√2. 

Assembling the nine fabricated plastic parts resulted in a rather faithful reproduction of the basic 
Borsalino shape (Fig.2c). 

3 FABRICATION ISSUES 

A second important goal of this effort was to design these parts in such a manner that they can be 
built readily on inexpensive rapid prototyping machines, such as the Afinia_H479 3D Printers [1], 
which dispense only a single plastic material.  The aim was to minimize material costs and build times, 
as well as any subsequent cleanup required; it mandated geometries that in at least one build- 
orientation require only a minimal amount of supporting scaffolding, which can be removed easily. 

In a first round of implementation, all parts were built as hollow pipe segments with a square 
cross section. The nominal sleeve dimension by which consecutive pipe modules fit together was 
chosen to be one inch, the initial wall-thickness was 70mils (1.75mm), and the sleeve insertion depth 
was 0.2" (5mm). Building a straight tube segment in a flat, horizontal position, would be very 
inefficient; the whole tube would be filled with (grey) scaffolding material (Fig.3a). Theoretically the 
tube could be balanced on one longitudinal edge (Fig.3b). Because cantilevered surfaces sloping out at 
45º can be built without scaffolding, this build orientation may not require any support material at all. 
However, praxis shows that such a precariously balanced part will very likely get knocked over during 
the build process; – and even if it didn’t, the resulting cross section would no longer be square due to 
some unavoidable sagging of such cantilevered surfaces.  

It is much better to build such tubular elements in the vertical direction. A small amount of 
scaffolding may be required where the connection sleeve transitions into the main tube (Fig.3c). But 
even this can be avoided, if at the male end the sleeve transitions from the nominal sleeve profile to 
the outer wall with a taper of 45º (Fig.3d). However, such a 45º taper is not very desirable; it leaves 
very visible gaps where two pieces are joined.  Even more advantageously, the connector parts can be 
built without any scaffolding, if the female end points downward (Fig.3e); all the visible, outer tube 
diameter transitions can then be kept square and planar. 
 

         
          (a)                 (b)             (c)             (d)                  (e)                  (f)                (g)                  (h)  
Fig. 3:  Fabrication options:  (a) flat square tube; (b) tube on edge; (c) vertical tube, (d, e) with 45º flange 

transitions; (f) curved segment with sharp inner transition and (g) tapered-off; (h) end-cap. 
 
A vertical build orientation also works well for the curved connectors (Fig.4a), since they don’t bend 
through more than 45º. Again, the female end is oriented downward. An internal, downward pointing 
wedge near the male end might prompt the construction of a thin supporting wall below it (Fig.3f). 
This can be avoided by asymmetrically tapering the offending tube diameter transition at 45º into the 
inner wall of the curved main tube (Fig.3g). 

In the end-caps, which turn through 180º, it is more difficult to avoid completely the use of any 
support material. The inner cylindrical surface could be remodeled with some kind of “cathedral 
ceiling” sloping at 45º (Fig.3h); but the required central supporting wall would block the free passage 
through this tubular element. Also, if the end-cap uses a slightly larger turning radius, then we cannot 
avoid some scaffolding to support the smaller concave cylinder formed by the outer surface (Fig.3h). 
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Adding flanges to one or both ends of such end-caps (Fig.4b) also increases the need for scaffolding. It 
then becomes advantageous to build all end-caps with two female ends (Fig.4c) and to build separately 
a copious number of insertable sleeves (Fig.4d) that can turn such an end into a male connection. 
 

         
                  (a)                                          (b)                                                (c)                               (d) 
Fig. 4:  Fabrication options:  (a) standard curved connector with built-in sleeve;  (b) an end-cap with one 

tapered male sleeve;  (c) expanded end-cap with two female ends;  (d) separate, insertable sleeve. 

4 RHOMBIC BORSALINOS 

While playing with the various physical pieces, it transpired that stretching the connection in the 
middle of each pair of curved connectors in the regular, tight Borsalino loop could lead to another 
interesting configuration. The two side-by-side square end-cross-sections, which previously were 
connected by a tight end-cap, are shifted past one another until they are located corner-to-corner 
(Fig.5a). Now these two ends can be closed off with a new piece, called a “rhombic end-cap”, which 
sweeps the square cross section along a half-circle parallel to one of its face diagonals. This geometry 
can also be understood as sweeping a “rhombic” cross section, i.e., a square with an azimuthal 
rotation of 45º, along an arc with a radius enlarged by √2.  Figure 5b shows the result. 

