
UC Irvine
ICS Technical Reports

Title
Structured modeling for VHDL synthesis

Permalink
https://escholarship.org/uc/item/6v46p1q1

Authors
Lis, Joseph S.
Gajski, Daniel D.

Publication Date
1989-06-11

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6v46p1q1
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Structured Modeling
.-------

for

VHDL Synthes~

by

Joseph S. ~Lis
Daniel D. Gajsfi

Technical Report 89-14

Information and Computer Science
University of California at Irvine

Irvine, CA 92717
(714) 856 706;3

no,

Abstract: This report will describe a proposed modeling style for the use of
the VHSIC Hardware Description Language (VHDL) in design syn­
thesis. We will describe the operations and underlying assump­
tions of four design models currently understood and used in prac­
tice by designers: combinational logi,c, functional descriptions
(involving clocked components such as counters), register transfer
(data path) descriptions, and behavioral (instruction set or proces­
sor) designs. We will illustrate the various uses of the VHDL
description styles (structural, dataflow and behavioral) to
represent characteristics of each of these design models. Emphasis
is placed on how VHDL constructs should be used in order to syn­
thesize optimal designs.

, I

I

TABLE OF CONTENTS

1. Introduction 1

1.1. Motivation ... 2
2. VHDL Design Models .. 5
2.1. Design Hierarchy ... 5
2.2. Design Model .. 8
2.3. Design Model Representation ... 9
2.3.1. Behavior ... 10
2.3.2. Data:flow ... 11
2.3.3. Structure .. 11
2.4. Mixture of VHDL Design Styles ... 12
3. Structured Modeling for Synthesis .. 15
3.1. Combinational Logic ... 15
3.1.1. Model .. 15
3.1.2. VHDL Alternatives .. 16
3.2. Functional Model .. 19
3.2.1. Design Model .. 19
3 .3. Register Transfer Model 24
3.3.1. Model .. 24
3.4. Behavioral Design ... 31
3.4.1. Model .. 31
3.4.2. VHDL Description ... 31
4. Conclusion .. 34
5. References ... 0..................................... 35

June 11, 1989 Page i

LIST OF FIGURES

Figure 1: VHDL Design Hierarchy ... 6
Figure 2: VHDL Design Entity Block Structure .. 7
Figure 3: VHD L Design Model 8
Figure 4: Controlled Counter Block Diagram .. 12
Figure 5: VHDL Description of Controlled Counter .. 14
Figure 6: VHDL Full Adder Descriptions ... 18
Figure 7: Controlled Counter Schematic .. 21
Figure 8: VHDL Functional Descriptions ... 22
Figure 9: Register Transfer State Table ... 25
Figure 10: State Table Block Description .. 26
Figure 11: State Transitions/Register Transfers J?escription 28
Figure 12: Alternative VHDL State Table Descriptions .. 29
Figure 13: Behavioral Description Using VHDL Process Statement 32

June 11, 1989 Page ii

1. Introduction

VHDL [VHDL87] is the IEEE standard language for hardware description.

However, the VHDL language does not guarantee uniqueness of descriptions; designs

can be described in several ways and at several different levels of abstraction. The

process of creating different descriptions is called modeling. Unfortunately, models

perfectly suitable for one application can be unsuitable for another.

There are three basic application areas: simulation, fault modeling and test

generation, and synthesis and silicon compilation. The difference in modeling styles

comes from different goals of the application areas.

The goal of simulation is to validate the correctness of the description by

measuring output response to input stimuli. Thus, generation of correct values on all

signal lines over time is the most important goal. Efficient simulation that simulates

only parts of the design where input values are changing is the second goal.

In fault modeling, a fault is injected into the model. This fault is then sensitized

and its effects are propagated to an observable output in the description. Sensitization

and propagation involves establishing data paths through the description and thus is

easier with a structural or dataflow description than with an algorithm.

In synthesis, we are interested in generating a structural description of components

from a given library from an algorithmic description. Here, we are interested in

June 11, 1989 Page 1

properly connecting all pins on all components instead of observing signal values on

some of the pins.

1.1. Motivation

VHDL was designed primarily with one application in mind: simulation. For

example, the language allows events that are defined as any change on a signal line

through the use of attributes such as QUIET and STABLE. The simulator uses these

attributes to detect the occurrence of an event on a signal. Such events are not easily

realized in hardware since storage elements are triggered by positive edge or negative

edge signal transitions but not both. Similarly, VHDL specifies delay with an after

clause that does not distinguish among inputs. Efficient synthesis algorithms, on the

other hand, require delay specifications for each input-output pair. Furthermore,

VHDL guard expressions allow any combination of signals, although designers know

that only one signal (clock) is used to trigger writing into storage elements. Designing a

register that allows writing by two different clocks is not good design practice.

