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Key Points:9

• An unsupervised classification technique, applied to temperature and salinity float10

data, is used to sort the profiles into frontal zones.11

• In eddy fields the variability of physical and biogeochemical properties is more than12

twice as large as the mean zonal variability.13

• The intense eddy variability drives lateral physical processes that cause the large prop-14

erty variance.15
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Abstract16

The Southern Ocean (SO) is one of the most energetic regions in the world, where strong17

air-sea fluxes, oceanic instabilities, and flow-topography interactions yield complex dynam-18

ics. The Kerguelen Plateau (KP) region in the Indian sector of the SO is a hotspot for these19

energetic dynamics, which result in large spatio-temporal variability of physical and biogeo-20

chemical (BGC) properties throughout the water column.21

Data from Argo floats (including biogeochemical) are used to investigate the spatial22

variability of intermediate and deep water physical and BGC properties. An unsupervised23

machine learning classification approach is used to organize the float profiles into five SO24

frontal zones based on their temperature and salinity structure between 300 and 900 m, re-25

vealing not only the location of frontal zones and their boundaries, but also the variabil-26

ity of water mass properties relative to the zonal mean state. We find that the variability is27

property-dependent and can be more than twice as large as the mean zonal variability in in-28

tense eddy fields. In particular, we observe this intense variability in the intermediate and29

deep waters of the Subtropical Zone; in the Subantarctic Zone just west of and at KP; east30

of KP in the Polar Frontal Zone, associated with intense eddy variability that enhances deep31

waters convergence and mixing; and, as the deep waters upwell to the upper 500 m and mix32

with the surface waters in the southernmost regimes, each property shows a large variability.33

Plain Language Summary34

The Southern Ocean strongly influences the global climate system, by absorbing, stor-35

ing and redistributing heat and carbon across the different ocean basins. Thanks to an in-36

creasing number of observations from autonomous instruments, called Argo floats, our un-37

derstanding of this harsh environment has deepened in the last two decades. Here we use a38

machine learning technique to automatically classify the float measurements and sort them39

in regimes with similar properties based on their temperature and salinity vertical structure.40

The classification results are consistent with previous studies, but are here used to reveal re-41

gions where mixing between different types of waters is likely to be occurring. By sorting42

the float profiles into regimes, we can diagnose regions with larger variation of properties43

and highlight the transition of the properties across regimes. Given the increasing volume44

of observations that instruments like the Argo floats are building, a method such as the tech-45

nique implemented in this study represents a valuable tool that can help to automatically re-46

veal similarities in dynamical regimes.47
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1 Introduction48

The Kerguelen Plateau (KP) is a prominent shallow topographic barrier to the Antarc-49

tic Circumpolar Current (ACC) in the Indian sector of the Southern Ocean, spanning 2000 km50

of latitude and reaching 3000 m in depth. The surface, intermediate, deep and abyssal circu-51

lation around the plateau is complex and acts to mix waters from different sources [e.g., Aoki52

et al., 2008; Park and Gamberoni, 1997; Tamsitt et al., 2017; Llort et al., 2018], enhance53

phytoplankton productivity [e.g., Maraldi et al., 2009; Park et al., 2008a; Van Beek et al.,54

2008], and connect Antarctic–sourced bottom waters with the lower latitudes [Donohue55

et al., 1999; Fukamachi et al., 2010], with implications for carbon and heat budgets [Tam-56

sitt et al., 2016; Rosso et al., 2017]. Upon interaction with the plateau, the ACC is deflected,57

with most of the transport occurring north of the plateau [Park et al., 1993] and through58

the Fawn Trough [Park and Gamberoni, 1997; McCartney and Donohue, 2007; Park et al.,59

2008a] that divides KP into northern and southern parts (Fig. 1a). However, much of these60

complex dynamics are still poorly understood.61

In recent decades, core (i.e., temperature and salinity only data) and biogoechemical-62

Argo (BGC-Argo) profiling floats have greatly augmented the spatial and temporal coverage63

of the top 2000 m of the Southern Ocean, a region that, because of the extreme conditions, is64

only marginally observed by ship-based platforms. In the present study, we use a set of core65

and BGC-Argo floats (the latter as part of the Southern Ocean Carbon and Climate Obser-66

vations and Modeling project; SOCCOM) to explore the variability of physical and biogeo-67

chemical parameters (Section 4) within the intermediate and deep waters of the south Indian68

Ocean, in relation to Southern Ocean regimes and to the area around KP.69

In order to classify individual Argo and BGC-Argo profiles into unique Southern Ocean70

regimes, we use a Profile Classification Model (PCM) approach based on machine learning71

unsupervised classification techniques [Maze et al., 2017a]. The PCM is applied to individ-72

ual temperature and salinity profiles, which are organized into groups with similar properties.73

This approach has shown skills in systematically classifying vertical profiles of the North74

Atlantic [Maze et al., 2017b] and Southern Oceans [Jones et al., 2018], without relying on75

user specified ad–hoc criteria for each profile. The PCM automatically identifies: multiple76

Southern Ocean (SO) zones, the Agulhas Current, subtropical and subantarctic mode water77

formation regions, and the system of currents around Australia.78
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A short review of the circulation, dynamics and water masses examined in this study79

is presented in Section 2. The dataset is presented in Section 3. We introduce the use of80

the PCM technique to classify float profiles in Section 4 and present the resulting Southern81

Ocean frontal zones in Section 5.1. We then highlight the variability of the physical and bio-82

geochemical properties of the Antarctic Intermediate Water (AAIW) and Upper Circumpolar83

Deep Water (UCDW) across the different regimes depicted by the PCM classification, and in84

relation to topographic features (Section 5.3 and 5.4, respectively). Section 6 is a discussion85

with final remarks.86

2 Background87

In this section we describe some of the fundamental features of the South Indian Ocean88

circulation and dynamics, and highlight key questions for this study.89

As the ACC encounters KP, its transport is divided into three different pathways, each90

with intensified, narrow currents guided by topography. The portion of the ACC that flows91

north of KP interacts with the southern limb of the South Indian subtropical gyre, which92

reaches the plateau via the Agulhas Return Current [ARC; Park et al., 1993]. The ARC en-93

ters from the Crozet Basin, just west of KP [Park et al., 1993], carrying salty and warm wa-94

ters to the fresher and colder waters of the ACC. Here, eddy–induced transport convergence95

and subduction at both the mode and intermediate classes occurs [Sallée et al., 2010]. A nar-96

row and deep passage, the Fawn Trough (sill depth: 2650 m), divides KP around 56◦S, 78◦E97

and channels Antarctic waters into a strong, northeastward–flowing current (Fawn Trough98

Current) towards the Australian–Antarctic Basin (east of KP) [e.g., Roquet et al., 2009; Park99

et al., 2009, 2014].100

Just south of KP, the eastward flow of the ACC navigates a narrow opening through the101

Princess Elizabeth Trough (PET; as deep as ∼3700 m at 64◦S). In the southern part of PET,102

the westward flow of the Antarctic Slope Front carries waters from the Australian-Antarctic103

basin [Donohue et al., 1999; Aoki et al., 2008]. These flows in the PET mingle the waters104

from both the Weddell Basin and the Adélie coast, turn northward around KP, and form a105

northward deep western boundary current that hugs the eastern edge of the southern plateau106

[e.g., Donohue et al., 1999; Aoki et al., 2008; Fukamachi et al., 2010]. Can float-based tem-107

perature and salinity profiles be used by the PCM to automatically identify these pathways?108
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Downstream (East) of KP, the surface, deep and bottom waters all converge into a sys-109

tem of highly energetic mesoscale and submesoscale eddies and fronts [e.g., Rosso et al.,110

2014; Llort et al., 2018], which can facilitate the exchange of different water masses by injec-111

tion and intrusion mechanisms [Llort et al., 2018]. Their pathways, then, continue north-112

wards across the mean flow, modified by mixing with ACC waters. Frontal positions are113

complex and highly variable in space and intensity [Sokolov and Rintoul, 2009a; Freeman114

et al., 2016], especially upstream and downstream of topographic features that play a major115

role in controlling their position. Specifically, near and at Crozet Plateau and KP, the Sub-116

tropical (STF), Polar (PF), and Subantarctic (SAF) fronts can merge and divide into multiple117

branches [Park et al., 2008b; Sokolov and Rintoul, 2009b; Freeman et al., 2016]. Facilitated118

by strong cross–frontal injections and high eddy kinetic energy downstream of major topo-119

graphic features, saltier subtropical waters exchange with subantarctic waters in Crozet Basin120

and pulses of AAIW are injected into the Subtropical Zone [Park and Gamberoni, 1997]. In121

addition, enhanced vertical velocities associated with increased meso- and sub-mesoscale en-122

ergy downstream of topography can trigger subduction events from the surface to the mixed123

layer. These subduction events can facilitate the (1) export of carbon below the mixed layer124

