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Abstract

In order to develop efficient control strategies to improve traffic conditions on freeways, it is
necessary to know the state of the freeway at any point in time and space. Using data collected from
stationary detectors –such as loop detector stations– the density field can be currently reconstructed to a
certain accuracy. Unfortunately, deploying this type of infrastructure is expensive, and its reliability
varies. This article proposes and investigates new algorithms that make use of data provided by mobile
sensors, in addition to that collected by stationary detectors, to reconstruct traffic flow. Two approaches
are proposed and evaluated with traffic data. The first approach is based on data assimilation methods
(so-called nudging method) and the second is based on Kalman filtering. These approaches are
evaluated using traffic data. Results show that the proposed algorithms appropriately incorporate the
new data, improving significantly the accuracy of the estimates that consider loop detector data only.
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1 INTRODUCTION

In order to develop efficient control strategies to improve traffic conditions on freeways, it is necessary to
know the state of the freeway at any point in time and space. In particular, the knowledge of the density
field or the velocity field is useful to determine bottleneck locations, physical extent of queues, and travel
time. Using data collected from stationary detectors –such as loop detector stations– these fields can be
currently reconstructed to a certain accuracy. Unfortunately, deploying this type of infrastructure is
expensive, and its reliability varies.
New technology developments such as the Global Positioning System (GPS) allow cellular phones to
broadcast their position and/or velocity in real time. If the cellular phone is located in a moving vehicle, the
information collected from the phone can be used –in addition to (or instead of) the information provided
by static sensors (e.g. loop detectors)– in traffic state estimation.
This new sensing technology has greatly impacted the transportation field, constituting a novel and rich
source of traffic data. Maintenance problems common with stationary sensors (loop detectors mainly) do
not appear with this technology. For public transportation agencies, there is no cost of deploying this new
sensing technology, which is market driven. Personal devices (cellular phones) that people already have act
as sensors, which has brought private companies into a field that has historically been monitored and
managed by public agencies (encouraging partnerships between the public and private sector). Given the
high penetration rate of cellular phones across the population –particularly in developing countries–, this
new sensing technology has the potential of being deployed almost everywhere.
The problem of interest consists of finding new algorithms to make use of the data obtained from mobile
sensors, in particular vehicles acting as probes –in addition to the data collected from stationary detectors–
to estimate traffic state on freeways. Our goal in this article is to incorporate this type of information into
traffic flow models so better estimates of the traffic state can be obtained.
The rest of the article is organized as follows. Background material is provided in Section 2, where studies
making use of data from loop detectors or probe vehicles are presented. Section 3 describes the proposed
methods to address the problem of interest. These approaches were evaluated using traffic data, and the
results are discussed in Section 4. Finally, some preliminary conclusions are presented in Section 5.

2 BACKGROUND

Depending on the way data is collected, there are two types of measurements used in traffic flow
observation. The first one consists in observing traffic flow at fixed locations (Eulerian measurements).
This is the case of the data collected from loop detectors stations. The second way is by observing the
trajectories of specific vehicles, which yields Lagrangian measurements (i.e. trajectory-based). Lagrangian
data can be obtained with GPS technology inside cellular phones, or any tracking device/technology
providing information (position, velocity) about individual vehicles.
Different methods are appropriate to reconstruct the density of vehicles on the freeway depending on the
nature of collected data (Eulerian or Lagrangian). Traffic models using data collected from loop detectors
(i.e. Eulerian data) are able to reconstruct the density field in a fairly reasonable way. These models,
however, have no explicit way of incorporating Lagrangian data into the modeling. The next sections
summarize how Eulerian and Lagrangian sensors have been used in other studies to estimate traffic
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conditions.

