
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Network Analysis of Protein Adaptation: Modeling the Functional Impact of Multiple 
Mutations

Permalink
https://escholarship.org/uc/item/6v44q6z6

Journal
Molecular Biology and Evolution, 35(6)

ISSN
0737-4038

Authors
Guthrie, Violeta Beleva
Masica, David L
Fraser, Andrew
et al.

Publication Date
2018-06-01

DOI
10.1093/molbev/msy036
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6v44q6z6
https://escholarship.org/uc/item/6v44q6z6#author
https://escholarship.org
http://www.cdlib.org/


Network Analysis of Protein Adaptation: Modeling the
Functional Impact of Multiple Mutations

Violeta Beleva Guthrie,1 David L. Masica,1 Andrew Fraser,1 Joseph Federico,1 Yunfan Fan,1

Manel Camps,*,2 and Rachel Karchin*,1,3

1Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD
2Department of Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA
3Department of Oncology, Johns Hopkins University Medicine, Baltimore, MD

*Corresponding authors: E-mails: karchin@jhu.edu; mcamps@ucsc.edu.

Associate editor: Miriam Barlow

Abstract

The evolution of new biochemical activities frequently involves complex dependencies between mutations and rapid
evolutionary radiation. Mutation co-occurrence and covariation have previously been used to identify compensating
mutations that are the result of physical contacts and preserve protein function and fold. Here, we model pairwise
functional dependencies and higher order interactions that enable evolution of new protein functions. We use a network
model to find complex dependencies between mutations resulting from evolutionary trade-offs and pleiotropic effects.
We present a method to construct these networks and to identify functionally interacting mutations in both extant and
reconstructed ancestral sequences (Network Analysis of Protein Adaptation). The time ordering of mutations can be
incorporated into the networks through phylogenetic reconstruction. We apply NAPA to three distantly homologous
b-lactamase protein clusters (TEM, CTX-M-3, and OXA-51), each of which has experienced recent evolutionary radiation
under substantially different selective pressures. By analyzing the network properties of each protein cluster, we identify
key adaptive mutations, positive pairwise interactions, different adaptive solutions to the same selective pressure, and
complex evolutionary trajectories likely to increase protein fitness. We also present evidence that incorporating infor-
mation from phylogenetic reconstruction and ancestral sequence inference can reduce the number of spurious links in
the network, whereas preserving overall network community structure. The analysis does not require structural or
biochemical data. In contrast to function-preserving mutation dependencies, which are frequently from structural
contacts, gain-of-function mutation dependencies are most commonly between residues distal in protein structure.

Key words: functional impact of multiple mutations, network analysis, protein adaptation, beta lactamase, antibiotic
resistance.

Introduction
The acquisition of new functions, a process known as ge-
netic adaptation, occurs through the accumulation of muta-
tions. The functional impacts of mutations on organisms or
their protein constituents depends on both the current se-
lective pressures and on the specific sequence contexts in
which these mutations occur (Soskine and Tawfik 2010). In
proteins, complex functional codependencies between
mutations are pervasive but are also challenging to study,
due to the large number of combinations involved
(Weinreich et al. 2013). A unique opportunity to advance
our understanding of protein evolutionary dynamics
presents itself in single-cell, haploid microorganisms. Large
populations produce a high genetic diversity even when
baseline mutation frequency is low, as is the case in bacteria
and yeast (Lynch et al. 2016). Drawing from this genetic
diversity, positive selection can lead to the fixation of a se-
quence of mutations increasing fitness (DePristo et al. 2005,
2007; Orr 2005; Unckless and Orr 2009). Organismal fitness
can be used as a convenient proxy for activity in these model

systems, allowing for genotype–phenotype profiling across
large sections of sequence space. In this way, the principles
governing key aspects of evolution, including genetic
robustness, evolvability, and predictability of evolutionary
trajectories can be studied (Bershtein et al. 2006; Carneiro
and Hartl 2010; Saakian et al. 2012; Crona et al. 2013;
Firnberg et al. 2014; Bank et al. 2016).

In previous work, we used the evolution of the TEM b-
lactamase cluster as a model system for the acquisition of new
functions (Guthrie et al. 2011). Because of low genetic barriers
(in some cases, a single mutation can result in the acquisition
of resistance to a new b-lactam antibiotic), TEM b-lactamases
are a convenient model system for genetic adaptation
(Camps et al. 2007; Fogle et al. 2008; Tomatis et al. 2008;
Jansen et al. 2013; de Visser and Krug 2014). We analyzed
both the inhibitor-resistant b-lactamase and extended-
spectrum b-lactamase (ESBL) phenotypes, with a greater fo-
cus on the ESBL phenotype. In TEM ESBLs, the acquisition of
new extended-spectrum activity leads to broader substrate
specificity, in terms of resistance to additional antibiotics such
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as cefotaxime, which can be used to monitor adaptation
(Salverda et al. 2011; Schenk et al. 2012; Mira et al. 2015). In
addition, experimental and clinical evolution of extended-
spectrum resistance represent analogous adaptation events
in this model system, which allows the use of hybrid (exper-
imental and clinical) mutant databases (Salverda et al. 2010;
Guthrie et al. 2011). Our basic hypothesis was that recent
evolutionary radiation, particularly in the case of drug resis-
tance genes, is indicative of strong positive selection domi-
nated by one or a few discrete types of selections. We
assumed that the co-occurrence of pairs of mutations in
the same TEM sequence was an indication of a potential
functional interaction between them. Pairwise mutation co-
occurrence was used to construct a network model. Higher
order (n¼ 3) combinations with a positive effect on fitness
were then explored by analyzing the network structure. We
showed that central network links represent pairs of muta-
tions leading to increased protein fitness. More generally,
central paths consisting of three linked mutations were help-
ful in identifying functionally important triple mutants in
TEM (Guthrie et al. 2011). Although our approach had sim-
ilarities to earlier network models of mutation covariation
over long evolutionary distances (Lee et al. 2008;
Chakrabarti and Panchenko 2010), these earlier studies fo-
cused on dependencies which preserve protein function
and structural constraints across large protein families. In
contrast, we focused on dependencies critical to the evolu-
tion of new, specialized functions evolving in small clusters of
highly related proteins. A limitation of mutation co-
occurrence network models, regardless of their focus on func-
tion preservation or function acquisition, is that without an
underlying phylogenetic model, it is not possible to determine
how many times a pair of mutations co-occurred indepen-
dently (Kryazhimskiy et al. 2011).

