
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
Implementations of mesh refinement schemes for particle-in-cell plasma 
simulations

Permalink
https://escholarship.org/uc/item/6v4170w9

Authors
Vay, J.-L.
Colella, P.
Friedman, A.
et al.

Publication Date
2003-10-20

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6v4170w9
https://escholarship.org/uc/item/6v4170w9#author
https://escholarship.org
http://www.cdlib.org/


Implementations of Mesh Refinement schemes

for Particle-In-Cell Plasma Simulations 1

J.-L. Vay a P. Colella a A. Friedman b D.P. Grote b

P. McCorquodale a D.B. Serafini a

aLawrence Berkeley National Laboratory, CA, USA

bLawrence Livermore National Laboratory, CA, USA

Abstract

Plasma simulations are often rendered challenging by the disparity of scales in time
and in space which must be resolved. When these disparities are in distinctive
zones of the simulation region, a method which has proven to be effective in other
areas (e.g. fluid dynamics simulations) is the mesh refinement technique. We briefly
discuss the challenges posed by coupling this technique with plasma Particle-In-Cell
simulations and present two implementations in more detail, with examples.

Key words: Mesh refinement; Particle-In-Cell; plasma

1 Introduction

Numerical simulations of ion beam transport in a Heavy Ion Fusion (HIF)
(1) accelerator and reaction chamber currently model different stages of the
process separately. A completely self-consistent treatment, which is ultimately
needed, requires an end-to-end simulation from the ion source to the fusion
target. This represents a real challenge, even extrapolating near-future com-
puter power, and we must consider the use of the most advanced numerical
techniques. One of the difficulties of these simulations resides in the disparity
of scales in time and in space which must be resolved. When these dispar-
ities are in distinctive zones of the simulation domain, a method which has
proven to be effective in other areas (e.g. fluid dynamics simulations) is the
Adaptive-Mesh-Refinement (AMR) technique. We have begun the exploration

1 Work performed for USDOE under Contracts DE-AC03-76F00098 at UC-LBNL
and W-7405-ENG-48 at UC-LLNL.

Preprint submitted to Elsevier Science 20 October 2003



of introducing this technique into the Particle-In-Cell (or PIC) method. A col-
laboration between the Heavy Ion Fusion Virtual National Laboratory (HIF-
VNL) and LBNL’s Computational Research Division was initiated to develop
an AMR library of subroutines (2) targeted at providing AMR capabilities for
existing plasma PIC simulation codes (3).

2 Application of mesh refinement to Particle-In-Cell electrostatic

plasma simulation

2.1 Two possible strategies for coarse-fine grid coupling

When solving the Poisson equation with mesh refinement, several strategies
can be envisioned to couple a fine grid and the coarser grid in which it is
enclosed; we considered two of them. We consider a grid (denoted the “coarse”
or “parent” grid) and its refinement patch (denoted the “fine” or “child” grid).

The method which is conceptually the simplest consists of solving the Poisson
equation on the coarse grid first, ignoring the presence of the patch, and
then solving on the patch alone using Dirichlet boundary condition derived
by interpolation of the solution of the coarse grid.

A second method, which is the default in the Chombo package (2), consists
of iterating the solution back and forth between the patch and its “parent”
grid. After one iteration on the coarse grid, values on the fine grid are inter-
polated from the coarse grid solution. Then, a specified number of iterations
are performed on the fine grid and the fine and coarse grid solutions are rec-
onciled during a “synchronization” step which consists in imposing the fine
grid solution on the coarse grid nodes located inside the fine grid patch. This
procedure is iterated until convergence (4).

In the rest of the article, we will refer to the first method as “1-pass” and the
second as “multipass”.

2.2 Issues

While the second method has been shown to be of higher order in accuracy,
it violates a discrete version of Gauss’ Law under a nodal implementation
because it modifies the coarse grid solution. Eventually this introduces a non-
linearity that is not present in the coarse-grid solution. This effect may be an
issue for accelerator modeling (anharmonic forces).

2



Also, the use of AMR implies breaking the symmetry in the field solution
which in turn introduces a spurious force when gathering the electric field
from the potential on the set of grids. This may potentially alter the particle
motion to a degree which cannot be neglected. This effect was studied in detail
for a one particle test in (5). It was determined that, when using the “1-pass”
solver, a sufficient number of guard cells can be defined on the border of the
patch that effectively mitigates most of the effect of the spurious force, since
its amplitude grows with the inverse of the distance to the patch border. In
effect, the effective area of the patch is delimited by its total area minus the
guard cells. No such simple mitigating technique can be applied when using
the “multipass” solver.

We refer the reader to (5) for a more detailed discussion of these issues.