2.1 Eulerian sensing

Numerous freeways around the world, in particular in the US, have loop detector stations embedded in the
pavement to collect traffic data. For each lane, these detectors aggregate information at a sample time
(usually 20 or 30 seconds) for each lane. Vehicle counts, occupancy are among the information that a
detector collects. This type of data has been used in different ways for several traffic applications and
studies. In particular, some studies have used this type of data to perform traffic state estimation.
Gazis and Knapp in [1] and Szeto and Gazis in [2] are among the first studies that make use of Kalman
filtering techniques to estimate the density on a section of freeway. The corresponding algorithms are based
on the conservation of vehicle principle and they use vehicle counts and speeds at the boundaries of the
section to perform the estimation.
Lin and Ahanotu in [3] validate the Cell Transmission Model (CTM) using data collected from loop
detectors. The CTM is a traffic flow model proposed by Daganzo in [4] and [5]. It is a discretization of the
Partial Differential Equation (PDE) proposed in the 1950’s by Lighthill and Whitham [6] and Richards [7]
(known as the LWR PDE) to describe the evolution of the traffic flow over time and space. The CTM
divides the highway in “cells” of length ∆x and every ∆t units of time the number of vehicles on each cell
is updated according to the conservation of vehicles principle. The CTM transforms the nonlinear flux
function into a nonlinear discrete operator. Muñoz et al. in [8] propose the Switching-Mode Model (SMM),
which is a piecewise linearized version of the CTM. Using the framework of hybrid systems [9], SMM
combines discrete event dynamics (mode identification) with nonlinear continuous dynamics (density
estimation). In [8] and [10], the authors test the proposed model using data collected from detectors on a
stretch of highway I-210W in Pasadena, California.
Treiber and Helbing in [11] propose and test a method that “filters” data from detectors (density or
velocities) to reconstruct traffic flow. In contrast with previous methods, this method does not take into
account information about the traffic dynamics (such as the LWR PDE). It only considers the main
propagation direction of the information to perform the estimation (downstream under free flow conditions
and upstream when congestion arises).

2.2 Lagrangian sensing

Unlike Eulerian sensors, the use of Lagrangian sensors to reconstruct traffic flow has not been widely
studied in transportation. Several studies have focused on technical and operational aspects of a probe
system used to estimate travel times. Other studies have dealt with methodological aspects of travel time
estimation and incident detection. Sanwal and Walrand in [12] propose an algorithm to estimate the
average speed on a given link from probe speeds using a Bayesian approach (i.e. local speed estimation
using Lagrangian speed measurement) in order to estimate travel time. The speeds estimated correlate well
with the ones collected by loop detectors. Westerman et al. in [13] discuss the idea of fusing
infrastructure-based loop detector data and non-infrastructure based probe vehicle data (i.e Eulerian and
Lagrangian data) to obtain travel time estimations and to detect incident automatically. Ygnace et al.
in [14] present results of analytical and simulation models to estimate travel time from individual speed
measurements. Chu et al. in [15] use Kalman filtering techniques to combine point detection data and
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probe vehicle data into the travel time estimation. They propose an Adaptive Kalman Filter (AKF) based
method that can dynamically estimate noise statistics of the system model by adapting to the real-time data.
The evaluation shows improvements in the travel time estimation when compared with the case in which
no probe data is available.
One of the first studies (to our best knowledge) which tried to incorporate Lagrangian data into the traffic
state estimation problem was done by Nanthawichit et al. in [16], where the authors use Kalman filtering to
improve estimations from traffic models that use only Eulerian data. Using Payne’s traffic flow model and
simulated data, they concluded that traffic state estimation improves when Lagrangian data is used. The
authors also used this approach to predict travel times.
The reconstruction of velocity fields using Lagrangian data is very common in other areas such as
meteorology and oceanography. In these fields, the process of blending Lagrangian data and a dynamic
model of the system is known as data assimilation. Terpstra et al. in [17] claim that data assimilation is not
limited to physical processes, but it can also be used for prediction and modeling of behavior-based
processes (car-drivers behavior in this case). Therefore, the extrapolation of these techniques to the
transportation engineering problems appears to be very promising.
Data assimilation methods range from simple, suboptimal techniques such as direct insertion, statistical
correction, and statistical interpolation to more sophisticated, optimal algorithms such as inverse modeling,
variational techniques and a family of methods based on the Kalman filtering [18]. One of the simpler
methods is the nudging (or Newtonian) method.
The nudging method relaxes the dynamic model of the system towards the observations. To this end, a
source term proportional to the difference between the predicted and observed state is included in the
constitutive equation f(z, x, t) = 0 of the model (in the present case the LWR PDE):