 

        
                (a)                                   (b)                                    (c)                                          (d) 

Fig. 5:  Rhombic Borsalinos:  (a) an extension between a pair of connectors leads to  (b) a Flipped-over, 
Rhombic Borsalino Loop;  (c) diagonal bending of the connectors leads to  (d) a Rhombic Borsalino. 

 
These new rhombic end-caps are by themselves attractive new building modules. We can also use them 
as enlarged end-caps when tracing out the whole Borsalino shape with a consistent rhombic sweep 
along the composite sweep curve scaled up by √2. This requires the fabrication of six new connector 
pieces (Fig.5c). Figure 5d shows the complete, enlarged Rhombic Borsalino, – another instance of an 
attractive piece of sweep-geometry. 

5 BOW-TIE LOOPS 

The shape shown in Figure 5b seems to consist of three tight “Bow-Tie” lobes, where the square beam 
coming into the end-cap turn lies flush against the beam coming out of the turn, and the turn itself 
sweeps through more than 180º. Such Bow-Tie lobes can also be constructed using beams with 
different cross sections, – e.g., with the shape of an equilateral triangle. Thus one may try to connect 
several such Bow-Tie lobes snuggly into a symmetrical, twisted loop. Such geometries are best designed 
from the center outwards. Figure 6 illustrates the construction principle: One may start with three 
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triangular prisms, where each has one edge lined up along the z-axis. Then each prism is rotated 
around its horizontal symmetry axis going through the origin until it comes into face-to-face contact 
with its two neighbors (Fig.6a). The prisms are cut to the length where their outer edges intersect. Now, 
helical end-caps are added, so as to connect pairs of triangles that share a vertex (Fig.6b). Figure 6c 
shows a single Bow-Tie lobe resulting from this construction. To keep the emerging set of parts as 
modular as possible, the overall shape can be decomposed in a different manner: The helical end-cap 
itself is decomposed into two small curved connector pieces attached to a standard, semi-circular end-
cap sweeping through 180º; the latter is a part that can be re-used in many other configurations. 
Therefore these two extra connector pieces are attached to the central straight potion of the sweep to 
form a twisted, curved connector (Fig.6d), which is custom made for this special Bow-Tie Loop with a 
triangular cross section. 

            
              (a)                                           (b)                                        (c)                                      (d) 

Fig. 6:  Bow-Tie Loop  construction:  (a) tight tangle of prismatic beams;  (b) helical end-caps added;  
(c) a single bow-tie lobe;  (d) 3-segment connector between standard 180º end-caps. 

 
This construction can be generalized to more than three triangular beams and to beams with other 
cross sections. When one starts with four triangular prisms symmetrically positioned around the z-
axis, less of a rotation is required to bring all prisms into face-to-face contact with their two neighbors. 
Again the prisms are truncated where their outer edges intersect, and pairs of adjacent triangles are 
closed off with suitably twisted end-caps. The first physical Bow-Tie Loop with four triangular beams 
joining in the center (Fig.7a) was constructed from four complete Bow-Tie lobes (Fig.7b). But the 
skewed directions of the two prismatic connection sleeves made the assembly of the whole sculpture 
very difficult. Thus the approach exemplified with Figure 6d is much preferred. It was subsequently 
used in the construction of a 5-lobe Bow-Tie Loop (Fig.7c), where five triangular prisms pass each other 
symmetrically around the center. Thus this geometry is partitioned into ten parts: five regular, re-
usable end-caps that turn through 180º (Fig.8a) and five tailor–made twisted S-shaped connectors 
(Fig.7d) in the spirit of Figure 6d. This sculpture is easy to assemble.  The same approach was also 
used to construct a 3-lobe Bow-Tie Loop  using pentagonal prism beams. 
 