The NAPA method presented here extends our previous
work to incorporate phylogenetic reconstruction into net-
work modeling. We apply it to three functionally related
clusters of b-lactamase sequences: to the original TEM
ESBL, we added the CTX-M-3, and the OXA-51 clusters.
These three recent evolutionary radiations represent parallel
evolution events under selection by different types of b-
lactam antibiotics: oximino-cephalosporins (TEM ESBL,
CTX-M-3) and carbapenems (OXA-51). For each protein clus-
ter, we reconstruct the evolution of extant sequences from a
putative ancestor and count mutations that co-occur along
unique paths from ancestral to descendent sequences on the
phylogenetic trees. The resulting networks are described here
as “phylogeny-based,” although they are distinct from the
well-known “phylogenetic networks,” which generalize phy-
logenetic trees (Legendre and Makarenkov 2002). By reducing
noise caused by overrepresentation in the population caused
by clonal expansion, the phylogeny-based network approach
can potentially produce a more accurate count of parallel
evolution events (Pollock et al. 1999). Furthermore, this ap-
proach intrinsically contains information about likely tempo-
ral ordering of mutations.

The three b-lactamase clusters studied here are serine
hydrolases, in which an acyl-enzyme intermediate between

the b-lactam moiety and the conserved active-site serine
(S70) is hydrolyzed by a reactive water, releasing the product
of hydrolysis to regenerate the active site for the next turn-
over (Galleni et al. 1995; Chen et al. 2007; Schneider et al.
2009). The first two clusters (TEM ESBL and CTX-M-3) are
Class A serine b-lactamases but are distantly homologous,
and the third (OXA-51) belongs to the highly heterogeneous
Class D (Bush and Jacoby 2010; Bush 2013). Each of the three
clusters is the result of rapid genetic diversification, in re-
sponse to widespread clinical use of newer b-lactam antibi-
otics. The original TEM had broad spectrum b-lactam
resistance, i.e. resistance to penicillins and to first-
generation cephalosporins (Matagne et al. 1999). TEM diver-
sification appears to have been driven by expanded-spectrum
cephalosporins and monobactams (Jacoby-Bush 2be group)
and by b-lactamase inhibitors such as clavulamic acid or
tazobactam (Jacoby-Bush 2br group) (Bush and Jacoby
2010). In contrast, the original wild-type CTX-M was already
intrinsically resistant to a third-generation cephalosporin,
cefotaxime (Delmas et al. 2010). Its recent adaptation appears
to have been driven by mutations increasing its hydrolytic
activity against ceftazidime/ceftriaxone while preserving ac-
tivity against cefotaxime (Bonnet 2004). The OXA-51 cluster
is a member of the OXA subfamily of serine b-lactamases,
which are characterized by high activity against oxacyclin.
This subfamily contains >500 unique variants (Naas et al.
2017). Some of these variants (such as the OXA-48 cluster)
have acquired ESBL activity, pointing to cephalosporins or
monobactams as the drivers of rapid genetic diversifica-
tion (Poirel et al. 2012). The OXA-51 cluster studied here
consistently shows carbapenemase activity, suggesting
that its genetic diversification was driven by carbapenem
use in the clinic (Evans and Amyes 2014; Docquier and
Mangani 2016). Thus, while OXA-51 b-lactamases are
functionally analogous to TEM and CTX-M-3, they have
diverged substantially from these clusters and have expe-
rienced a different selection as a source for rapid diversi-
fication. Inclusion of the Class D OXA-51 supports the
generalizability of NAPA, as it allows us to contrast and
compare patterns of ESBL evolution in this cluster to the
two Class A clusters.

The NAPA method provides novel tools to build
phylogeny-based mutation co-occurrence networks, and to
derive fundamental properties of protein evolution from
these networks. It can also be used to build networks based
only on protein sequence alignments. In the three clusters
analyzed here, NAPA identified key adaptive mutations
against a background of dozens or even hundreds of reported
mutations, as well as pairwise and higher order functional
interactions. We were also able to predict higher order tra-
jectories likely to increase fitness. These observations were
consistent across all three clusters and we believe that they
are more broadly applicable to proteins that have experi-
enced rapid diversification under a dominant positive selec-
tion. Importantly, although we interpret our findings with
respect to functional and structural information from the
literature, our network analysis does not rely on structural
or biochemical data. This feature makes our tools applicable
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to a wide range of proteins, many of which have limited
structural and/or biochemical information.