[Llort et al., 2018] or (2) flux of dissolved inorganic iron into the surface waters and are fun-125

damental in triggering enhanced phytoplankton productivity in this region [Rosso et al.,126

2016]. Can the PCM be used to identify frontal positions? How do injection events impact127

the classification of a float profile?128

High mesoscale energy downstream of the plateau favors not only the vertical flux129

of iron [Park et al., 2014; Rosso et al., 2014], but also the upwelling of carbon and macro-130

nutrient rich deep water masses to the surface [Tamsitt et al., 2017]. Localized upwelling131

into the mixed layer also occurs at the mode and intermediate water classes near KP [Sallée132

et al., 2010]. Here, turbulent diapycnal mixing is enhanced throughout the full water col-133

umn, driven by processes associated with local wind and tides (near-surface), internal wave134

shear and strain variance (interior), or generated by geostrophic flow over rough topography135

[near-bottom; Meyer et al., 2015; Whalen et al., 2015]. Meyer et al. [2015] found that diapy-136

cnal mixing is particularly enhanced in this ACC frontal region, driven by the dissipation of137

internal waves generated by the ACC’s interaction with KP. This mixing is particularly im-138

portant at the boundary between the AAIW and the denser Upper Circumpolar Deep Water139

(UCDW), which drives water mass transformation and consequently contributes to the over-140
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turning circulation [Meyer et al., 2015]. Are there areas of major mixing that can be identi-141

fied by the PCM classification method?142

Following Orsi et al. [1995], the Southern Ocean regimes can be classified into the fol-143

lowing zones, from north to south: Subtropical Zone (STZ; north of the STF), Subantarctic144

Zone (SAZ; between the STF and SAF), Polar Frontal Zone (PFZ; between the SAF and PF),145

and Antarctic-Southern Zone (ASZ; south of the PF and north of the southern boundary of146

the ACC, and including both of Orsi et al.’s Antarctic and Southern Zones). In this study, we147

focus on the spatial variability of the intermediate and deep water masses in the Indian sector148

of the Southern Ocean in relation to KP and these Southern Ocean frontal zones, which are149

in fact uniquely represented using the PCM technique applied here. AAIW represents one150

of the major water masses originating in the Southern Ocean and allows for the ventilation151

and transport of surface signals through much of the world’s oceans [Talley, 1996]. AAIW is152

a cold and low-salinity water mass, defined by a salinity minimum at an intermediate depth153

of ∼600–1000 m in the waters north of the SAF [McCartney, 1977; Orsi et al., 1995; Talley,154

2013], forming in the SAZ from the sinking waters south of the SAF at specific sites, such155

as the southeast Pacific [e.g., McCartney, 1977; Sloyan et al., 2010] and the southwest At-156

lantic Ocean [e.g., Piola and Gordon, 1989]. AAIW is modified by mixing and intrusion of157

waters with different source origins throughout the Southern Ocean, such as in the southeast158

Pacific, southwest Atlantic [e.g., McCartney, 1977; Piola and Georgi, 1982], or central south159

Indian Ocean [e.g., Park and Gamberoni, 1997]. As a water mass sourced from surface wa-160

ters, AAIW oxygen content is relatively high, but varies spatially across the Southern Ocean161

due to localization of its source and subsequent modification [e.g., Talley, 1996]. In the south162

Indian Ocean, the AAIW’s core sits at an isopycnal with potential density f0 ∼ 27.3 kg m−3
163

[Talley et al., 2011], and with oxygen concentration as high as ∼270 `<>; kg−1 [Park and164

Gamberoni, 1997]. Where are the regions of larger variability associated with the different165

physical and biogeochemical properties? Can these regions be described by a single prop-166

erty, or are they property–dependent?167

Above AAIW and north of the SAF, at a potential density of f0 ∼ 26.8 kg m−3, lies168

Subantarctic Mode Water [SAMW; e.g., McCartney, 1977; Hanawa and Talley, 2001; Sloyan169

and Rintoul, 2001; Aoki et al., 2007]. This thick homogeneous layer ventilates the thermo-170

cline and originates from a combination of different processes, such as air–sea exchange,171

deep wintertime mixed layers, diapycnal mixing, advection, and eddy mixing [Hanawa and172

Talley, 2001; Sallée et al., 2006; Sloyan et al., 2010; Cerovečki and Mazloff , 2016] and is173

–6–



Confidential manuscript accepted to JGR: Oceans

characterized by a minimum in potential vorticity [Hanawa and Talley, 2001]. The southeast174

Indian Ocean east of KP is a major source of SAMW [McCarthy and Talley, 1999], with a175

pool of low potential vorticity centered around 90◦E,40◦S and extending toward Australia.176

Here, the region’s unique bathymetry controls the location of fronts [e.g., Sallée et al., 2006;177

Sokolov and Rintoul, 2009b] and SAMW formation [located at the divergence of the STF178

and SAF; Sallée et al., 2006], as well as the flavors of different types of SAMW. Both AAIW179

and SAMW play a fundamental role in regulating fluxes, storage, and transport of carbon,180

freshwater, heat, and nutrients [Sabine et al., 2004; Ito et al., 2010; Sarmiento et al., 2004],181

and thus play a major role in controlling Earth’s climate. Based on temperature and salin-182

ity profiles only, can the PCM classification method identify the south Indian Ocean SAMW183

region?184

Below AAIW lies UCDW, which can be identified by its core at f0 ∼27.6 kg m−3 [Tal-185

ley et al., 2011]. UCDW is a large volume of water which originates from the deep waters186

of the Pacific and Indian Oceans, with modifications in the Southern Ocean [Talley et al.,187

2011]. As an old water mass, UCDW is characterized by an oxygen minimum and high nu-188

trient content. In the southernmost zones of the Southern Ocean (i.e., south of the PF), up-189

welling UCDW brings very old and nutrient–rich waters to the surface, stimulating carbon190

outgassing [e.g., Gruber et al., 2009; Takahashi et al., 2009; Gray et al., 2018] and local191

[Prézelin et al., 2000] and remote biological productivity [Sarmiento et al., 2004]. Biogeo-192

chemical profiling floats have recently been used to identify a much stronger outgassing of193

natural carbon in these regions than previously understood [Gray et al., 2018]. Where are the194

regions of major variability associated with the different properties in the UCDW, and can195

these regions be described by a single property, or are they property–dependent?196

3 Data: autonomous profiling floats197

The present study is focused on variability of physical and biogeochemical (BGC)198

properties in the Indian sector of the Southern Ocean, using core Argo floats that measure199

temperature and salinity, and BGC–Argo floats that additionally measure oxygen (O2), nitrate200

(NO−3 ), and pH. Our focus is on Southern Ocean regimes up- and downstream of Kerguelen201

Plateau.202

Core and BGC-Argo profilers drift freely at 1000 m, descend to 2000 m after ∼10 days,203

and ascend to the surface, profiling the water column. At the surface, they transmit the mea-204
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surements via satellite. In this work, we use only core and BGC-Argo float data with quality205

control equal to 1, 5 or 8 [i.e. flagged as “good”, “value changed” or “estimated value”, re-206

spectively, as per Table 2 of the Argo manual, Argo Data Management Team, 2017; Wong207

et al., 2012; Johnson et al., 2017]. Argo float vertical sampling varies across float and sensor208

types (see Table 16 in Argo Data Management Team [2017] for a description). The vertical209

resolution of BGC-Argo data is higher in the upper 100 m, and decreases with increasing210

depth [Johnson et al., 2017]. We therefore linearly interpolate each Argo and BGC-Argo211

vertical profile onto regular 1 dbar vertical spacing. The accuracy of oxygen data is 1±1%,212

nitrate is 0.5±0.5 `mol kg−1, and pH is 0.005±0.007 [Johnson et al., 2017]. For more tech-213

nical details about BGC sensors, see Johnson et al. [2017] and Riser et al. [2018].214