Since synthesis is becoming more and more important, the trend is to solve the

problems of VHDL inadequacies by amending or subsetting VHDL. None of these

proposals seem reasonable. As a result of work on the development of the VHDL

Synthesis System (VSS) [LisGa88] [LisGa89], we are proposing to develop a modeling

style for synthesis that will allow for an efficient generation of high quality designs.

This modeling style is similar to the application of structured programming techniques

June 11, 1989 Page 2

when using programming languages.

In order to understand our methodology, we will relate design models, description

styles and VHDL constructs. First we will look at design models understood and used

in practice by designers today. We will describe the operations and underlying

assumptions associated with four such models: combinational logic, functional

descriptions (involving clocked components such as counters), register transfer (data

path) descriptions, and behavioral (instruction set or processor) designs.

These design models must be described using the structural, dataflow, and

behavioral description styles provided by VHDL. The structural description consists of

component declarations, interconnect signal declarations, and component instantiations

with port maps. This description style is suitable for describing a captured schematic

after a design is completed, and it should be used to describe the design generated by a

behavioral synthesis tool.

The dataflow description style is not as closely tied to the actual structural

implementation of the design. This description style allows for the specification of

concurrent events (data transformations and register transfers) under the control of

synchronous (clock) or asynchronous signals. It can be used for combinatorial or

functional logic models. The synthesis tool must optimize the design for a given

component library. In the case of functional logic, components and connections are

shared in time. The machine states are already specified in the description using

conventions of the modeling style such as one block statement per state.

June 11, 1989 Page3

Behavioral descriptions are void of any implementation detail. They specify

output values in terms of input values over time using an abstract algorithm. A

synthesis tool must allocate components, schedule operations into machine states, and

interconnect components for these specifications.

The quality of a design as well as the complexity of the synthesis process are

directly related to the style of description chosen to represent a particular design model.

Certain VHDL constructs or description styles are better suited to describe a particular

design model than others. Because VHDL allows the designer several ways of

describing the same functionality, it is important to set standard modeling practices for

designers using VHDL. These standards should guarantee high quality of synthesized

design, while divergence from the standard will result in simulatable but not optimal

design.

This report will describe a proposed modeling style for the use of the VHSIC

Hardware Description Language (VHDL) in design synthesis. We will describe the

operations and underlying assumptions of the four design models identified above. We

will illustrate the various uses of the VHDL structural, data:flow and behavioral

description styles to represent characteristics of each of these design models. Emphasis

is placed on how VHDL constructs should be used in order to synthesize optimal

designs.

June 11, 1989 Page 4

2. VHDL Design Models

2.1. Design Hierarchy

The design entity is the primary hardware abstraction in VHDL. It represents a

portion of the hardware design that has well-defined inputs and outputs and performs a

well-defined function. A design entity may represent an entire system, a sub-system, a

board, a chip, a macro-cell, a logic gate, or any level of abstraction in between. A

configuration can be used to describe how design entities are put together to form a

complete design as shown in Figure 1.

A design entity may be described in terms of a hierarchy of blocks, each of which

represents a portion of the whole design. The top-level block in such a hierarchy is the

design entity itself; such a block is an e:i;temal block that resides in a library and may

be used as a component of other designs. Nested blocks in the hierarchy are internal

blocks, defined by procem or block statements. A structural, data:flow or behavioral

description style can be used to express the functionality of an internal block.

Successive decomposition of a design entity into components, and binding of those

components to other design entities that may be decomposed in like manner, results in

a hierarchy of design entities representing a complete design. Such a collection of

design entities is called a design hierarchy. The bindings necessary to identify a design

hierarchy can be specified in a configuration of the top-level entity in the hierarchy.

The design hierarchy concept is illustrated in Figure 1.

June 11, 1989 Page 5

CONFIGURATION

DESIGN E

DESIGN

DESIGN

DESIGN ENTITY

Datafiow Block: Pl'O<H8 Block:
Component behavior

described using
co1lCU1Tellt statements

Sequential Behavior

BUS

Structure Block
Instantiated compomnts

and connections

0-0-0

Figure 1: VHDL Design lllerarchy

~

A VHDL description which represents such a design hierarchy is shown in Figure

2. Each design entity description is composed of two major sections: the entity block

and the architecture body. The entity block contains the specification of external

June 11, 1989 Page6

input/output port connections to the hardware to be designed. The architecture body

defines the body (structure and/or behavior) of a design entity. It specifies the

June 11, 1989

DESIGN ENTITY
(external block)

/
Entity Block Architecture Body

internal
blocks

[Structure
[Dataflow (concurrent)

[Proce!s (sequential)

Figure 2: VHDL Design Entity Block Structure

Page 7

relationships between inputs and outputs of the design entity, and may be expressed

using a mixture of the three styles mentioned previously (structural, data:flow,

behavioral).

