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Abstract: This report will describe a proposed modeling style for the use of 
the VHSIC Hardware Description Language (VHDL) in design syn­
thesis. We will describe the operations and underlying assump­
tions of four design models currently understood and used in prac­
tice by designers: combinational logi,c, functional descriptions 
(involving clocked components such as counters), register transfer 
(data path) descriptions, and behavioral (instruction set or proces­
sor) designs. We will illustrate the various uses of the VHDL 
description styles (structural, dataflow and behavioral) to 
represent characteristics of each of these design models. Emphasis 
is placed on how VHDL constructs should be used in order to syn­
thesize optimal designs. 
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1. Introduction 

VHDL [VHDL87] is the IEEE standard language for hardware description. 

However, the VHDL language does not guarantee uniqueness of descriptions; designs 

can be described in several ways and at several different levels of abstraction. The 

process of creating different descriptions is called modeling. Unfortunately, models 

perfectly suitable for one application can be unsuitable for another. 

There are three basic application areas: simulation, fault modeling and test 

generation, and synthesis and silicon compilation. The difference in modeling styles 

comes from different goals of the application areas. 

The goal of simulation is to validate the correctness of the description by 

measuring output response to input stimuli. Thus, generation of correct values on all 

signal lines over time is the most important goal. Efficient simulation that simulates 

only parts of the design where input values are changing is the second goal. 

In fault modeling, a fault is injected into the model. This fault is then sensitized 

and its effects are propagated to an observable output in the description. Sensitization 

and propagation involves establishing data paths through the description and thus is 

easier with a structural or dataflow description than with an algorithm. 

In synthesis, we are interested in generating a structural description of components 

from a given library from an algorithmic description. Here, we are interested in 
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properly connecting all pins on all components instead of observing signal values on 

some of the pins. 

1.1. Motivation 

VHDL was designed primarily with one application in mind: simulation. For 

example, the language allows events that are defined as any change on a signal line 

through the use of attributes such as QUIET and STABLE. The simulator uses these 

attributes to detect the occurrence of an event on a signal. Such events are not easily 

realized in hardware since storage elements are triggered by positive edge or negative 

edge signal transitions but not both. Similarly, VHDL specifies delay with an after 

clause that does not distinguish among inputs. Efficient synthesis algorithms, on the 

other hand, require delay specifications for each input-output pair. Furthermore, 

VHDL guard expressions allow any combination of signals, although designers know 

that only one signal (clock) is used to trigger writing into storage elements. Designing a 

register that allows writing by two different clocks is not good design practice. 

Since synthesis is becoming more and more important, the trend is to solve the 

problems of VHDL inadequacies by amending or subsetting VHDL. None of these 

proposals seem reasonable. As a result of work on the development of the VHDL 

Synthesis System (VSS) [LisGa88] [LisGa89], we are proposing to develop a modeling 

style for synthesis that will allow for an efficient generation of high quality designs. 

This modeling style is similar to the application of structured programming techniques 
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when using programming languages. 

In order to understand our methodology, we will relate design models, description 

styles and VHDL constructs. First we will look at design models understood and used 

in practice by designers today. We will describe the operations and underlying 

assumptions associated with four such models: combinational logic, functional 

descriptions (involving clocked components such as counters), register transfer (data 

path) descriptions, and behavioral (instruction set or processor) designs. 

These design models must be described using the structural, dataflow, and 

behavioral description styles provided by VHDL. The structural description consists of 

component declarations, interconnect signal declarations, and component instantiations 

with port maps. This description style is suitable for describing a captured schematic 

after a design is completed, and it should be used to describe the design generated by a 

behavioral synthesis tool. 

The dataflow description style is not as closely tied to the actual structural 

implementation of the design. This description style allows for the specification of 

concurrent events (data transformations and register transfers) under the control of 

synchronous (clock) or asynchronous signals. It can be used for combinatorial or 

functional logic models. The synthesis tool must optimize the design for a given 

component library. In the case of functional logic, components and connections are 

shared in time. The machine states are already specified in the description using 

conventions of the modeling style such as one block statement per state. 
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Behavioral descriptions are void of any implementation detail. They specify 

output values in terms of input values over time using an abstract algorithm. A 

synthesis tool must allocate components, schedule operations into machine states, and 

interconnect components for these specifications. 

The quality of a design as well as the complexity of the synthesis process are 

directly related to the style of description chosen to represent a particular design model. 