 

       
                     (a)                                  (b)                                         (c)                                    (d) 

Fig. 7:  Bow-Tie Loops with three (a) and four (c) lobes and  
the components from which they were built (b), (d). 
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6 ADDING TWISTED AND HELICAL PIECES 

Another set of experiments, performed together with Michelle Galemmo [6], explored what shapes 
emerge when a triangular cross section is swept along Henk van Putten’s classical Borsalino curve. It 
turns out that in this case the curved connector pieces bending through 45º also need to be given a 
twist of 15º to make overall smooth surface connections. For the square-sectioned Borsalino, a pair of 
curved connectors performs a topological rotation of the prism faces equivalent to a twist of 90º. For 
the triangular cross section, such a cyclic face re-assignment would be equivalent to a twist of 120º, 
and thus an actual twist of 15º has to be introduced into each connector part to correct for this fact. 
The end-caps (Fig.8a), previously employed in Figures 7c and 7d, were re-used to produce the Tria 
Borsalino loop shown in Figure 8b. 

If the azimuth angle of the cross-section is changed by 180º along the whole sweep, one obtains 
another symmetrical geometry for the end-caps, referred to as “Type II.”  The modified end-cap and 
the resulting Tria Borsalino are shown in Figures 8c and 8d. Note that the required connectors are 
different for the two types of Tria Borsalinos, since the starting azimuths of the sweeps differ by 180º. 

      
                  (a)                                  (b)                                         (c)                                   (d) 

Fig. 8:  Tria-Borsalinos:  (a, b) Type I  end-cap and assembly;  (c, d) Type II  end-cap and assembly. 
 
Once the notion of twist had been introduced, it seemed natural to explore what this might bring to 
the original Borsalino shape with a square cross section. Even though Figures 5b and 5d may have a 
somewhat twisted look, these generalized cylinders are still minimum-torsion sweeps. However, the 
Rhombic Borsalino (Fig.5d) is loose enough, so that there is room to add actual twist into the six 
curved connector pieces. To keep the connections to the rhombic end-caps in the same orientation, we 
must give each connector pair a total twist of 90º. Because of the asymmetry introduced by the male 
and female coupling sleeves, this leads to two new connector parts (Fig.9a,b). With such a pair we can 
form twisted connections between consecutive end-caps. Figure 9c has a single twisted link at the 
bottom; Figure 9d has all three links twisted.  
 

            
                 (a)                                 (b)                                    (c)                                           (d) 

Fig. 9:  Twisted Rhombic Borsalinos:  (a, b) the twisted connector components; and the results: 
 with one twisted branch (c) and with three twisted branches (d). 

 
Modeling these twisted connectors offers some challenges. The outside surface should be nice and 
continuous when these parts are chained together; thus it wants to be part of a continuously twisting 
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helical structure. On the inside, however, there should be short, straight sleeve sections at both ends, 
so that these parts can fit together with any of the other “LEGO®-Knot” parts. We found that a good 
way to model the inner surface is with a sweep along a cubic Bézier curve, where the end-points, the 
end-tangents, and the azimuthal orientation are carefully adjusted to match up seamlessly against the 
straight sleeve sections. 

7 SCULPTURE EMULATIONS 

On Henk van Putten’s Facebook homepage [17] more sculptures can be found that are composed 
mostly of the same geometrical elements described earlier in this article. Figure 10 shows how well 
these modules can approximate three more of Henk van Putten’s sculptures. The first two examples 
(Fig.10a,b) employ only the two modules used in the original Borsalino. The right-most example 
(Fig.10c) also uses the expanded curved connector piece used for the loose Borsalino (Fig.4c). To obtain 
better visual agreement, a 1"-square end-cover was fabricated to close off the hollow tube-ends.  
 

             
 

             
                          (a)                                                   (b)                                                   (c)                            

Fig. 10:  Inspirational sculptures by Henk van Putten found on his Facebook timeline [17] (top row) 
and the emulation of these sculptures with “LEGO®-Knot” pieces (bottom row).  

 
The enlarged set of parts resulting from making various derivatives of the original Borsalino geometry, 
yields enough flexibility to emulate also various tubular sculptures by other artists, such as Bruce 
Beasley [2], Jon Krawczyk [5], or Paul Bloch [4].   