Results and Discussion

TEM ESBL Networks
To ascertain the possible advantages of phylogeny-based mu-
tation co-occurrence networks with respect to networks built
without a phylogenetic model (alignment-based networks),
we generated both networks for TEM ESBLs (fig. 1A and B).
Node centralities in both the alignment-based and the
phylogeny-based networks identified mutations known to
be critical for ESBL adaptation: G238S, E104K, and E240K
(Page 2008; Dellus-Gur et al. 2013, 2015) (supplementary table
1, Supplementary Material online). A fourth position also
known to be important for adaptation, R164, appeared in
different locations within the network, depending on the
amino acid substitution: R164S, H, or C (Salverda et al.
2011; Dellus-Gur et al. 2013, 2015). Mutations in these posi-
tions (164, 238, and 240) either move the X-loop (164) or
reposition the b-strand b3 within the active site (238, 240)
(Matagne and Frere 1995; Matagne et al. 1998). Additionally,
both networks identified mutations that compensate for
pleiotropic effects of multiple adaptive mutations. Although
not directly adaptive, these mutations are critical under
strong selective pressure. Mutation M182T represents a
global suppressor that compensates for decreased thermody-
namic stability introduced by the adaptive mutations (Huang
and Palzkill 1997; Brown et al. 2010). Mutations at residue
E104 have both gain-of-function and compensatory effects
(Petit et al. 1995; Schenk et al. 2015). Although both networks
reinforce the identification of functionally important muta-
tions, there are differences in the connectivity of specific
mutations. In this framework, connectivity refers to “hub-
ness” in the network, as measured by the weighted degree
centrality. On one hand, the connectivity of a mutation
known to have a minor role in adaptation, such as Q39K
or T265M, tends to be notably lower in the phylogeny-
based network. Q39K is mildly adaptive, and its high preva-
lence in the clinic is likely due to clonal expansion (Blazquez
et al. 1995), and T265M is a global suppressor, which occurs
infrequently (Brown et al. 2010; Salverda et al. 2010). On the
other hand, the network connectivities (weighted degrees) of
two of the critical adaptive mutations, R164C and R164H, are
increased in the phylogeny-based network. More specifically,
the link between R163H and R164C is also stronger in the
phylogeny-based network, which makes functional sense as
these are adjacent residues in the X-loop.

Adaptive mutations are found in corresponding densely
linked communities in both networks. One community con-
tains E104K and G238S; a second contains E240K and R164S;
and a third contains R164H. G238S and mutations at position
R164 confer a fitness advantage but are known to be mutually
exclusive (Dellus-Gur et al. 2015), consistent with the idea
that network communities may reflect contingent evolution.
Conversely, links between mutations in different communi-
ties point to overlaps in distinct adaptive trajectories. Such
overlaps could result from functional interactions that are

preserved in different sequence contexts, for example com-
pensatory interactions mediated by structurally stabilizing
mutations. Interestingly, there are fewer links between com-
munities in the phylogeny-based networks, in and commu-
nities are better defined as measured by the network
community modularity metric (see Materials and Methods,
Network Analysis). The modularity of the alignment-based
network is only 0.13, compared with 0.28 for the phylogeny-
based network.

CTX-M b-Lactamase Networks
CTX-M b-lactamases are mechanistically similar to TEMs, but
only distantly homologous. CTX-Ms have independently ac-
quired ESBL resistance during their more recent evolutionary
radiation (Bonnet 2004). Using NAPA, we generated a net-
work model of the CTX-M-3 cluster, which contains the larg-
est number of CTX-M sequences. In the alignment-based
network (fig. 1C), five nodes stand out for their high connec-
tivity: D240G, A77V, N114D, A140S, and D288N. Of these,
D240G and A77V have the highest connectivity, suggesting
their impacts on adaptive evolution of protein function are
most prominent. Indeed, D240G is known to confer increased
resistance to ceftazidime, by allowing this bulkier b-lactam to
be more easily accommodated within the active site (Chen
et al. 2005; Delmas et al. 2008). The A77 residue is known to
contribute to the formation of the active site cavity, providing
key hydrophobic interactions that stabilize its core architec-
ture (He et al. 2015).

In the CTX-M-3 phylogeny-based network (fig. 1D), when
compared with the alignment-based network, both the num-
ber of links and link weights are dramatically reduced. At the
same time, strong links between the known adaptive muta-
tions A77V, D240G, and D288N are maintained. Both net-
works identified the same two communities, containing
D240G, and A77V-D288N, respectively). However, the size
of the A77V-D288N community was significantly reduced
in the phylogeny-based network, from 16 to 8 linked nodes.
Of the latter 8 nodes, five have been previously shown to
occur in the two distinct adaptive solutions leading to in-
creased ceftazidime resistance (Novais et al. 2010). One of
these contains D240G, whereas the other requires P167S.
P167S is preserved in both networks, but only a very weak
signal is detected for trajectories containing this adaptive mu-
tation. P167S shifts resistance from cefotaxime to ceftazidime
and leads to a local fitness optimum. Therefore, mutants
containing this mutation have very limited potential to con-
tinue to evolve higher levels of resistance to both antibiotics
(Novais et al. 2010).

The star-like topology in the D240G community is pre-
served in both the alignment-based and the phylogeny-based
networks, and it reveals a set of mutations existing only in the
context of this adaptive mutation. The increased mobility and
flexibility of the D240G mutation is known to lead to a sub-
stantial side-chain reorganization (Delmas et al. 2008). The
mutations that are weakly linked to D240G likely lead to
minor structural readjustments, and possibly represent a va-
riety of redundant solutions.
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OXA b-Lactamase Networks
OXA b-lactamases are a diverse subfamily of serine b-lacta-
mases characterized by high activity against oxacyclin and are
undergoing very rapid evolutionary radiation (Barlow and
Hall 2002; Evans and Amyes 2014). The OXA-51 cluster is

the largest and most diverse within molecular class D and
appears to be evolving under carbapenem selective pressure
(Walther-Rasmussen and Hoiby 2006; Evans and Amyes 2014;
Docquier and Mangani 2016). The OXA-51 alignment-based
(fig. 2A) and undirected phylogeny-based (fig. 2B)