This study uses Argo and BGC-Argo profiles south of 30◦S and between 0◦ and 180◦E.215

The quality-controlled September 2018 Argo snapshot was extracted from the Global Data216

Assembly Center [Argo Data Management Team, 2018]; 822 Argo floats were selected in the217

area of study between December 2010 and September 2018, with a total of 103718 profiles,218

not including the BGC-Argo profiles. The quality-controlled SOCCOM September 2018219

snapshot used in this study can be found in Johnson et al. [2018]. Between December 2014220

and September 2018, 36 BGC-Argo profiling floats (with more than 5 profiles) were present221

in the study area (Table S1 in the Supporting Material and Fig. 1), for a total of 1847 pro-222

files. The SOCCOM floats, mostly fabricated at the University of Washington from com-223

ponents purchased from Teledyne/Webb Research (Apex floats), but with some BGC Navis224

floats purchased from SeaBird Electronics, are listed in Table S1. They were deployed dur-225

ing the course of several US and international oceanographic campaigns (Table S1): three226

GO–SHIP (A12, I08S and SR03; https://usgoship.ucsd.edu) and four non GO–SHIP227

cruises (IN2016_V01, AU1603, SOE10, and ACE).228

4 Method229

4.1 Classification of profiles into regimes using machine learning230

The waters in the Southern Ocean are often classified into zones divided by fronts,231

according to their properties (e.g., temperature, salinity, nitrate, oxygen) [Orsi et al., 1995;232

Gray et al., 2018]: the Subtropical Zone (STZ), with the warmest and most saline waters;233

the Subantarctic Zone (SAZ), with cooler and fresher waters relative to the STZ; the Polar234

Frontal Zone (PFZ), with a characteristic subsurface temperature minimum that tracks the235
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Antarctic surface water; the Antarctic-Southern Zone (ASZ) within the southern ACC, which236

is characterized by carbon- and nutrient-rich waters shoaling towards the surface; and the Sea237

Ice Zone (SIZ), which includes waters covered with sea ice during colder months. Because238

these fronts meander in space and time [Sokolov and Rintoul, 2009a; Freeman et al., 2016],239

and the Argo data set is large, investigating changes of water properties within each regime240

can be complicated. A straightforward but limited approach is to separate float profiles ac-241

cording to the mean position of fronts [e.g., as in Gray et al., 2018]. A more data–intensive242

approach, which takes frontal meandering into account, is to classify each profile based on243

specified characteristics of each frontal zone [e.g., as in Williams et al., 2018], using Orsi244

et al. [1995] for the zone definitions.245

Here, we use an unsupervised machine learning approach that groups profiles with246

similar vertical distributions of properties [Maze et al., 2017a, called this a Profile Classifica-247

tion Model, or PCM]. If the historical choices of frontal zone properties are reasonable, then248

the machine learning approach should result in groupings that closely resemble the frontal249

zone groupings, and in fact this is what we find. In this method, the time-variable position250

of the fronts, or regimes, naturally arises from the spatial distribution of the groups defined251

by the data, and the statistics of the groups can account for the variability of front mean-252

ders. Given the large number and sparse coverage of profiles, the use of a PCM is particu-253

larly suited to investigate the variability of water properties in relation to the presence of the254

Kerguelen Plateau and Southern Ocean regimes.255

A Profile Classification Model determines, without supervision, categories for a col-256

lection of ocean profiles. For each individual profile, the model gives the probability that it257

belongs to one of the determined categories. Our PCM methodology is based on Maze et al.258

[2017b], where the authors successfully used Argo temperature profiles in the North Atlantic259

Ocean to characterize the different regimes in the region. The PCM method was applied re-260

cently to Southern Ocean Argo floats by Jones et al. [2018], who classified the profiles into261

the major current systems and regimes using temperature data alone. In the present work, we262

significantly extend the PCM procedure using both temperature and salinity data, an imple-263

mentation that gives a more robust identification of Southern Ocean zones, which are com-264

monly defined by both temperature and salinity [Orsi et al., 1995]. The advantage of using265

this unsupervised technique is that it treats the numerous profiles systematically, without re-266

lying on ad–hoc criteria for each profile, which can change over time [Jones et al., 2018].267

The method identifies the different regimes, allowing one to then diagnose hotspots of larger268
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property variability within the identified regime. Frontal locations become apparent as con-269

nected quasi-zonal bands of variability arising from frontal meandering.270

4.2 The PCA methodology271

The PCM requires float data preparation and a classifier algorithm. For the classifier272

algorithm we chose a Gaussian Mixture Model [Bilmes et al., 1998; Bishop, 2006]. This al-273

gorithm is based on the assumption that the data are generated by a mixture of a number of274

Gaussian distributions in � dimensions (defined by the number of principal components,275

as explained below), and takes into account the covariance of the data set as in Maze et al.276

[2017b]. We modified their data preparation procedure to include both temperature and277

salinity. Our procedure is as follows:278

1. Float in situ temperature was transformed into potential temperature (\), and practi-279

cal salinity into absolute salinity ((�), using TEOS-10 [IOC, SCOR, IAPSO, 2010].280

We have tested the method using practical salinity and \, which would be more con-281

sistent with TEOS-10, and found no differences in the results (not shown for brevity).282

Thereby, we decided to use the combination of \ and (� for an easier comparison283

with previous works.284

2. Profiles with valid QCed data between 300 m and 900 m were selected. The upper285

300 m limit is below most of the deepest mixed layer depths in this area (note that286

here the number of profiles with deep winter mixed layers, down to ∼500 m, are only287

a few tens, compared to thousands of profiles), which avoids influencing the classi-288

fication algorithm by large seasonal variations. We have tested the algorithm using289

profiles with QCed data up to 50 m, but found that 300 m resulted in a more correct290

profile classification (not shown for brevity). The lower 900 m limit is selected for291

the practical reason that most floats have continuous quality data above this depth:292

extending the lower limit to a deeper depth would reduce the number of profiles that293

we can use for the study. Only 4% of the Argo profiles and none of the BGC-Argo294

profiles were rejected. It is possible to use the profiles to their individual maximum295

depths, but the missing values would need to be filled with, for example, the median296

of the data set or the most frequent value; this would create an unrealistic portion of297

the data set, thus it is not an acceptable solution, nor is it necessary.298
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3. We normalized each property measurement, 8, by its standard deviation calculated at299

each 1-dbar level: \8,= = (\8 − `\ )/BC3 (\) and (�(8,=) = ((�8 − `(�)/BC3 ((�),300

where `\ and `(� are the depth-dependent averages of \ and (�, respectively, across301

the Argo float profiles, and BC3 (\) and BC3 ((�) are their depth-dependent standard302

deviations.303

4. Following Maze et al. [2017b] and Jones et al. [2018], we reduced the vertical dimen-304

sionality of the problem (1 dbar data creates 600 vertical dimension points) by decom-305

posing the Argo and BGC-Argo data set using Principal Component Analysis (PCA)306

applied to the 300–900 m layer. A PCA decomposition is a common method used in307

climate science and machine learning to detect the main covariance patterns in the308

data and reduce the number of dimensions. We found that ∼99% of the property vari-309

ance of \ and (� can be explained by the first 2 PCAs (Fig. S2 in the Supplementary310

Material), which are then used to reduce the profile dimension from 1,200 points (i.e.311

600 depth levels for \ and 600 for (�) to 4 points (i.e. the 2 modal amplitudes for \312

and 2 for (�). These 4 points are the inputs for the classifier algorithm. Note that,313

compared to Maze et al. [2017b] and Jones et al. [2018] we found a smaller number314

of PCAs, which explains the variability of our profiles. This is mainly due to the fact315

that we apply the algorithm to a only a portion of the full vertical range of the profiles:316

i.e., this range does not capture the deeper water masses, nor the surface ones which317

would increase the number of modes.318

5. To assure an optimal and unbiased coverage of the analysis domain we selected a ran-319

dom profile in every 0.1◦ × 0.1◦ box, similar to Jones et al. [2018]. 87,032 profiles320

were randomly selected this way and used as a training set for the classifier algorithm.321