In October 2013 Bruce Beasley opened Coriolis [3], a 3D-Printed Art Exhibition at the Autodesk 
Gallery in San Francisco. All exhibited sculptures were basically sweeps of a square cross-section along 
one or more intricate free-form space curves. While it is not possible to model the continuously 
varying curvature exhibited in most of these sculptures with our modular “LEGO®-Knot” parts, they 
can still serve as inspiration. Figure 11a shows a vertically thrusting sculpture by Beasley and a couple 
of “LEGO®-Knot” constructions inspired by it. For this kind of sculpture a special (blue) platform was 
fabricated, which holds the lowest part in an upright position (Fig.11b–d). 
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                   (a)                                   (b)                                  (c)                                       (d)                      

Fig. 11:  (a) Sculpture by Beasley [3] inspiring free-standing “LEGO®-Knot” constructions (b–d).  
 
Also in downtown San Francisco, one can admire three sculptures by Jon Krawczyk [5]; these are also 
progressive sweeps with a square profile (Fig.12a). Since they join the ground with two legs, a second 
(blue) platform was fabricated, and a variety of free-form sweeps flowing from one to the other were 
assembled (Fig12b,c). 
 

       
                     (a)                                                (b)                                                         (c)   

Fig. 12:  (a) Sculpture by Krawczyk [5] inspiring free-standing LEGO®-Knot constructions (b,c). 
 
Several of Paul Bloch’s sculptures [4] are dominated by helical elements. A modular system cannot 
reproduce the continuously changing curvatures found in Bloch’s work (Fig.14a); all helices need to be 
regular and of the same type (Fig.13b). Thus a “general-purpose” helical component was introduced 
(Fig.13a). This component sweeps through 1/8 of helical turn (Fig.13b), and the pitch of this helix was 
set so that two identical helices could be tightly intertwined (Fig.13c). So far, only left-handed spirals 
have been fabricated (Fig.13d). 

This helical module now enables an approximation of Bloch’s After Wright sculpture (Fig.14a). 
Serendipitously, smooth closure could be achieved for a 2.5-turn helical spiral by adding two straight 
pieces, two standard curved connectors, and two rhombic curved connectors (Fig.14b). There is also a 
way to close off a 2-turn helix with a path that goes through the center of this corkscrew. However, 
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there is some strain in this assembly, as revealed by the gaps near the sharp bends (Fig.14c). Creating 
a smoothly closed sweep through 3D space with our limited set of different tubular modules is a non-
trivial challenge: Six degrees of freedom (x, y, z, and 3 angles) have to be matched to obtain smooth 
closure. This challenge becomes more severe for tightly wound, knotted configurations. 

 

          
                 (a)                              (b)                                         (c)                                          (d)                            

Fig. 13:  Helices: (a) one helical piece; (b) two turns of a helical spiral formed with 16 pieces;   
(c) interlaced helical sweeps; (d) serially connected, left-turning spiral loops. 

 

             
                       (a)                                                  (b)                                                    (c)          

Fig. 14:  (a) After Wright  by Bloch [4];  (b) an emulation thereof;  (c) another helical closed loop.  

8 NON-TRIVIAL KNOTS 

All of the shapes presented so far have been open-ended sweeps or simple loops equivalent to the un-
knot. This section discusses the difficulties of using a small, “generic” set of building blocks to 
construct compact, well-formed, symmetrical models of mathematical knots. 
 

     
               (a)                                        (b)                                       (c)                                      (d) 

Fig. 15:  Non-trivial knots: (a,b) trefoil knot (Knot 3_1);  (c,d) figure-8 knot (Knot 4_1).  
 
The simplest true knot in the Table of Mathematical Knots [8] is the trefoil knot (Knot 3_1). To form a 
nice, tightly wound realization of this knot, a good start is to use six of the above helical pieces to 
form ¾ turns of a helical spiral. Three such helical arcs can cover about 85% of the envisioned trefoil 

Computer-Aided Design & Applications, 12(a), 2015, bbb-ccc 
© 2015 CAD Solutions, LLC, http://www.cadanda.com 

 

http://www.cadanda.com/


 10 

sweep. They are placed into a D3-symmetric [10] configuration, and the rotation around the three C2-
axes (passing between the lime and green colored pieces in Figure 15a) as well as the distances of the 
three arcs from the origin are adjusted interactively. The goal is to line up, as best possible, the three 
pairs of arc-ends that need to be connected. However, the small set tubular modules at hand were 
insufficient to construct a graceful closure between the three helical arcs. Exploiting the rapid turn-
around provided by layered manufacturing, a new custom-designed part was introduced that fit nicely 
in between the three helical arcs (shown in magenta in Fig.15a). Figure 15b shows the full physical 
realization of a modular trefoil knot. 