FIG. 1. NAPA-generated mutation networks of TEM ESBL and CTX-M-3 adaptive evolution. (A) TEM ESBL alignment-based network. (B) TEM ESBL
undirected phylogeny-based network. (C) CTX-M-3 alignment-based network. (D) CTX-M-3 undirected phylogeny-based network. Nodes rep-
resent individual mutations with respect to the ancestral protein sequence, and links represent predicted functional interactions (see Materials
and Methods). Node size is proportional to the node’s connectivity (weighted degree centrality); color represents the assignment of a node to a
densely linked community in the network. Link thickness is proportional to the link’s weight, which corresponds to mutation co-occurrence
counts. In alignment-based networks, links are weighted by the number of times two mutations are seen together in the same protein sequence. In
undirected phylogeny-based networks, links are weighted by the number of times two mutations are found in the same path leading from an
ancestral to descendant sequence on the phylogenetic tree. In TEM, G238S, and R164S/H/C, and E240K are adaptive mutations, increasing
resistance to extended-spectrum antibiotics, whereas M182T, and T265M are stabilizing and compensate for the decreased thermodynamic
instability induced by some of the adaptive mutations. E104K is both adaptive and stabilizing. In CTX-M-3, D240G increases resistance to the
extended-spectrum antibiotic cefotaxime while reducing resistance to ceftazidime. Mutations in P167 are antagonistic to D240G, increasing
resistance to ceftazidime, with little effect on resistance to cefotaxime. A77V stabilizes the active site. N114D, A140S, and D288N are frequently
found in combination with D240G or P167S/T leading to dual resistance to cefotaxime and ceftazidime (Results and Discussion, ESBL TEM b-
lactamase networks).
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networks are both much larger than for the TEM and CTX-
M-3 clusters. This greater complexity reflects the increased
genetic diversification of OXA-51 evolution. Compared
with alignment-based network, OXA-51’s phylogeny-
based network has fewer highly connected nodes. This
appears to be a general trend, as this reduction was also
seen in TEM and CTX-M (fig. 1B and D).

Although network communities are largely preserved
across all OXA-51-like networks, they are better defined in
the phylogeny-based networks, for which the network
modularity increases from 0.37 to 0.55 (see Materials
and Methods, Network Analysis). Five large communities
(containing five or more nodes) were detected in both the
alignment- and the phylogeny-based networks. One com-
munity (green in fig. 2) contains the highly connected
node D225N. A second community (red), contains
D105N, D117N, and K146N. A third community (blue),
contains E36D and Q57H. A fourth community (orange)
clusters around A48V and Q194P, and the fifth commu-
nity contains another mutation in residue Q194 (Q194L).
According to a recent review, the D225N and D117N
mutations are in positions likely to be involved in specif-
icity for the carbapenem b-lactam antibiotic, and D225N
increases the flexibility of the active site entrance. The
L187V mutation (in the undirected phylogeny-based

network green community) increases the space between
the S80 catalytic residue and the end of the active site
cleft; K146 is in the active site X-loop spanning positions
144 through 160, with mutations K146N and K146D af-
fecting substrate specificity. Finally, Q194 is in a region
known to be important for dimer formation (residues 180
through 200) (Evans and Amyes 2014).

Directed Phylogeny-Based Networks
Although mutation co-occurrence networks can point to
functional dependencies, they do not include information
about the temporal order in which two mutations were
fixed. NAPA derives temporal ordering from inferred or-
dering of mutations along distinct paths from internal to
leaf sequences in a phylogenetic tree (see Materials and
Methods, Network Construction). This approach was
most successful in the OXA-51-like network (fig. 3),
whereas both the TEM and CTX-M-3 clusters exhibited
low genetic diversity and convergent evolution. The phy-
logenetic trees for these clusters were very shallow and
did not contain sufficient information to determine the
preferred temporal ordering of mutations on the tree. For
this reason, the phylogeny-based networks contained di-
rected links pointing in both directions and with similar
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FIG. 2. NAPA-generated undirected mutation networks of OXA-51 adaptive evolution. (A) OXA-51 alignment-based network. (B) OXA-51
undirected phylogeny-based network. Node and link representations are the same as figure 1. OXA-51, D117N, K146D/N, L187V, Q194P, and
D225N mutations are under positive selection for resistance to carbapenem antibiotics, altering the conformation of the active site, and in the case
of, Q194, affecting dimer formation (Results and Discussion, OXA b-lactamase networks).
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weights (supplementary figs. 1 and 2, Supplementary
Material online).

In all three protein clusters, directed phylogeny-based net-
works further reduced the number and strength of the links
connecting most mutation pairs, whereas preserving strong
links involving known adaptive mutations. In the case of the
TEM and CTX-M-3 clusters, the reduction in number and
weight of links was subtler because the corresponding phy-
logenetic trees were shallow, but in the OXA-51-like cluster
the trend toward reduction while preserving key functional
links was most striking. Indeed, OXA-51’s directed phylogeny-
based network preserved strong links connecting D225N with
E36V, E36V with L167V; and Q194P with A48V. These adap-
tive mutations are described in detail above. The higher

proportion of known adaptive mutations among the most
highly connected pairs suggests that the directed phylogeny-
based network improves on the undirected phylogeny-based
network by reducing the number of spurious interactions.
Surprisingly, given the large size of the OXA-51 cluster, the
directed phylogeny-based network largely preserved the mu-
tation assignments to each of the four major communities
seen in the alignment-based and in the undirected
phylogeny-based networks.

Central Links and Fitness-Increasing Double Mutants
in the OXA-51 Cluster
NAPA was used to identify linked pairs of mutations that
were central in the OXA-51 alignment-based, and the

FIG. 3. NAPA-generated directed mutation network of OXA-51 adaptive evolution. Directed phylogeny-based network, where link direction
represents the temporal ordering of mutations on the phylogenetic tree. Node and link representations are the same as figure 1, with addition of
link direction. Link arrows start at the inferred earlier mutation and point to the inferred later mutation. As in figure 2, D117N, K146D/N, L187V,
Q194P, and D225N are mutations under positive selection for resistance to carbapenem antibiotics, altering the conformation of the active site,
and in the case of, Q194, affecting dimer formation (see Results and Discussion, OXA b-lactamase networks).
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undirected/directed phylogeny-based networks. We investi-
gated whether there was enrichment for fitness-increasing
double mutants in these central links. Because a double mu-
tant found as a clinical isolate is highly likely to have been
selected for increased fitness, we looked for pairs of mutations
that occurred together against a wild-type background in the
OXA-51 clinical isolates. We found that while the total num-
ber of central network links dramatically decreased from
alignment-based to phylogeny-based undirected to
phylogeny-based directed, the number of central links ob-
served in clinical isolates was similar for all three networks
(table 1). Therefore, the percent of central links that were
clinically observed as double mutants increased (4%, 8%,
and 14%, respectively). This observation suggests that undi-
rected phylogeny-based networks are enriched for function-
ally relevant links, and that directed networks represent even
further enrichment.