Certain VHDL constructs or description styles are better suited to describe a particular 

design model than others. Because VHDL allows the designer several ways of 

describing the same functionality, it is important to set standard modeling practices for 

designers using VHDL. These standards should guarantee high quality of synthesized 

design, while divergence from the standard will result in simulatable but not optimal 

design. 

This report will describe a proposed modeling style for the use of the VHSIC 

Hardware Description Language (VHDL) in design synthesis. We will describe the 

operations and underlying assumptions of the four design models identified above. We 

will illustrate the various uses of the VHDL structural, data:flow and behavioral 

description styles to represent characteristics of each of these design models. Emphasis 

is placed on how VHDL constructs should be used in order to synthesize optimal 

designs. 

June 11, 1989 Page 4 



2. VHDL Design Models 

2.1. Design Hierarchy 

The design entity is the primary hardware abstraction in VHDL. It represents a 

portion of the hardware design that has well-defined inputs and outputs and performs a 

well-defined function. A design entity may represent an entire system, a sub-system, a 

board, a chip, a macro-cell, a logic gate, or any level of abstraction in between. A 

configuration can be used to describe how design entities are put together to form a 

complete design as shown in Figure 1. 

A design entity may be described in terms of a hierarchy of blocks, each of which 

represents a portion of the whole design. The top-level block in such a hierarchy is the 

design entity itself; such a block is an e:i;temal block that resides in a library and may 

be used as a component of other designs. Nested blocks in the hierarchy are internal 

blocks, defined by procem or block statements. A structural, data:flow or behavioral 

description style can be used to express the functionality of an internal block. 

Successive decomposition of a design entity into components, and binding of those 

components to other design entities that may be decomposed in like manner, results in 

a hierarchy of design entities representing a complete design. Such a collection of 

design entities is called a design hierarchy. The bindings necessary to identify a design 

hierarchy can be specified in a configuration of the top-level entity in the hierarchy. 

The design hierarchy concept is illustrated in Figure 1. 
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A VHDL description which represents such a design hierarchy is shown in Figure 

2. Each design entity description is composed of two major sections: the entity block 

and the architecture body. The entity block contains the specification of external 
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input/output port connections to the hardware to be designed. The architecture body 

defines the body (structure and/or behavior) of a design entity. It specifies the 
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relationships between inputs and outputs of the design entity, and may be expressed 

using a mixture of the three styles mentioned previously (structural, data:flow, 

behavioral). 

2.2. Design Model 

Figure 3 illustrates the underlying design model assumed for a VHDL description 

[Preas88]. A design is composed of communicating processing elements (PEs). Each 

PE consists of a Control Unit (CU) and Datapath (DP). Because a process statement 

may require one or several machine cycles (states) to execute the desired function, the 

microarchitecture implementation uses the DP to perform computations and the CU to 

c 

OONTROL UNI aJNTRDLUNI DATA PATH 

PE 

b 

Figure 3: VHDL Design Model 
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sequence the machine through the necessary states and control the operations 

performed in the DP for each state. The CU contains a state register for storing the 

current state of the machine and control logic which controls the DP and communicates 

with other PEs. The DP consists of storage elements (registers, counters, memories) 

and functional units (AL Us, shifters, multiplexers) connected through sets of buses. 

Access to registers, units or I/ 0 ports is controlled by the CU. If several buses are 

used as sources to a storage or functional unit, a selector controlled by the CU must be 

added to the input. Some DP models use only point-to-point connection with selectors 

only and no buses. Processes also communicate via global signals. PEs communicate 

through DP ports to the CU or DP (nets a and bin Figure 3) or through CU ports to 

the CU or DP (nets c and d). 

Note that in this model, an adder may be represented as a PE with no CU but 

with a DP (having one output port, two input ports, and no storage elements). 

Similarly, a flip-flop can be modeled as a DP with no functional units or as a CU with 

no DP and no control logic. Thus, this model is complete in the sense that it can model 

any synchronous digital system. 

2.3. Design Model Representation 

The three description styles (behavioral, dataflow, structural) use concurrent 

statements to describe a portion of the complete design model shown above. Each 

concurrent statement in a VHDL description may be used to describe a piece (one or 
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more components) of a design. Alternatively, more than one statement can be used to 

describe the functionality of the same design section if the behaviors are non­

overlapping (exclusive). 

The design sections represented by the concurrent statements communicate via 

global signals. These signals are defined in the declaration section of the architecture 

body. A global signal may be read (input) to several blocks or processes, but should be 

written to (updated by) only one block or process at any given time. In the event that 

it is desirable to have more than one active driver for a signal simultaneously (to model 

a bus, for example), a resolution function must be written and associated with the 

signal to determine its proper value for simulation. 