f(z, x, t) = λ(x, t) · (z − zo) (1)

where x is the space variable, t is time, z is the state vector (in the present case car density), and zo is the
observation vector (measurements). The term λ(x, t) is called nudging factor, which vanishes away from
the measurement location and after the measurement time. Therefore, λ(x, t) nudges the solution towards
the observations closer to (x, t) when the observation is made.
Most of the data assimilation methods use boundary conditions. They must be known at some specific
locations (usually at the boundaries of the computational domain). Thus, these methods make use of
Eulerian data as well.

3 PROPOSED METHODS

The problem of interest for the present study is the traffic state estimation when Lagrangian data is
available. This section describes the proposed approaches to address this problem.
Considering Eulerian data only, provided by loop detectors at the boundaries of the section under analysis,
at time t the traffic flow model will provide a first estimate of the density field ρ(x, t), denoted by ρ̂−(x, t).
At time t, Lagrangian sensors will provide the observed local density at some specific locations xi, denoted
by ρo(xi, t) (the superscript o denotes observation). For these specific locations, the first estimate and the
observed density will probably differ from each other. This difference (ρ̂−(xi, t)− ρo(xi, t)) will be used
to compute a second estimate of the density everywhere at time t, denoted by ρ̂(x, t).
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The present study proposes to use data assimilation techniques such as nudging or Kalman filtering
techniques to obtain the second estimate ρ̂(x, t). The rest of this section is divided into three subsections.
Section 3.1 explains how the observed local density can be obtained from Lagrangian measurements. A
more detailed description of both the nudging method and the Kalman filtering approaches is provided in
the last two subsections.

3.1 Computation of observed local density from Lagrangian data

Regular error-free measurements of vehicle position and velocity (xj(t) and vj(t), respectively, where j
denotes a particular equipped vehicle) are assumed to be available from the sensing technology. Denoting
the velocity fields by v(x, t), individual measurements provide us with the knowledge of the observed
velocity at location xj(t) at time t is the velocity of the vehicle at that location and time, i.e.
vo (xj(t), t) = vj(t), where the superscript o denotes observation. This assumption may not be appropriate
when dealing with multi-lane freeways, where different lanes might have different speeds. As a first
approach, however, we treat the freeway as a single traffic stream.
Using the fundamental diagram, vo (xj(t), t) can be used to obtain the density at the point of measurement,
ρo (xj(t), t). In reality, ρo (xj(t), t) is not the observed density but an estimate based on the fundamental
diagram.
If a triangular fundamental diagram is used, there is a problem when vj(t) > vf , where vf is the free flow
speed. Same combinations of flow and density under free flow conditions have the same free flow speed.
That is, under free flow conditions it is not possible to observe the local density through speed
measurements. For these cases, we will not consider the observation. Since the traffic flow model behaves
well under free flow conditions, this should not be a significant issue. Therefore, if vj(t) > vf free flow
conditions are assumed and the density predicted by the model is assumed to be equal to the observed
density (and then the observation is dismissed).

3.2 Data assimilation: nudging method

For its simplicity and computational efficiency, the nudging method –briefly outlined in Section 2.2– is
appealing.
The dynamic traffic flow model is given by the LWR PDE. The boundary conditions will be provided by
loop detector stations (Eulerian data), while some equipped vehicles –i.e. the vehicles equipped with
tracking technology– will provide their position and velocity over time (Lagrangian data).