2.2. Design Model

Figure 3 illustrates the underlying design model assumed for a VHDL description

[Preas88]. A design is composed of communicating processing elements (PEs). Each

PE consists of a Control Unit (CU) and Datapath (DP). Because a process statement

may require one or several machine cycles (states) to execute the desired function, the

microarchitecture implementation uses the DP to perform computations and the CU to

c

OONTROL UNI aJNTRDLUNI DATA PATH

PE

b

Figure 3: VHDL Design Model

June 11, 1989 Pages

sequence the machine through the necessary states and control the operations

performed in the DP for each state. The CU contains a state register for storing the

current state of the machine and control logic which controls the DP and communicates

with other PEs. The DP consists of storage elements (registers, counters, memories)

and functional units (AL Us, shifters, multiplexers) connected through sets of buses.

Access to registers, units or I/ 0 ports is controlled by the CU. If several buses are

used as sources to a storage or functional unit, a selector controlled by the CU must be

added to the input. Some DP models use only point-to-point connection with selectors

only and no buses. Processes also communicate via global signals. PEs communicate

through DP ports to the CU or DP (nets a and bin Figure 3) or through CU ports to

the CU or DP (nets c and d).

Note that in this model, an adder may be represented as a PE with no CU but

with a DP (having one output port, two input ports, and no storage elements).

Similarly, a flip-flop can be modeled as a DP with no functional units or as a CU with

no DP and no control logic. Thus, this model is complete in the sense that it can model

any synchronous digital system.

2.3. Design Model Representation

The three description styles (behavioral, dataflow, structural) use concurrent

statements to describe a portion of the complete design model shown above. Each

concurrent statement in a VHDL description may be used to describe a piece (one or

June 11, 1989 Page9

j

more components) of a design. Alternatively, more than one statement can be used to

describe the functionality of the same design section if the behaviors are non­

overlapping (exclusive).

The design sections represented by the concurrent statements communicate via

global signals. These signals are defined in the declaration section of the architecture

body. A global signal may be read (input) to several blocks or processes, but should be

written to (updated by) only one block or process at any given time. In the event that

it is desirable to have more than one active driver for a signal simultaneously (to model

a bus, for example), a resolution function must be written and associated with the

signal to determine its proper value for simulation.

2.3.1. Behavior

A VHDL description using the behavioral style consists of process statements and

concurrent procedure calls. Usually, process statements represent programs to be

implemented in a microarchitecture which uses the complete control unit/data path

design model. Variables within a process may represent storage components or

interconnect wires. Local signals are used to communicate between the CU and DP.

Interprocess communication follows these conventions:

(1) The following subtypes are defined for descriptions to be used for syn thesis:

subtype data is BIT;

June 11, 1989 Page 10

subtype control is BIT;

Signals of type data are used to interface with the data path. Signals of type
control interface with the CU.

(2) By default the following signal types/accesses are allowed:

Input
signal/port reads within the data path description
conditional bit signals input to the descriptions of control logic

Output
constant signals output from control logic (boolean, binary, integer)
computed signals output from DP

Timing is expressed as a part of the output signal assignments. Data computations

within the process are made with variable assignment statements.

2.3.2. Dataflow

Dataflow descriptions consist of concurrent signal assignment statements. They

describe only the data path portion of the VHDL design model. The data path is a

structure of components, where each component is described by one or more

statements.

2.3.3. Structure

The VHDL structural design style utilizes component instantiation and generate

statements. Here, the data path portion of the design model is described through the

instantiation and interconnection of component primitives or previously defined design

entities.

June 11, 1989 Page 11

2.4. l\1ixture of VHDL Design Styles

This section illustrates a mixture of the VHDL structural, data:fiow and behavioral

description styles in a single description. Figure 4 shows a block diagram for a

controlled counter functional description adapted from [Arms89].

The operation of the controlled counter can be described as follows. On the rising

edge of the STRB signal, an internal control register CONREG is loaded with the value

on CON. The CONREG value is decoded to perform one of four functions: clear the

counter, load a limit register, count up to a limit, or count down to a limit. The counter

runs synchronously under an input clock, and the counting functions are enabled by the

DATA

STRB

CON

r------------,
LOAD__Lll\11T

L.---- -- ____ _,

r-----
1
I
I
I
I
I
I

I
I
I

CONREG_OUT

: DECODE

,.---------., I LIMIT_CHK I
I I

I --..---• I
L---- ----~

L--------------------------~

EN

r---------- -,

CNT

I
I
I
I
I

t--_..._..,__CNT_OUT
I
I
I

I I
I I
I CNT_UP _OR.J)OWN I Li------------:.1

Figure 4: Controlled Counter Block Diagram

June 11, 1989 Page 12

internal signal EN. The DATA value is loaded into the limit register LIM on the falling

edge of STRB if the control register contains the value '00'.

The VHDL description is shown in Figure 5. This description consists of four

block statements, each of which describes a portion of the design: the decoding of the

CONREG value, the loading of the limit register (LIM), the asynchronous clear the

synchronous up/down count of the counter (CTR), and a limit test.

The DECODE block statement describes the functionality of more than one

functional block (the CONREG register and the decoder). A structural description

style is used which specifies component declarations, interconnect signal declarations,

component instantiations, and component interconnection (via the port map clause of

the component instantiation statement).