2.3.1. Behavior 

A VHDL description using the behavioral style consists of process statements and 

concurrent procedure calls. Usually, process statements represent programs to be 

implemented in a microarchitecture which uses the complete control unit/data path 

design model. Variables within a process may represent storage components or 

interconnect wires. Local signals are used to communicate between the CU and DP. 

Interprocess communication follows these conventions: 

( 1) The following subtypes are defined for descriptions to be used for syn thesis: 

subtype data is BIT; 
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subtype control is BIT; 

Signals of type data are used to interface with the data path. Signals of type 
control interface with the CU. 

(2) By default the following signal types/accesses are allowed: 

Input 
signal/port reads within the data path description 
conditional bit signals input to the descriptions of control logic 

Output 
constant signals output from control logic (boolean, binary, integer) 
computed signals output from DP 

Timing is expressed as a part of the output signal assignments. Data computations 

within the process are made with variable assignment statements. 

2.3.2. Dataflow 

Dataflow descriptions consist of concurrent signal assignment statements. They 

describe only the data path portion of the VHDL design model. The data path is a 

structure of components, where each component is described by one or more 

statements. 

2.3.3. Structure 

The VHDL structural design style utilizes component instantiation and generate 

statements. Here, the data path portion of the design model is described through the 

instantiation and interconnection of component primitives or previously defined design 

entities. 
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2.4. l\1ixture of VHDL Design Styles 

This section illustrates a mixture of the VHDL structural, data:fiow and behavioral 

description styles in a single description. Figure 4 shows a block diagram for a 

controlled counter functional description adapted from [Arms89]. 

The operation of the controlled counter can be described as follows. On the rising 

edge of the STRB signal, an internal control register CONREG is loaded with the value 

on CON. The CONREG value is decoded to perform one of four functions: clear the 

counter, load a limit register, count up to a limit, or count down to a limit. The counter 

runs synchronously under an input clock, and the counting functions are enabled by the 

DATA 
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r------------, 
LOAD__Lll\11T 

L.---- -- ____ _, 

r-----
1 
I 
I 
I 
I 
I 
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I 
I 
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EN 
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CNT 

I 
I 
I 
I 
I 

t--_..._..,__CNT_OUT 
I 
I 
I 

I I 
I I 
I CNT_UP _OR.J)OWN I Li------------:.1 

Figure 4: Controlled Counter Block Diagram 
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internal signal EN. The DATA value is loaded into the limit register LIM on the falling 

edge of STRB if the control register contains the value '00'. 

The VHDL description is shown in Figure 5. This description consists of four 

block statements, each of which describes a portion of the design: the decoding of the 

CONREG value, the loading of the limit register (LIM), the asynchronous clear the 

synchronous up/down count of the counter (CTR), and a limit test. 

The DECODE block statement describes the functionality of more than one 

functional block (the CONREG register and the decoder). A structural description 

style is used which specifies component declarations, interconnect signal declarations, 

component instantiations, and component interconnection (via the port map clause of 

the component instantiation statement). 

A data:fiow description style is used for the LOADJJMIT and 

CNT_UP _QRJ)QWN blocks. The block guard is used to enable an update of the LIM 

and CNT register values. Note that these descriptions carry no information about the 

structure of the components to be used in the impl~mentation, only the behavior. 

The LIMIT_CHK block is described behaviorally with a process statement. This 

particular description involves only the data path portion of the design model. 
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entity CONTROLLED_CTR is 
port ( 

CLK,STRB: in BIT; 
CON: in BIT_VECTOR(l downto O); 
DATA: in BIT_VECTOR(3 downto O); 
CNT_OUT: out BIT_ VECTOR(3 downto O)); 

end CONTROLLED_CTR; 

architecture MIXED of 
CONTROLLED_CTR is 

subtype nibble is BIT_VECTOR(3 downto O); 
signal CONSIG: nibble := B"OOOO"; 
signal LIM: nibble registEr := B "0000 "; 
signal ENIT: BIT := '0'; 
signal EN: BIT := 'O'; 
signal CNT: nibble register := B"OOOO"; 
signal CNT_CLR: BIT; 

begin 

DECODE: block (STRB = 'l ') 

component reg 
port (D: in BIT_VECTOR(l downto O); 

