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Abstract

From single-phase to two-phase sharp-interface incompressible viscous flow simulation

on distributed adaptive Quadtree/Octree grids

by

Raphael M. Egan

With the rise of computational power and the democratized access to supercomputers,

numerical simulations have emerged as a new standard tool of scientific investigation over

the last century, often complementing experimental and theoretical approaches. Among

the most challenging problems to be tackled numerically, one finds multi-scale and free-

boundary phenomena. Multi-scale problems typically prevent the use of uniform meshes;

free boundaries may develop complex geometric features making body-fitted mesh gener-

ation challenging. The present dissertation covers the development of numerical tools and

methods for implicitly-captured interfaces on distributed Quadtree/Octree grids, which

are thus well-suited for such challenging problems.

The first part of this work focuses on the extension of numerical methods for the

simulation of incompressible, viscous flows from single-phase to two-phase problems, on

distributed Quadtree/Octree grids. In order to reconcile the numerical description of

the phenomenon with its continuum-mechanics description, this extension requires the

development of several sharp-interface numerical techniques capable of capturing discon-

tinuities in material parameters as well as in the primary unknowns. In addition, the

description of the first-principle conservation laws across a sharp interface underlines that

interface discontinuities in primary unknowns depend on the solution itself, highlighting

the need for novel numerical methods. The development of such methods is presented,

and their combination into a simulation engine for incompressible, viscous two-phase

v



flows is illustrated.

In the second part of this dissertation, two separate and independent works are pre-

sented. First, a numerical discretization for the point-located Dirac distribution is pre-

sented. Beyond its theoretical interest, the Dirac distribution is sometimes used for

modeling extreme multiscale events that cannot be fully resolved even with adaptive grid

capabilities: that project presents a simple, geometric discretization that is shown to

correctly reproduce the expected behavior over finite length scales. Second, a series of

algorithms implementing a parallel, load-balanced divide-and-conquer strategy for con-

structing levelset representations of the Solvent-Excluded Surfaces of large biomolecular

compounds are presented. This set of algorithms is shown to successfully accelerate the

construction of such highly convoluted interfaces and to satisfy strong scaling, open-

ing the door to more efficient calculations of interface-resolved electrostatics phenomena

around such complex molecular structures.
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Part I

From single-phase to two-phase

incompressible viscous flow

simulation
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Chapter 1

Introduction

Applications and problems involving the dynamics between two immiscible fluids are om-

nipresent in our everyday lives. To cite only a few examples, droplets, bubbles, sprays,

waves and problems involving a phase change (boiling, evaporation or cavitation) are all

characterized by the existence of two drastically different fluids coupled across the inter-

face that separates them. As a natural consequence, a plethora of engineering and life

science applications fall into this extremely broad category: for instance, design of ink-

jet printer, oil extraction strategies, micro-fluidic devices, fuel atomization in engines,

breakup of waves, spray optimization and bubbly flows are motivating intense indus-

trial as well as fundamental research and development. In this work, we consider only

incompressible flows.

Besides the typical non-linearity inherent to any fluid dynamics phenomenon, two-

phase flow problems are typically characterized by the existence of discontinuities in

material properties across the interface as well as an arbitrary interface geometry along

which interface-defined (singular) phenomena take place. This severely restricts the range

of problems for which theoretical descriptions and analyses are available. Quite natu-

rally, these difficulties have thus pushed and motivated the development of numerical
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Introduction Chapter 1

simulation tools over the last three decades.

Mathematically, the existence of interface-defined discontinuities and singular source

terms can be represented by means of Heaviside functions and Dirac distributions on

the interface of co-dimension one. Building upon this mathematical equivalence, original

steps toward the numerical simulation of two-phase flows considered numerical discretiza-

tions smearing Heaviside functions and Dirac distributions over a few grid cells. This

enabled an (almost) immediate use of single-phase simulation techniques with unconven-

tional source terms and material parameters.

The Continuum Surface Force (CSF) model introduced by Brackbill [1] is the first

such numerical method, and proposed to capture surface tension effects by means of a

numerical approximation smearing a singular (volumetric) force over the computational

grid. Though the latter is usually referred to as the pioneering work, the same principles

were actually used the front-tracking method introduced by Unverdi and Tryggvason

[2] wherein the numerical discretization of interface singularities follows the work of

Peskin [3, 4]. Over subsequent years, the simplicity of the approach contributed to

its popularity and helped it make its way into other computational frameworks including

levelset simulations [5, 6, 7], Volume-Of-Fluid (VOF) approaches [8, 9] and Discontinuous

Galerkin finite element method [10].

However, spreading interface-defined source terms over a finite volume region does not

correctly translate continuum mechanics in its limit sense since it produces a continuous

solution. While there may exist a continuous variation of relevant quantities across the

interface at the molecular level, such variations appear as sharp discontinuities at the con-

tinuum length scales. Regarding the smearing of material properties, similar conclusions

hold and, from a numerical standpoint, such an approach produces artifacts and erro-

neous results that prevent convergence of numerical methods in infinity norm, e.g. strong

parasitic currents in simulation of two-phase flows [11, 12]. Noticeably, VOF techniques

3



Introduction Chapter 1

have the advantage of minimizing the smearing effect to cells crossed by the interface

only, by making mass density and viscosity linear function of the local volume fraction.

This produces a pixelized representation of material properties which is not inconsistent

for the mass density but lacks justification for viscosity. Nevertheless, it was shown in

[13] that parasitic currents could be alleviated entirely when using a CSF model within

a VOF approach, provided special care in the discretizations and accurate evaluations of

interface curvature. We also note that another approach successfully alleviating parasitic

currents was presented in [14] in two dimensions.

The first major contribution toward a numerical treatment of the problem that is fully

aligned and consistent with continuum mechanics in its limit sense was introduced in [15].

Building upon the numerical methods developed in [16], inspired from the Ghost Fluid

Method (GFM) [17], an entirely sharp treatment of viscous fluxes and surface tension

was presented with a levelset representation of the interface. The approach was shown

to significantly reduce parasitic currents compared to CSF models. This seminal work

considered problems without phase change (continuous velocity field) and presented an

explicit treatment of viscous terms as their sharp treatment close to the interface proved

complex and challenging to make implicit. The success of this approach in capturing a

sharp, discontinuous pressure field made it particularly appealing and the corresponding

treatment of surface tension terms soon made its way into other works [18, 19], often at

the sacrifice of treating viscous terms in a smeared fashion though.

In subsequent years, this approach gained significant interest and efforts were under-

taken to treat viscous terms in an implicit (or semi-implicit) fashion. However, strict

equivalence with the explicit treatment from [15] was never truly recovered. In [20, 21],

an implicit scheme inspired from [15] was considered for computer graphics applications:

the scheme borrows the sharp numerical representation of shear viscosity but assumes

perfectly balanced viscous fluxes across the interface, i.e. [µ∇u] = 0 where [q] represents

4



Introduction Chapter 1

the discontinuity in q across the interface. A similar assumption is made in the major

work of Sussman [22] wherein levelset and VOF methods are coupled to gain the best

from either approach, building upon earlier developments [7, 23, 5, 24]. In that work,

a semi-implicit discretization of viscous terms (coupling all velocity components) is pre-

sented with a sharp numerical representation of shear viscosity similar to [16, 15]. It is

shown to be consistent with a former one-phase formulation [25] in presence of a dynam-

ically negligible phase. Though the material viscosity is treated sharply, [µ∇u] = 0 is

assumed as well. In [26], clear answers were provided regarding the need to account or not

for viscous terms in pressure discontinuities when considering either [15] or [22] and an

alternative scheme to [22] that effectively decouples velocity components was presented,

though assuming [µ∇u] = 0 again. While this assumption is (artificially) consistent with

the balance of tangential viscous stress across the interface in the absence of interface-

defined forces, it is not an appropriate assumption as [µ∇u] 6= 0 in general. As presented

in [27], when considering interface-defined forces (e.g. Marangoni force) in such an ap-

proach, their straightforward consideration requires to assimilate
[
µ
(
∇u+ (∇u)T

)
· n
]

to [µ∇u · n] where n is the unit vector normal to the interface, although the equivalence

holds true only if [µ] = 0.

Besides the conceptual drawbacks described here above, these numerical methods all

rely on the discontinuity-capturing method from [16] to determine the pressure field.

However, that method is known to lack convergence in gradients unless special care is

taken (see [28], i.e., chapter 4 of this document). Therefore, some alternative efforts have

been undertaken to apply more accurate numerical discretization techniques (usually less

robust with respect to under-resolved interfaces, though) and/or to address the implicit

treatment of sharp interface without assuming [µ∇u] = 0. For instance, the virtual node

strategy from [29] has been extended to two-phase Stokes flows in [30] and two-phase

Navier-Stokes problems in [31]. In either case, a saddle-point discretization was used to
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account for all primary unknowns simultaneously, accounting for the coupling between

(implicit) viscous and pressure terms across the interface within the discretization for

instance. In [32], second-order accurate interface-capturing schemes have been used for

all (decoupled) degrees of freedom on quadtree/octree grids in association with an it-

erative method updating interface jump conditions to account for stress balance across

the interface. More recently, [33] introduced a saddle-point discretization building upon

the numerical methods from [16] embedded within an iterative strategy similar to [28]

(chapter 4 herein).

All the developments mentioned here above were restricted to problems with contin-

uous velocity across the interface. When considering problems involving mass transfer

between the immiscible phases (e.g. phase change), discontinuities are expected to take

place not only in the pressure fields but also in velocity fields and this naturally adds

more constraints and complexity to the implementation of sharp simulation tools. The

development of numerical methods for handling this kind of problems followed a very

similar trajectory. After early two-dimensional attempts involving front-tracking strate-

gies [34, 35, 36], levelset and VOF approaches became more popular (see [37, 38, 39] for

recent developments involving VOF approaches).