This corresponds to ∼ 89% of the Argo data set for this region.322

6. The standardized and reduced \ and (� data were combined together in the same ar-323

ray ®- of dimensions 4 × 87032. The Gaussian Mixture Model algorithm then com-324

putes the optimal1 Gaussian weights _: , mean `: and covariance Σ: allowing one to325

compute the probability of a profile G ∈ ®- belonging to each “component” : of the326

Gaussian mixture:327

?(: |G) =
_:N(G; `: ,Σ: )∑ 
:=1 _:N(G; `: ,Σ: )

(1)

1 i.e. the set of parameters maximizing the likelihood of all the data belonging to one of the clusters. This is computed

using an Expectation-Maximization algorithm (see Maze et al. [2017b] for more details.)
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where a Gaussian distribution N is given by:328

N(G; `: ,Σ: ) =
1√

(2c)� |Σ: |
exp

(
−1

2
(G − `k)>Σ−1

: (G − `k)
)
, (2)

with | · | the determinant and ) the transpose operators.329

7. The sum over all components of the ?(: |G) is 1. The Gaussian mixture model is thus330

a probabilistic classifier, but note that each profile can be attributed to the component331

: for which the ?(: |G) is maximum. The relative amplitudes of the ?(: |G) are then332

used to assess the robustness of the classification.333

8. Assessment of the classification is a fundamental step and can require subjective ad-334

justments of the results (see an example in Section 5.1).335

We performed several tests, using only one property (either \ or (�), or a combina-336

tion of the different properties (\, (�, nitrate, pressure), or single depth data (e.g., ∼50 m and337

∼200 m), to reduce dimensionality instead of eigenvectors; but the combination of the first 2338

PCAs of \ and (� was found to be the best choice, as this allows a definition of clusters that339

automatically capture most of the Southern Ocean regimes. In particular, in the subtropical340

and the southernmost zones, where salinity plays a fundamental role in setting the stratifica-341

tion, using temperature–only data would not correctly classify these areas. We also tested the342

PCM approach using an alternative classifier: the :-means algorithm, which assigns each343

profile to only one cluster : , based on the Euclidean distance of the profile to the nearest344

cluster mean [Hartigan and Wong, 1979], but found that :-means poorly separates the data345

in the southernmost regions.346

Both PCA analysis and the Gaussian Mixture Model were performed using the Python347

scikit-learn version 0.20 machine learning package [Pedregosa et al., 2011]. Our code was348

adapted from the pyXpcm software (https://pyxpcm.readthedocs.io), a Python im-349

plementation of Profile Classification Modelling [Maze et al., 2017a]. The Gaussian Mix-350

ture Model used a “full” covariance matrix and 9 clusters (or components :). We tested the351

number of clusters between 5 and 15, and ultimately chose 9 as it allowed for a meaningful352

separation of the profiles into the desired Southern Ocean regimes. While there is no perfect353

way to choose between different numbers of clusters, we have validated this choice by look-354

ing at the Bayesian Information Criterion [BIC, Schwarz et al., 1978; Konishi and Kitagawa,355

2008], computed using 10 sets of randomly selected profiles, with a total number of 2166356

profiles (∼2.2% of the dataset). Although a clear minimum does not appear (as already found357
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by Jones et al. [2018]), the method suggests an optimum value of between 9 and 15 clusters358

(see Fig. S3 in the Supporting Material).359

4.3 Spatial variability of water masses360

To describe how properties change with longitude, with respect to the location of KP361

and across the five regimes, we define four regions: West (0◦–40◦ E), Upstream (40◦ E–362

68◦ E), Downstream (68◦ E–120◦ E), and East (120◦ E–180◦ E) of KP. These four regions363

identify different regimes of eddy kinetic energy both at surface [Sallee et al., 2011] and364

at 1000 m depth [Roach et al., 2018]. The properties are investigated in the intermediate365

(5.3) and deep water masses (5.4). In order to focus on the variability associated with spe-366

cific water masses and remove the effect of isopycnal heave, we analyze the profiles in f0367

coordinates rather than depth coordinates. We linearly interpolate each property profile in f0368

density anomaly space with respect to a reference pressure of 0 dbar. We use a resolution of369

0.03 kg m−3 between the 25.4 kg m−3 and 27.5 kg m−3 isopycnals, and a 0.01 kg m−3 step for370

denser classes, which resolves the density variations in both the upper and deep ocean.371

In order to investigate the major hotspots of the variability associated with each prop-372

erty, we also compute the ratio of 1) the AAIW (or UCDW) property variance in 2◦ longi-373

tude bins and 2) the total AAIW (UCDW) property variance (computed for the whole do-374

main, from 0◦ to 180◦ longitude): E0A (�)2◦
E0A (�)C>C , where � =

{
(�, \, $2, #$

−
3 , ?�

}
.375

5 Results376

5.1 Resulting Argo profile clusters377

The resulting 9 Argo clusters are shown in Fig. 2 ordered from north to south, where378

climatological fronts [Orsi et al., 1995] are plotted in black for reference. The classification379

captures a roughly meridional structure from south of the Subtropical Front (STF) through380

the ACC that resembles the Orsi et al. [1995] frontal zones. North of the STF, the subtrop-381

ical waters are classified into 5 distinct, quasi-zonal groups: the Agulhas Current region382

(:=2), the SAMW pool in the central subtropical gyre (:=3), the Australian currents sys-383

tem including the Tasman Sea, Great Australian Bight, and Leeuwin Current region (:=4),384

and the Subtropical Front, together with the Benguela Current and waters around Australia,385

at :=5. Clusters 6–8 identify the ACC waters, while cluster 9 depicts subpolar waters that386

comprise also the seasonal sea ice zone. Our classification compares well with the 8 clusters387
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found by Jones et al. [2018] for the entire Southern Ocean. The biggest difference is north of388

the Subtropical Front, where our approach separates the Agulhas waters from the central and389

eastern Indian Ocean (SAMW and Australian waters).390

The posterior probability, given as % value, is mostly large (more than 80%) for each391

cluster (Fig. 3 and 4). However, some profiles (more than 20% of the total number) in each392

classification component have a probability ≤70% which corresponds to a probability of393

≥30% in at least a contiguous cluster, in particular in : = 1, 3, 4 and 5 (Fig. 5); these profiles394

tend to be concentrated in areas of strong currents (such as the Agulhas Return Current in395

cluster 4; the East Australian Current in clusters 1 and 5; the large air–sea exchange and deep396

mixed layers in the SAMW formation sites of clusters 3 and 4; the Southern Ocean fronts in397

clusters 7, 8 and 9), and in the Subantarctic Zone (cluster 6). The ambiguity in the classifica-398

tion comes from adjacent clusters, which is likely not due to a missing cluster to define these399

points. In order to check this possibility, we have calculated the same metric using a larger400

number of clusters (i.e., 15) and found no discernible difference with Fig. 5 (not shown).401

Thus, we do not discard any point with low probability, as this may be indicative of strong402

eddy and frontal dynamics, or of seasonal and interannual variability [Jones et al., 2018].403

5.1.1 Southern Ocean Zones404

The variability of the waters in the Indian sector of the Southern Ocean is examined in405

terms of potential temperature, salinity, dissolved oxygen, nitrate and pH. In particular, we406

identify the variability for specific water masses 1) across fronts and 2) driven by the pres-407

ence of the Kerguelen Plateau, as this large topographic feature is a site of convergence of408

upper, intermediate, deep and bottom waters [Donohue et al., 1999; Fukamachi et al., 2010;409

Park et al., 2008a; Tamsitt et al., 2017]. In order to identify specific water bodies, such as the410

Antarctic Intermediate Water (AAIW) or the Upper Circumpolar Deep Water(UCDW), we411

first classify each profile of the Argo and BGC-Argo data set by its Southern Ocean regime412

and then select the associated density class.413

We define four Southern Ocean zones by grouping together some of the 9 clusters414

identified in Fig. 2, based on the \ − (� of each cluster (not shown): the Subtropical Zone415

(STZ; green profiles in Fig. 7, the set of all profiles with : in the range 1 to 5), Subantarctic416

Zone (SAZ; red, : = 6), Polar Frontal Zone (PFZ; blue, : = 7), Antarctic-Southern Zone417