High-frequency single mutations found in clinical isolates
are likely to increase fitness in isolation or when combined
with other mutations (Gerrish and Lenski 1998; Wilke and
Adami 2001; Guthrie, et al. 2011; Jain, et al. 2011). However,
our central link analysis was more effective at identifying
fitness-increasing double mutants, than simply considering
pair combinations of high-frequency mutations. We com-
pared the enrichment for clinical isolates in central network
links to enrichment for isolates in pairs of mutations that
individually occurred at high-frequency (see Materials and
Methods, A Mutation Frequency-based Control for
Central Network Paths). A list of double mutants ranked
according to network link centrality was compared with a
list of double mutants ranked by the product of individual
frequencies. The proportion of double mutants seen as
clinical isolates was always many fold lower in the
frequency-based list (table 1). In addition, the directed
phylogeny-based network produced the highest proportion
of network central links seen as clinical isolates, suggesting
that consideration of the temporal ordering of adaptive
trajectories provided additional information for identifying
fitness increasing double mutants.

Central Paths and Fitness-Increasing Triple Mutants in
the OXA-51 Cluster
Generalizing the hypothesis above from double mutants to
triple mutants, we looked for fitness-increasing triple

mutants, using paths through the network that consisted
of three linked nodes, ranked by betweenness centrality
(see Materials and Methods, Network Analysis). NAPA was
used to compute triplet centrality for the OXA-51 alignment-
based, undirected phylogeny-based, and directed phylogeny-
based networks, and the frequency-based control was
extended to triplets (table 2). Although the number of central
triplets decreased as we moved from alignment-based to un-
directed and directed phylogeny-based networks, the fraction
of triplets that had been observed in clinical isolates increased.
The trend matched what was observed in the double
mutants and suggests that our conclusions based on muta-
tion pairs may be generalizable to higher order interactions.

Comparing Predictions by Network Type
Our metric of predictive success is the proportion of central
network paths representing double or triple mutants that have
been observed as clinical isolates (tables 1 and 2). We expect
that combinations of mutations that appear as clinical isolates
have been selected for conferring increased antibiotic resis-
tance. Therefore, they can be used to evaluate the predictive
success of a network centrality metric. However, they cannot be
applied as a gold standard to compare false positive and false
negative rates of different networks. Evolution has not neces-
sarily discovered all possible fit sequences for a protein cluster,
thus the number of sequenced clinical isolates increases over
time and is incomplete. Network predictions that a central
path is fitness-increasing are not guaranteed to be false positives
if they do not match a clinical isolate in current databases.
Although known clinical isolates that are not predicted by
network centralities are indeed false negatives, the false negative
rates of alignment-based, undirected phylogeny-based, and di-
rected phylogeny-based networks cannot be reliably compared.
The reason is that for a given protein cluster, each network type
will have a different size, and larger networks are more likely to
have lower false negative rates by chance (because they have
more central links). By considering the proportion of central
paths in clinical isolates for each network type, it is possible to
compare networks of different types and sizes.

Utility and Potential Pitfalls of Phylogeny-Based
Networks
Spurious interactions between mutations resulting from in-
heritance, rather than functional constraints, are a major issue

Table 1. Network Link and Path Centralities Identify Fitness-Increasing Double Mutants in OXA-51.

Network Type Total Number of
Network Links

# Central
Network Links

Proportion of Double Mutants Observed as Clinical Isolates

By Network Link
Centrality

By Frequency of
Constituent Mutations

Alignment-based 413 408 3.9% (16 of 408) 2.9% (14 of 408)
Phylogeny-based, undirected 168 141 7.8% (11 of 141) 4.9% (7 of 141)
Phylogeny-based, directed 174 78 14% (11 of 78) 3.8% (3 of 78)

NOTE.—The alignment-based, phylogeny-based undirected, and phylogeny-based directed networks are compared by total number of links (pairs of linked nodes) in the
network, number of links that are central to the network topology (see Materials and Methods), and the proportion of central links that occur as double mutants in clinical
isolates. The hypothesis is that a double mutant that occurs against a wild-type background in OXA-51 clinical isolates represents a true positive fitness-increasing mutation
pair. Ranking double mutants by frequency of their constituent mutations was a less effective predictor of fitness-increasing pairs than link centrality. The phylogeny-based
networks and the directed phylogeny-based network in particular produced the highest proportion of network central links seen as clinical isolates.
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for networks that only consider the alignment of extant
sequences and not the inferred phylogeny. Indeed, if only
alignments are used, a pair of mutations co-occurring in mul-
tiple sequences may be erroneously inferred to have been
independently selected multiple times, when in fact it was
fixed only once early on in evolution of the protein cluster.
When NAPA is used to construct a phylogeny-based network,
only co-occurrences within the same path from an ancestral
to a root node in the phylogenetic tree are considered (see
Materials and Methods, Network Construction). Therefore, a
mutation pair that was fixed early on will receive a
co-occurrence count (link weight) of 1, while a pair that is
positively selected and recurs in multiple different sequence
contexts (multiple nonoverlapping paths) will receive a
higher co-occurrence count.