Originally, numerical smearing of material parameters and interface-defined source

terms along with explicit treatment of viscous terms attracted researchers’ interest [40, 41,

42]. In [43], an extension of the strategy from [15] for inviscid two-phase flows with phase

change was presented: the absence of viscosity simplifies the problem significantly but

this work paved the way toward sharp numerical treatments for phase-change problems.

It was extended to viscous fluids in [44] with smeared viscosity coefficients and explicit

viscous terms, in two dimensions.

In [45, 46, 47], this approach was used with a levelset method and sharp representa-

tion of viscosity was used along with the definition of ghost fluid velocities. A similar

6
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idea was introduced in [48, 49] where the velocity from either phase is extrapolated (and

made divergence-free) for enabling straightforward, sharp (explicit) treatment of advec-

tion and viscous terms. This strategy was further developed in [50] in combination with

the numerical methods from [26] to enable implicit time-stepping as required for simulat-

ing extremely thin films in Leidenfrost effects. A similar approach can be found in [51].

Although effectively alleviating smearing across the interface and providing an effective

strategy for advection terms, such a strategy also prevent the (viscous) coupling of ve-

locity components from either phase and relaxes the stress balance requirement across

the interface.

In this work, we consider the development of numerical methods targeted to enable

the sharp treatment of interface conditions for incompressible, viscous two-phase flows

for problems that may involve mass transfer across the interface (i.e., phase change).

Since we build upon the distributed computing, adaptive framework from [52] previously

developed for single-phase problems, an adaptive- and parallel-friendly approach needs to

be considered, motivating efforts to capture viscous effects implicitly while decoupling all

primary unknowns. Whereas such a decoupling of unknowns does not pose major issues

in single-phase problems, it does not comply well with the governing interface conditions

for momentum balance across the interface in two-phase problems, underlining the need

for iterative methods.

The rest of (the first part of) this document is structured as follows: in chapter 2,

we present the foundational computational framework developed for the direct numerical

simulation of incompressible single-phase flows on distributed, adaptive quadtree/octree

grids (partial reproduction of [52]). In chapter 3, the extension of these numerical meth-

ods to two-phase flows are presented and discussed in order to underline the required

developments as well as how to integrate them in a flowchart consistently with the rel-

evant governing equations and interface conditions. This discussion highlights the need

7
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for the development of sharp numerical methods for vector fields capable of handling

interface jump conditions that depend on the solution itself (unknown a priori). This

challenging problem motivated a simplified approach for scalar fields which is presented

in chapter 4 (published in [28]). Its extension to the relevant vector-field problem of

interest is presented and discussed in chapter 5. In chapter 6, the development of a

finite-volume numerical method for solving (cell-sampled) scalar elliptic interface prob-

lems is presented: this emerged as another requirement from the discussion in chapter

3 for the stability of projection steps. Finally, the assembly of all these computational

tools as a two-phase flow simulation engine is presented in chapter 7, assessed on relevant

test problems and illustrated with applications in two and three dimensions.

1.1 Permissions and Attributions

1. The content of chapter 2 is a partial reproduction of the result of a collaboration

with Arthur Guittet, Fernando Temprano-Coleto, Tobin Isaac, François J. Peaude-

cerf, Julien R. Landel, Paolo Luzzatto-Fegiz, Carsten Burstedde and Frédéric Gi-

bou, which has previously appeared in the Journal of Computational Physics, as

“Direct numerical simulation of incompressible flows on parallel Octree grids” [52].

2. The content of chapter 4 is the result of a collaboration with Frédéric Gibou,

and has previously appeared in the Journal of Computational Physics, as “xGFM:

Recovering convergence of fluxes in the ghost fluid method” [28].

3. The content of chapter 8 is the result of a collaboration with Frédéric Gibou, and

has previously appeared in the Journal of Computational Physics, as “Geometric

discretization of the multidimensional Dirac delta distribution – Application to the

Poisson equation with singular source terms” [53].

8
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4. The content of chapter 9 is the result of a collaboration with Frédéric Gibou, and has

previously appeared in the Journal of Computational Physics, as “Fast and scalable

algorithms for constructing Solvent-Excluded Surfaces of large biomolecules” [54].

9



Chapter 2

Simulating single-phase flows on

parallel Quadtree/Octree grids

2.1 Introduction

In the last decade, the democratization of the access to supercomputers has prompted

the development of massively parallel simulation techniques. The previously existing

serial codes are progressively being adapted to exploit the hundreds of thousands of cores

available through the main computing clusters. We propose a parallel implementation

of the solver for the incompressible Navier-Stokes equations introduced in [55], based on

the parallel level-set framework presented in [56]. Additional novel algorithms, necessary

to solving the Navier-Stokes equations in a forest of Quad-/Oc-trees, are presented.

Numerical simulations at the continuum scale are generally divided into two categories

characterized by their meshing techniques. On the one hand, the finite elements com-

munity relies on body-fitted unstructured meshes to represent irregular domains. Given

a high quality mesh, the resulting solvers are fast and very accurate. This approach has

been successfully applied to the simulation of incompressible viscous flows [57, 58, 59].

10
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However, the mesh generation is very costly and impractical when tracking moving in-

terfaces and fluid features requiring high spatial resolution. On the other hand, methods

based on structured Cartesian grids render the mesh geometry mainly trivial, but lead

to a higher complexity for the implicit representation of irregular interfaces. We focus

here on the latter class of methods.

A common approach to represent an irregular interface in a implicit framework is to

use Peskin’s immersed boundary method [60, 61, 62] or its level-set counterpart [5]. How-

ever, these methods introduce a smoothing of the interface through a delta formulation

and therefore restrict the accuracy of the solution with O(1) errors near fluid-fluid inter-

faces1. We therefore opt for the sharp interface representation provided by the level-set

function [63]. We use the finite-volume/cut-cell approach of Ng et al. [64] to impose the

boundary condition at the solid-fluid interface for its demonstrated convergence in the

L∞-norm.

Fluid flows are by nature multiscale, thus limiting the scope of uniform Cartesian

grids. A range of strategies have been proposed to leverage the spatial locality of the

fluid information such as stretched grids [65, 66], nested grids [67, 68, 7, 69, 70], chimera

grids [71, 72] or unstructured meshes [73, 74, 75, 76, 77]. Another approach is to use a

Quadtree [78] (in two spatial dimensions) or Octree [79] (in three spatial dimensions) data

structure to store the mesh information [80, 81]. Popinet applied this idea combined with

a non-compact finite volume discretization on the Marker-And-Cell (MAC) configuration

[82] to the simulation of incompressible fluid flows [83]. Losasso et al. also proposed a

compact finite volume solver on Octree for inviscid free surface flows [84], while Min et

al. presented a node-based second-order accurate viscous solver [85]. The present work is

based on the approach presented in Guittet et al. [55], which solves the viscous Navier-

1Although we do not consider fluid-fluid interfaces in this chapter, it stands as a stepping stone
toward that case.
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Stokes equations implicitly on the MAC configuration using a Voronoi partition and

where the advection part of the momentum equation is discretized along the characteristic

curves with a Backward Differentiation Formula (BDF), semi-Lagrangian scheme [86, 87].

The projection step is solved with the second-order discretization of Losasso et al. [88]

for the Poisson equation.

The extension of [55] to parallel architectures relies on the existence of an efficient

parallel Quad-/Oc-tree structure. Possible ways to implement parallel tree structures

include the replication of the entire grid on each process. This approach, however, is not

feasible when the grid size exceeds the memory of a single compute node, which must be

considered a common scenario nowadays. Using graph partitioners such as parMETIS [89]

on a tree structure would discard the mathematical relations between neighbor and child

elements that are implicit in the tree, and thus result in additional overhead. Another

option, which we find preferable, is to exploit the tree’s logical structure using space-

filling curves [90]. This approach has been shown to lead to load balanced configurations

with good information locality for a selection of space-filling curves including the Morton

(or Z-ordering) curve and the Hilbert curve [91].

Space-filling curves have been used in several ways, for example augmented by hashing

[92], tailored to PDE solvers [93], or focusing on optimized traversals [94]. Octor [95] and

Dendro [96] are two examples of parallel Octree libraries making use of this strategy that

have been scaled to 62,000 [97] and 32,000 [98] cores, operating on parent-child pointers

and a linearized octant storage, respectively. Extending the linearized storage strategy

to a forest of interconnected Octrees [99, 100], the p4est library [101] provides a publicly

available implementation of the parallel algorithms required to handle the parallel mesh,

including an efficient 2:1 balancing algorithm [102]. p4est has been shown to scale up

to over 458,000 cores [103], with applications using it successfully on 1.57M cores [104]

and 3.14M cores [105].
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The algorithms pertaining to the second-order accurate level-set method on Quad-

/Oc-tree presented in Min and Gibou [106] have been extended in Mirzadeh et al. [56]

parallel architecture by leveraging the p4est library. Starting from this existing basis

for the level-set function procedures, we present the implementation of the algorithms

pertaining to the simulation of incompressible fluid flows detailed in [55]. The Voronoi

tessellation that we construct over the adaptive tree mesh requires (at least) two layers

of ghost cells, whose efficient parallel construction we describe in detail. We report on

the scalability of the algorithms presented before illustrating the full capabilities of the

resulting solver.

2.2 The computational method

In this section, we present mathematical and computational components pertaining

to our numerical method for solving the incompressible Navier-Stokes equations on a for-

est of Octree grids. The first five subsections are mainly dedicated to the mathematical

description of the discretization procedures (the interested reader may find more details

in [55]). The implementation of these building bricks in a distributed computing frame-

work reveals two grid-related requirements: access to second-degree (or third-degree) cell

neighbors and unambiguous indexing of grid faces. The last two subsections present the

computational strategies developed to address challenges related to these requirements.

Throughout this section, schematics and illustrations are presented in two dimensions for

the sake of clarity. Their extension to three dimensions follows the exact same principles

without any loss of generality.