A data:fiow description style is used for the LOADJJMIT and

CNT_UP _QRJ)QWN blocks. The block guard is used to enable an update of the LIM

and CNT register values. Note that these descriptions carry no information about the

structure of the components to be used in the impl~mentation, only the behavior.

The LIMIT_CHK block is described behaviorally with a process statement. This

particular description involves only the data path portion of the design model.

June 11, 1989 Page 13

entity CONTROLLED_CTR is
port (

CLK,STRB: in BIT;
CON: in BIT_VECTOR(l downto O);
DATA: in BIT_VECTOR(3 downto O);
CNT_OUT: out BIT_ VECTOR(3 downto O));

end CONTROLLED_CTR;

architecture MIXED of
CONTROLLED_CTR is

subtype nibble is BIT_VECTOR(3 downto O);
signal CONSIG: nibble := B"OOOO";
signal LIM: nibble registEr := B "0000 ";
signal ENIT: BIT := '0';
signal EN: BIT := 'O';
signal CNT: nibble register := B"OOOO";
signal CNT_CLR: BIT;

begin

DECODE: block (STRB = 'l ')

component reg
port (D: in BIT_VECTOR(l downto O);

CLK: in BIT;
Q: out BIT_VECTOR(l downto O));

end component;
component decoder

port (D: in BIT_VECTOR(l downto O);
Q: out BIT_VECTOR(3 downto O));

end component;
component or2

port (A,B: in BIT;
0: out BIT);

end component;
signal CONREG_OUT: BIT_VECTOR(l downto O);

begin

CONREG: register
port map (CON,CLK, CONREG_OUT);

DEC: decoder
port map (CONREG_OUT,CONSIG);

ORJ: or2
port map (CONSIG(2),CONSIG(3),ENIT);

CNT_CLR < = CONSIG(O);

end block DECODE;

LOAD_LIMIT: block (CONSIG(l)='l' and STRB='O'
and not STRB'STABLE)

begin

LIM<= guarded DATA after 10 ns;

end block LOAD_LIMIT;

CNT_UP_OR._DOWN: block ((CLK = '1' and

begin
not CLK'STABLE) or (CNT_CLR = '1 '))

CNT < = guarded
B "0000" aftEr 5 ns when CNT_CLR = '1' else
CNT when EN = '0' else
CNT + B"OOOl" after 12 ns

when CONSIG(2) = '1' else
CNT - B"OOOl" after 12 ns

when CONSIG(3) = '1' else
CNT;

end block CNT_UP_ORJ)OWN;

LIMIT_CHK: process (ENIT,CNT)
begin

if ((CNT /=LIM) and (ENIT = 'l')) thai
EN<= '1' after 12 ns;

else
EN<= 'O' after 5 ns;

end if;

end process LIMIT_CHK;

CNT_OUT <= CNT;

end MIXED;

Figure 5: VHDL Description of C.Ontrolled C.Ounter

June 11, 1989 Page 14

3. Structured Modeling for Synthesis

The quality of a design as well as the complexity of the synthesis process are

directly related to the style of description chosen to represent a particular design model.

Certain VHDL constructs or description styles are better suited to describe a particular

design model than others. Because VHDL allows the designer several ways of

describing the same functionality, it is important to set standard modeling practices for

designers using VHDL. These standards should guarantee high quality of synthesized

design, while divergence from the standard will result in simulatable but not optimal

design.

This section describes the design models supported within the VSS system. For

each model, the level of abstraction or type of input specification is identified. A VHDL

modeling practice for each model is then presented.

3.1. Combinational Logic

3.1.1. Model

The design model for combinational logic consists of a network of logic gates. The

most common method used to describe combinational logic designs is boolean equations.

In this model, concurrent evaluation of all signal values is assumed. A boolean equation

representation facilitates synthesis tasks such as algebraic minimization (e.g., MIS

[Bray87]) or optimization (e.g., SilcSyn [B1Fo85]).

June 11, 1989 Page 15

A combinational logic design involves path delays through the interconnected

components. When specifying timing constraints, the combinational logic model should

be able to express input to output timing for critical path constraints. These

constraints guide the synthesis tool in selecting the appropriate components when

tradeoffs are possible. In some instances, the designer may wish to specify more detailed

timing constraints on particular operators or paths between some internal points in the

design.

3.1.2. VFIDL Alternatives

One alternative in VHDL for expressing the combinational logic model is a

dataflow description. The combinational circuit can be represented as a set of boolean

equations in the form of concurrent assignment statements. Figure 6(a) illustrates a

dataflow description of a full adder.

The dataflow description offers the following advantages:

(1) The description style would be familiar to designers who generally think of design

at this level in terms of boolean equations.

(2) The description is readable - a straightforward mapping exists between operators

and logic components.

(3) In performing synthesis, the description is easily translatable to netlist format

(either EDIF or structural VHDL, for example).