Potential caveats with using phylogenetic trees to recon-
struct networks of functionally interacting pairs of mutations
occur in protein clusters exhibiting convergent evolution,
where multiple sequences can be ancestral to a given descen-
dant sequence. Convergent evolution cannot be represented
with tree models, which require that every protein sequence
have a single ancestor. However, in our directed mutation
network model, the single ancestor constraint is lifted, and we
allow mutations from multiple ancestors to be linked to the
same descendant mutation. The only remaining caveat is that
some temporal orderings of mutation pairs based on the
phylogenetic tree may not have been properly resolved. For
this reason, the directed phylogeny-based network for the
TEM cluster, which is known to exhibit convergent evolution,
has mutation pairs with links pointing in either direction,
and often with similar weights (supplementary fig. 1,
Supplementary Material online).

Interpreting Network Output: Prioritizing Mutations
and Central Paths
The network models assign a network centrality score to each
mutation, but the raw score may not be sufficient to identify a
tractable set of prioritized mutations, particularly in a large
sequence cluster. Mutation scores can be thresholded by
transforming them to P values, which quantify the probability
of observing the score (or a better score) by chance. This can
be accomplished by generating an equivalent Erd}os–R�enyi
(ER) random network model and calculating a distribution
of degree centrality scores, which in turn can be used to
compute the P value for any score of interest. Equivalently,
the distribution can be calculated analytically (e.g., as in
Garlaschelli 2009). NAPA provides P values for mutation

degree centrality scores by default. A standard P value thresh-
old of statistical significance, such as p� 0.05, can then be
applied. To our knowledge, there is no statistically principled
method for fast computation of P values for path centralities.
Using k-path centrality scores to rank double or complex
mutants (links or paths) (see Materials and Methods,
Network Analysis) is likely to yield an intractably long list,
particularly for large networks. A much shorter list can be
generated by using shortest-path centrality scores, and they
can be simply prioritized by considering only paths with cen-
trality scores >0. To reduce the number of paths further,
paths that do not contain mutations with significant degree
centralities, can be filtered out at this stage. Finally, as NAPA
also finds communities of densely linked mutations, a re-
searcher may choose to focus on a specific community of
interest within a larger network and prioritize the central
mutations/links/paths in that community.

Key Properties of Adaptive Evolution Derived from
NAPA
We used NAPA to study protein adaptation in three clusters
of b-lactamase homologs, which have all experienced recent
evolutionary radiation (TEM ESBL, CTX-M-3, OXA-51). We
hypothesized that each cluster originated in a diversification
event that depended on a few key mutations, which would
appear in the networks as highly connected nodes. Indeed,
in TEM and CTX-M, the most highly connected nodes rep-
resented mutations well documented as playing important
roles in adaptive evolution, based on functional and
structural studies (fig. 1 and supplementary tables 1 and 2,
Supplementary Material online). In OXA-51, which is the least
studied of the three clusters, the highly connected nodes were
mutations previously identified as positively selected by non-
synonymous to synonymous ratio (dN/dS) and whose func-
tional importance has been rationalized by inspection of
OXA-51 protein structures (fig. 2 and supplementary table
3, Supplementary Material online) (Evans and Amyes 2014).
Additionally, in each of the clusters we analyzed, different
adaptive mutations had a tendency to be assigned to different
network communities. These large, well-defined communities
may correspond to alternative evolutionary strategies, or to
divergent selective pressures.

There were notable differences in the global network struc-
ture between the three protein clusters, reflecting distinct
characteristics of adaptive evolution in each cluster. In TEM
and CTX-M, despite a small number of mutations, there were
many strong links between mutations in different

Table 2. Network Link and Path Centralities Identify Fitness-Increasing Triple Mutants in OXA-51.

Network Type Total Number of
Network Triplet Paths

# Central Network
Triplet Paths

Proportion of Triple Mutants Observed as Clinical Isolates

By Triplet Network
Path Centrality

By Frequency of
Constituent Mutations

Alignment-based 8184 6696 1.2% (80 of 6696) 0.16% (11 of 6696)
Phylogeny-based, undirected 1278 954 4.2% (40 of 954) 0.9% (8 of 954)
Phylogeny-based, directed 568 158 8.2% (13 of 158) 3.8% (6 of 158)

NOTE.—The network link analysis extended to central network paths consisting of two adjacent links (three nodes linked in a path) representing triple mutants.
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communities. This network structure could reflect conver-
gent adaptive trajectories, which cover a small number of
possible adaptive sequence solutions. In this scenario, evolu-
tion has explored numerous combinations of a small set of
distinct mutations, including the major gain-of-function
mutations at residues G238 and R164 in TEM, or D240
and P167 in CTX-M. It is possible further sequence space
could not be explored due to genetic constraints. Escape
from this limited region of sequence space may require
engineered solutions, such as initial selection for decreased
resistance in a directed evolution experiment (Steinberg
and Ostermeier 2016). In OXA-51, there is a larger number
of nodes, and network communities appear to be better
separated, with fewer strong links across different commu-
nities. This global structure could reflect divergent adap-
tive trajectories resulting from a combination of multiple
factors, such as equivalent adaptive solutions and complex
selections (multiple hosts, multiple b-lactam drugs, and
fluctuating selective pressures). OXA b-lactamases in gen-
eral may be more versatile in their evolution of new func-
tions, as other members of the OXA family have also
evolved ESBL activity independently. This versatility may
have arisen in response to exposure to different types of
b-lactamases than TEM or CTX-M.