13
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2.2.1 Representation of the spatial information

The level-set method

A central desired feature of the proposed solver is to be able to handle complex,

possibly moving interfaces in a sharp fashion2. The level-set framework, first introduced

by [63] and extended to Quad-/Oc-trees in [106] is a highly suited tool for such a goal.

The level-set representation of an arbitrary contour Γ, separating a domain Ω into two

subdomains Ω− and Ω+, is achieved by defining a function φ, called the level-set function,

such that Γ = {x ∈ Rn|φ(x) = 0}, Ω− = {x ∈ Rn|φ(x) < 0} and Ω+ = {x ∈ Rn|φ(x) >

0}.

Among all the possible candidates that satisfy these criteria, a signed distance func-

tion (i.e., |∇φ| = 1) is the most convenient one. In order to transform any function ϕ (x)

into a signed distance function φ (x) that shares the same zero contour, one can solve

the reinitialization problem

∂φ

∂τ
+ sign(ϕ) (|∇φ| − 1) = 0, φ (x)|τ=0 = ϕ (x)

until a steady state in the fictitious time τ is found. The finite difference discretization and

its corresponding parallel implementation employed to solve this equation are presented

respectively in [106] and [56].

Forests of Quad-/Oc-trees and the p4est library

When dealing with physical problems that exhibit a wide range of length scales,

uniform Cartesian meshes become impractical since capturing the smallest length scales

requires a very high resolution. This is the case for high Reynolds number flows, for

2We consider irregular solid objects in this work but the methodology is intended to be extended to
multiphase interfaces.
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which the boundary layers and any wake vortices have a length scale significantly smaller

than that of the far-field flow. This observation naturally leads to the use of adaptive

Cartesian grids, including Octrees grids.

The p4est library [101] is a collection of parallel algorithms that handles a linearized

tree data structure and its manipulation methods, which were shown to collectively scale

up to 458,752 cores [103], as noted in the previous section. In p4est the domain is first

divided by a coarse grid, which we will refer to as the “macromesh”, common to all the

processes. For our purpose we will consider solely uniform Cartesian macromeshes in

a brick layout, although a general macromesh is not limited to such a configuration in

p4est. This layout can be constructed at no cost using predefined and self-contained

functions. A collection of trees rooted in each cell of the macromesh is then constructed

and partitioned, and their associated (expanded) ghost layers are generated. The refine-

ment and coarsening criteria necessary for the construction of the trees are provided to

p4est by defining callback functions. We propose to use four criteria based on the phys-

ical characteristics at hand. Different combinations of these criteria are used depending

on the specific problem considered.

The first criterion, presented in [106] and [56], captures the location of the interface:

coarse cells are allowed locally, provided they are (at least) K cell diagonal(s) away from

the interface, where K ≥ 1 is defined by the user. Specifically, a cell C is marked for

refinement if

min
v∈V (C)

|φ(v)| ≤ K Lip(φ)diag(C), (2.1)

where V (C) is the set of all the vertices of cell C, Lip(φ) is the Lipschitz constant of the

level-set function φ, and diag(C) is the length of the diagonal of cell C. Similarly, a cell
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is marked for coarsening if

min
v∈V (C)

|φ(v)| > 2K Lip(φ)diag(C).

The second criterion, introduced for Quad-/Oc-trees in [83] and used in [85] and [55],

is based on the vorticity of the fluid. High vorticity corresponds to small length scales

and therefore necessitates a high mesh resolution. We mark a cell C for refinement if

hmax

maxv∈V (C)‖∇ × u(v)‖2

maxΩ‖u‖2

≥ γ, (2.2)

where hmax is the largest edge length of cell C and γ is a parameter controlling the level

of refinement. Analogously, a cell C is marked for coarsening if

2hmax

maxv∈V (C)‖∇ × u(v)‖2

maxΩ‖u‖2

< γ.

Another criterion enforces a band of b grid cells of highest desired resolution around

the irregular interface. We mark for refinement every cell such that

min
v∈V (C)

dist (v,Γ) < b max (∆xfinest,∆yfinest,∆zfinest) ,

where ∆xfinest, ∆yfinest and ∆zfinest are the cell sizes along cartesian directions for the

finest cells to be found in the domain.

The Marker-And-Cell layout

The standard data layout used to simulate incompressible viscous flows on uniform

grids is the Marker-And-Cell (MAC)[82] layout. The analogous layout for Quadtrees

is presented in figure 2.1 and leads to complications in the discretizations compared to
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Figure 2.1: Representation of the Marker-And-Cell (MAC) data layout on a Quadtree
structure with the location of the x-velocity ( ), the y-velocity ( ), the Hodge variable
( ) and the level-set values ( ).

uniform grids. However, second order accuracy is achievable for the elliptic and advection-

diffusion problems that appear in our discretization of the Navier-Stokes equations. Two

possible corresponding discretizations are presented for the data located at the center of

the cells (the leaves of the trees) and at their faces in sections 2.2.4 and 2.2.3 respectively.

2.2.2 The projection method

Consider the incompressible Navier-Stokes equations for a fluid with velocity u, pres-

sure p, density ρ and dynamic viscosity µ, with a force per unit mass f

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ ρf + µ∇2u, (2.3)

∇ · u = 0. (2.4)
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The standard approach to solve this system is the projection method introduced by

Chorin [107]. We refer the reader to [108] for a review of the variations of the projection

method. The system is decomposed into two distinct steps, identified as the viscosity

step and the projection step. The first step consists in solving the momentum equation

(2.3) without the pressure term,

ρ

(
∂u

∂t
+ u · ∇u

)
= ρf + µ∇2u, (2.5)

to find an intermediate velocity field u∗. Since this field does not satisfy the incom-

pressibility condition (2.4), it is then projected on the divergence-free subspace to obtain

un+1, the solution at time tn+1, via

un+1 = u∗ −∇Φ (2.6)

where Φ is referred to as the Hodge variable and satisfies

∇2Φ = ∇ · u∗. (2.7)

The two following sections describe the discretization applied to solve steps (2.5) and

(2.7) respectively.

2.2.3 Implicit discretization of the viscosity step

The viscosity step (2.5) contains two distinct terms besides the possible bulk force:

the advection term on the left-hand side and the viscous term on the right-hand side. In

order to prevent stringent time step restrictions due to the latter, we opt for a second

order backward differentiation method to advance (2.5) in time. This integration scheme
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can address stiff problems without theoretical stability-related constraints on the time

step.

Discretization of the advection term with a semi-Lagrangian approach

We discretize the advection part of the viscosity step using a semi-Lagrangian ap-

proach [109, 86]. This method relies on the fact that the solution u (x, t) of the advection

equation

∂u

∂t
+ u · ∇u = 0 (2.8)

is constant along the characteristics of the equation, i.e., along material trajectories (x(s),

t(s)) such that
dt

ds
= 1 and

dx

ds
= u (x, t). Using this parameterization, equation (2.8) is

equivalent to

du

ds
= 0,

which we integrate with respect to s using a second-order BDF [87].

Given the location x∗ where the solution u∗ is sought at time tn+1, the local material

trajectory passing through x∗ at time tn+1 is traced back in time to find the points xnd and

xn−1
d through which it passed at times tn and tn−1 respectively. The values und = u (xnd , tn)

and un−1
d = u

(
xn−1
d , tn−1

)
are then calculated using quadratic interpolation and the

application of the second order BDF (note that ∆s = ∆t) leads to

∂u

∂t
+ u · ∇u ≈ α

∆tn
u∗ +

(
β

∆tn−1

− α

∆tn

)
und −

β

∆tn−1

un−1
d ,

where

∆tj = tj+1 − tj, α =
2∆tn + ∆tn−1

∆tn + ∆tn−1

and β = − ∆tn
∆tn + ∆tn−1

.
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We refer the reader to [55] for further details.

Discretization of face-centered Laplace operators

Since we consider constant-viscosity incompressible flows of Newtonian fluids, the

velocity components are effectively decoupled in the viscous terms. This allows us to

solve for the individual components of u∗ separately when advancing (2.5). In that

context, we require appropriate discretizations for the Laplace operators associated with

degrees of freedom sampled at faces of similar orientations, i.e., at faces where similar

velocity components are sampled. We obtain these discretized operators by applying a

finite volume approach to Voronoi tessellations. We present a summary of the approach

and refer the reader to [55] for further details.

Given a set of points in space, called seeds, we define the Voronoi cell of a seed as

the region of space that is closer to that seed than to any other seed. The union of

all the Voronoi cells forms a tessellation of the domain, i.e., a non-overlapping gap-free

tiling of the domain. By placing these seeds at the centers of faces of the computational

mesh sharing the same cartesian orientation, one obtains a new computational grid for

the corresponding velocity component that is sampled at those faces. Two-dimensional

examples of Voronoi tessellation are presented in figure 2.2 for Quadtree grids.

Considering a diffusion equation for the unknown u with constant diffusion coefficient

µ

µ∇2u = r,

it is discretized on the Voronoi tessellation with a finite volume approach where the

control volume for each degree of freedom i is its Voronoi cell Ci. This leads to

∫

Ci
µ∇2u =

∫

∂Ci
µ ∇u · n ≈

∑

j∈ngbd(i)

µ sij
uj − ui
dij

,
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where ngbd(i) is the set of neighbors for the degree of freedom i, n is the vector normal

to ∂Ci (pointing outwards), dij is the length between degrees of freedom i and j, and sij

is the area —or the length, in 2D— of the face between them, as illustrated in figure 2.2.

This discretization provides a second-order accurate solution [110].

General discretization for the viscosity step

Combining the discretizations presented in the two previous sections, we obtain the

general discretization formula. Considering the x-component of the velocity field u, for

the ith face with normal ex and associated Voronoi cell Ci, we have

Vol(Ci)ρ
α

∆tn
u∗i+µ

∑

j∈ngbd(i)

sij
u∗i − u∗j
dij

= Vol(Ci)ρ
[(

α

∆tn
− β

∆tn−1

)
uni,d +

β

∆tn−1

un−1
i,d + ex · f i

]
,

where Vol(Ci) is the volume of Ci. The very same approach is then used for the y- and

z-components of the velocity, i.e., v and w.