June 11, 1989 Page 16

Note that timing information is associated with output signal assignments only. If

the VHDL description is to remain correct for simulation, timing constraints cannot be

specified for internal signals using the after clause mechanism. This is due to the fact

that all concurrent assignment statements have their drivers evaluated at the current

simulation time using the current value of all signals. Thus, a new value for an internal

signal which becomes effective after some delay will not contribute to the computation

of a new output value (evaluated at the current simulation time) which depends on it.

An alternative way to describe the functionality of combinational logic is an

algorithmic description as shown in the example of the full adder in Figure 6(b).

While expressing the same behavior as the data:flow description, the algorithmic

description has the following deficiencies:

(1) The algorithmic description is not the natural way to think of logic. Operators

manipulate variables (integers) with extended ranges (number representations)

other than boolean. The algorithm requires manipulations of index and other

variables. Type conversions from bit quantities to integer and back to perform a

counting operation clutter the description and contribute to a suboptimal design

generated by the synthesis tool.

(2) Synthesis yields inefficiencies. When the VHDL algorithmic description is used as

input for synthesis, the logic that is designed will initially contain some

unnecessary hardware. This results from the translation of language constructs

June 11, 1989 Page 17

entity FULL_ADDER is
port (X,Y: in BIT;
CIN: in BIT;
SUM: out BIT;
COUT: out BIT);

end FULL_ADDER;

architectm-e DATA_FLOWJMPL of
FULL_ADDER is

- local signal declarations
signal Sl, S2, S3: BIT;

begin
Sl <= X xorY;
SUM < = Sl xor CIN after 3 ns;
S2 <= X andY;
S3 < = Sl and CIN;
COUT < = S2 or S3 aftEr 5 ns;

end DATA_FLOWJMPL;

(a) Dataftow description

architectm-e ALGORlTHMICJMPL
of FULL_ADDER is

begin
process (X, Y, CIN)

variable S: BIT_VECTOR(l to 3);
variable Num: INTEGER range 0 to 3 := O;

begin
S := X & Y & CIN;
for I := 1 to 3 loop

if S(I) = '1' then
Num := Num + 1;

aid if;
end loop;
case Num is

whenO => COUT <= 'O'; SUM<= '0';
whm 1 => COUT <= 'O'; SUM <= '1';
when 2 => COUT <= 'l'; SUM<= 'O';
when 3 => COUT <= 'l'; SUM<= '1';

end case;
end process;

end ALGORlTHMICJMPL;

(b) Behavioral description

Figure 6: VHDL Full Adder Descriptions

associated with simulator efficiency such as the type conversions mentioned above,

or control constructs such as loops which were meant to represent replication of a

design section. Additional effort must be spent in the synthesis process to

recognize inefficiencies in the design. Some of the inefficiency may never be

removed because of costly global optimization.

June 11, 1989 Page 18

The following modeling practices for combinational logic are recommen.ded:

Proposition 1

Use the data:fiow model for syn thesis of combinational logic.

Proposition 2

Use an after clause only for assignments made to output signals. This delay represents

the maximum allowed delay from any input to the next particular output, and it will be

used as a constraint during synthesis.

3.2. Functional Model

3.2.1. Design Model

The functional design model consists of combinational logic as well as storage

elements (registers, counters). It may include a mixture of synchronous and

asynchronous events for loading storage elements. An event is defined as the transition

of a clock or any other signal. It cannot be guaranteed that these events are mutually

exclusive; an asynchronous event such as a register reset can occur concurrently with a

synchronous load of the same re.gister.

The design is a structure of functional blocks such as ALU s, shift registers,

counters, comparators, memories and buses. Each block performs transformations on its

inputs with or without latching or storing. Each block is a combinatorial function or a

June 11, 1989 Page 19

FSM where the state is determined by the values in storage elements.

The controlled counter [Arms89] shown in Figure 7 is an example of such a design.

On the rising edge of the STRB signal, an internal control register CONREG is loaded

with the value on CON. The CONREG value is decoded to perform one of four

functions: clear the counter, load a limit register, count up to a limit, or count down to

a limit. The counter runs synchronously under an input clock, and the counting

functions are enabled by the internal signal EN. The DATA value is loaded into the

limit register LIM on the falling edge of STRB if the control register contains the value

'OO'.

The functional design can be described in VHDL using block and process

statements. When modeling such a design, one or more functional blocks can be

described with one block or process. The counting function of the counter 74LS193 in

Figure 7 is described by the block in Figure 8(a). The same function is described by

process statement in Figure 8(b).

Modeling each functional block with more than one process may become difficult

due to the VHDL limitation of single process assignment. The solution to this problem,

proposed by Armstrong [Arms89], is to introduce a virtual multiplexor outside of both

processes. This solution, although acceptable in simulation, is difficult to implement in

real hardware. Thus, multiprocess modeling of the same functional block should not be

used for syn thesis.