The second entry in the Knot Table [8] is the figure-8 knot (Knot 4_1). The most symmetrical 
configuration of this knot (Fig.15c) has 4-fold rotational glide symmetry around the z-axis (S4-
symmetry [10]). The helical arcs employed in the trefoil knot, are of no use here: The figure-8 knot is 
non-chiral, i.e., it is its own mirror image, and at this time only left-handed helices had been fabricated. 
Instead, four planar, hemi-circular loops are constructed from four curved connector pieces (blue and 
cyan in Fig.15c). To bend the ends of these planar arcs more closely into the direction in which they 
need to join up with a corresponding end, a rhombic connector piece (green) has been added at one 
end. Again a new custom piece with the appropriate amount of bending and twisting is needed to 
obtain graceful closure. However, because of the amphichiral nature of this knot, two pairs of mirror 
images had to be fabricated – shown in magenta and red in Figure 15c. This then leads to a rather 
smoothly curved knot construction (Fig.15d). 

9 BRANCHING OUT 

At some point the lineal nature of all these assemblies started to feel too confining. The branch 
component shown in Figure 16a was introduced, and it enabled the construction of “tree-” or “coral-
like” structures (Fig.16b) as well as arbitrary graphs, such as Girl with Curls shown in Figure 16c.  
 

       
                         (a)                                                 (b)                                                    (c) 

Fig. 16:  A new branch part (a) allows to make (b) tree structures and (c) general graphs.   
 

       
                          (a)                                                      (b)                                                   (c)   

Fig.17:  Geometrical graphs equivalent to the tetrahedral (a, b) and the cubical (c) edge graphs. 
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To make sculptural realizations of regular cubic graphs (with all valence-3 vertices), such as the edge 
graphs of some of the Platonic solids, using only the available “general-purpose” parts, is even more 
challenging than making well-formed knots. Now there are many more branches that need to be closed 
with a good match of all six degrees of freedom (x, y, z, and 3 angles). Figure 17a shows a moderately 
successful construction equivalent to the simple tetrahedral edge graph. It resulted in a rather loopy 
structure, which however displays 4-fold D2-symmetry. By introducing again one custom-designed 
part, a more compact and streamlined representation of this graph was obtained, in which all 
branches close smoothly (Fig.17b). Figure 17c shows a reasonably compact realization of the edge 
graph of a cube; but it much less symmetry than the 48-fold symmetry of a plain cube. The newly 
introduced branch module with an angle of 45º between its legs (Fig.16a), is definitely not an optimal 
component for the construction of the edge-graphs of the regular polyhedra. 

10 THE FIT TO LEGO®-DUPLO  

By pure serendipity, the chosen sleeve dimension of 1 square inch just fit around four nibs of the 
LEGO® DUPLO system (Fig.18a). However, to obtain a smooth match of the outer walls with the LEGO® 

DUPLO parts, which are based on a 32mm grid [7], the wall thickness of the tubular parts has to be 
increased from 1.75mm to 3.1mm. A better design is to stick with a wall thickness of 1.75mm and add 
a thickened rim at the female end to yield the needed 1″-square connection around the 4 nibs. The 
DUPLO stud height (5mm) determines the lengths of the connecting sleeves. Figures 18b−d show a 
batch of curved connector parts that bend through 45º and mesh nicely with the LEGO® DUPLO parts. 

By combining the new curved pieces with standard LEGO® DUPLO pieces, it is possible to make 
nice models of mathematical linkages: in particular, the Borromean rings (Fig.19a) and the Hopf link 
(Fig.19b), which are entries L2a1 and L6a4 in the Thistlethwaite Link Table [15]. 
 

       
         (a)                                   (b)                                             (c)                                          (d) 

Fig. 18:  (a) LEGO® DUPLO pieces;  (b) matching curved connectors;  (c, d) resulting assemblies. 
 