Traffic flow model. The traffic flow model is the LWR PDE:

∂ρ

∂t
+

∂q(ρ)
∂x

= 0 (2)

with the boundary conditions

ρ(a, t) = ρa(t) and ρ(b, t) = ρb(t), with t ∈ (0, T ) (3)

and the initial condition
ρ(x, 0) = ρ0(x), with x ∈ (a, b) (4)
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ρ(x, t) represents the vehicle density in vehicles per distance and q(ρ) is the fundamental diagram (flux
function), which in this study will be assumed to be triangular. For a proper characterization of
Equation (2), weak boundary conditions are required, and boundary conditions in (3) cannot be used as
such. Boundary conditions only apply on the boundary of the section where characteristics are entering the
computational domain. Weak boundary conditions for the specific case of the LWR PDE can be found
in [19]: {

ρ(a, t) = ρa(t) or
q′ (ρ(a, t)) 6 0 and q (ρ(a, t)) 6 q (ρa(t))

and {
ρ(b, t) = ρb(t) or
q′ (ρ(b, t)) > 0 and q (ρ(b, t)) > q (ρb(t))

In practice, these boundary conditions are implemented using ghost cells.

Nudging method in traffic flow. From Equation (1), the nudging method consists in adding a source
term to the dynamic model in Equation (2):

∂ρ

∂t
+

∂q(ρ)
∂x

= −
J∑

j=1

λ (x− xj(t), t) · (ρ (xj(t), t)− ρo (xj(t), t)) (5)

The summation over the index j in the RHS of Equation (5) accounts for the J different vehicles equipped
with Lagrangian sensors. A possible expression for the nudging factor λ (x, t) can be found in [20] and is
given by:

λ(x, t) =





1
Ta

exp
(
− x2

X2
nudge

)
exp

(
− t−to

Td

)
if x 6 αXnudge and t > to

0 otherwise
(6)

In Equation (6), Ta is the timescale and determines the strength of the nudging factor, and to is the
observation time. Td and Xnudge reflect how the effect of any observation decreases over time and space,
respectively (they determine how fast the two exponential terms go to zero). The coefficient α is a positive
number that depends on the application, and reflects the zone of influence of the measurements. In our
context, the nudging term “adds” or “removes” vehicles from the freeway depending on whether the model
underestimates or overestimates the number of vehicles on the freeway.

Implementation issues. For implementation purposes, the LWR PDE needs to be discretized. To this
end, the freeway section is divided into I cells (each one of length ∆x distance units, and denoted by i),
and time is divided into H time steps (each one of length ∆t time units, and denoted by h). In order to
meet the Courant-Friedrichs-Lewy (CFL) stability condition [21] –which states that no vehicle can travel
more than one cell in one time step– the condition ∆t · vf 6 ∆x should hold. At every time step the model
estimates the density in each cell according to the following expression:

kh+1
i = kh

i − r
(
qh
i+1 − qh

i

)
i = 1, 2, . . . , I and h = 0, 1, . . . , H − 1. (7)



Juan C. Herrera and Alexandre M. Bayen 8

kh
i is density on cell i at time h, qh

i is the flow into cell i between time h and h + 1, and r is the inverse of
the speed needed to travel one cell in exactly one time step (i.e. r = ∆t

∆x ). qh
i depends nonlinearly on kh

i

and kh
i−1. The Godunov scheme [22] will be used to solve (7), and qh

i = qG

(
kh

i−1, k
h
i

)
where qG is the

Godunov flux defined as follows:

qG(k1, k2) =





q(k2) if kc < k2 < k1,

q(kc) if k2 < kc < k1,

q(k1) if k2 < k1 < kc,

min(q(k1), q(k2)) if k1 6 k2.

kc is the critical density, and it corresponds to the point at which the flux reaches its only maximum (the
flux function is concave). The discretization of the nudging term needs to be added to Equation (7). The
final expression for the model is as follows:

kh+1
i = kh

i − r
(
qG

(
kh

i , kh
i+1

)
− qG

(
kh

i−1, k
h
i

))
−∆t

J∑

j=1

∑

tjp∈Sh
j

λ
(
xi − xj

(
tjp

)
, h∆t

) ·

[
ρ̂−

(
xj

(
tjp

)
, tjp

)− ρo
(
xj

(
tjp

)
, tjp

)]
i = 1, 2, . . . , I and h = 0, 1, . . . , H − 1. (8)

The notation introduced in Equation (8) is explained below:

− J : total number of equipped vehicles,

− xi: location of the beginning of cell i, xi = x0 + (i− 1) ·∆x, for i = 1, 2, . . . , I , where x0 is the
beginning of the section of interest,

− tjp: time when the p-th observation from vehicle j occurs (in time units),

− Sh
j : set of all the observations times of vehicle j that are less than or equal to the time elapsed until the
h-th time step, i.e. Sh

j = {tjp : 0 < tjp 6 h ·∆t}, and

− ρ̂−
(
xj

(
tjp

)
, tjp

)
=

(
1− θj

p

)
· khj

p

ipj
+ θj

p · khj
p

(ipj+1) , where:

· hj
p : time step when the p-th observation from vehicle j occurs (in time step units), i.e. hj

p = d tjp
∆te

(because of roundoff error of hj
p, the algorithm might exhibit some lag of duration less than ∆t

in sensing),

· ipj : cell where vehicle j is located at time tjp, ipj = dxj(t
j
p)−x0

∆x e, where xj(t
j
p) > x0, and

· θj
p =

xj(t
j
p)−xipj

∆x , where xipj 6 xj(t
j
p) 6 x(ipj+1).

The last term in the RHS of Equation (8) is the discrete version of the nudging factor times the difference
between estimated and measured density (terms inside the square brackets). The density estimate at
location xj(t

j
p) is based on linear interpolation between the density at the closest points –on the grid– to



Juan C. Herrera and Alexandre M. Bayen 9

xj(t
j
p). The nudging factor is given by Equation (6), after substituting x− xj(t) by xi − xj

(
tjp

)
and t by

h∆t.
As pointed out earlier on, weak boundary conditions are required for a proper characterization of the LWR
PDE in (2). For implementation purposes, one ghost cell is inserted at each boundary of the section. The
ghost cells contain the boundary conditions, and they allow the first and last cells of the computational
domain to be updated depending on the existing traffic conditions (free flow, congested, or a mix of the
two). This approach was successfully implemented and tested by Strub and Bayen in [19] with traffic data
collected from loop detectors. The equations for the ghost cells (i = 0 and i = I + 1) and for the initial
conditions (h = 0) are given by Equation (9) and (10), respectively:

kh
0 =

1
∆t

∫ h∆t

(h−1)∆t
ρa(t)dt and kh

I+1 =
1

∆t

∫ h∆t

(h−1)∆t
ρb(t)dt h = 0, 1, . . . ,H − 1 (9)

k0
i =

1
∆x

∫ xi

xi−1

ρ0(x)dx i = 1, 2, . . . , I. (10)

3.3 Kalman filtering

Kalman filtering is a recursive method to estimate the state of a discrete process governed by a linear
stochastic dynamical system. The estimate is such that its covariance is minimized. This section describes
how Kalman filtering techniques can be used for the purposes of this work.

State space representation. The state space representation of the system consists in two equations: the
dynamic (or state) equation and the measurement (or observation) equation. The dynamic equation
describes how the state of the process (density in this case) evolves and is given by Equation (7), with
qh
i = qG

(
kh

i−1, k
h
i

)
. Since qG is nonlinear, the SMM is used. Depending on the mode detected, the

dynamic equation is chosen. This constitutes one of the main differences with respect to the nudging
method described before, where no mode identification is performed (the method does not assume anything
about freeway conditions).
If only the situations in which the whole section is either under free flow or congested are considered, the
dynamic equation reads as follows (using the same notation as before):

kh+1
i =

{
kh

i−1 if free flow
(1− δ)kh

i + δkh
i+1 if congested

i = 1, 2, . . . , I and h = 0, 1, . . . ,H − 1. (11)

where δ = w/vf , and w is the backward shockwave speed. Equation (11) assumes that every cell has the
same length ∆x = vf∆t and the same fundamental diagram, and that there is no creation or loss of
vehicles at middle points (i.e. no ramps). For a more general formulation for these two cases (and three
other cases that consider a mix of free flow and congested modes), the reader is referred to [23]. In matrix
form, Equation (11) can be written as:

kh+1 = Ah · kh + Bh · uh + wh (12)
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Bold letters represent vectors. kh = [kh
1 kh