3 Two examples of implementations

A prototype AMR Poisson solver was built on the foundations of the WARP
axisymmetric (r,z) multigrid Poisson solver, using the “1-pass” scheme for
coarse-fine grid coupling and guard cells to reduce the effect of spurious self-
force, as described above. While this RZ prototype is allowing us to begin
to explore the benefits of AMR on injector simulation, the production-level
general three-dimensional AMR-Poisson solver is being developed as part of
the Chombo package. We briefly describe the two implementations.

3.1 Prototype implementation in WARP-RZ solver

The implementation of AMR in the axisymmetric (RZ) solver in WARP relies
on the use of FORTRAN90 derived types. The type “grid” is defined as

type grid

integer :: id ! grid ID

integer :: nr, nz

real :: rmin, rmax, zmin, zmax

real, allocatable :: phi(:,:), rho(:,:)

real, allocatable :: phip(:,:), rhop(:,:) ! in parallel only

real, allocatable :: lp(:,:), lpfd(:,:)

integer :: gminr, gmaxr, gminz, gmaxz

integer :: nlevels, npre, npost

real :: mgparam

type(bndy), pointer :: bnd

type(grid), pointer :: up, down, next, prev

3



end type grid

The variables nr and nz define the dimensions of the patch array while the
variables rmin, rmax, zmin and zmax define its extension in the physical system
of coordinates. The arrays phi and rho store the electric potential and the
charge density respectively. The arrays phip and rhop, which store the same
quantities, are used only on parallel platforms for efficiency when a different
domain decomposition is used for the fields and particles.

The arrays lp and lpfd are lookup tables that are used for rapid localization
of particles in the grid structure during the steps of charge deposition and
force gathering.

The variables gminr, gmaxr, gminz and gmaxz are the number of guard cells
to be used on each side of the patch for the spurious self-force reduction.

The variables nlevels, npre, npost and mgparam control the multigrid solve
and define respectively the number of multigrid levels, the number of relax-
ation steps before and after the coarsening stage and the relaxation parameter
used in the Gauss-Seidel relaxation. These parameters can be optimized using
a specialized routine. Since their optimized values are dependent upon the ge-
ometry and the grid mesh aspect ratio, the optimization is performed at run
time. By defining them in the grid type, the optimizing routine can derive a
set of optimized parameters for each individual patch.

The variable bnd, which is of derived type bndy (which we do not describe
here), contains the variables that describe the part of the geometry which is
enclosed into the considered patch.

The variables up, down, next and prev are pointers of type grid which are
used to construct a tree structure by means of a 2-D linked list. The trunk of
the tree is defined by default in WARP and constitutes the main grid covering
the entire simulation domain. The user can add patches at run time by using
the function add subgrid at the Python level:

add_subgrid(id,nr,nz,dr,dz,rmin,zmin,gminr,gmaxr,gminz,gmaxz)

integer :: id ! ID of grid to add a patch to (parent)

integer :: nr, nz ! nb of meshes of patch in r and z

real :: dr, dz ! mesh size in r and z

real :: rmin, zmin ! min location of patch in physical coord.

real :: gminr, gmaxr ! number of guard cells in r

real :: gminz, gmaxz ! number of guard cells in z

The tree is maintained internally by WARP. When a patch is added, a new
branch is added either to the grid of ID id by creating a new down pointer
or, if down has already been allocated, to the last element of the linked-list

4



described by down.next...next. The following restrictions apply:

(1) the patch must be entirely enclosed into its parent grid,
(2) the minimum and maximum of the patch are forced to lie on lines of the

parent grid; the size of the mesh is resized if necessary.

The first restriction allows for a simple tree structure and avoids complications
due to overlaps. The second allows for quicker testing of particle localization
relative to the grid structure.

For each macropaticle, the charge deposition is performed on the finest grid
which contains it. Once the charge from all the particles has been deposited,
the charge of each patch is deposited onto its parent, starting from the finest
patch to the main grid, recursively. The Poisson solve can then proceed, start-
ing on the main grid and recursively solving down on each branch of the tree.
The Poisson solve is activated by “call solve allgrids rz(maingrid,accuracy)”
where the subroutine solve allgrids rz is:

recursive subroutine solve_allgrids_rz(g,accuracy)

type(grid) :: g

real :: accuracy

if(associated(g%up)) call interpolate(g,g%up,bnd_only)

call solve_multigridrz(g, accuracy)

if(associated(g%down)) call solve_allgrids_rz(g%down,accuracy)

if(associated(g%next)) call solve_allgrids_rz(g%next,accuracy)

end subroutine solve_allgrids_rz

The routine checks first if the grid is a child and interpolates the field from the
parent grid to the child if it is one (interpolates only on the patch boundary
if bnd only is true or on the entire patch otherwise). The Poisson equation is
then solved on g and the entire operation is repeated recursively on any child
(g%down) and ’brother/sister’ (g%next).