CLK: in BIT; 
Q: out BIT_VECTOR(l downto O)); 

end component; 
component decoder 

port (D: in BIT_VECTOR(l downto O); 
Q: out BIT_VECTOR(3 downto O)); 

end component; 
component or2 

port (A,B: in BIT; 
0: out BIT); 

end component; 
signal CONREG_OUT: BIT_VECTOR(l downto O); 

begin 

CONREG: register 
port map (CON,CLK, CONREG_OUT); 

DEC: decoder 
port map (CONREG_OUT,CONSIG); 

ORJ: or2 
port map (CONSIG(2),CONSIG(3),ENIT); 

CNT_CLR < = CONSIG(O); 

end block DECODE; 

LOAD_LIMIT: block (CONSIG(l)='l' and STRB='O' 
and not STRB'STABLE) 

begin 

LIM<= guarded DATA after 10 ns; 

end block LOAD_LIMIT; 

CNT_UP_OR._DOWN: block ((CLK = '1' and 

begin 
not CLK'STABLE) or (CNT_CLR = '1 ')) 

CNT < = guarded 
B "0000" aftEr 5 ns when CNT_CLR = '1' else 
CNT when EN = '0' else 
CNT + B"OOOl" after 12 ns 

when CONSIG(2) = '1' else 
CNT - B"OOOl" after 12 ns 

when CONSIG(3) = '1' else 
CNT; 

end block CNT_UP_ORJ)OWN; 

LIMIT_CHK: process (ENIT,CNT) 
begin 

if ((CNT /=LIM) and (ENIT = 'l')) thai 
EN<= '1' after 12 ns; 

else 
EN<= 'O' after 5 ns; 

end if; 

end process LIMIT_CHK; 

CNT_OUT <= CNT; 

end MIXED; 

Figure 5: VHDL Description of C.Ontrolled C.Ounter 
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3. Structured Modeling for Synthesis 

The quality of a design as well as the complexity of the synthesis process are 

directly related to the style of description chosen to represent a particular design model. 

Certain VHDL constructs or description styles are better suited to describe a particular 

design model than others. Because VHDL allows the designer several ways of 

describing the same functionality, it is important to set standard modeling practices for 

designers using VHDL. These standards should guarantee high quality of synthesized 

design, while divergence from the standard will result in simulatable but not optimal 

design. 

This section describes the design models supported within the VSS system. For 

each model, the level of abstraction or type of input specification is identified. A VHDL 

modeling practice for each model is then presented. 

3.1. Combinational Logic 

3.1.1. Model 

The design model for combinational logic consists of a network of logic gates. The 

most common method used to describe combinational logic designs is boolean equations. 

In this model, concurrent evaluation of all signal values is assumed. A boolean equation 

representation facilitates synthesis tasks such as algebraic minimization (e.g., MIS 

[Bray87]) or optimization (e.g., SilcSyn [B1Fo85]). 
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A combinational logic design involves path delays through the interconnected 

components. When specifying timing constraints, the combinational logic model should 

be able to express input to output timing for critical path constraints. These 

constraints guide the synthesis tool in selecting the appropriate components when 

tradeoffs are possible. In some instances, the designer may wish to specify more detailed 

timing constraints on particular operators or paths between some internal points in the 

design. 

3.1.2. VFIDL Alternatives 

One alternative in VHDL for expressing the combinational logic model is a 

dataflow description. The combinational circuit can be represented as a set of boolean 

equations in the form of concurrent assignment statements. Figure 6(a) illustrates a 

dataflow description of a full adder. 

The dataflow description offers the following advantages: 

(1) The description style would be familiar to designers who generally think of design 

at this level in terms of boolean equations. 

(2) The description is readable - a straightforward mapping exists between operators 

and logic components. 

(3) In performing synthesis, the description is easily translatable to netlist format 

(either EDIF or structural VHDL, for example). 
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Note that timing information is associated with output signal assignments only. If 

the VHDL description is to remain correct for simulation, timing constraints cannot be 

specified for internal signals using the after clause mechanism. This is due to the fact 

that all concurrent assignment statements have their drivers evaluated at the current 

simulation time using the current value of all signals. Thus, a new value for an internal 

signal which becomes effective after some delay will not contribute to the computation 

of a new output value (evaluated at the current simulation time) which depends on it. 

An alternative way to describe the functionality of combinational logic is an 

algorithmic description as shown in the example of the full adder in Figure 6(b ). 

While expressing the same behavior as the data:flow description, the algorithmic 

description has the following deficiencies: 

(1) The algorithmic description is not the natural way to think of logic. Operators 

manipulate variables (integers) with extended ranges (number representations) 

other than boolean. The algorithm requires manipulations of index and other 

variables. Type conversions from bit quantities to integer and back to perform a 

counting operation clutter the description and contribute to a suboptimal design 

generated by the synthesis tool. 