Studies of mutation coevolution and covariation in
proteins have largely focused on pairs of compensatory
mutations that preserve protein function and fold
(de Juan et al. 2013). These pairs tend to be in physical
contact, and they play a critical role in the structural con-
straints governing protein folding and stability. Recently,
improvements in their identification have advanced the
field of protein structure prediction (Hopf et al. 2014). In
contrast, NAPA identifies pairs and higher order combina-
tions of mutations whose dependencies contribute to the evo-
lution of new functions. Based on analysis of available high-
resolution (<2 Å) protein X-ray crystal structures in the
Protein Data Bank (Berman et al. 2000) (PDB ID 1m40 for
TEM-1, Minasov et al. 2002; PDB ID 5kzh for OXA-51, June
et al. 2016), we find that most of these mutations do not
form physical contacts. The mean pairwise distance between
mutated residues in the pairs predicted as coevolving by
NAPA was 18.3 Å for TEM-1 and 27.7 Å for OXA-51.

In summary, we have developed NAPA, a new method
and open source software package to analyze protein evo-
lution under strong selective pressures with network
modeling. We demonstrate here how it can be applied
to help characterize the evolutionary process of three b-
lactamase protein clusters as they acquire mutations and
develop resistance to antibiotic treatments in the clinic.
NAPA was able to identify functionally important muta-
tions and their interactions as well as characterize higher
order interactions in likely trajectories leading to increased
fitness. NAPA also revealed important differences between
the clusters, with respect to mechanisms by which se-
quence space was explored in their adaptive evolution.
In the future, we expect to apply NAPA to additional ho-
mologous clusters of proteins rapidly evolving new func-
tions under strong selective pressures.

Materials and Methods

Data Collection
TEM sequences were downloaded from the Lahey clinic data-
base (http://www.lahey.org/Studies/; last accessed May 24,
2015). CTX-M Class A and OXA Class D sequences were
downloaded from the Beta-Lactamase Data Resources sec-
tion of the NCBI Pathogen Detection database (ftp://ftp.ncbi.
nlm.nih.gov/pathogen/betalactamases/; last accessed April
10, 2016). To directly compare the alignment- and
phylogeny-based approaches, we excluded laboratory-
engineered sequences, which could not be incorporated
into the same phylogenetic model as sequences from natu-
rally occurring clinical isolates. Because we used coding DNA
sequences for phylogenetic inference, only the mutants for
which the nucleotide sequence was available were included.
Therefore, the total number of sequences used was less than
in our previous report (Guthrie et al. 2011). For Class A b-
lactamase sequences, codon positions were renumbered to
correspond to the standard Ambler numbering scheme
(Ambler et al. 1991). For the Class D sequences, there is no
single standard scheme and we renumbered codons based on
a structural alignment, as suggested in (Evans and Amyes
2014). Clusters within CTX-M and OXA families were identi-
fied with a neighbor-joining tree and matched to known
phylogenetic groups.

Network Construction
We constructed networks of functionally interacting muta-
tions from either protein multiple sequence alignments,
resulting in undirected alignment-based co-occurrence net-
works, or from a phylogeny with associated alignments of
internal and leaf phylogeny node protein sequences, resulting
in directed or undirected phylogeny-based networks (supple-
mentary fig. 3, Supplementary Material online). The “build”
module of NAPA was used to construct all networks, setting
the network type (“net_type”) to either “aln” for alignment-
based, or “phylo” for phylogeny-based networks. The link type
(“edge_type”) was set to undirected (available for both, align-
ment- and phylogeny-based, networks) or directed (only
available for phylogeny-based networks).

To construct alignment-based networks, input protein
sequences were aligned with ClustalW, using TEM-1, CTX-
M-3, and OXA-269 as the ancestral sequence for each cluster
(Thompson et al. 1994). The networks were constructed
based on missense mutations only, so that each network
node represents an amino acid substitution at a specific co-
don position. At each position in the alignment, amino acid
residues that did not match the ancestral sequence were
identified, and gapped positions were skipped. Each mutation
was represented as a network node, and two nodes were
linked in the network if the corresponding mutations co-
occurred in at least one distinct alignment sequence. The
link was weighted by the number of sequences in which
the mutation pair co-occurred (supplementary fig. 4,
Supplementary Material online).

To construct phylogeny-based networks, we first built
outgroup-rooted phylogenies with reconstructed ancestral
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sequences on the internal phylogeny nodes (see Phylogeny
and Ancestral Sequence reconstruction). If coding DNA is
used to build the phylogeny, every sequence at an internal
or leaf node is translated to protein sequence. Given an input
phylogeny with reconstructed internal sequences, we identi-
fied the missense mutations differentiating each internal se-
quence from its immediate descendants (can include other
internal or leaf node sequences). Pairs of mutations co-
occurring along a single path from an ancestor to a unique
descendant were initially gathered. An empirically deter-
mined distance threshold was then applied, such that pairs
of mutations that occurred on the same path but too far
apart on the tree were not counted as co-occurring. For our
choice of distance threshold, we wanted to ensure that all
mutation pairs, in which one mutation immediately followed
the other on a given tree path are included. The distance
threshold was therefore defined as the maximum sum of
the lengths of any pair of adjacent links in the phylogeny.
For all three protein clusters 0.01 was used as the thresh-
old that guaranteed inclusion of all adjacent links on the
phylogeny. Similar to the alignment-based network,
phylogeny-based network links were weighted by muta-
tion co-occurrence counts and limited to mutation pairs
co-occurring on a single phylogeny path, within the chosen
distance threshold (supplementary fig. 5, Supplementary
Material online).

Network Visualization
All visualization was done in Cytoscape 3.5.1 (Shannon et al.
2003), using default layouts and applying visual mappings to
nodes and links. A continuous mapping was applied to node
size, which is proportional to that node’s weighted degree
centrality. Node colors are based on a discrete mapping of
its community assignment. Link thickness proportional to
that link’s weight in the network using a continuous mapping.