(ASZ; orange, : = 8) and Sea Ice Zone (SIZ; magenta, : = 9). The resulting classification of418
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the Southern Ocean regimes south of the PF (PFZ, ASZ and SIZ) is not affected by the num-419

ber of clusters (:) from 5 to 15 (not shown). However, the classification is sensitive to the420

choice of : in the SAZ and especially in the STZ (not shown), where for : < 9 the algorithm421

grouped the southernmost STZ profiles in the SAZ.422

The Profile Classification Model highlights areas of mixing between regions, where423

profiles show marked intrusions of waters in the upper ocean. An example of these intrusions424

is shown by the intense interleaving of temperature and salinity layers found in the profiles of425

BGC-Argo float with WMO ID #5904676 (Fig. 9). These interleaving structures indicate the426

occurrence of mixing and intrusions due to cross–frontal exchange, facilitated by vigorous427

eddy activity at the location of the front [Park et al., 1993; Llort et al., 2018]. These features428

are found both in the upper ocean (dashed lines in panel b, corresponding to the 2 markers429

in panel a and to the warmer and saltier intrusion of waters at 100–400 dbar in panels c and430

d) and at the salinity minimum of the AAIW (values at potential density anomalies f0 be-431

tween 27–27.2 kg m−3 in panel b). The interleaving here occurs when the fresher and colder432

Subantarctic Surface Water comes into contact with the warmer and more saline water of the433

Agulhas Return Current, originating from the Agulhas Current and encountering ACC wa-434

ters north of Crozet Plateau (∼53◦E) first, and then at Kerguelen Plateau [Park et al., 1993;435

Sallée et al., 2010].436

The PCM method captures a feature in the area west and south–west of South Africa437

(in the Agulhas rings and the Benguela current, Fig. 2), in cluster 6 at ∼30◦S–35◦S, ∼10◦E–438

20◦E, which should be grouped within STZ waters, according to its \ and (� properties439

(Fig. 6). Most of the profiles of this cluster shows high posterior probability (Fig. 6a) and440

thus cannot be discarded. The \ − (� diagram in Fig. 6 shows that at latitudes close to 37◦S441

(panel b), the surface waters (c) have temperatures warmer than 14◦C, even in winter months442

(yellow colors in panel d), typical of subtropical waters in this region [Park et al., 1993].443

Thus, because of their upper ocean structure, we rely on a subjective definition and manually444

place these profiles within the STZ. We find that this feature is independent of the choice of445

: (not shown) and highlights an interesting connection at levels below 300 m (i.e., an under-446

current), between ACC waters and the region south and south-west of South Africa, which447

may indicate a pathway of intermediate and deep waters. This is not an error of the PCM448

method, as the PCM here captures similarities across data that connect intermediate waters449

from the ACC, but we decided to manually separate these points from the subantarctic zone,450

because of the usual classification of Southern Ocean zones.451
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Profiles with interleaving in the upper ocean are also found at warmer temperatures452

(not shown), likely due to either the passage of meanders and eddies of the SAF, by the prox-453

imity (and in some cases the merging) of the SAF and STF in some locations of the South454

Indian Ocean: close to ∼30◦E, near the Crozet Islands (∼53◦E), north of KP, east of ∼125◦E455

on the northern flank of the Southeast Indian Ridge [Read and Pollard, 1993; Park et al.,456

1993; Moore et al., 1997; Freeman and Lovenduski, 2016]; or due to drifting floats crossing457

a front. Of this type of interleaving, we find a group of profiles (Fig. 7a) with an upper ther-458

mohaline structure with temperatures warmer than 14◦C and salinity larger than 34.7, which459

are typical of Subtropical Surface Water, rather than Subantarctic Surface Water of the upper460

SAZ [Orsi et al., 1995; Talley et al., 2011]. Therefore, we manually group these waters into461

the STZ. Yet, the advantage of the PCM approach is to use an algorithm that efficiently and462

automatically classifies a large number of data, without defining specific rules for each case.463

It is therefore beyond the scope of the present work to check every profile that could fall into464

this case, so we rely instead on a probabilistic approach.465

The final Argo and BGC-Argo profile classification in Southern Ocean regimes used466

in this study is shown in Fig. 8. The classification shows generally a good comparison be-467

tween the instantaneous margins of the STZ, SAZ, PFZ, ASZ and SIZ and the climatological468

STF, SAF, PF, and the southern boundary of the ACC [black contours; Orsi et al., 1995], ex-469

cept for the STF east of 80◦E. Qualitatively, the location of the different zones is also aligned470

with the areas delimited by the fronts identified by Sokolov and Rintoul [2009b] (not shown),471

where front locations are based on sea surface height. However, the temporal variability472

of the fronts is also large, as discussed in Sokolov and Rintoul [2009a] and Freeman et al.473

[2016], which could in part explain the largest misfit between the PCM zones and the clima-474

tological zones defined by Orsi et al. [1995]. Other regime-front mismatches may be due to475

the methodology for detecting a front’s location, especially in proximity of complex topog-476

raphy [Sparrow et al., 1996; Sokolov and Rintoul, 2009b]. In particular, the SAF and the PF477

have been shown to differ significantly in the Indian sector of the Southern Ocean, especially478

near Crozet Plateau and KP [e.g., Orsi et al., 1995; Park et al., 2009; Sokolov and Rintoul,479

2009a; Freeman and Lovenduski, 2016].480

The distinction between the different regimes is also evident in the mean float-based481

vertical profiles of \ and (� (Fig. 10). Here, we can see a net gradient in all the properties,482

both in the upper and deep ocean (except for salinity, as the ACC is the freshest), with a tran-483

sition from the warmest and saltiest STZ waters to the coldest and fresher SIZ waters. South484
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of the PF, in the PFZ, ASZ and SIZ waters (panel a, blue, orange and magenta lines), the485

upper ocean waters are very cold and fresh (Antarctic Surface Water) and show the typical486

subsurface temperature minimum of the Winter Water south of the PF, which is the remnant487

of the cold winter waters [Talley et al., 2011]. At depth, the salinity minimum in the SAZ488

and PFZ is well captured, around 500 m and 1000 m, respectively (Fig. 10b). Furthermore,489

property variability, shown as the variance computed over each regime, is largest in the upper490

water column and at intermediate depths (∼1000 m). This variability is due to the seasonal491

and interannual variability of the profiles, but may also reflect some mixing and interleaving.492

Selecting only the BGC-Argo profiles, the distinction between the different zones is493

evident in the \−(� and \−$2 property diagrams (Fig. 7), with the oxygen increasing in the494

surface waters from the STZ towards Antarctica and with a minimum in each regime, which495

characterizes the UCDW core.496

To highlight the effect of KP, in the following sections, we will describe how the prop-497

erties associated with the four Southern Ocean regimes (STZ, SAZ, PFZ, ASZ and SIZ) vary498

as a function of longitude.499

5.2 Subantarctic Mode Water floats500

Compared to the full Argo data set used in this study, the BGC-Argo floats only marginally501

captures the SAMW formation pool in the southeast Indian Ocean region [see Sallée et al.,502

2006; Aoki et al., 2007, for maps of SAMW pool distribution in this region]. Hence, a com-503

plete discussion of the BGC property variability associated with this water mass and the in-504

fluence of the ocean circulation on the SAMW is not possible. Instead, a description of the505

local properties captured by the BGC-Argo floats is given here.506

BGC-Argo floats #5904688 (UW 9600), #5904683 (UW 9650), #5904682 (UW 9637)507

and #5904675 (UW 9749) (see Table S1 and Fig. 1) show the presence of SAMW formation508

in the wintertime deep mixed layers, in the f0 range between 26.65–26.85 kg m−3. For ex-509

ample, Fig. 11 shows the vertical sections of \ (a), (� (b), O2 (c) and potential vorticity (d)510

(%+ = − 5
d

md

mI
, where 5 is the Coriolis parameter and d is the density) for float #5904688511

(UW 9600). Between mid June and mid September 2016 and 2017, the winter mixed layer,512

computed using a density criterion of Δf0=0.03 kg m−3, develops typical SAMW deep val-513

ues ranging ∼ 400 − 700 m. The temperature and salinity are well mixed in this volume of514
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water (panels a and b), the oxygen concentration is high, with values around 270 `mol kg−1
515

(c), and the %+ (d) is, as expected, very low (∼ 20 × 10−12 m−1 s−1).516

5.3 Property variability of the intermediate waters517

We identify AAIW using f0 between 27.1 and 27.3 kg m−3 [Fig. 7; Talley et al., 2011],518

and investigate its zonal variability in the STZ and SAZ, and at depth (Fig. 12). AAIW prop-519

erties in figure are averaged across the AAIW density class and have a distinct meridional520

gradient, with saltier, warmer and lower oxygen waters in STZ than in the SAZ. The core521