(2) Synthesis yields inefficiencies. When the VHDL algorithmic description is used as 

input for synthesis, the logic that is designed will initially contain some 

unnecessary hardware. This results from the translation of language constructs 
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entity FULL_ADDER is 
port (X,Y: in BIT; 
CIN: in BIT; 
SUM: out BIT; 
COUT: out BIT); 

end FULL_ADDER; 

architectm-e DATA_FLOWJMPL of 
FULL_ADDER is 

- local signal declarations 
signal Sl, S2, S3: BIT; 

begin 
Sl <= X xorY; 
SUM < = Sl xor CIN after 3 ns; 
S2 <= X andY; 
S3 < = Sl and CIN; 
COUT < = S2 or S3 aftEr 5 ns; 

end DATA_FLOWJMPL; 

(a) Dataftow description 

architectm-e ALGORlTHMICJMPL 
of FULL_ADDER is 

begin 
process (X, Y, CIN) 

variable S: BIT_VECTOR(l to 3); 
variable Num: INTEGER range 0 to 3 := O; 

begin 
S := X & Y & CIN; 
for I := 1 to 3 loop 

if S(I) = '1' then 
Num := Num + 1; 

aid if; 
end loop; 
case Num is 

whenO => COUT <= 'O'; SUM<= '0'; 
whm 1 => COUT <= 'O'; SUM <= '1'; 
when 2 => COUT <= 'l'; SUM<= 'O'; 
when 3 => COUT <= 'l'; SUM<= '1'; 

end case; 
end process; 

end ALGORlTHMICJMPL; 

(b) Behavioral description 

Figure 6: VHDL Full Adder Descriptions 

associated with simulator efficiency such as the type conversions mentioned above, 

or control constructs such as loops which were meant to represent replication of a 

design section. Additional effort must be spent in the synthesis process to 

recognize inefficiencies in the design. Some of the inefficiency may never be 

removed because of costly global optimization. 
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The following modeling practices for combinational logic are recommen.ded: 

Proposition 1 

Use the data:fiow model for syn thesis of combinational logic. 

Proposition 2 

Use an after clause only for assignments made to output signals. This delay represents 

the maximum allowed delay from any input to the next particular output, and it will be 

used as a constraint during synthesis. 

3.2. Functional Model 

3.2.1. Design Model 

The functional design model consists of combinational logic as well as storage 

elements (registers, counters). It may include a mixture of synchronous and 

asynchronous events for loading storage elements. An event is defined as the transition 

of a clock or any other signal. It cannot be guaranteed that these events are mutually 

exclusive; an asynchronous event such as a register reset can occur concurrently with a 

synchronous load of the same re.gister. 

The design is a structure of functional blocks such as ALU s, shift registers, 

counters, comparators, memories and buses. Each block performs transformations on its 

inputs with or without latching or storing. Each block is a combinatorial function or a 
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FSM where the state is determined by the values in storage elements. 

The controlled counter [Arms89] shown in Figure 7 is an example of such a design. 

On the rising edge of the STRB signal, an internal control register CONREG is loaded 

with the value on CON. The CONREG value is decoded to perform one of four 

functions: clear the counter, load a limit register, count up to a limit, or count down to 

a limit. The counter runs synchronously under an input clock, and the counting 

functions are enabled by the internal signal EN. The DATA value is loaded into the 

limit register LIM on the falling edge of STRB if the control register contains the value 

'OO'. 

The functional design can be described in VHDL using block and process 

statements. When modeling such a design, one or more functional blocks can be 

described with one block or process. The counting function of the counter 74LS193 in 

Figure 7 is described by the block in Figure 8( a). The same function is described by 

process statement in Figure 8(b ). 

Modeling each functional block with more than one process may become difficult 

due to the VHDL limitation of single process assignment. The solution to this problem, 

proposed by Armstrong [Arms89], is to introduce a virtual multiplexor outside of both 

processes. This solution, although acceptable in simulation, is difficult to implement in 

real hardware. Thus, multiprocess modeling of the same functional block should not be 

used for syn thesis. 
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CNT_UP _ORJ)OWN: bloclc (CLK = '1' and not CLK'STABLE) 
begin 

CNT <=guarded 
CNT when EN= 'O' else 
CNT + "0001" afte.r INCDEL when CONSIG(2) = '1' else 
CNT - "0001" after INCDEL when CONSIG(3) = '1' else 
CNT; 

end block CNT_UP _ORJ)OWN; 