2 . . . kh
I ]T is the state vector at time step h, and matrices Ah

and Bh are time-varying in the sense that they depend on the mode m at time step h (for instance, m = 1 if
free flow, m = 2 is congested). The term wh represents the error of the state equation (caused by false or
missed counts –because of lane changing manoeuvres for instance– at boundaries). The input uh is a scalar
and it is related to the measurements obtained at the boundaries of the computational domain (used to
compute the density on the first or last cell under free flow or congested mode, respectively). In fact, if the
whole section is either under free flow or congested mode:

uh =
{

kh
0 , if free flow (m = 1) on the section during h;

kh
I+1, if congested (m = 2) on the section during h.

(13)

where kh
0 and kh

I+1 come from Equation (9). Initial conditions k0
i are the same as in Equation (10).

The measurement or observation equation compares the observed values of the state variables with the ones
predicted by the model. This equation is as follows:

yh = Ch · kh + vh (14)

yh is the observed vector, and vh is the measurement error (which constitutes another difference with
respect to the nudging method, in which the observed density is assumed to be perfect or error free).
Kalman filtering also assumes that wh and vh are independent and normally distributed with zero mean.
The matrix Ch is time dependent. The size and elements of Ch depend on where the Lagrangian
observations at h are coming from, and it contains only zeros and ones (it is assumed that the local density
can be observed from Lagrangian sensors). Lagrangian observations are coming from different cells, and
also the number of observations between consecutive time steps might be different. Thus, observed vector
yh in Equation (14) will have different dimensions at different time steps. The latter implies that matrix Ch

will also have different dimensions at every time step.
In summary, the dynamic or state equation and the measurement or observation equation of the system are
given by Equation (12) and (14), respectively.

Solution method: Kalman filtering. Let us use the following notation:

− k̂
−
h : a-priori state estimate of kh,

− k̂h: a-posteriori state estimate of kh,

− P−
h : a-priori estimate error covariance, where e−h = kh − k̂

−
h is the a-priori estimate error,

− Ph: a-posteriori estimate error covariance, where eh = kh − k̂h is the a-posteriori estimate error.
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Kalman filtering provides a set of recursive equations to estimate the vector state. The equations are as
follows:

k̂
−
h+1 = Ah · k̂h + Bh · uh (15)

P−
h+1 = Ah · Ph ·AT

h + Q (16)

Fh+1 = P−
h+1 · CT

h+1

[
Ch+1 · P−

h+1 · CT
h+1 + R

]−1
(17)

k̂h+1 = k̂
−
h+1 + Fh+1

(
yh+1 − Ch+1 · k̂−h+1

)
(18)

Ph+1 = (I − Fh+1 · Ch+1) P−
h+1 (19)

Initial conditions k̂0 and P0 are assumed to be known. Q and R are the covariance matrix of the process
and measurement error, respectively. Fh is known as the Kalman filter gain at time step h. The matrix Ch

have different dimensions at every time step, which implies variable dimension of covariance matrix R.

Implementation issues. As before, the section is divided in I cells of length ∆x and the simulation
period is divided in H time steps of length ∆t each, such that ∆x and ∆t satisfy the CFL stability
condition. The state vector contains the density on each cell. At the beginning of each time step the traffic
conditions on the network need to be identified (in order to determine the set of matrices A and B to use).
Once the mode has been identified at the beginning of time step h + 1, Equation (15) and (16) are used to
obtain the a-priori density estimate and covariance, respectively (using the Eulerian data provided from
detector stations). At this point, Lagrangian data becomes available to the model, i.e. the observed density
at time h + 1 will be known for some cells (the quantity and position of the Lagrangian sensors at h + 1
will determine how many and for which cells the density is observed). With this information, observed
vector yh+1 and matrix Ch+1 can be constructed. Then, the Kalman filter gain is computed using
Equation (17). Finally, the a-posteriori density estimate and its covariance are obtained using
Equation (18) and (19), respectively. In case no observation is available at time h + 1, the matrix Ch+1 is
set equal to zero, which implies that the Kalman gain is also zero, and therefore the a-posteriori density
estimate is equal to the a-priori density estimate.