Argo and BGC-Argo results are comparable as they should be since BGC-Argo is a subset522

of core Argo. Both show larger variability in the SAZ than in the STZ. Between 20◦–40◦E523

and 145–180◦, the core Argo float data show high salinity waters that come from the Ag-524

ulhas Current and the subtropical waters east of Australia, regions where BGC-Argo floats525

are not present. In the STZ, the largest difference in \ between the core and the BGC-Argo526

data (20◦–180◦E) is due to the warmer subtropical waters present in the northernmost region527

where there are no BGC-Argo floats (Fig. 8).528

The largest oxygen concentration in the STZ (∼230 `mol kg−3) is found in the Up-529

stream region, west of 20◦E. East of this location, the oxygen concentration in the STZ is530

overall lower. The SAZ shows larger values (more than 260 `mol kg−3) and spread for the531

oxygen concentration in the Downstream region, up to longitudes ∼100◦E, east of which the532

oxygen concentration first decreases and then rises again east of approximately 150◦E (nearly533

260 `mol kg−3). Larger oxygen concentration in the SAZ is consistent with the vicinity to534

source waters. The largest changes in the SAZ oxygen concentration are ∼52 `mol kg−3,535

found in the Downstream region. Since the seasonal cycle is well captured in both the core536

and the BGC-Argo data sets, the difference might be due to local mixing and interannual537

variability.538

Nitrate concentration in the STZ has larger values in the East region, with an overall539

range between 29–31.5 `mol kg−3, with the maximum increasing towards east. We notice a540

large nitrate concentration (∼33.5 `mol kg−3) at approximately 110◦E (Fig. 12), more sim-541

ilar to values found in the SAZ. This is an indication of the mixing across the subtropical542

front and intrusion of STZ waters, which create some ambiguity in the PCM classification of543

temperature and salinity profiles. In the SAZ, again we notice the largest concentration and544

spread in the Downstream region, with a maximum nitrate concentration of 32.2 `mol kg−3
545
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and a change in nitrate concentration of approximately 3.5`mol kg−3. East of the Down-546

stream region, the nitrate concentration decreases again, to values similar to those found in547

the West and Upstream regions (about 31 `mol kg−3). We notice a group of data points in548

the East region (east of 125◦E), with values less than 29 `mol kg−3, which could be indica-549

tive of, as in the previous case, ambiguity in the classification or intrusion of low nitrate wa-550

ters. This location corresponds to the Australian–Antarctic Discordance, a deep and rough551

section of the South East Indian Ridge that allows the passage of the Antarctic Bottom Wa-552

ter [e.t. McCartney and Donohue, 2007]. Lower values of nitrate here can be indicative of553

intrusion of low–nitrate waters through the Discordance.554

The pH sensors mounted on some floats failed (http://soccom.ucsd.edu/floats/555

SOCCOM\_sensor\_stats.html), so the spatial coverage of pH data is not as dense as for556

the other parameters, neither in the STZ nor in the SAZ waters. However, we notice that the557

STZ pH is overall lower than in the SAZ, except around 100◦E in the Downstream region and558

further in the East region, east of 140◦E. At 100◦E two distinct regimes appear: this could be559

due to the more limited sampling coverage of pH compared to other properties, due to sensor560

failure. However, BGC properties are found to have different gradients and fronts, compared561

to temperature and salinity (see for example the difference between the nitrate and the physi-562

cal fronts found by Freeman et al. [2019]). Investigating what drives the difference between563

pH and nitrate is left for future work, which would require to consider the frontal structure564

of the BGC fields, together with the temperature and salinity fronts. As mentioned above,565

the property variability in the STZ waters, depicted by the spread of the values in Fig. 12, is566

smaller than the variability in the SAZ. Furthermore, the variability is predominantly associ-567

ated to the two frontal zones and is zonally dependent, with larger spread in the Downstream568

region for each property and no evident impact due to the seasonality (not shown). As previ-569

ously stated, we note that for those profiles at the edge of two separate zones or with marked570

interleaving (associated to profiles with water characteristics that are intermediate between571

two adjacent regimes), the PCM method could show some ambiguity and the classifier algo-572

rithm might not robustly distinguish the profiles’ regime (Fig. 4). This can be indicative of573

leaking of fronts, where mixing is not instantaneous, and can explain the similarity of some574

values in the STZ and SAZ noted in Fig. 12.575

The variability of AAIW in the STZ (Fig. 13 red markers; the black line corresponds576

to the ratio of 1) shows a large hotspot in the West region, around 10–30◦E, for (� (the core577

Argo E0A ((�)2◦ is more than twice as large than E0A ((�)C>C ), \ (more than 1.5 times larger578
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for both the Argo and BGC-Argo) and O2 (more than 1.5 times larger). The core Argo (�579

and \ variance is large also in the East region, at about 170◦E. The BGC-Argo does not cap-580

ture the same magnitude of the Argo variance in the West region, likely due to the Agulhas581

current variability, which is not captured by the BGC-Argo profiles, or by interannual vari-582

ability. The variability in (� and \ decreases with the longitude east of ∼30◦E (i.e. away583

from the Agulhas current), in both the core and BGC-Argo ensembles. Finally, in the STZ584

both oxygen, nitrate and pH (despite the coverage in space being less dense than the other585

properties) show hotspots of binned variance larger than the total variance east of 140◦E. Ad-586

ditionally, nitrate variance is larger in the Downstream region, around 110◦E.587

The regional transition in the SAZ (Fig. 13 cyan markers) highlights hotspots of larger588

variability (i.e. > 1) for salinity and temperature around 70◦E between the Up- and Down-589

stream regions, then around 80◦E and 160◦E for both salinity, temperature and oxygen. NO−3590

shows a slightly larger variability at 60◦E in the Upstream region, and between ∼125–145◦E591

in the East region. Finally, pH shows large variance in the eastern side of the Downstream592

region (∼ 110◦E and in the East region, at approximately 125◦E).593

5.4 Property variability of the deep waters594

The site of Circumpolar Deep Water (CDW) is found below AAIW in the STZ and595

SAZ and below Antarctic Surface Water south of the SAF. CDW is made up of an upper596

(UCDW), characterized by an oxygen minimum centered around f0 = 27.6 kg m−3 (from597

Talley et al. [2011]), and a lower layer (LCDW), with a typical salinity maximum (f0 =598

27.8–28.27 kg m−3, from Talley et al. [2011]) originating from North Atlantic Deep Water.599

Because LCDW is mostly found below 2000 m and in the upper water only in the southern-600

most regimes, we here only analyze UCDW.601

The average of the properties at densities 27.6 ≤ f0 < 27.8 kg m−3 is given in Fig. 14.602

The values for the ASZ and the SIZ have been separated from the other zones for visualiza-603

tion purposes, and are presented in the right panels of the figure. (� and \ data are shown604

for both core (small markers) and BGC-Argo data (large markers), for comparison and statis-605

tics.606

The meridional gradients of each property, from the STZ to the PFZ (left panels in607

Fig. 14), are well defined, with increasingly colder UCDW waters poleward. In the Down-608

stream region, the meridional gradients switch sign: from the saltier, oxygen–rich, nitrate–609
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poor and higher pH waters of the West region (particularly in the STZ south west of South610

Africa), to fresher, oxygen–poor, nitrate–rich and pH low UCDW waters of the East region.611

We notice that the change is larger in the STZ than in the SAZ and PFZ. Very interesting612

is the larger spread associated with each of the properties in the PFZ Downstream region,613

specifically in the area east of the Kerguelen Plateau, which is indicative of mixing pro-614

cesses. We also notice that in between the Upstream and Downstream regions the nitrate615

concentration is similar across the different Southern Ocean zones, with a difference in mag-616

nitude of approximately 3 `mol kg−3.617

The southernmost zones (ASZ and SIZ) have the coldest and, in the SIZ, the most oxy-618

genated UCDW waters. The range in each property values surpasses the northern zones,619

especially in the SIZ, because of the interaction of waters with the atmosphere and the for-620

mation/melting of sea ice. The largest ranges of the BGC-Argo data in the SIZ are found at621