This produces a symmetric positive definite linear system that we solve using the

BiConjugate Gradient stabilized iterative solver and the successive over-relaxation pre-

conditioner provided by the PETSc library [111, 112, 113].

A note on the boundary conditions The boundary conditions to consider when

solving the viscosity step are to be imposed on u∗. As a consequence, the type of

boundary condition that is desired for u is used for u∗ as well, but the enforced boundary

value is corrected in order to take into account the correction from the projection step

(2.6), given the current best estimate of ∇Φ.
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Figure 2.2: Top left: nomenclature for the discretization of the Laplace operator on a
Voronoi diagram (illustrated for a vertical face). The degree of freedom circled in green
can potentially belong to a second-degree neighbor cell, i.e., a cell that is not adjacent
to the current cell but adjacent to one of the current cell’s immediate neighbor. Top
right: example of a Quadtree mesh (top) and its Voronoi tessellation for the vertical
faces (bottom). Bottom: illustration of a two-dimensional Voronoi cell for a horizontal
face which may require knowledge of a face associated with a third-degree neighbor
cell, in case of stretched computational grids (aspect ratio much different from 1).
The face circled in pink is indexed by a third-degree neighbor quadrant of the top
quadrant indexing the center seed.

2.2.4 A stable projection

The projection step consists in solving the Poisson equation (2.7) with the data lo-

cated at the center of the leaves of the tree. Stability and accuracy constraints result in
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the discretization presented in [88]. The method relies on a finite volume approach with

a leaf being the control volume for the degree of freedom located at its center. Using

the notations defined in figure 2.3, we now explain the discretization of the flux of the

Hodge variable Φ on the right face of C2. For the sake of clarity, we assume that all

other neighbor cells of C2 in Cartesian directions are of the same size as C2; if not, the

reasoning presented here below needs to be applied for all variables sampled on faces

shared between cells of different sizes.

The first step is to define the weighted average distance ∆ between Φ0 and its neigh-

boring small leaves on the left side,

Figure 2.3: Nomenclature for the discretization of the flux of the Hodge variable at
cell faces and the discretization of the divergence of the velocity field.

∆ =
∑

i∈N

si
s0

δi,

where N is the set of leaves whose right neighbor leaf is C0. We then define the partial

derivative of Φ with respect to x on the right face of C2 as

∂Φ

∂x
=
∑

i∈N

si
s0

Φ0 − Φi

∆
.
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This discretization collapses to the standard central finite difference discretization in

case of (locally) uniform grids. The other components of ∇Φ are defined analogously

and stored at the corresponding faces. We then define the divergence of u at the center

of the leaf containing Φ2 as

∇ · u =
1

∆x

(∑

i∈N

si
s0

u+
i − u−2

)
+

1

∆y

(
v+

2 − v−2
)
.

Both the divergence and the gradient operators involve all small leaves having C0 as a

right neighbor. The cell-centered Laplace operator in eq. (2.7) is obtained by chaining the

above divergence and gradient operator, i.e., ∇2Φ = ∇ · (∇Φ). This produces a second-

order accurate discretization for cell-centered Poisson equations. The correspondence

between the two operators defined here above ensures that the gradient is the negative

adjoint of the divergence in a well-defined face-weighted norm, ensuring the stability of

the projection step [55]. The linear system resulting from this approach is symmetric

positive definite, and it is solved using a (possibly preconditioned) conjugate gradient

method.

2.2.5 Typical flowchart of the solver

As detailed in subsection 2.2.3, boundary conditions to be enforced on the intermedi-

ate velocity field u∗ require the knowledge of ∇Φ. Yet, Φ itself is defined as the solution

of an elliptic problem that requires ∇ · u∗ (see (2.7)).

In order to best enforce the desired boundary conditions on u, the solver addresses

this circular dependency between u∗ and ∇Φ through a fixed-point iteration. The solver

determines a sequence u∗,k and Φk, with k ≥ 1: the intermediate velocity field u∗,k is

the solution of the viscosity step (2.5) with boundary condition values defined using the

known field Φk−1 (see subsection 2.2.3 - note that Φ0 is defined as the scalar field Φ

24



Simulating single-phase flows on parallel Quadtree/Octree grids Chapter 2

obtained at the end of the previous time step, or as 0 for the very first time step). The

scalar field Φk is determined in turn as the solution of the projection equation (2.7) using

∇ · u∗,k as the right-hand side.

This process is repeated for increasing k until convergence is reached or until a user-

defined maximum number of iterations kmax is reached. Note that the standard, ap-

proximate projection method corresponds to kmax = 1 (the computational cost and the

relevance of additional inner-loop iterations are estimated and discussed for some rele-

vant applications within section 2.4). Two different convergence criteria may be used:

the user may choose to enforce

• either
∥∥Φk − Φk−1

∥∥
∞ < εΦ, where εΦ is a user-defined threshold (most relevant if

the pressure is a primary variable of interest and is well-defined everywhere);

• or

∥∥∥∥
∂Φk

∂ζ
− ∂Φk−1

∂ζ

∥∥∥∥
∞
< ε∇Φ, where ε∇Φ is a user-defined threshold and ζ is any (or

all) of x, y, z (most relevant to ensure strict wall and/or interface no-slip boundary

boundary conditions).

The structure and internal logic of the solver is designed so as to minimize the cost of

such extra iterations when 1 < k ≤ kmax: relevant computation-intensive data pertaining

to the construction of the discretized linear systems is kept in memory (to avoid re-

computing), as well as discretization matrices, possible preconditioners, etc.

2.2.6 Expansion of the ghost layer

Several building bricks of the solver require second-degree (or even third-degree)

neighbor cells to ensure robust behavior and properly defined operators. For instance,

the construction of Voronoi cells based on face-collocated seeds requires to connect neigh-

boring face-sampled degrees of freedom. As illustrated in figure 2.2, such neighboring
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Ci
×(x, y)

Figure 2.4: The stencil used to interpolate the velocity at (x, y) in cell Ci does not
only require the data in ngbd(Ci) (red), but also in ngbd2(Ci) (blue), a set of cells
including second-degree (indirect) neighbors.

seeds may lie on a face that is shared between a (large) first-degree neighbor cell and

a (small) second-degree neighbor cell. In such a case, only the (small) second-degree

neighbor cell indexes the queried face. Therefore, second-degree neighbors need to be ac-

cessible from every locally owned face degree of freedom. Besides, when using stretched

grids, more remote neighbors may be involved in the construction of a local Voronoi

cell (see figure 2.2). Similarly, the cell-centered operators defined in section 2.2.4 require

second-degree neighbors in case of non-graded grids. As depicted in figure 2.4, the ability

to access second-degree neighbor cells is also desirable regarding the accuracy and the

inter-processor smoothness of the moving least-square interpolation procedure used to

define the node-sampled velocity fields based on the face-sampled components [55]. The

ability to construct deep ghost layers is a recent extension to the p4est interface, which

we briefly describe here.

The algorithm used by p4est to construct a single layer of ghosts ([101, Algorithm 19])

is able to maximize the overlap of computation and communication because each process

can determine for itself which other processes are adjacent to it. This is because the

“shape” of each process’s subdomain (determined by the interval of the space-filling curve

assigned to it) is known to every other process. As a consequence, the communication
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Figure 2.5: Two meshes with the same partition shapes, but with different two-deep
ghost layers. For each mesh we show the first and second layers of the ghost layer
of process p (red). In the first mesh, the second layer includes cells from process q
(blue), but in the second it does not.

pattern is symmetric and no sender-receiver handshake is required.

As a first extension, when creating the send buffers we remember their entries, since

they identify the subset of local cells that are ghosts to one or more remote processes.

We store these pre-image cells or “mirrors” in ascending order with respect to the space

filling curve, and create one separate index list per remote processor into this array. This

data is accommodated inside the ghost layer data structure and proves useful for many

purposes, the most common being the local processor needing to iterate through the

pre-image to define and fill send buffers with application-dependent numerical data.

The communication pattern of a deeper ghost layer, on the other hand, depends

not just on the shapes of the subdomains, but the leaves within them, as illustrated in

figure 2.5. Rather than complicating the existing ghost layer construction algorithm to

accommodate deep ghost layers, a function that adds an additional layer to an existing

ghost layer has been added to p4est. This function is called p4est ghost expand() and

adds to both the ghosts and the pre-images. Thus, as a second extension to the data

structure, we also identify those local leaves that are on the inward-facing front of each

preimage, in other words the most recently added mirrors. This is illustrated in figure 2.6.

When process p expands its portion of process q, it loops over the leaves in the front
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p

q

r

Figure 2.6: We show the preimages of process q’s and process r’s ghost layers in the
leaves of process p. The solid red area represent the cells at the “front” of the preimage
for q (preimage front[q] in algorithm 1), while the solid and dashed together form
the whole preimage (preimage[q]).

of the pre-image for process q and adds any neighbors that are not already in the ghost

layer. Sometimes this will include a leaf from a third process r: process p will also send

such leaves to process q, because it may be that r is not yet represented in q’s ghost

layer, and so communication between q and r is not yet expected. The basic structure

of this algorithm is outlined in algorithm 1.

2.2.7 Indexing the faces

Although the p4est library provides a global numbering for the faces of the leaves,

its numbering differs from our needs because it does not number the small faces on a

coarse-fine interface, where we have degrees of freedom in our MAC scheme. Therefore,

we implement a procedure to distribute the faces of the leaves across the processes and

to generate a unique global index for each face. Since some faces are shared between two

processes, we chose to attribute a shared face to the process with the smaller index. With

this rule, each face belongs to a unique process and after broadcasting the local number

of faces a global index can be generated for all the local faces. The second step is to

update the remote index of the faces located in the ghost layer so that their global index

can be constructed easily by simply adding the offset of the process each face belongs to.
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Algorithm 1 Process p’s algorithm for expanding other processes’ ghost layers, and
receiving expansions to its own ghost layer. Note that finding a neighbor of a leaf l
entails a fixed number of binary searches through the local leaves, which are sorted
by the space-filling curve induced total ordering.