4 RESULTS

Approaches described in Section 3 are implemented with traffic data to evaluate their performance. The
performance is evaluated in terms of the ability of the models to estimate three variables derived from the
density field: number of vehicles between two points in space, density profile at middle location, and travel
time to travel through the entire section.
Traffic data from the Next Generation Simulation (NGSIM) project [24] is used to evaluate the proposed
approaches. The data consist of the trajectory for every vehicle that enter a stretch of US Highway 101S in
Los Angeles, CA, during 45 minutes (from 7:50am to 8:35am) . Figure 1 illustrates the location of interest.
The site is approximately 0.4 miles in length, with 5 mainline lanes. An auxiliary lane exists between the
on-ramp and the off-ramp. Transition from free flow to congested mode happens during the first 12-15
minutes (i.e. part of the section was in the free flow mode while the rest was in the congested mode).
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For implementation purposes, only the two left-most lanes were considered. The whole section (2040 ft)
has been divided into I = 17 cells of ∆x = 120 ft each, and the total simulation time (2634 sec) has been
divided into H = 2195 time steps of ∆t = 1.2 seconds each. Parameters of the fundamental diagram were
extracted from PeMS1.

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
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Figure 1: NGSIM site.

For simplicity, no mode identification was performed in the Kalman filtering implementation. The whole
section was assumed to be congested all the time. Four different scenarios were tried depending on how
Lagrangian data is created. Some proportion p of the trajectories are chosen (randomly) as equipped
vehicles. These vehicles are reporting their position and speed every certain time T , and the reported speed
is the average speed over the last τ seconds. The values chosen for p, T , and τ determine the total number
of Lagrangian measurements created for each of the four cases investigated (see Table 1).
Travel time for the section of interest is about 2 minutes under congested conditions. Thus, cases 1 and 3
assume that each equipped vehicle sends only one report while it is traveling the section. Continuous
tracking for equipped vehicles is assumed in cases 2 and 4. Because of privacy issues, these two cases
might not be a realistic situation in the future. They were investigated, however, to evaluate the potential of
the methods proposed.
For comparison purposes, a model that uses Eulerian data only (EDO) was also implemented according to
the numerical scheme proposed by Strub and Bayen in [19]. Figures 2, and 3 compare the true or observed
evolution of the number of vehicles on the section with the estimates from the approaches.
Figure 2 compares the results using EDO with those from the proposed approaches under case 4 (i.e
assuming that 20% of the vehicles are equipped and their speed is sampled continuously). The inclusion of
Lagrangian data in the estimation process improves the accuracy of the estimates, regardless of the method
used (Kalman filtering at the top and nudging method at the bottom). Both approaches appropriately
incorporate the Lagrangian data into the model.
When both approaches use the same Lagrangian data, Kalman filtering yields more accurate estimates. The
same results are found when the approaches are compared under any of the other three cases. Since the
observed density has some error –as stated in Section 3.1, the observed density is actually an estimate,
based on the fundamental diagram–, Kalman filtering’s capability of handling an error in the observed
density –see Equation (14)– might explain its slightly better performance (the nudging method assumes
that the observed density is perfect, i.e. it has no error). However, the advantage of making no assumption
about the freeway state (i.e. no mode identification needs to be performed) makes the results from the
nudging method encouraging.

1Assuming a triangular shape: qmax = 2040 vphpl, kj = 205 vpmpl, kc = 30 vpmpl, vf = 68 mph, and w = −11.6 mph.
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Figure 2: Estimation improvement when Lagrangian data is available.