June 11, 1989 Page 20

s

CLK

June 11, 1989

D
SN74LS379

Lilvl

D
SN741.S379

CONREG
Ql QO

B A
G SN74LS139

DECODER
()() 01 10 11

4

A B
SN741.S85

COMP
C..A>

A<B A=B A>B

Q OUT
CJ)N 4

CLR

LD

Figure 7: C.ontrolled C.ounter Scheim.tic

Page 21

CNT_UP _ORJ)OWN: bloclc (CLK = '1' and not CLK'STABLE)
begin

CNT <=guarded
CNT when EN= 'O' else
CNT + "0001" afte.r INCDEL when CONSIG(2) = '1' else
CNT - "0001" after INCDEL when CONSIG(3) = '1' else
CNT;

end block CNT_UP _ORJ)OWN;

(a) Block Statermnt Representation

CNT_UP _ORJ)OWN: process (CLK,CONSIG(2),CONSIG(3),EN)
variable CNT_REG: BIT_ VECTOR(3 downto O);

begin
ifCLK = 'l' and not CLK'STABLE then

if EN= 'l' then
if CONSIG(2) = '1' then

CNT_REG := CNT_REG + "0001";
elsif (CONSIG(3) = '1 ') then

CNT_REG := CNT_REG - "0001 ";
end if,

end if;
end if;
CNT <= CNT_REG afte.r INCDEL;

end process CNT_UP _OILDOWN;

(b) Process Statermnt Representation

Figure 8: VHDL Functional Descriptions

Functional blocks can be described with more than one VHDL block statement.

However, the behavior described in each block statement should be independent of

other blocks. Examples of exclusive functions are the synchronous up counting and

asynchronous reset of a synchronous up-counter with asynchronous reset. Furthermore,

assignment to the same guarded signal under different guard expressions (representing

different clocks) in different VHDL blocks should not be allowed. Although two guard

June 11, 1989 Page 22

expressions (i.e., two clocks) can be mutually exclusive, controlling selection of the input

signals to the same register may generate timing hazards.

To achieve uniformity, the timing should be assigned only to output signals

according to Proposition 2. For each functional block, the following four timing

constraints can be used:

a) the clock cycle, specified with a VHDL attribute statement,

b) propagation delay from inputs to (clocked or asynchronously controlled) storage

elements. Since this path can contain only combinational logic, a local signal can be

defined to designate the storage element input data value. A timing specification

(either an attribute or possibly an after clause) can be used for a signal assignment to

this local signal.

c) propagation delay from storage elements to outputs, and

d) propagation delay from inputs to outputs (in the case where there are no storage

elements on the path from input to output).

In order to properly connect VHDL declared signals to components in the given

library, all signals should be typed. The following five types should be defined: clock,

set, reset, test, data and control. Typing will be used to identify the function of event

signals appearing in in the block guards. The merging of assignments to the same

variable in different blocks is possible during the synthesis process since signal types are

known and synchronous/asynchronous behavior is clearly distinguished.

June 11, 1989 Page 23

The following guidelines should be followed when developing a functional model

description for synthesis:

Proposition 3

One or more functional blocks should be described by one VHDL block statement.

Several block statements could be used to describe exclusive behavior (synchronous and

asynchronous behavior of the same functional block).

Proposition 4

The guard expression should contain only signals of type clock, set or reset.

Proposition 5

All signals should be typed. Signal types should include clock, reset, set, test, data and

control.

3.3. Register Transfer Model

3.3.1. Model

Register transfer descriptions involve the specification of operations to be

performed within a PE (as shown in the design model of Figure 3) for each machine

state of a design. For each state, one or more triplets specify actions to be performed.

Each triplet is composed of a condition, a next state specification, and a set of

June 11, 1989 Page 24

operations. The condition tests a boolean expression. Within each state, one or more

conditions may evaluate to true. The actions corresponding to each true condition are

performed in the state. If the result of the test is true, a specified set of operations or

register transfers is performed. Finally, control is transferred to the specified next state

upon completion of the current state operations.

Figure 9 illustrates a simple example of a state table which specifies the conditional

statement ifX = 0 then A= A+ 1 else B =A+ B.

Timing in register transfer descriptions is dependent on two things: the

specification of a clock cycle, and the maximum time required to perform all operations

specified for any state. In this case, it is not necessary to supply timing information in

the statements which represent register transfers. If the clock cycle is supplied by the

user (using a VHDL attribute for the design entity), the synthesis system will attempt

Current Condition Next
Ops

State State

so True Sl cond <= (X = 0);

Sl
cond S2
cond' S3

S2 True S4 A<=A+l:
S3 True S4 B <=A+ B;
S4

Figure 9: Register Transfer State Table

June 11, 1989 Page 25

to select units which will perform the desired operations in each state within the

specified clock cycle. If no clock is selected, the fastest components are selected from

the available library, and the clock cycle is determined by the longest delay path in the

design necessary to implement any state.