1: for q ∈ ghost neighbors do . processes that contribute to ghost layer
2: initialize empty sets send forward[q], send back[q], and new front[q]
3: end for
4: for q ∈ ghost neighbors do
5: for l ∈ preimage front[q] do
6: for each neighbor n of l in local leaves do . n found by search
7: if n 6∈ preimage[q] then
8: add n to send forward[q], preimage[q], and new front[q]
9: end if

10: end for
11: for each neighbor n of l in ghost layer do . n found by search
12: if n belongs to process r 6= q then
13: add n to send forward[q] and (n, q) to send back[r]
14: end if
15: end for
16: end for
17: replace preimage front[q] with new front[q]
18: end for
19: for q ∈ ghost neighbors do
20: send send forward[q] and send back[q] and receive recv forward[q] and

recv back[q]
21: add all of recv forward[q] to ghost layer

22: for (l, r) ∈ recv back[q] do
23: if r 6∈ ghost neighbors or l 6∈ preimage[r] then
24: add l to preimage[r] and preimage front[r] . new lists if

r 6∈ ghost neighbors

25: end if
26: end for
27: end for
28: recompute ghost neighbors from leaves in ghost layer
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Figure 2.7: Illustration of the ghost layer of x-faces of depth 2 and of the global
indexing procedure for process 2. The numbers in the leaves correspond to the indices
of the processes owning them. After the first step, the remote index for the circled
face is known to process 2, and after the second step the remote indices for the faces
in a square are known to process 2. Note that a single step would not be sufficient for
process 2 to gain knowledge of the remote index of the two faces belonging to process
0.

We do so in two steps, represented in figure 2.7. First, the indices of the ghost faces of

the local leaves are synchronized, then the indices of the faces of the ghost layer of leaves

are updated. This has some similarities to the two-pass node numbering from [114], here

extended to two layers of ghosts. Algorithm 2 details the steps of our implementation and

makes use of the Notify collective algorithm described in [102] to reverse the asymmetric

communication pattern.

2.3 Scalability

In this section, we present an analysis of the scaling performance of our implementa-

tion. We define the parallel efficiency as e = s (P0/P )σ where s = t0/tp is the speed-up,

σ is the optimal parallel scaling coefficient (σ = 1 for linear scaling), P0 is the smallest

considered number of processes with its associated runtime t0 and P is the number of
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Algorithm 2 Communication algorithm to generate a global indexing of the faces. The
Notify collective algorithm is used to reverse the communication pattern, described in
more detail in [102].

1: for l ∈ (local|ghost) leaves do
2: for f ∈ remote faces(l) do
3: add proc(f) to receivers

4: add f to buffer[proc(f)]

5: end for
6: end for
7: Notify(receivers,senders) . reverse communication pattern
8: for p ∈ receivers do . send requests
9: MPI Isend(buffer[p]) . send request to process p

10: end for
11: for p ∈ senders do . process remote requests
12: MPI Recv(req) . receive request from process p
13: assemble answer with local indices requested
14: MPI Isend(ans) . send answer to process p
15: end for
16: for p ∈ receivers do . process answers
17: MPI Recv(p) . receive answer from process p
18: update faces information
19: end for

processes with its associated runtime tp. All the results were obtained on the “Knights

Landing” Intel Xeon Phi 7250 (KNL) compute nodes of the Stampede2 supercomputer at

the Texas Advanced Computing Center (TACC), at The University of Texas at Austin,

and on the Comet supercomputer at the San Diego Supercomputer Center, at the Uni-

versity of California at San Diego. Those resources are available through the Extreme

Science and Engineering Discovery Environment (XSEDE) [115]. The strong scaling

performance was analyzed up to 32,768 cores on Stampede2.

2.3.1 Expansion of the ghost layer

We present both weak and strong scaling results for the algorithm used to expand the

ghost layer of cells for each process in figure 2.8. The associated efficiency is presented in
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table 2.1. The strong scaling consists in choosing a problem and solving it with increasing

number of processes. Ideally, for an algorithm with a workload increasing linearly with

the problem size (i.e., with parallel scaling coefficient σ = 1), doubling the amount of

resources spent on solving a problem should half the runtime. However, in the case of

the ghost layer expansion, the amount of work depends on the size of the ghost layers,

as explained in [103]. For a well behaved partition, we expect O(N
(d−1)
d ) of the leaves

to be in the ghost layer, where d is the number of spatial dimensions. We therefore

consider a parallel scaling coefficient σ = 2/3 to be optimal for a three dimensional

problem, i.e., O((N/P )2/3) is the ideal scaling, with P the number of processes and N

the problem size. The results presented in figure 2.8 were obtained on Stampede2 for a

mesh of level 9/13, corresponding to 588,548,472 leaves, and on Comet for a mesh of level

10/13, corresponding to 1,595,058,088 leaves. The computed parallel efficiency between

the smallest and the largest run is 66% for Stampede2 and 59% for Comet.

The idea behind the weak scaling is to keep the problem size constant for each process

while increasing the number of processes. The right graph of figure 2.8 presents the results

obtained on Stampede2 for two problems of sizes 30,248 leaves per process and 473,768

leaves per process, and for a number of processes ranging from 27 to 4,096. The runtime

increases by 16% between the smallest and the largest run for the small problem and by

6% for the large problem.

Stampede2
Number of processes P 128 256 512 1024 2048 4096
Efficiency e 100% 79% 70% 69% 66% 66%

Comet
Number of processes P 96 192 384 672 1152 1728
Efficiency e 100% 82% 81% 71% 67% 59%

Table 2.1: Efficiency of the procedure for expanding the ghost layer of leaves.
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Figure 2.8: Scaling results for the expansion of the layer of ghost cells (see section
2.3.1). The strong scaling results are presented in the left figure together with the
optimal reference scaling for a parallel scaling coefficient σ = 2/3 (dashed lines) while
the weak scaling results are shown on the right figure. The increases in runtime
observed for the weak scaling are of 16% for the small problem and 6% for the large
problem.

2.3.2 Indexing the faces

The scaling procedure presented in the previous section is repeated for Algorithm 2

and the results are presented in figure 2.9. Even though the workload for this procedure

increases slightly as the number of processes increases and the number of leaves in the

ghost layers increases, we compare our results to an ideal linear scaling σ = 1. The

corresponding efficiency is computed in table 2.2. The parallel efficiency e computed

between the smallest and the largest run from the strong scaling results is 44% for

Stampede2 and 70% for Comet. The weak scaling results show an increase in runtime of

71% for the small problem and of 14% for the large problem.

2.3.3 Scalability of the full solver

We now analyze the scaling performance of the full incompressible Navier-Stokes

solver, breaking its execution time down into its four main fundamental components:
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Figure 2.9: Scaling results for the indexing of the faces with Algorithm 2. The strong
scaling results are presented in the left figure together with the reference ideal lin-
ear scaling (dash lines) while the weak scaling results are shown on the right figure.
The strong scaling problem shown for Comet is three times larger than the one for
Stampede2. The increases in runtime observed for the weak scaling are of 71% for the
small problem and 14% for the large problem.

Stampede2
Number of processes P 128 256 512 1024 2048 4096
Efficiency e 100% 94% 87% 76% 63% 44%

Comet
Number of processes P 96 192 384 672 1152 1728
Efficiency e 100% 96% 88% 82% 77% 70%

Table 2.2: Efficiency of Algorithm 2 producing a global index for the faces.

the viscosity step (see subsection 2.2.3), the projection step (see subsection 2.2.4), the

moving least-square interpolation of the velocity components from cell faces to the grid

nodes and the re-meshing step (denoted as grid update). We intend to show satisfactory

strong scaling on large numbers of processors, so this scaling analysis was conducted on

Stampede2 only since we do not have access to the same resources on other supercom-

puters.

For this purpose, the solver is restarted from a physically relevant and computationally

34



Simulating single-phase flows on parallel Quadtree/Octree grids Chapter 2

challenging simulation state, defined as the inception of vortex shedding for the flow past

a sphere at Re = 500, as illustrated in figure 2.10. A macromesh of size 8× 4× 4 is used

with two different refinement criteria. In the first case, the Octrees are refined with a

minimum level 6 and a maximum level 11 with a vorticity threshold γ = 0.02 (see (2.2)),

leading to a total of about 270× 106 grid computational cells. In the second case, the

Octrees are refined with a minimum level 7 and a maximum level 11 with a vorticity

threshold γ = 0.015, leading to a total of about 610× 106 grid cells. The grids for the

initial states of the two scenarios are illustrated in figure 2.11. The three successive linear

systems of the viscosity steps are solved using a BiConjugate Gradient Stabilized solver,

while a Conjugate Gradient solver is used for the (symmetric positive definite) projection

step.

In the first case, the wall-clock execution time is measured and averaged over 10 full

time steps, while only 5 time steps are considered for the second larger case (to limit

the cost of these runs). A minimum of 64 (resp. 90) KNL nodes were required for the

problem to fit in memory in the first (resp. second) case. Therefore, the first two data

points in the left (resp. right) graph from figure 2.12 used less than 68 cores per node

(maximum available). In either case, the solver performs two subiterations of the inner

loop per time step: for each time step,
∥∥Φk − Φk−1

∥∥
∞ drops by 4 orders of magnitude

between k = 1 and k = 2.

The results are presented in figure 2.12 and table 2.3. As expected, the projection

step is the most challenging part, thus determining the strong scalability limits of the

solver: no significant speed-up is observed when the number of cells per process falls under

10, 0003. In comparison, the scaling behavior of the grid update procedure is not impeded

yet around that limit, which shows the extremely good performance of all p4est’s grid

management operations that are in play: grid refinement and/or grid coarsening, grid

3This is consistent with PETSc scaling performance reported in their documentation.
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partitioning, ghost layer creation and ghost layer expansion.