(a) Block Statermnt Representation 

CNT_UP _ORJ)OWN: process (CLK,CONSIG(2),CONSIG(3),EN) 
variable CNT_REG: BIT_ VECTOR(3 downto O); 

begin 
ifCLK = 'l' and not CLK'STABLE then 

if EN= 'l' then 
if CONSIG(2) = '1' then 

CNT_REG := CNT_REG + "0001"; 
elsif (CONSIG(3) = '1 ') then 

CNT_REG := CNT_REG - "0001 "; 
end if, 

end if; 
end if; 
CNT <= CNT_REG afte.r INCDEL; 

end process CNT_UP _OILDOWN; 

(b) Process Statermnt Representation 

Figure 8: VHDL Functional Descriptions 

Functional blocks can be described with more than one VHDL block statement. 

However, the behavior described in each block statement should be independent of 

other blocks. Examples of exclusive functions are the synchronous up counting and 

asynchronous reset of a synchronous up-counter with asynchronous reset. Furthermore, 

assignment to the same guarded signal under different guard expressions (representing 

different clocks) in different VHDL blocks should not be allowed. Although two guard 
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expressions (i.e., two clocks) can be mutually exclusive, controlling selection of the input 

signals to the same register may generate timing hazards. 

To achieve uniformity, the timing should be assigned only to output signals 

according to Proposition 2. For each functional block, the following four timing 

constraints can be used: 

a) the clock cycle, specified with a VHDL attribute statement, 

b) propagation delay from inputs to (clocked or asynchronously controlled) storage 

elements. Since this path can contain only combinational logic, a local signal can be 

defined to designate the storage element input data value. A timing specification 

(either an attribute or possibly an after clause) can be used for a signal assignment to 

this local signal. 

c) propagation delay from storage elements to outputs, and 

d) propagation delay from inputs to outputs (in the case where there are no storage 

elements on the path from input to output). 

In order to properly connect VHDL declared signals to components in the given 

library, all signals should be typed. The following five types should be defined: clock, 

set, reset, test, data and control. Typing will be used to identify the function of event 

signals appearing in in the block guards. The merging of assignments to the same 

variable in different blocks is possible during the synthesis process since signal types are 

known and synchronous/asynchronous behavior is clearly distinguished. 
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The following guidelines should be followed when developing a functional model 

description for synthesis: 

Proposition 3 

One or more functional blocks should be described by one VHDL block statement. 

Several block statements could be used to describe exclusive behavior (synchronous and 

asynchronous behavior of the same functional block). 

Proposition 4 

The guard expression should contain only signals of type clock, set or reset. 

Proposition 5 

All signals should be typed. Signal types should include clock, reset, set, test, data and 

control. 

3.3. Register Transfer Model 

3.3.1. Model 

Register transfer descriptions involve the specification of operations to be 

performed within a PE (as shown in the design model of Figure 3) for each machine 

state of a design. For each state, one or more triplets specify actions to be performed. 

Each triplet is composed of a condition, a next state specification, and a set of 
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operations. The condition tests a boolean expression. Within each state, one or more 

conditions may evaluate to true. The actions corresponding to each true condition are 

performed in the state. If the result of the test is true, a specified set of operations or 

register transfers is performed. Finally, control is transferred to the specified next state 

upon completion of the current state operations. 

Figure 9 illustrates a simple example of a state table which specifies the conditional 

statement ifX = 0 then A= A+ 1 else B =A+ B. 

Timing in register transfer descriptions is dependent on two things: the 

specification of a clock cycle, and the maximum time required to perform all operations 

specified for any state. In this case, it is not necessary to supply timing information in 

the statements which represent register transfers. If the clock cycle is supplied by the 

user (using a VHDL attribute for the design entity), the synthesis system will attempt 

Current Condition Next 
Ops 

State State 

so True Sl cond <= (X = 0); 

Sl 
cond S2 
cond' S3 

S2 True S4 A<=A+l: 
S3 True S4 B <=A+ B; 
S4 

Figure 9: Register Transfer State Table 

June 11, 1989 Page 25 



to select units which will perform the desired operations in each state within the 

specified clock cycle. If no clock is selected, the fastest components are selected from 

the available library, and the clock cycle is determined by the longest delay path in the 

design necessary to implement any state. 