Figure 3 compares the Kalman filtering approach for the four different cases (i.e. assuming different
penetration rates and sampling rates). The graph at the top contains the estimation for cases 2 and 4. The
graph at the bottom contains the same curves but for cases 1 and 3. For low penetration rates (cases 1 and
2), the estimates are accurate as long as the sampling rate is high. For low sampling rate (cases 1 and 3),
the estimates are not as accurate even when the penetration rate is high. As expected, the best results are
achieved under case 4, when the amount of Lagrangian data is the highest.
The fifth column in Table 1 shows the Root Mean Square Error2 (RMSE) of the estimation of the number
of vehicles for both approaches and the four cases used. The table is sorted according to the seventh
column.
In terms of the density profile and travel time estimation, the qualitative results are the same as before.
Figure 4 shows the true or observed density profile at a middle point (extracted from vehicle trajectories
and then smoothed) and the estimated profile for three different cases. The sixth column in Table 1 presents
the RMSE’s in terms of the density profile at a specific point in the middle of the section. Again, high

2The RMSE is defined as: RMSE =

√∑
h(ẑh−zh)2

H
where ẑh and zh are the estimator and its actual value at time step h,

respectively.
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Figure 3: Comparison of high vs. low penetration and sample rates.

Table 1: RMSE using both approaches and different penetration rates and sampling rates.
RMSE

Method Case p (%) T (sec) τ (sec) # of Lagrangian Number Density
measurements of vehicles profile

KF 4 20 10 10 2577 6.6 12.7
KF 2 5 10 10 773 9.8 24.4
NM 4 20 10 10 2577 9.8 19.3
KF 3 20 600 30 417 10.4 23.9
NM 2 5 10 10 773 11.6 31.5
NM 3 20 600 30 417 12.1 32.3
KF 1 5 600 30 117 15.7 43.5
NM 1 5 600 30 117 17.7 46.9
EDO N/A N/A N/A N/A N/A 21.3 57.8

penetration rates and high sampling rates achieve the best performance, and the use of Lagrangian data
only improves estimations.
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Figure 5 compares the real travel times (each dot corresponds to one vehicle) with the ones computed using
the density field estimation. Travel time at time step h is the sum of each cell travel time at time step h. To
compute each cell travel time at h, the density of each cell at h is converted into velocity (using the
fundamental diagram). Knowing the velocity and the length of each cell, the travel time is computed.
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Figure 4: Density profile at middle location (cell 9).

Because of the time frame used and the short length of the section, the true or observed curves for the
number of vehicles, density profile, and travel time show a large amplitude oscillatory behavior.
Nevertheless, the proposed approaches show good fidelity to the trend in this extreme case. It is expected
that with less variability the results from both approaches should be at least as accurate as in this case. The
results when EDO is used should improve as well. Therefore, the gap between EDO and the proposed
approaches should be smaller.

5 Final comments

Considering the limitations and special features of the NGSIM data set, results shown in Section 4 are
promising. From the graphs and tables shown in Section 4, the following preliminary conclusions can be
drawn:

• The use of Lagrangian data improves current estimations of the density field. As a result, more
accurate estimates for the number of vehicles on the section and for travel times can be obtained.
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Figure 5: Travel time predictions.

• Even though both approaches appropriately incorporate Lagrangian data in the model, the Kalman
filtering approach performs slightly better than the nudging method. However, the fact that no mode
identification is performed –and the good results obtained– makes the nudging method an attractive
method to be implemented in transportation.

• The more Lagrangian observations are available, the better accuracy can be achieved in the
estimates. Best results are obtained for case 4, while worst results are achieved for case 1 (regardless
of the approach used). Both approaches yield better results for case 2 than for case 3, implying that
the number of Lagrangian measurements determines the accuracy of the estimates.

• Some specific traffic features –like traffic oscillations or instabilities– are hard to captured with static
detectors, specially when the spacing between the detectors is big. Information collected from
individual vehicles over time and space can be helpful in this sense.

These conclusions are preliminary and more analysis needs to be done in order to draw some final
conclusions. To this end, an extension to this research is being performed, where vehicle trajectories will
be extracted from a microsimulation and then used to evaluate the proposed approaches (in the same
manner as in Section 4). The use of cellular phones broadcasting their position and velocity will constitute
the last level of evaluation of the proposed approaches.
Improvement in the computation of the observed density from Lagrangian data, and inclusion of error or
noise in the nudging method (for the observed density) are among future challenges this research poses.
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