Given that the global solver makes use of various separate routines having different

(theoretical) ideal scaling coefficients σ, it is expected that the strong scaling performance

of the solver is less than ideal. In fact, some of the operations at play cannot even be

attributed such a theoretical scaling coefficients: when considering a very large number

of processes, several of them will be associated with regions of the computational domain

that are (very) far away from the interface and will end up stalling during the geometric

extrapolation tasks of primary face- and cell-sampled fields, for instance. Though these

extrapolations represent a small portion of the overall workload when using a small

number of processes, they do contribute to less than ideal scaling on large numbers of

processes in such an application. Therefore, regarding several aspects, this analysis may

be considered a “worst case” scenario, which aims to produce insightful information when

it comes to estimating a lower bound for the (effective) scaling coefficient σ to consider

when estimating the computational cost of future large-scale simulations and/or when

assessing the limits of accessible simulations for the solver. As illustrated in figure 2.12,

the solver’s scaling behavior seems to follow an asymptotic law of σ ' 0.78, in such a

symptomatic case; Table 2.3 also indicates an efficiency above 80% (in the relevant range

of P ) when considering σ ' 0.85 (almost all calculated efficiencies are 100% or higher

when considering σ = 0.78).

2.4 Numerical validation and illustrations

In this section, we present a series of numerical examples to validate the implemen-

tation as well as to demonstrate the potential of the approach.
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Figure 2.10: Physically relevant initial state considered for the scaling analysis on
large number of cores. This figure illustrates the inception of vortex shedding for the
flow past a sphere at Re = 500 (the full description of the computational set-up can
be found in section 2.4.2). The vertical slice has equation z = −0.5 and it is colored
by vorticity. The static sphere is colored in red and the translucent white surface
represents the isocontour of vorticity ‖∇ × u‖ = 0.6u0/r.

Figure 2.11: Grid illustrations for the scaling analyses from section 2.3.3. A grid
slice in the computational domain is illustrated and its edges are colored by vorticity
intensity. The Octrees are refined with a minimum level 7 and a maximum level 11
with a vorticity threshold γ = 0.015 (total of about 610× 106 grid cells).
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Figure 2.12: Scaling results on large number of cores on Stampede2 for the two grids
considered. Left: scaling results for Octrees refined with a minimum level 6 and
a maximum level 11 with a vorticity threshold γ = 0.02 (total of about 270× 106

grid cells). Right: scaling results for Octrees refined with a minimum level 7 and a
maximum level 11 with a vorticity threshold γ = 0.015 (total of about 610× 106 grid
cells).

Stampede2 (270× 106 grid cells)

# of processes P 1,024 2,048 4,096 5,800 8,192 11,590 16,384 23,170 32,768

e (σ = 1) 100% 92.1% 77.9% 75.4% 65.9% 60.9% 56.9% 50.3% 39.6%

e (σ = 0.85) 100% 102.2% 95.8% 97.7% 90.0% 87.7% 86.2% 80.36% 66.6%

Stampede2 (610× 106 grid cells)

# of processes P 2,048 4,096 5,900 8,192 11,590 16,384 23,170 32,768

e (σ = 1) 100% 82.7 % 82.7 % 77 % 69.2 % 64.1 % 59.4 % 54.2 %

e (σ = 0.85) 100% 91.8 % 96.6 % 94.8 % 89.8 % 87.6 % 85.5 % 82.2 %

Table 2.3: Efficiencies e of the full solver proposed for the incompressible Navier-Stokes
equations on Stampede2, when considering an ideal linear scaling (i.e., σ = 1) or a
scaling coefficient of 85%.

2.4.1 Validation with an analytical solution

The first application aims at validating the implementation by monitoring the conver-

gence of the solver using the analytical solution presented in [64]. Consider the irregular

domain Ω = {(x, y, z)| − cos(x) cos(y) cos(z) ≥ 0.4 and π
2
≤ x, y, z ≤ 3π

2
} and the exact

38



Simulating single-phase flows on parallel Quadtree/Octree grids Chapter 2

solution

u(x, y, z) = cos(x) sin(y) sin(z) cos(t),

v(x, y, z) = sin(x) cos(y) sin(z) cos(t),

w(x, y, z) = −2 sin(x) sin(y) cos(z) cos(t),

p(x, y, z) = 0.

The exact velocity is prescribed at the domain’s boundary and homogeneous Neumann

boundary conditions are enforced on the Hodge variable. The corresponding forcing term

is applied to the viscosity step. We take a final time of π
3

and monitor the error on the

velocity field and on the Hodge variable as the mesh resolution increases. The computa-

tional grid is not dynamically adapted for this accuracy analysis, so the grid-parameter

γ (see (2.2)) is irrelevant in this case. The first computational grid is built to satisfy the

distance-based criterion from section 2.2.1 using φ (x, y, z) = cos (x) cos (y) cos (z) + .4,

K = 1.2 and b = 5. The successive resolutions are then obtained by splitting every cell

from the previous resolution. The results are presented in table 2.4 and indicate first-

order accuracy for the velocity field and second order accuracy for the Hodge variable in

the L∞ norm.

u, v w Hodge variable
level (min/max) L∞ error order L∞ error order L∞ error order

4/6 4.65 · 10−3 - 3.50 · 10−3 - 8.96 · 10−4 -
5/7 3.27 · 10−3 0.50 2.11 · 10−3 0.73 2.85 · 10−4 1.65
6/8 1.67 · 10−3 0.97 1.16 · 10−3 0.86 8.07 · 10−5 1.82
7/9 8.42 · 10−4 0.99 5.52 · 10−4 1.07 2.27 · 10−5 1.83

Table 2.4: Convergence of the solver for the analytical solution presented in section
2.4.1. First-order accuracy is observed for the velocity field and second order accuracy
for the Hodge variable.
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2.4.2 Vortex shedding of a flow past a sphere

In order to further assess the performance of the solver, we also address the flow past

a sphere. Related properties like drag and lift forces as well as vortex shedding frequency

(if applicable) are calculated and compared to available data for this canonical problem.

We consider a static sphere of radius r = 1, located at (8, 0, 0) in the domain Ω =

[0, 32] × [−8, 8] × [−8, 8]. An inflow velocity u0 = u0ex is imposed on the x = 0 face of

the domain as well as on the the side walls, homogeneous Neumann boundary conditions

are imposed on the velocity field at the outlet x = 32 and no-slip conditions are imposed

on the sphere. The pressure is set to zero at the outlet and is subject to homogeneous

Neumann boundary conditions on the other walls as well as on the sphere. We set u0 = 1,

the density of the fluid to ρ = 1 and vary the viscosity µ to match the desired Reynolds

number Re =
2 ρu0r

µ
, set by the user. Eight Reynolds numbers ranging from 50 to 500

are considered.

The Octree mesh is refined around the sphere and according to the vorticity criterion

(2.2) of section 2.2.1: we use φ (x) = r −
√

(x− 8)2 + y2 + z2, K = 1.2, b = 16, with a

vorticity-based threshold of γ = 0.01. All the results were obtained with a macromesh

8 × 4 × 4 and with trees of levels 4/7, leading to approximately 6 million leaves and

corresponding to an equivalent uniform grid resolution of 268,435,456 cells. The time

step ∆t is set such that
maxΩ‖u‖∆t

∆xmin

≤ 1 at all times. Figure 2.13 shows a snapshot of

the unsteady flow for Re = 300 at t = 221 r/u0.

The nondimensional force F applied onto the static sphere is monitored over time.

The force is evaluated by geometric integration [116] of the stress vector (including viscous

and pressure contributions) on the surface of the sphere Γ, i.e.,

F =
1

1
2
ρu2

0πr
2

∫

Γ

(
−pI + 2µD

)
· n dΓ, (2.9)
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where I is the identity tensor, D is the symmetric strain-rate tensor and n is the outward

normal to the sphere. Figure 2.15 shows the evolution of the streamwise force compo-

nent. Figure 2.14 shows the evolution of the pressure and azimuthal vorticity on the

sphere surface, at steady state for Re = 100. Figure 2.16 illustrates the transverse force

components with respect to time for Re ≥ 250. Time-averaged drag and lift coefficients

CD and CL are then calculated as

CD =
1

(tend − tstart)

∫ tend

tstart

F ·ex dt, CL =
1

(tend − tstart)

∫ tend

tstart

(
(F · ey)2 + (F · ez)2)1/2

dt,

(2.10)

where tstart is chosen to disregard the initial transient due to the chosen (uniform) initial

condition and tend is the final simulation time.

For Re ≥ 275 ± 5, the flow is unsteady and vortices shed from the static sphere

[117, 118]. Similarly to [118], we evaluate the vortex shedding frequency f and the

corresponding Strouhal number St = 2rf
u0

by calculating an averaged period between

successive peak values in the transverse force components4. A main vortex shedding

frequency cannot be reliably defined using this methodology for Re = 500: as it can

be seen from figure 2.16, the time variations in the transverse force components do not

reveal a well-defined periodic pattern for Re = 500. In fact, a Fourier decomposition

of (pseudoperiodic portions of) the signals actually reveals a broad frequency spectrum

with significant contributions up to St ' 0.17 in that case.

Our results are summarized and presented in tables 2.5 and 2.6 along with available

data from various publications from the literature.