June 11, 1989

clock_edge < = CLK = '1' and not CLK'STABLE;

S tate_O: block (clock_edge)
begin

state <=guarded Sl when (state= SO) else state;
cond < = (X = 'O') when (state= SO) else cond;

end block State_O;

S tate_l: block (clock_edge)
begin

state <=guarded 82 when (state= Sl and cond) else
S3 when (state = Sl and not cond) else state;

end block State_l;

State-2: block (clock_edge)
begin

state <=guarded 84 when (state = S2) else state;
A <=guarded A + "0001" when (state = 82) else A;

end block S tate-2;

State_3: block (clock_edge)
begin

state <=guarded 84 when (state= S3) else state;
B <=guarded A+ B when (state = 83) else B;

end block State_3;

Figure 10: State Table Block Description

Page 26

In VHDL, block statements may be used to represent the state table using the

following conventions:

(1) Every block represents a different state.

(2) The block guard specifies clock, while the body of the block sets the state variable

to the appropriate next state and performs operations under the desired

conditions.

Figure 10 shows the corresponding block description for the state table of Figure 9.

This VHDL block representation allows for the expression of parallelism. Concurrent

actions may be specified for a given condition within the block statement.

A second use of the block representation to describe the register transfer state

table is shown in Figure 11. This description separates the state transition portion of

the description (associated with the control unit) from the register transfers to be

performed in each state (data path operations). While this description simulates

properly, it has one difficulty from the synthesis perspective: identification of the clock.

Assignment to the state variable is made via guarded signal assignments in which the

current state, rather than a common clock, is used. The time interval that elapses

between changes in the state (the clock period) is modeled with the after clause. The

data operations appearing in block statements are also clocked by the state. This

description is difficult to synthesize since the clock for register assignments is not

explicitly specified.

June 11, 1989 Page 27

State_l: block (state = SO)
begin

state < = guarded Sl after CLKJ>ERlOD;
end block;

State-2: block (state = Sl and cond)
begin

state < = guarded S2 after CLKJ>ERlOD;
end block;

State-3: block (state = Sl and not cond)
begin

state < = guarded S3 after CLKJ>ERlOD;
end block;

State_4: block (state = S2 or state = S3)
begin

state < = guarded S4 after CLKJ>ERlOD;
end block;

(a) state transitions

FO: block (state = SO)
begin

cond <=guarded (X = 'O');
end block;

F2: block (state = S2)
begin

A<= guarded A+ "0001";
end block;

F3: block (state = S3)
begin

B <=guarded A+ B;
end block;

(b) data operations

Figure 11: State Transitions/Register Transfers Description

The description of the state table using a process statement is shown in Figure

12(a). Here, each process represents a state. Problems associated with this

representation with respect to synthesis include:

(1) One signal variable per state is required. Since each process is triggered by a

change in the state variable found in its sensitivity list, detection of this signal

change and state decoding are difficult to implement.

(2) The same storage element may need to be updated in more than one process.

Using block statements, this can be handled with guarded signal assignments; the

June 11, 1989 Page 28

architecture Pl of STATE_TBL is
signal SO,Sl,S2,S3,S4,S4-1,S4-2: BIT;
signal cond: BOOLEAN;
signal A,Al,A2: BIT_VECTOR(3 downto O);

begin
State_O: process (SO)
begin

cond < = (X = '0');
81 < = not 81 after CLK_PERIOD;

end process 8tate_O;

StateJ: process (Sl)
begin

if (cond) then
S2 <=not S2 after CLKJ>ERIOD;

else
S3 < = not S3 after CLKJ>ERIOD;

end if;
end process StateJ;

State-2: process (S2)
begin

Al <=A+ "0001";
S4_1 < = not S4 after CLKJ>ERIOD;

end process State-2;

State-3: process (S3)
begin

A2 <=A+ B;
84-2 < = not S4 after CLKJ>ERIOD;

end process State-3;

A<= Al when not Al'QUIET else
A2 when not A2'QUIET else A;

S4 < = S4J when not SU 'QUIET else
SU when not S4-2'QUIET else S4;

end Pl;

(a) process state description

architecture P2 of 8TATE_TBL is
type STATE_VAL is (80,Sl,S2,S3,S4);
signal cond: BOOLEAN;
signal state,new...state: 8TATE_VAL;

begin

process (state)

begin

case state is

when SO=> cond <= (X = 'O');
new...state < = Sl;

when Sl => if (cond) then
new...state <= S2;

else
new...state < = S3;

end if;
when S2 => A:= A+ "0001";

new...state < = 84;
when83 => B :=A+ B;

new...state < = S4;
when S4 => ...

end case;

state<= new...state after CLK_PERIOD;

end process;

end P2;

{b) single process

Figure 12: Alternative VHDL State Table Descriptiom

process, however, provides no clean method of expressing this concept. Variables

are local to the process and can be used to represent a storage element within one

process only. Guarded signal assignments are not allowed within processes.