0–20◦E, 80–95◦E and 140–155◦E, which are well comparable to the core Argo data spread.622

The larger spread in the SIZ is indicative of the proximity with surface waters, as in these623

southernmost regions the UCDW upwells to the surface and interacts with the mixed layer624

(not shown for brevity). In particular, the higher oxygen in these zones can be explained by625

the temperature–driven higher solubility of these waters and by the springtime primary pro-626

ductivity in the sea ice zone, as a consequence of melting of sea ice [Briggs et al., 2018].627

Note that a caveat of our analysis resides in the fact that the outcropping of UCDW can largely628

impact the property variance from surface processes rather than the interior mixing of water629

masses. To discern between surface processes and mixing events, one should remove the lay-630

ers that interact with the mixed layers.631

The large spread in the PFZ properties (left panels in Fig. 14, blue markers) is likely a632

signature of mixing with ASZ and SIZ waters that are interacting with the surface. Whether633

any longitudinal property evolution or meridional property gradient between zones is the sig-634

nature of strictly irreversible isopycnal transformations (isopycnal mixing) or results from a635

combination of isopycnal and diabatic processes (e.g., from the surface turbulent layer, topo-636

graphic induced turbulence or other irreversible processes) can be explored using potential637

vorticity %+ . Averaged over the depths of the UCDW density classes, %+ shows three strik-638

ing features (Fig. 15): first, in the SAZ and the SIZ %+ is much larger due to the interaction639

of UCDW with the atmosphere; second, %+ shows hotspots of larger variability in the Down-640

stream region and around 150◦E in the PFZ, ASZ and SIZ; and third, in the STZ, SAZ and641

PFZ %+ has a positive trend toward the east. The various hotspots of larger %+ variability642
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and the %+ trend are indicative of the presence of diabatic processes [Whalen et al., 2015]643

or air-sea interactions changing the UCDW density class stratification. Diabatic mixing of644

UCDW with the overlaying waters, which have greater %+ (not shown), is facilitated by en-645

hanced turbulence at topographic features such as KP.646

We find several hotspots of larger property variability (computed as E0A (�)2◦
E0A (�)C>C ), asso-647

ciated with the different zones (Fig. 16). The BGC-Argo temperature and salinity variability648

compares generally well with core Argo, indicating that the spatial and temporal distribution649

of BGC-Argo floats in this region captures the overall variability in the time and space cov-650

ered by core Argo. Nevertheless, we find some differences between the core and BGC-Argo651

temperature and salinity variability in the some locations, likely due to the poor coverage652

in time and space of BGC-Argo (where core Argo variance is larger than BGC-Argo) or to653

some local variability close to the surface waters (e.g. in the SIZ where BGC-Argo variance654

is larger than the core Argo variability): 1) in the STZ west of 20◦E; 2) in the SAZ Upstream655

region; 3) between ∼20–80◦E in the PFZ; 4) east of 60◦E in the ASZ; and almost everywhere656

in the SIZ.657

In the STZ, the variability of BGC-Argo properties is larger in the West region. The658

variability in the SAZ shows hotspots in the West region in both salinity, oxygen, nitrate659

and pH, in the Downstream region around ∼70◦E (salinity, temperature, oxygen and ni-660

trate) and around 100–110◦E. We find hotspots of variability in the PFZ between ∼55–100◦E661

(Upstream to Downstream), ∼110◦E (Downstream, only for temperature), and around 140–662

160◦E (East, for temperature and pH). There are several hotspots of larger variance for the663

ASZ profiles, which vary across the properties: the BGC-Argo variance is larger around664

20◦E (West region) for temperature and oxygen, around 60◦E (Upstream) for nitrate and pH665

and around 80◦E (Downstream) for each of the properties. Finally, the SIZ shows larger vari-666

ability west of 10◦E (West) for temperature, oxygen, nitrate and pH, and a hotspot in variance667

at approximately 140◦E (Upstream) for salinity, temperature and oxygen.668

The structure of the variability is complex and hotspots of temperature and salinity669

normalized variance do not necessarily correspond to locations of highest variability in BGC670

properties. For example, this can be due to: 1) BGC processes (e.g., carbonate production/dissolution),671

which modify the concentration of oxygen and nitrate and the pH of the waters; 2) the differ-672

ing gradients of each property between fronts; 3) and the reduced spatial coverage of BGC673

data in some locations.674
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6 Discussion and Conclusions675

The Profile Classification Modelling (PCM) approach [Maze et al., 2017a] based on676

an unsupervised classification algorithm [here a Gaussian Mixture Model; Bilmes et al.,677

1998; Bishop, 2006] is applied to classify core Argo and BGC-Argo profiles into water mass678

regimes in the Indian sector of the Southern Ocean. To define SO frontal zones, the PCM679

method can be skillfully applied to vertical profiles of temperature and salinity between 300–680

900 m, below the portion of the water column most sensitive to air-sea exchange for most681

of the Argo profiles. We build upon recent studies that used temperature alone for the PCM682

[e.g., Maze et al., 2017b; Jones et al., 2018] and we included salinity in addition to tempera-683

ture, measured by autonomous profiling floats, as this property is especially important in set-684

ting the stratification of the upper ocean in the subtropical and sea ice zone. The PCM identi-685

fies boundaries between the frontal zones, which are not continuous lines, but rather regions686

of sharp changes, gradients as in Chapman [2017]. In addition to automatically classify each687

hydrographic profile into a unique frontal regime, this method allows us to use posterior688

probability as a metric to highlight/identify possible regions of strong mixing and temporal689

variability, particularly in regions of strong currents (Fig. 3 and 4). A region of larger mixing690

can be identified by lower probability (< 70%, Fig. 5). Mixing, such defined, is larger 1) at691

Southern Ocean fronts, 2) in the SAZ, and 3) in the major current systems of the STZ (com-692

pare Fig. 5 with Fig. 8). Due to flow–topography interaction, these areas are hotspots of eddy693

kinetic energy (see Fig. 5 in Llort et al. [2018] and Fig. 3 in Roach et al. [2018]), which can694

sustain intense events of vertical property exchange [Llort et al., 2018; Rosso et al., 2014],695

both within the AAIW density class (between the STF and PF) and within the UCDW (south696

of PF).697

In this study, we find that the variability of the intermediate and deep waters is en-698

hanced at topographic features (e.g., Crozet Plateau and Kerguelen Plateau) and in strong699

currents (e.g., at the subtropical Agulhas rings and Agulhas Return Current), but that the700

degree of variability differs for individual properties. AAIW temperature and salinity in701

the West region of the STZ are lowest west of 40◦E, where colder, fresher and oxygen–rich702

waters from the AAIW source in the Atlantic sector (west) and from the SAZ mix with the703

warmer, more saline and oxygen–poorer Indian subtropical waters (east; Fig. 12) [e.g., Tal-704

ley, 1996]. In the SAZ, AAIW mixes with the colder and fresher surface waters from the705

PFZ at KP, as evidenced by its minimum \ of 2◦C and (� of 34.25 in the Downstream re-706

gion (Fig. 12). This mechanism is likely associated with cross–frontal intrusions, as sug-707
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gested by Park et al. [1993]; Park and Gamberoni [1997]; Sloyan and Rintoul [2001], where708

the convergence of fronts and highly energetic eddies can facilitate this injection of different709

waters and the subsequent modification of water masses [Park et al., 1993]. Upon travers-710

ing KP, the averaged SAZ AAIW temperature and salinity increase again, while the oxygen711

concentration decreases, suggesting mixing with subtropical waters. Below the AAIW, the712

variation in the properties of the UCDW is not only marked by a strong meridional gradient713

across the different regimes, but also by a large transition in the properties from west to east,714

where KP acts to homogenize the water mass (Fig. 14). Hotspots of larger %+ variability715

(Fig. 15) suggest that the large change in each property is due not only to isopycnal, but also716

diabatic transformations, as expected from the stronger vertical mixing that Whalen et al.717

[2012] and Whalen et al. [2015] show in these locations.718

Argo has enabled us to study temperature, salinity and, in some cases, oxygen prop-719

erties across the vast Southern Ocean. Here, we demonstrate how the complementary array720

of BGC-Argo floats enables the assessment of the spatial variability of BGC properties. As721

physical and BGC states are influenced by diverse dynamics and gradients, we cannot fully722

infer where BGC properties might show larger variability by looking at only temperature and723

salinity variability. Given the rapidly increasing amount of Argo data (both core and BGC)724

and model output, the PCM method used here can serve as an important tool in future studies725

aiming to identify similarities in dynamical regimes [e.g., Maze et al., 2017b; Ardyna et al.,726