For all the simulations from this section, we have used the inner-loop convergence

criterion
∥∥∇Φk −∇Φk−1

∥∥ < 10−4 u0 (see section 2.2.5) in order to ensure a proper and

4Note that the analysis from [117] is different in that it is based on time variations of the pressure in
the wake.
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Figure 2.13: Visualization of the unsteady flow past a sphere for Re = 300. The trees
are level 4/7 rooted in a 8 × 4 × 4 macromesh, leading to approximately 6 million
leaves. The snapshot is taken at time t = 221 r/u0. The colors correspond to the
process ranks and the surface is an isocontour of the Q-criterion [125] for Q = 0.006.
This simulation was run on the Stampede2 supercomputer with 1024 processes.
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Re = 50 Re = 100 Re = 150 Re = 215 Re = 250
CD CD CD CD CD CL

Kim et al. [119] - 1.09 - - 0.70 0.059
Johnson et al. [120] 1.57 1.08 0.90 - 0.70 0.062
Constantinescu et al. [121] - - - - 0.70 0.062
Choi et al. [122] - 1.09 - - 0.70 0.052
Bagchi et al. [118] 1.57 1.09 - - 0.70 -
Marella et al. [123] 1.56 1.06 0.85 0.70 - -
Guittet et al. [55] - 1.11 - - - -
Present 1.61 1.11 0.91 0.76 0.72 0.062

Table 2.5: Drag coefficient (and lift coefficient, if relevant) for the steady flow past a
sphere. The time averages were obtained with tstart = 50 r/u0 and tend = 200 r/u0 for
Re ≤ 215 and with tstart = 275 r/u0 and tend = 400 r/u0 for Re = 250 (see (2.10)).

Re = 300 Re = 350 Re = 500
CD CL St CD St CD

Kim et al. [124] 0.657 0.067 0.134 - - -
Johnson et al. [120] 0.656 0.069 0.137 - - -
Constantinescu et al. [121] 0.655 0.065 0.136 - - -
Choi et al. [122] 0.658 0.068 0.134 - - -
Marella et al. [123] 0.621 - 0.133 - - -
Bagchi et al. [118] - - - 0.62 0.135 0.555
Mittal et al. [117] 0.64 - 0.135 0.625 0.142 -
Guittet et al. [55] 0.659 - 0.137 0.627 0.141 -
Present 0.673 0.068 0.134 0.633 0.132±0.002 0.558

Table 2.6: Drag coefficients for the unsteady flow past a sphere. If relevant, the lift
coefficient and the Strouhal number are presented as well. The time averages were
obtained with tstart = 200 r/u0 and tend = 400 r/u0 (see (2.10)).

accurate enforcement of the no-slip boundary condition on the surface of the sphere and

to investigate the relevance of such a procedure in this specific case. Figure 2.17 shows

relevant information pertaining to that analysis. As illustrated in that figure, the solver

converges most of the time in two iterations and the correction brought by the second

iteration is 3 to 4 orders of magnitude smaller than for the approximate projection step, in

this case. Although the added computational cost is limited (around 30%), the accuracy

of the results would most likely not have suffered from using an approximate projection
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Figure 2.14: Evolution of relevant surface quantities on the surface of the static sphere
for Re = 100, as a function of the inclination angle θ measured from the front point

(−r, 0, 0). Left: non-dimensional local pressure cp = p/

(
1

2
ρu2

0

)
as a function of the

inclination angle. Right: non-dimensional azimuthal vorticity ω̂φ =
−2r

u0
eφ · (∇× u),

where eφ = er × eθ, using spherical coordinates centered at the sphere’s center along
with the defintion of θ given here above. These results are in good agreement with
[124].
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Figure 2.15: Drag coefficient on a sphere for axisymmetric steady flows (left) and
for non-axisymmetric or unsteady flows (right), corresponding to Reynolds numbers
ranging from 50 to 500.

in this context.

2.4.3 Oscillating sphere in a viscous fluid

The solver presented in this article is able to handle moving geometries. We illustrate

this capacity by computing the drag force developed by the flow of a viscous fluid due to
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Figure 2.16: Nondimensional transverse force components for non-axisymmetric
and/or unsteady flows.
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Figure 2.17: Illustration of the computational cost and convergence rate associated
with the fixed point iteration from section 2.2.5, when ensuring a stringent user-defined
control on u at all time steps, for the simulation of the flow past a sphere with
Re = 500. Left: ratio(s) of the computational costs per time step for the main
tasks at play, normalized to the raw computational cost of an approximate projection
method (which would correspond to kmax = 1). Right: measures of interest considered
by the inner loop criterion (only a few time steps required 3 inner iterations hence the
partial blue curve).

the oscillatory motion of a rigid sphere in a closed box.

We consider a sphere of radius r = 0.1 in a domain Ω = [−1, 1]3. The kinematics of

the center of the sphere c (t) is dictated by

c (t) = −X0 cos (2πf0t) ex, (2.11)
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and we use the (time-varying) levelset function φ (x, t) = r− ‖x− c (t)‖ with the corre-

sponding grid-construction parameters K = 1.2, b = 4 and γ = 0.1. The motion of the

sphere is set to be purely translational (no rotation) so that its kinematics is fully de-

scribed by (2.11). The dynamics of the surrounding fluid is dictated by no-slip boundary

conditions enforced onto the surface of the oscillatory sphere, i.e.,

u (x, t) = 2πf0X0 sin (2πf0t) ex, ∀x ∈ Ω : ‖x− c (t)‖ = r. (2.12)

No-slip boundary conditions are also enforced on the (static) borders of the computational

domain.

This setup naturally defines a characteristic velocity scale u0 = 2πf0X0, a charac-

teristic frequency f0 and a characteristic length scale r leading to two nondimensional

numbers

r

X0

and Re =
ρ 2πf0X0 2r

µ
. (2.13)

We set the first nondimensional number to 4 by assigning X0 = r/4. The density is set

to 1 and the dynamic viscosity µ is determined to match the desired Reynolds number

set by the user based on (2.13).

For this example, we choose the fixed time step ∆t =
1

200f0

and the simulations are

run for three full oscillation cycles for 7 different Reynolds numbers ranging from 10 to

300. The iterative procedure explained in section 2.2.5 is necessary in this case of moving

boundary in order to correctly enforce the desired no-slip condition (2.12). Since we are

interested in the overall forces applied onto the sphere as a result of its motion, the

inner iterative technique is carried on until
∥∥Φk − Φk−1

∥∥
∞ < εΦ = 2 ε (πf0X0)2 ∆t where

ε = 0.1 for all time steps. This corresponds to limiting the difference in pressure between

successive iterates to 10% at most of the maximum dynamic pressure resulting from
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the motion of the sphere. The fixed point method seems more relevant in this context

compared to what was observed in section 2.4.2: the number of iterations required to

ensure this convergence condition grows with Re: for every time step, the solver performs

3 to 4 inner iterations to enforce the desired boundary conditions correctly, as illustrated

in figure 2.20 for Re = 300. A mesh of resolution 5/10 rooted in a single macromesh cell

is used, resulting in about 500,000 leaves. A uniform grid with similar finest resolution

would have 230 ' 109 computational cells. Every simulation completed in about 8 hours

using 40 MPI tasks on a local workstation running a Dual Intel Xeon Gold 6148 processor

with 64 GB of RAM.

As for the flow past a sphere, the nondimensional force applied onto the oscillating

sphere is monitored over time, according to equation (2.9). The results are presented in

figure 2.18. As expected, we observe that the amplitude of the drag coefficient increases

as the Reynolds number decreases. Furthermore, we observe a lag in the response as the

Reynolds number decreases. Indeed, as the viscous forces become more important, the

information takes longer to propagate in the fluid. In contrast, the forces in a system

dominated by inertia come mainly from the pressure term and the incompressibility

condition enforces instantaneous propagation of the information. Figure 2.19 shows some

visual representations of the computational grid for Re = 50 at t = 2.4/f0.

2.4.4 Turbulent superhydrophobic channel

As detailed and illustrated above, the solver is designed to allow dynamic grid adap-

tation over time. This feature is especially relevant and appealing when the complex flow

dynamics to be captured are bounded to a (small) evolving portion of the computational

domain, as it dramatically reduces the global number of computational cells compared

to a regular uniform grid. Indeed, in such cases, the computational overhead associated
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Figure 2.18: Evolution of the x−component of the nondimensional force applied onto
the periodically oscillating sphere in a closed box for a range of Reynolds numbers.
The magnitude of the force increases and the peaks appear at later times as the
Reynolds number decreases and the viscous forces become dominant.

Figure 2.19: Left: illustration of one fourth of the computational domain colored with

the pressure (nondimensionalized by
1

2
ρπr2f2

0 ), along with the solid sphere (Re = 50,

t = 2.4/f0). Right: zoom-in on the sphere, illustration of the local adaptivity of the
computational grid and representation of some streamlines near the moving interface.

with dynamically adapting the computational grid, with setting new operators and new

linear solvers is small compared to the prohibitive computational cost of using a uniform

grid of equivalent finest resolution throughout the domain.
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Figure 2.20: Illustration of the computational cost and convergence rate associated
with the fixed point iteration from section 2.2.5, when ensuring point-wise convergence
on the Hodge variable within bounds corresponding to a pressure threshold of 10% of
the maximum dynamic pressure resulting from the kinematics of the oscillating sphere,
as considered in section 2.4.3, for Re = 300. Left: ratio(s) of the computational costs
per time step for the main tasks at play, normalized to the raw computational cost
of an approximate projection method (which would correspond to kmax = 1). Right:
measures of interest considered by the inner loop criterion.

However, while local mesh refinement remains valuable, dynamic re-meshing may not

be most desirable in applications requiring (almost) static, dense regions of fine grid cells,

as extra operations associated with dynamic grid adaptation would significantly increase

the overall computational cost, without any significant reduction of the overall number

of computational cells to consider. We have alleviated this issue by allowing the solver to

store all possible data structures5 (linear solvers, possible preconditioners, interpolation

operators, etc.) in memory and use them as long as they are valid, i.e., as long as the

grid is not modified.