June 11, 1989 

clock_edge < = CLK = '1' and not CLK'STABLE; 

S tate_O: block ( clock_edge) 
begin 

state <=guarded Sl when (state= SO) else state; 
cond < = (X = 'O') when (state= SO) else cond; 

end block State_O; 

S tate_l: block ( clock_edge) 
begin 

state <=guarded 82 when (state= Sl and cond) else 
S3 when (state = Sl and not cond) else state; 

end block State_l; 

State-2: block ( clock_edge) 
begin 

state <=guarded 84 when (state = S2) else state; 
A <=guarded A + "0001" when (state = 82) else A; 

end block S tate-2; 

State_3: block ( clock_edge) 
begin 

state <=guarded 84 when (state= S3) else state; 
B <=guarded A+ B when (state = 83) else B; 

end block State_3; 

Figure 10: State Table Block Description 
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In VHDL, block statements may be used to represent the state table using the 

following conventions: 

(1) Every block represents a different state. 

(2) The block guard specifies clock, while the body of the block sets the state variable 

to the appropriate next state and performs operations under the desired 

conditions. 

Figure 10 shows the corresponding block description for the state table of Figure 9. 

This VHDL block representation allows for the expression of parallelism. Concurrent 

actions may be specified for a given condition within the block statement. 

A second use of the block representation to describe the register transfer state 

table is shown in Figure 11. This description separates the state transition portion of 

the description (associated with the control unit) from the register transfers to be 

performed in each state (data path operations). While this description simulates 

properly, it has one difficulty from the synthesis perspective: identification of the clock. 

Assignment to the state variable is made via guarded signal assignments in which the 

current state, rather than a common clock, is used. The time interval that elapses 

between changes in the state (the clock period) is modeled with the after clause. The 

data operations appearing in block statements are also clocked by the state. This 

description is difficult to synthesize since the clock for register assignments is not 

explicitly specified. 
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State_l: block (state = SO) 
begin 

state < = guarded Sl after CLKJ>ERlOD; 
end block; 

State-2: block (state = Sl and cond) 
begin 

state < = guarded S2 after CLKJ>ERlOD; 
end block; 

State-3: block (state = Sl and not cond) 
begin 

state < = guarded S3 after CLKJ>ERlOD; 
end block; 

State_4: block (state = S2 or state = S3) 
begin 

state < = guarded S4 after CLKJ>ERlOD; 
end block; 

(a) state transitions 

FO: block (state = SO) 
begin 

cond <=guarded (X = 'O'); 
end block; 

F2: block (state = S2) 
begin 

A<= guarded A+ "0001"; 
end block; 

F3: block (state = S3) 
begin 

B <=guarded A+ B; 
end block; 

(b) data operations 

Figure 11: State Transitions/Register Transfers Description 

The description of the state table using a process statement is shown in Figure 

12(a). Here, each process represents a state. Problems associated with this 

representation with respect to synthesis include: 

(1) One signal variable per state is required. Since each process is triggered by a 

change in the state variable found in its sensitivity list, detection of this signal 

change and state decoding are difficult to implement. 

(2) The same storage element may need to be updated in more than one process. 

Using block statements, this can be handled with guarded signal assignments; the 
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architecture Pl of STATE_TBL is 
signal SO,Sl,S2,S3,S4,S4-1,S4-2: BIT; 
signal cond: BOOLEAN; 
signal A,Al,A2: BIT_VECTOR(3 downto O); 

begin 
State_O: process (SO) 
begin 

cond < = (X = '0'); 
81 < = not 81 after CLK_PERIOD; 

end process 8tate_O; 

StateJ: process (Sl) 
begin 

if ( cond) then 
S2 <=not S2 after CLKJ>ERIOD; 

else 
S3 < = not S3 after CLKJ>ERIOD; 

end if; 
end process StateJ; 

State-2: process (S2) 
begin 

Al <=A+ "0001"; 
S4_1 < = not S4 after CLKJ>ERIOD; 

end process State-2; 

State-3: process (S3) 
begin 

A2 <=A+ B; 
84-2 < = not S4 after CLKJ>ERIOD; 

end process State-3; 

A<= Al when not Al'QUIET else 
A2 when not A2'QUIET else A; 

S4 < = S4J when not SU 'QUIET else 
SU when not S4-2'QUIET else S4; 

end Pl; 

(a) process state description 

architecture P2 of 8TATE_TBL is 
type STATE_VAL is (80,Sl,S2,S3,S4); 
signal cond: BOOLEAN; 
signal state,new...state: 8TATE_VAL; 

begin 

process (state) 

begin 

case state is 

when SO=> cond <= (X = 'O'); 
new...state < = Sl; 

when Sl => if ( cond) then 
new...state <= S2; 

else 
new...state < = S3; 

end if; 
when S2 => A:= A+ "0001"; 

new...state < = 84; 
when83 => B :=A+ B; 

new...state < = S4; 
when S4 => ... 

end case; 

state<= new...state after CLK_PERIOD; 

end process; 

end P2; 

{b) single process 

Figure 12: Alternative VHDL State Table Descriptiom 

process, however, provides no clean method of expressing this concept. Variables 

are local to the process and can be used to represent a storage element within one 

process only. Guarded signal assignments are not allowed within processes. 
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Virtual muxes must be added to accommodate the update of the same signal in 

more than one state. This introduces unnecessary hardware which violates good 

design practice. 