2017; Jones et al., 2018; Liang et al., 2018] and to reveal regions of strong mixing. Further-727

more, BGC-Argo floats, strategically planned to target this KP region [Talley et al., 2019],728

can provide great insight regarding the distribution and the modification of water mass prop-729

erties, highlighting the importance of targeting mixing hotspots in future observing arrays.730

Future work should explore these statistical methods to assess property changes and water731

mass evolution (e.g., in UCDW upwelling and its contribution to air–sea fluxes of carbon,732

oxygen, and heat) over the entire Southern Ocean.733

Finally, we have only qualitatively compared our classification to fronts defined by Orsi734

et al. [1995]. We note that a future work should focus on a quantitative comparison of our735

results with the existing fronts definition based on hydrography [e.g., Orsi et al., 1995],736

gradient of sea surface height [Sokolov and Rintoul, 2009b] or the new method by Chap-737

man [2017] applied to absolute dynamic topography. Furthermore, the scientific community738

would benefit for a thorough comparison of our methodology with other existing algorithms,739
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especially those methods that does not rely on a fixed number of clusters, such as the varia-740

tional Bayesian GMM [Ghahramani and Beal, 2000].741
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Figure 1. Trajectories of the biogeochemical-Argo floats from the Southern Ocean Carbon and Climate

Observations and Modeling project in the Indian sector of the Southern Ocean (September 2018 snapshot),

colored by (a) their deployment cruise (Table S1) and (b) profile year [markers indicate sample season:

warmer austral spring and summer months (circles) and colder austral autumn and winter months (squares)].

The Orsi et al. [1995] fronts (black contours), from south to north, the Southern Boundary of the ACC, South-

ern Antarctic Circumpolar Current Front, Polar Front, Subantarctic Front, and Subtropical Front), are overlain

on bathymetry [grayscale map; ETOPO1; Amante and Eakins, 2009]. Trajectories of southernmost floats

sampling under sea ice are estimated using linear interpolation (appear as near-straight pathways; e.g., float

#12702). Major currents in (a) are labeled, with flow direction indicated by arrows: Agulhas Return Current

(ARC), Antarctic Circumpolar Current (ACC), and Deep Western Boundary Current (DWBC). The Fawn

Trough is also indicated.
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Figure 2. Spatial distribution of the 9 clusters (colors) overlaid on bathymetry [grayscale map; ETOPO1;

Amante and Eakins, 2009] in the Indian sector of the Southern Ocean. Clusters were identified by the Profile

Classification Model method using the full Argo data set. The five Orsi et al. [1995] fronts are indicated by

black contours, as in Figure 1.

Figure 3. Posterior probability (%; colors) associated with each of the 9 clusters (:) shown in Fig. 2. A

colorbar is shown in panel (i). The Orsi et al. [1995] fronts (black contours) are shown for reference.
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Figure 4. Histograms of the percent posterior probability associated with (a) the full Argo data set and

(b–j) each of the 9 clusters (:) presented in Figure 2. The number of profiles for each 10% bin is normalized

by the total number of profiles in the 90–100% bin, and are color coded in panels (b–j).

Figure 5. Profiles with a posterior probability less than 70%. Those profile that have a probability of more

than 30% to belong to the remaining clusters are color coded as in legend in panel (i). In yellow are those

profile that do not have a probability of ≥30% for the remaining clusters. Black contours are coastlines and

the 3000 m isobath (bathymetry from from ETOPO1 [Amante and Eakins, 2009]).
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Figure 6. (a) Percent posterior probability (colors) and (b–d) \ and (� properties of subtropical profiles

classified within the Subantarctic Zone (cluster : = 6) off the coast of Africa. \ and (� diagrams are colored

by latitude in (b), pressure in (c), and season in (d).
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Figure 7. BGC-Argo profiles colored by Southern Ocean regime as a function of (a) \ − (� and (b) \−O2:

Subtropical Zone (STZ; green), Subantarctic Zone (SAZ; red), Polar Frontal Zone (PFZ; blue), Antarctic-

Southern Zone (ASZ; orange) and Sea Ice Zone (SIZ; magenta). The black contours indicate the mean Argo

profile by frontal zone. Dashed lines in (a) show f0 contours, while in (b) % of oxygen saturation.
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Figure 8. Argo (colored dots) and biogeochemical-Argo (larger, outlined colored circles) float profile lo-

cations colored by Southern Ocean frontal zone: Subtropical, Subantarctic, Polar Frontal, Antarctic-Southern

and Sea Ice zones. Profiles are classified using the Gaussian Mixed Models algorithm applied to poten-

tial temperature and absolute salinity measurements (see Section 4). We define four regions relative to the

Kerguelen Plateau by longitude (delineated by vertical dashed black lines): West (0◦–40◦ E), Upstream

(40◦ E–68◦ E), Downstream (68◦ E–120◦ E), and East (120◦ E–180◦ E). For reference, gray contours indicate

the location of the five Orsi et al. [1995] fronts.
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Figure 9. The (a) sampling trajectory and (b) \ and (� properties of biogeochemical-Argo float #5904676,

colored by profile number (out of total 88), which collected (c) potential temperature, (d) absolute salinity and

(e) dissolved oxygen of the upper 2000 m, between January 2016 and June 2018. Note, two intrusion events

(red stars in (a) and dashed black lines in (b) are identified in profile #8 and #9 (magenta arrow in (c–e).)

Bathymetry [grayscale map; ETOPO1; Amante and Eakins, 2009] and Orsi et al. [1995] fronts are indicated

in (a) as in Figure 1. Dashed white contours in panels (c–e) are f0 isolines, with values indicated in white.
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Figure 10. Vertical mean (solid) and one standard deviation (dashed) of (a) potential temperature and (b)

absolute salinity of all Argo profiles from the Indian sector of the Southern Ocean used in this study. Metrics

are colored by Southern Ocean frontal zone: Subtropical Zone (green), Subantarctic Zone (red), Polar Frontal

Zone (blue), Antarctic-Southern Zone (orange) and Sea Ice Zone (magenta).
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Figure 11. Upper 2000 m (a) \, (b) (�, (c) dissolved oxygen and (d) potential vorticity of biogeochemical-

Argo float #5904688. Dashed white lines are f0 isolines, with values indicated in white.
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Figure 12. (a) Absolute salinity, (b) potential temperature, (c) dissolved oxygen, (d) nitrate, and (e) dis-

solved inorganic carbon, as measured by core Argo (colored dots) and biogeochemical-Argo (outlined

colored circles) floats across the northernmost frontal zones, the (green) Subtropical Zone and (red) Sub-

antarctic Zone. Properties are averaged over the Antarctic Intermediate Water layer (with density between

f0 = 27 kg m−3 and 27.2 kg m−3).
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Figure 13. Regional variability of the ratio of binned (2◦ in longitude) over the total variance of (a) ab-

solute salinity ((�), (b) potential temperature (\), (c) oxygen (O2), (d) nitrate (NO−3 ), and (e) pH, along f0,

computed across the density classes around the Antarctic Intermediate Water. Markers are color coded as in

Fig. 12.
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Figure 14. (a) Absolute salinity, (b) potential temperature, (c) dissolved oxygen, (d) nitrate, and (e) dis-

solved inorganic carbon, as measured by core Argo (colored dots) and biogeochemical-Argo (outlined colored

circles) floats across the northernmost frontal zones, the (red) Subtropical Zone and (cyan) Subantarctic Zone.

Properties are averaged over the Upper Circumpolar Deep Water (with density f0 larger than 27.3 kg m−3).
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Figure 15. Potential vorticity along longitude, color coded by zone as in Fig. 14 and averaged over the

Upper Circumpolar Deep Water (with density f0 larger than 27.3 kg m−3).
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Figure 16. Regional variability of the ratio of binned (2◦ in longitude) over the total variance of (a) ab-

solute salinity ((�), (b) potential temperature (\), (c) oxygen (O2), (d) nitrate (NO−3 ), and (e) pH, along f0,

computed across the density classes around the Upper Circumpolar Deep Water. Markers are color coded as

in Fig. 14.
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