        
                           (a)                                                       (b)                                                  (c) 

Fig. 19:  Linkages with DUPLO pieces:  (a) Borromean rings (Link 63
2) [9] and  (b) Hopf link (Link 22

1). 
(c) Glow-in-the-dark sculpture making use of the open-ended hollow tubes. 

 
When fitting some new “LEGO®-Knot” parts to the DUPLO system, the question arises whether one 
should use open-ended tubular modules or adopt the closed-face LEGO® approach with the 4 nibs 
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protruding from the surface. Open-ended tubular modules are much more amenable to fabricating 
these parts with a minimal amount of build material and without the use of any support material. The 
open tube elements also have the additional benefit that Christmas lights can be strung through them, 
so as to produce attractive, glow-in-the–dark sculptures (Fig.19c). 

11 TOTALLY MODULAR KNOTS AND LINKS 

The mathematical knot sculptures described above have been realized mostly from general-purpose 
“LEGO®-Knot” parts, with one or two custom-designed modules added to obtain maximal symmetry 
and graceful closure of a knot curve. Suppose we wanted to build several different knot models out of 
just one single, “universal” building block. What should this module look like? 

Knot models can be built from plastic pipe elements available in any hardware store. A trefoil knot 
can be built from nine right-angle pipe elbows connected with nine straight pipe segments – which, 
however, cannot be all of the same length (Fig.20a). Alternately, Zawitz’s Tangle [19], which is sold as 
an un-knotted loop of 18 quarter-turn toroidal elements, can be broken open and reconfigured into a 
trefoil knot. But manipulating a closed knotted loop is rather awkward, and it is difficult to obtain 
symmetrical shapes; solutions with approximate C2- and C3-symmetry are shown in Figures 20b,c.  
 

                
                  (a)                                  (b)                                     (c)                                       (d) 

Fig. 20: Trefoil knots realized with:  (a) ¾-inch PVC-pipe elements,  (b,c) Zawitz’s Tangle [19], 
 (d) 33 modules of the type shown in Figure 21a. 

 
Both of these types of constructions exist in a smooth deformation space, since the circular cross-
sections of the tube elements allows arbitrary torsional twisting between subsequent modules. Thus it 
is very difficult to know when one has achieved a knot configuration with perfect symmetry. To create 
a discrete solution space with a finite number of possible configurations, the module must permit only 
a finite number of azimuthal angles by which subsequent elements can be joined. A promising 
compromise, yielding distinctly discrete azimuthal angles even when fabricated on a low-end FDM 
machine, is based on a regular 16-gon; it still offers sufficient azimuthal options that can lead to nice 
and compact realizations for simple knots. 

A second trade-off concerns the bending angle of such a universal tubular module. Maximal 
control over the shapes of the lobes that can be formed would result from a thin, wedge-like sliver; but 
this would then require a large number of modules for even the simplest knots. A large bending angle 
may result in knots built from fewer parts, but will constrain the possible geometries more severely. 
To find a practical compromise solution, an interactive CAD program has been developed that can 
chain several individual modules into larger compounds by simply specifying the azimuthal angles at 
subsequent module joints. Copies of these compounds can then be placed with the desired symmetry; 
e.g., for the trefoil knot six copies can be positioned with D3-symmetry. Then the 5 or 6 defining 
azimuth angles in one compound are adjusted interactively to explore whether one of the possible 
angle combinations can close the loop formed by the six compounds to within a small fraction of the 
tube diameter and with a tangent alignment of a few degrees. Extensive studies showed that a bending 
angle of 30° seemed to work well for the first three knots in the Knot Table [9]. 

Rapid prototyping was the final step in evaluating whether the knots composed with the proposed 
module could indeed be realized, i.e., whether the designed tubular assemblies were sufficiently 
flexible for the loops to close within the tolerances and rigidity of these parts and their snap-together 
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connections. Indeed, the 16-gonal module bending through 30° (Fig.21a) permitted the construction of 
the first few knots in the table with high symmetry: A D3-symmetric Knot 3_1 was constructed from 
33 “universal” modules (Fig.20d); this should be compared with Figures 15a,b. Another trefoil knot 
with D2-symmetry was built from 38 modules.  Knot 4_1 with S4-symmetry (as in Fig.15c,d) required  
40 modules. 50 building blocks can make up Knot 5_1 with D5-symmetry (Fig.21b).  Also, a compact 
model of the Borromean link (Fig.19a) can be assembled from 3×16 modules (Fig.21c). 
 