For the force gathering, the field is interpolated from the finest grid containing
the macroparticles, excluding the guard cells (in which it is interpolated from
the parent grid).

In order to speedup the process of particle localization in the grid structure,
the patch ID value is deposited in the array lp of the parent grid at the nodes
covered by the entire patch (except the upper bounds). The same operation is
performed on the array lpfd but considering the patch without the guard cells
(the effective area of the patch). The arrays lp and lpfd are used as lookup
tables in a recursion loop starting from the main grid for each macroparticle
when depositing the charge and gathering the force. This avoids the cumber-
some and inefficient series of boundary tests. Although this method may not
be the most efficient that can be devised, it is easy to implement and bal-

5



ances simplicity and efficacy. Thus, it was considered of adequate efficiency
for prototyping.

3.2 2-D and 3-D implementation in the Chombo package

A nodal implementation of a multigrid AMR solver for the Poisson equation
using Shortley-Weller (“cut cell”) discretization of the Laplacian operator (to
account for internal boundaries at subcell resolution) has been developed in
Chombo (4). In our configuration, a library containing Chombo’s executable
routines is provided to the WARP linker which merges the two packages to-
gether (see Fig. 1). Appropriate calls to Chombo routines are made by WARP’s
FORTRAN routines as enabled by a flag which is set by the user in WARP’s
Python script interface. For specialized use, some of the Chombo routines,
such as its AMR Poisson solver, are callable directly from WARP’s Python
interface. Both methods for solving the Poisson equation, as described above,
are being implemented in Chombo and are being tested and compared.

A prototype PIC interface to Chombo (called ChomboPIC) has been devel-
oped using this AMR Poisson solver and integrated into the WARP code.
This prototype is purposefully simplistic, and maps straightforwardly to the
structure shown in Figure 1. The design goal for the prototype was to provide
sufficient functionality to allow various applications to incorporate Chombo’s
adaptive mesh capability without significant changes to the application code
itself, allowing experimentation with methods and interface details.

The data that must pass across the interface from the application (WARP)
to ChomboPIC is limited to the locations and charges of the particles and the
potential on the boundaries. 2 The data that passes back from ChomboPIC to
the application is the electric field at the particles. In the prototype implemen-
tation, the particle data is passed back in the same ordering in which it was
given. Because the adaptive method used in Chombo inevitably rearranges
the particle data, restoring the original ordering adds an extra computational
expense, as a result of copying the data. This expense increases in parallel
with the number of processors, so an alternative scheme in which the particles
are returned in a different ordering is likely to be needed in the future.

The simplest possible use of ChomboPIC from an application requires calls
to 7 subroutines. Four are needed to initialize parameters and clean up after-
wards, and usually need to be called only once each. The remaining 3 pass the
particle data to Chombo, solve the Poisson problem, and get the results back.
These would be called for each iteration around the loop shown in Figure 1.

2 The prototype currently does not implement complex geometry.

6



ChomboPIC handles depositing the charge from the particles and interpolat-
ing the electric field from the solution back to the particles.

4 Examples of PIC-AMR simulations

Figure 2 shows a snapshot taken from a movie of an end-to-end simulation of
the High-Current experiment (HCX) (7) at LBNL. It shows the beam emitted
from a triode source and traveling through the four accelerating and focusing
electrostatic quadrupoles of the injector. The modeling of the triode region
is critical since it determines the initial phase-space shape of the beam. It is
also a challenging part to model since there is a large range of particle density
close to the emitter and an accurate description of the edge of the emitter
and the beam is crucial. This makes this problem ideal for testing the mesh
refinement technique.

4.1 WARP example

We display in Fig.3-a a snapshot of the beam taken from a quasi-steady state
axisymmetric WARP simulation of the triode. By quasi-steady state, we mean
that we run a time-dependent calculation of the beam being emitted from the
source, solving for the field every n time steps whith 10 < n < 50 typically.
We stop the simulation when an equilibrium is reached, under the assumption
that the equilibrium solution exists and is unique (both of these assumptions
are not guaranted but seem to be fulfilled in practice).

Fig. 3-b shows the grid structure that we used when AMR was turned on. A
refinement patch covering the whole beam was set up. In order to emulate a
more complicated structure of grids covering only the emitting region and the
beam edge, the array lpfd (which controls, at the cell level, wether the field
acting on particles is taken from the patch solution or from its parent) was
set in a special way such that the field from the main coarse grid was used
inside the beam, while the field from the patch solution was used at the beam
edge and around the emitter. Thus, the fine gridded area that is depicted in
Fig. 3-b corresponds to the effective area of the patch, as defined above. This
effective area was reset each time step to adaptively follow the edge of the
beam.