Network Analysis
All analysis was done in the “analyze” module of NAPA turn-
ing on both the options for community detection
(“cluster_nodes” and “calculate_centralities” both set to
“yes”). The community partitioning algorithms are based on
Louvain hierarchical modularity optimization (Blondel et al.
2008) as implemented in NetworkX (Hagberg et al. 2008).
Community-finding algorithms optimize a metric known as
modularity, which quantifies the difference between link den-
sities within versus between communities (Blondel et al.
2008). As fewer established methods for community detec-
tion exist in directed networks, these networks were auto-
matically converted in NAPA to their undirected
representation before community detection.

For identification of putative functionally important muta-
tions the weighted degree centrality of the corresponding
nodes was used:

CS vð Þ ¼ RN
u¼1auvwuv; (1)

where u and v are nodes in the network, auv is 1 if u and v are
linked, otherwise 0, and wuv is the weight of the link between

u and v. We used an analytical null to assess the significance of
a node’s weighted centrality. The null distribution is based on
Erd}os–R�enyi (ER) random networks with constrained num-
ber of nodes and probability of link formation (Garlaschelli
2009).

To find central sets of connected nodes in the network, the
k-path betweenness centrality was applied (Alahakoon et al.
2011). Unlike the more widely used shortest-path between-
ness centrality, k-path betweenness centrality is based on
multiple random walks of up to k steps, rather than only
the minimum distance walks through the network. For sets
of network nodes connected in a network path P, both k-
path and shortest-path betweenness centrality are defined as:

CB Pð Þ ¼
X

s;t 62 P

rstðPÞ
rst

; (2)

where rst(P) is the number of distinct paths (shortest or
random, respectively) connecting all pairs of network nodes
(s, t) passing through path P. rst is the total number of (short-
est or random) paths connecting nodes s and t. P can consist
of a single node, and edge, or multiple adjacent edges.

A Mutation Frequency-Based Control for Central
Network Paths
To assess the contribution of network modeling to the pre-
diction of fitness increasing combinations of mutations, we
compared a list of double mutants ranked by network link
centrality to a list of double mutants ranked by the product of
individual frequencies. These top-ranked frequency-based
double mutants were used as our control. Because the num-
ber of pairwise combinations of mutations is much greater
than the network links with centrality >0, we applied a
threshold to the ranked frequency-based list: We picked
the top n mutation pairs, as ranked by frequency, with n
being the number of links that were central in the network.
This allowed us to directly compare the enrichment in both
rankings.

Phylogeny and Ancestral Sequence Reconstruction
NAPA can build phylogeny-based networks from either a
single phylogenetic tree or a Bayesian ensemble of trees sam-
pled from the posterior probability distribution. Due to low-
sequence divergence in the TEM and CTX-M-3 clusters, the
coding DNA rather than protein sequence alignment was
used as input for phylogeny inference and ancestral recon-
struction. The phylogenetic trees in each protein cluster were
outgroup rooted. A closely related protein cluster to the pro-
tein of interest was found by constructing an identity-based
neighbor joining (NJ) tree from the alignment of the protein
cluster with a set of homologous protein clusters. For TEM,
the NJ trees included SHV and CARB-type b-lactamases; for
CTX-M-3 and OXA-51-like the NJ tree included all CTX-M
and OXA clusters, respectively. In this way, the SHV-1, CTX-
M-14, and OXA-213 coding DNA sequences were identified
as outgroups for the TEM, CTX-M-3, and CTX-M-51-like
clusters, respectively.
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The TEM phylogeny was inferred using the MrBayes
Metropolis-coupled MCMC method (Huelsenbeck and
Ronquist 2001), whereas the CTX-M-3 and OXA-51-like phy-
logenies were constructed with GARLi, a genetic algorithm for
maximum likelihood inference method (Zwickl 2006). For
each cluster, the input coding DNA sequence alignment
was partitioned by codon position (Lanfear et al. 2012) and
the generalized time reversible model of nucleotide substitu-
tion with gamma-distributed rates and a proportion of in-
variant (invariable) sites (GTRþGþI) was used. For the TEM
cluster, six independent runs were performed in MrBayes,
each for 30 million generations, including 15 million genera-
tion burn in. Trees were thinned to every 20,000th generation,
to remove autocorrelation between phylogeny parameters.
Burn-in and thinning parameters were determined from stan-
dard MCMC convergence diagnostics. The genetic algorithm
run parameters for the CTX-M-3 and OXA-51-like clusters
were population size of 4 individuals, selection intensity of
0.25, 2 million generations.

After phylogenies were reconstructed for each cluster, cod-
ing DNA sequences on the internal nodes of the trees (an-
cestral sequences) were inferred by maximum likelihood
(Knight et al. 2007). The same nucleotide substitution model
(GTRþGþI) was applied as the one used for phylogeny re-
construction. The leaf and reconstructed internal node
sequences were translated to protein sequences and included
in the input to NAPA, along with the phylogenetic trees
(supplementary fig. 3, Supplementary Material online).

Network Analysis of Protein Adaptation
All methods described in this work, are available for nonprofit
use in an open source software package Network Analysis of
Protein Adaptation (NAPA) at https://github.com/
KarchinLab/NAPA. For a protein cluster of interest, the user
provides a multiple sequence alignment or an alignment with
a corresponding phylogenetic tree or tree ensemble and
reconstructed ancestral sequences. NAPA produces a net-
work model of the cluster, where each mutation is repre-
sented as a network node, and where mutation co-
occurrences are represented as links between pairs of nodes.
The weight of each link corresponds to the inferred strength
of functional association between the corresponding pair of
mutations. Temporal ordering can be inferred from the phy-
logenetic tree, based on the order in which individual pairs of
mutations are ordered on the tree. The network model spec-
ification is exported as a simple text file, which can be
imported into network visualization software, such as
Cytoscape (Shannon et al. 2003). Additionally, NAPA pro-
vides customized tools, based on graph theory, to identify
highly connected nodes, mutation communities, and multi-
ple network centrality metrics to assess interactions of likely
functional relevance.
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