         
                         (a)                                                   (b)                                                     (c) 

Fig. 21: A single modular component (a) to construct highly symmetrical knots (b) and links (c). 
 
Clearly, once a useful “universal” module has been defined, this part should be mass-fabricated more 
cost-effectively with an injection-molding process. Then, with an ample supply of such modules in 
hand, the remaining open challenges revert back to the design aspect:  How can one realize any 
envisioned knot or link with a minimal number of parts and with as nice and un-contorted a look as 
possible? For small knots where only 5-8 unique azimuth angles have to be set, an exhaustive search 
may be a viable option given today’s computer power. Even an interactive search within the described 
CAD program was quite practical. The solutions mentioned above were all found within less than an 
hour of virtual experimenting, once the author had developed some intuitive understanding how a 
chain of modules might react to a chosen azimuth change. The virtual exploration was certainly faster 
than trying to find a symmetrical knot configuration by assembling the physical modules. 

For more complicated knots with less symmetry, a much larger number of individual azimuth 
angles have to be set, and the number of angle combinations will run into the trillions. No program 
has yet been developed to find automatically the most compact closed-loop realization of a particular 
knot. The nature of this discrete solution space will require a probabilistic approach to find an 
acceptably good solution. Moreover, even programming an efficient search strategy based on 
simulated annealing will require some insightful definition of some “meta-moves;” these may be pairs 
or triplets of synchronized angle changes on adjacent joints that produce less “violent” motions of the 
end of a long chain of modules than what changing a single azimuthal angle typically will produce. 
There is one mitigating effect: As larger numbers of modules are strung together, the end-to-end 
flexibility of the assembly increases, and the required geometrical match-up needs to be less precise.  

12 SUMMARY AND CONCLUSIONS 

In many domains of design and engineering, rapid prototyping has become an important and 
unavoidable step in the design process. This step is equally important for artists who create 
geometrical sculptures. During the last two decades the author has designed dozens of sculptures 
using a variety of CAD tools and then implemented many of them as small sculptural maquettes on 
various rapid prototyping machines. Experience has shown that, no matter how carefully the “final” 
designs were inspected on the computer screen, once a physical prototype became available, ways to 
improve the sculptures could almost always be found. 

“LEGO®-Knots” are an experimental, hands-on approach for constructing a special class of tubular 
assemblies. A limited set of part types, all based on sweeps of a fixed cross-section along a circular or 
helical arc, allow the user to construct a wide variety of sculptural forms. This study started out with 
the two pieces required to re-create Henk van Putten’s Borsalino shape [17]. But as soon as these first 
parts were in the author’s hands, he wanted more of them and wanted to put them together in 
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different ways. Shortly thereafter he also wanted to make modified Borsalino shapes, with rhombic 
cross sections and with twisted legs.  The availability of a rapid prototyping machine on which such 
extensions could be realized within 24 hours, made this a very exciting and productive activity. New 
parts almost immediately inspired additional geometrical visions, and the occasional need for a 
special custom-designed part to complete a particular project could also be fulfilled with fast 
turnaround times. 

A few months into the project, a slightly modified set of parts got matched to the LEGO® DUPLO 
system. With this integration, immediately a much richer set of shapes could be constructed. This 
points the way to the most effective use of 3D printing: If at all possible one should try to make use of 
already existing building blocks and just focus on designing and fabricating the critical parts that the 
existing system cannot deliver. Large savings in cost and turn-around time can result, as so beautifully 
demonstrated by the “faBrickator” system [8]. Even for the explorations carried out in the author’s 
“LEGO®-Knot system,” whether it was the emulation of some sculpture of a famous artist or the 
smooth closure of a knotted sweep through 3D space, there were often one or two extra components 
that needed to be introduced in order to complete a particular task. Without access to a layered 
manufacturing machine or to a 3D-printing service, this could result in frustrating delays. Obtaining 
the needed parts within a day or two, keeps the excitement alive, and it often stimulates new ideas for 
what should be tried next. Thanks to the new technologies of additive machining, many more people 
can now experience this exciting “design and build” mode, which seems to amplify one’s creativity. 
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