June 11, 1989 Page 29

Virtual muxes must be added to accommodate the update of the same signal in

more than one state. This introduces unnecessary hardware which violates good

design practice.

A second use of the process statement to represent register transfers is shown in

Figure 12(b). The single process contains a case statement to specify an instruction set

like description. This description can't express parallelism for operations associated

with one condition since the process is inherently sequential. On the other hand, if we

assume for synthesis that all statements appearing within a case alternative are

executed in parallel, the VHDL simulation of the input description will not reflect the

true behavior of the synthesized design. The solution is to use additional signals of type

wire. The following VHDL code fragment illustrates the equivalent sequential

statements for the concurrent interchange of the values of A and B:

variable A,B: BIT;
signal temp: BIT;

temp<= A;
A:= B;
B :=temp;

In order to describe register transfer designs for syn thesis, the following modeling

practice is recommended:

Proposition 6

Each state of a register transfer design should be described with block statements

containing condition, next state assignment and all register transfers with the clock

June 11, 1989 Page 30

specified in the guard expression. Alternatively, a single process with a case statement

can be used.

3.4. Behavioral Design

3.4.1. Model

The design model shown in Figure 3 is also assumed for the algorithmic design

model. A behavioral description allows the designer to describe the design as a black

box with well defined interfaces. Variables within a description can be allocated storage

by default, or the synthesis system can determine which variables require storage. As in

the combinational model, input to output timing is expressed.

3.4.2. VHDL Description

Figure 13 shows a simple VHDL behavioral description. The process statement is

the only suitable method in VHDL for expressing behavior in algorithmic form. Each

VHDL process will be synthesized into a CU /DP pair. Data computations within the

process are made with variable assignment statements. Its similarity to a programming

language allows for the coding of algorithms using typical control constructs (IF, CASE,

FOR and WHILE loops).

Input to output timing is expressed as a part of the output signal assignments. The

wait statement can be used within the process statement to express timing. A

June 11, 1989 Page 31

--------- --------------- ·--- ------~-~--~------------

architecture BEHAVIOR afSTATE_TBL is
signal B_port: BIT_VECTOR(3 downto O);

begin

process (X)
variable A,B: BIT_VECTOR(3 downto O);

begin
if (X = 'O ') then

A:= A+ "0001";
eJse

B := B +A;
end if;
B_port < = B after 20 ns;

end process;
end block;

Figure 13: Behavioral Description Using VHDL Process Statemmt

statement of the form

wait until <condition>

will model a design state which loops on itself until the specified condition evaluates to

TRUE. The state table entry for this state will advance the state register to the next

state in sequence when the condition is TRUE. The second form of the wait statement,

wait for <time>

models a design state which loops on itself for the specified time duration. This model

requires a count variable initially set to zero which is incremented on every execution of

the state. When the count reaches the specified <time> duration, the state register is

advanced to the next state.

June 11, 1989 Page 32

The recommended modeling practice for algorithmic design can be summarized as

follows:

Proposition 7

Behavioral designs are modeled by VHDL process statements. Signal assignments are

used to represent output port assignments. Signals may also be used to hold temporary

values (for example, the swapping of register contents) in order to model concurrent

events within the sequential process.

June 11, 1989 Page 33

4. Conclusion

We have proposed in this report a structured modeling methodology which does

not restrict VHDL to a particular subset but recommends several writing styles for

different design models. This methodology is based on the following principles:

(1) Appropriate constructs in VHDL should be used for appropriate levels of design.

(2) Guard expressions for block statements are used to represent clocks, or signals that

enable storage.

(3) Unguarded signal assignments should be used to model wires. Guarded signal

assignments should be used for register and bus assignments. These constructs

should not be mixed so that the model remains consistent for syn thesis.

(4) Design hierarchy and partitioning should be reflected in the description, although

not with the same granularity.

We believe that this structured modeling methodology will make modeling simple,

allow portability of models, and facilitate synthesis of high quality designs.

June 11, 1989 Page 34

5. References

[Arms89] Armstrong, J., Chip Level Modeling with VHDL, Prentice-Hall, 1989.

(Preas88] Preas, B. and Lorenzetti, M., Physical Design Automation of VLSI Systems,
Benjamin/Cummings, 1988.

(Bray87] Brayton, R., et. al., MIS: A Multiple-Level Logic Optimization System, IEEE
Trans. on CAD, Nov. 1987.

[B1Fo85] Blackman, T., Fox, J., Rosebrugh, C., The SILC Silicon Compiler: Language
and Features, 22nd DAC, 1985.

[LisGa88] Lis, J. and Gajski, D., Synthesis from VHDL, ICCD88, 1988.

[LisGa89] Lis, J. and Gajski, D., VHDL Synthesis Using Structured Modeling, 26th
DAC, 1989.

[VHDL87] VHDL Language Reference Manual, Draft Standard 1076/ B, IEEE, June
1987.

June 11, 1989 Page 35