The evolution of the RMS normalized emittance versus Z is shown in Fig. 4 for
three runs using uniform low, medium and high resolution and a fourth run
using medium resolution plus the refinement patch. The jump of resolution
from low to medium and medium to high is a factor of 2 in each direction and

7



a factor of 4 in the number of macroparticles, in order to keep the number
of macroparticles per cell constant on average. The number of macroparti-
cles used is the same in both of the medium resolution runs, with or without
AMR. The results show that the emittance converges downward with increas-
ing resolution and that the high resolution result is recovered from the medium
resolution run with AMR at about a fourth of the computational cost.

4.2 Chombo example

The three-dimensional solution of the electrostatic potential in the HCX in-
jector was computed with Chombo using its automatic meshing capability.
The criterion for refinement was to refine volumes covering the edge of con-
ductors of the source (z < 0.1m) with a ratio between coarse and fine mesh
of four. The result is displayed in Fig.5 and shows how Chombo will handle a
complicated structure of grid blocks to get to the required solution optimally.
The criterion used for refinement in this case is for demonstration purpose
of the capability. Different criterion may be devised for actual modeling of
the injector, for example refining the emitting region and the beam edge, as
successfully used in the WARP-RZ prototype example described above.

5 Conclusion

We have presented a short overview of our efforts to couple the Particle-In-Cell
and mesh refinement techniques. In this paper, we emphasized the description
of the implementations of our prototype in WARP and the full-featured pro-
duction package Chombo. Specific issues have been identified (for example,
non-physical forces which arise at the edges of refined areas), and studied in
detail using prototypes. Using the prototype developed in WARP, we demon-
strated the effectiveness of mesh refinement in Particle-In-Cell simulation of
a problem of interest, where a gain of almost four was obtained in computing
time and memory requirement. An example of Chombo’s three-dimensional
field solve with automatic refinement around conductors leading to a com-
plicated structure of refinement boxes was given as a preview of Chombo’s
capabilities to come. Typical gains of a factor of ten or more are expected
with Chombo once discrete-particle support is fully integrated.

References

[1] http://hif.lbl.gov
[2] http://seesar.lbl.gov/ANAG/chombo

8



[3] http://hif.lbl.gov/theory/WARP summary.html
[4] P. McCorquodale, P. Colella, D. P. Grote, J.-L. Vay, “A Node-Centered

Local Refinement Algorithm for Poisson’s Equation in Complex Geome-
tries”, in preparation for submission to the Journal of Computational
Physics.

[5] J.-L. Vay, P. Colella, P. McCorquodale, B. Van Straalen, A. Friedman,
D.P. Grote, “Mesh Refinement for Particle-In-Cell Plasmas Simulation:
application - and benefits for - Heavy Ion Fusion”, Laser and Particle

Beams (2002), 20, 569
[6] J.-L. Vay, A. Friedman, D.P. Grote, “Progress in the Study of Mesh Re-

finement for Particle-In-Cell Plasma
Simulations and its application to Heavy Ion Fusion”, to appear in pro-
ceedings of 7th Int. Comp. Accelerator Physics Conference (2002)

[7] http://hifweb.lbl.gov/webpages/experiments/HCX summary.html

9



Fig. 1. Diagram of WARP/Chombo configuration

Fig. 2. 3-D rendering of HCX injector simulation from a movie
of an end-to-end WARP simulation of the HCX experiment
(http://hifweb.lbl.gov/webpages/theory/simulation movies.html). This shows
the beam, emitted from the source (left), propagating through the first quadrupole
lenses.

10



Fig. 3. a) color contour plot of electric potential with triode structure (blue) and
beam (red); b) schematic of gridding when using AMR: the emitting area and the
beam edge are covered with a finer grid.

11



Fig. 4. beam rms emittance (a figure of merit for beam quality - the lower the better)
as a function of z: the emittance converges downward with increasing resolution.
The high resolution result is recovered with a run at medium resolution and AMR.

12



Fig. 5. Three-dimensional solution of the electrostatic potential in the HCX injector,
as calculated by CHOMBO. A slice with the actual meshing (left) shows that the
regions close to the boundaries of conductors (grey) are described with a finer mesh.
The picture on the right shows a three-dimensional rendering that includes two
orthogonal slices of the solution (with magnitude of electrostatic potential shown
colored, conductors in grey) and the edges of the different domains containing finer
mesh spacing (in this case, mesh refinement covered the conductor edges only in
the area surrounding the source).

13