A second use of the process statement to represent register transfers is shown in 

Figure 12(b ). The single process contains a case statement to specify an instruction set 

like description. This description can't express parallelism for operations associated 

with one condition since the process is inherently sequential. On the other hand, if we 

assume for synthesis that all statements appearing within a case alternative are 

executed in parallel, the VHDL simulation of the input description will not reflect the 

true behavior of the synthesized design. The solution is to use additional signals of type 

wire. The following VHDL code fragment illustrates the equivalent sequential 

statements for the concurrent interchange of the values of A and B: 

variable A,B: BIT; 
signal temp: BIT; 

temp<= A; 
A:= B; 
B :=temp; 

In order to describe register transfer designs for syn thesis, the following modeling 

practice is recommended: 

Proposition 6 

Each state of a register transfer design should be described with block statements 

containing condition, next state assignment and all register transfers with the clock 
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specified in the guard expression. Alternatively, a single process with a case statement 

can be used. 

3.4. Behavioral Design 

3.4.1. Model 

The design model shown in Figure 3 is also assumed for the algorithmic design 

model. A behavioral description allows the designer to describe the design as a black 

box with well defined interfaces. Variables within a description can be allocated storage 

by default, or the synthesis system can determine which variables require storage. As in 

the combinational model, input to output timing is expressed. 

3.4.2. VHDL Description 

Figure 13 shows a simple VHDL behavioral description. The process statement is 

the only suitable method in VHDL for expressing behavior in algorithmic form. Each 

VHDL process will be synthesized into a CU /DP pair. Data computations within the 

process are made with variable assignment statements. Its similarity to a programming 

language allows for the coding of algorithms using typical control constructs (IF, CASE, 

FOR and WHILE loops). 

Input to output timing is expressed as a part of the output signal assignments. The 

wait statement can be used within the process statement to express timing. A 
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--------- --------------- ·--- ------~-~--~------------

architecture BEHAVIOR afSTATE_TBL is 
signal B_port: BIT_VECTOR(3 downto O); 

begin 

process (X) 
variable A,B: BIT_VECTOR(3 downto O); 

begin 
if (X = 'O ') then 

A:= A+ "0001"; 
eJse 

B := B +A; 
end if; 
B_port < = B after 20 ns; 

end process; 
end block; 

Figure 13: Behavioral Description Using VHDL Process Statemmt 

statement of the form 

wait until <condition> 

will model a design state which loops on itself until the specified condition evaluates to 

TRUE. The state table entry for this state will advance the state register to the next 

state in sequence when the condition is TRUE. The second form of the wait statement, 

wait for <time> 

models a design state which loops on itself for the specified time duration. This model 

requires a count variable initially set to zero which is incremented on every execution of 

the state. When the count reaches the specified <time> duration, the state register is 

advanced to the next state. 
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The recommended modeling practice for algorithmic design can be summarized as 

follows: 

Proposition 7 

Behavioral designs are modeled by VHDL process statements. Signal assignments are 

used to represent output port assignments. Signals may also be used to hold temporary 

values (for example, the swapping of register contents) in order to model concurrent 

events within the sequential process. 
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4. Conclusion 

We have proposed in this report a structured modeling methodology which does 

not restrict VHDL to a particular subset but recommends several writing styles for 

different design models. This methodology is based on the following principles: 

(1) Appropriate constructs in VHDL should be used for appropriate levels of design. 

(2) Guard expressions for block statements are used to represent clocks, or signals that 

enable storage. 

(3) Unguarded signal assignments should be used to model wires. Guarded signal 

assignments should be used for register and bus assignments. These constructs 

should not be mixed so that the model remains consistent for syn thesis. 

( 4) Design hierarchy and partitioning should be reflected in the description, although 

not with the same granularity. 

We believe that this structured modeling methodology will make modeling simple, 

allow portability of models, and facilitate synthesis of high quality designs. 
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