Statistically steady physical problems align perfectly with the above solver features,

since they require fixed regions of specified spatial resolution by nature, and the results

need to be accumulated over a (very) large number of time steps to ensure their sta-

tistical convergence. In order to illustrate the capability of the solver to address such

5For the linear solvers associated with the viscosity step, only diagonal terms are affected by a new
value of ∆t (see subsection 2.2.3). Therefore, only diagonal terms are updated when the computational
grid is not modified.
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Figure 2.21: Schematic of the superhydrophobic surface and corresponding notations
considered in section 2.4.4: we denote the pitch by L and the gas fraction by ξ. The
variable z̃ is used to average over corresponding spanwise locations.

problems, we consider the fully developed turbulent flow in a superhydrophobic channel

as previously simulated in [126, 127]. We use a computational domain of dimensions

6δ × 2δ × 3δ, where δ is half of the channel height, with periodic boundary conditions

along the streamwise and spanwise directions, as illustrated in figure 2.21. The coordi-

nates are chosen such that x points downstream, y is normal to the walls and z is in the

spanwise direction. The flow is driven in the positive streamwise direction by a spatially

uniform and constant force per unit mass f = fxex. By analogy with canonical channel

flows, we define the friction velocity uτ =
√
fxδ.

We consider gratings oriented parallel to the flow on both walls y = ±δ. The super-

hydrophobic nature of these surfaces enables them to entrap pockets of air, such that

parts of he walls are replaced by a liquid-air interface, which is assumed to be shear-

free. We assume the liquid-air interface to be and remain flat at all times (deflections

of the interface are neglected). We therefore model the air-liquid interface regions using
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no-penetration, free-slip boundary conditions6

v|y=±δ = 0,
∂u

∂y

∣∣∣∣
y=±δ

= 0 and
∂w

∂y

∣∣∣∣
y=±δ

= 0, (2.14)

while the rest of wall surfaces use no-slip boundary conditions,

u|y=±δ = 0.

Eight longitudinal grates giving a gas fraction of 50% are used, i.e., the pitch length

L is set to 3δ/8 and the gas fraction ξ is set to 0.5 (see figure 2.21). The fluid properties

and other control parameters are set such that the canonical friction Reynolds number

Reτ =
ρuτδ

µ
is equal to 143. The computational domain is meshed with one single

Octree of minimum level 7 and maximum level 9. This choice of macromesh results in

computational cells with an aspect ratio so different from 1 that third-degree neighbor

cells are required for the reliable construction of face-seeded Voronoi cells (see figure 2.2

for a two-dimensional illustration). Therefore, this simulation setup makes an extensive

use of the capability to fetch third -degree ghost neighbor cells, which is enabled by the

algorithms from section 2.2.6. The capability of the solver to address such problems

even with stretched computational cells was investigated and validated using a known

analytical solution in the laminar case.

In order to ensure sufficient grid resolution for regions close to the no-slip parts of

the walls, we define the level-set function7

φ (x) = −dist (x, no-slip region of the wall)

6Note that
∂v

∂x

∣∣∣∣
y=±δ

=
∂v

∂z

∣∣∣∣
y=±δ

= 0 since v|y=±δ = 0 on the entire wall surfaces.

7Note that φ is negative everywhere so no interface is defined within the domain.
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to be used with the refinement criterion (2.1) setting K = 10. This choice of K and

maximum refinement level ensures that the walls are entirely covered by the finest com-

putational cells over a thickness of 0.1δ. Except for the thickness of four grid cells layer-

ing the walls, the local grid resolution is equivalent to, or finer than, the resolution from

[126, 127] everywhere. In [126, 127], a stretched grid was used with constant mesh size

in the streamwise and spanwise directions while the cell thickness was distributed using

a hyperbolic tangent profile in the wall-normal direction. The main difference between

such a stretched grid and our Octree approach lies in the fact that the aspect ratio of our

computational cells is constant. As cells get thinner when approaching the wall regions,

they also get shorter and narrower: the spatial resolution close to the walls for the Octree

grid is four times finer than for the stretched grid in the spanwise and streamwise direc-

tions, hence producing more accurate results in those directions than stretched grids do.

This however significantly increases the total number of computational cells to be used

in our approach, since we need more than 21.8× 106 cells, as opposed to about 2.1× 106

in the case of a stretched grid. Dynamic grid adaptation based on local vorticity is less

useful in this example, since the background grid already captures enough details (γ is

thus irrelevant in this case), which enables us to reduce time execution. The conjugate

gradient method is used for solving the projection step along with an algebraic multigrid

preconditioner (from the HYPRE distribution).

A thorough analysis of the analytical solution known in the laminar cases shows that

the viscous stress is singular at the edges of the walls transitioning between free-slip and

no-slip boundary conditions (see [128, 129, 130, 131] for more details). Early numerical

tests revealed that setting the inner loop convergence criterion (see section 2.2.5) to ensure
∥∥Φk − Φk−1

∥∥
∞ < εΦ would fail because the (floating-value) Hodge variable Φ would grow

unbounded in the cells layering these transition edges. However, the velocity field must be

bounded everywhere, and therefore, so must be ‖∇Φ‖∞. As a matter of fact, setting the
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inner loop convergence criterion (see section 2.2.5) to ensure maxΩ

∥∥∇Φk −∇Φk−1
∥∥
∞ <

10−6Ub, wherein Ub is the mean, bulk velocity in the streamwise direction through the

channel, resulted in fully controlled simulations. For most time steps, the solver required

three inner iterations to converge (the value of the convergence measure for the first

iterate, i.e., maxΩ ‖∇Φ1 −∇Φ0‖∞, was observed to be of the order of 10−4Ub).

The simulation is initialized to the known laminar solution and executes until flow

instabilities amplify and a fully-developed turbulent state is eventually reached. The

bulk Reynolds number

Reb =
ρUbδ

µ
, where Ub =

1

6δ2

∫ δ

−δ

∫ 1.5δ

−1.5δ

u · ex dz dy

and the nondimensional viscous forces from the no-slip regions of the walls

F wall, visc. =
1

ρfx 36δ3

∑

ky={−1,1}

3∑

kz=−4

∫ 3δ

−3δ

∫ (kz+1)L

(kz+ξ)L

−ky
[
µ
(
∇u+ (∇u)T

)
· ey
]∣∣
y=kyδ

dz dx

are monitored over time. Their evolution is illustrated in figure 2.22.
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Figure 2.22: Macroscopic variables monitored over the course of the simulation of a
turbulent flow through a superhydrophobic channel. Left: evolution of Reb = ρUbδ/µ;
right: evolution of the nondimensional viscous forces from the no-slip regions of the

walls. In these graphs, the nondimensional time t̂ is defined as t̂ =
uτ t

δ
.
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From the evolution of the monitored macroscopic quantities of interest illustrated in

figure 2.22, we consider the time window from t̂start =
uτ t

δ
= 80 until the end of the

simulation, t̂end = 133.1, which we use for time-averaging results associated with the

fully-developed regime (which corresponds to about 300,000 time steps). An illustrative

snapshot of the simulation in this time window is presented in figure 2.24.

We obtain an average bulk Reynolds number of 2541; we also consider the time-and-

slice-averaged velocity profile, i.e.,

〈
u

uτ

〉

x,z,t

=
1

18δ2
(
t̂end − t̂start

)
∫ t̂end

t̂start

∫ 3δ

−3δ

∫ 1.5δ

−1.5δ

u

uτ
dz dx dt̂

as a function of y/δ, as well as the time-and-line-averaged velocity profile, i.e.,

〈
u

uτ

〉

x,t

=
1

6δ
(
t̂end − t̂start

)
∫ t̂end

t̂start

∫ 3δ

−3δ

u

uτ
dx dt̂,

which is built by also averaging corresponding locations over the air-interface and over

the ridges in the spanwise direction. Formally, this results in a function of y/δ and of

the grate-normalized spanwise coordinate z̃ defined as

z̃ =





∣∣∣∣(z (mod L))− Lξ

2

∣∣∣∣ if z (mod L) ≤ Lξ,

L

2
−
∣∣∣∣(z (mod L))− L (1 + ξ)

2

∣∣∣∣ otherwise,
(2.15)

(see illustration in figure 2.21). These time-averaged velocity profiles are illustrated in

figure 2.23.

As illustrated in figure 2.23, the mean fluid velocity at the air interface can reach up

to 50% of the maximum mean velocity (found at the center of the channel). This figure

also illustrates how sharp the change is: 74% of the variation from the no-slip ridge to the

maximum air interface velocity (found above the center line of the interface) occurs over
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Figure 2.23: Top: time-and-slice-averaged velocity profile. Bottom left: time-and–
line-averaged velocity profiles. Notice the sharpness of the transition between no-slip
and free-slip line-averaged profiles. A significant portion of the transition (74%) takes

place over a distance of
3δ

128
in the spanwise direction. While this distance corre-

sponds to the width of one single computational cell in the stretched grid approach of
[127], our octree grid uses 4 narrower computational cells over that region. Bottom
right: illustration of how the time-and-line-averaged profiles become z̃-independent
far enough from the walls; in this case, time-and-line-averaged velocity profiles are
essentially all equivalent (within 1% of the mean velocity to be found in the center of
the channel) farther than 0.14δ from the walls.

a distance of 3δ/128 in the spanwise direction, which corresponds to 4 computational

cells in our setup (versus 1 cell in [127]).

When averaging velocity profiles across entire planar sections of the channel, the

existence of such free-slip regions results in a nonzero slip velocity Us at the wall. This

slip velocity is a quantity of primary relevance in the context of Navier’s slip model,

along with the slip length b which relates the slip velocity to the mean wall shear via

Us = ±b ∂

∂y
〈u〉x,z,t

∣∣∣∣
y=∓δ

. The slip parameters Us and b were evaluated by least-square
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fitting the linear profiles
Us

uτ

(
1 +

δ ± y
b

)
(+ and − correspond to bottom and top walls,

respectively) to our results for

〈
u

uτ

〉

x,z,t

over the 5 finest grid cells layering the walls,

which corresponds to a thickness of about 2.8δτ , where δτ =
µ

ρuτ
is the viscous lengthscale.

The two sets of fitting parameters yield b = (0.0302± 0.0002) δ = (4.320± 0.025) δτ and

Us = (4.255± 0.040)uτ .

Figure 2.24: Visualization of a snapshot for the simulation of the turbulent superhy-
drophobic channel flow. The half of the domain corresponding to z < 0 is colored by
‖u‖
uτ

; the quarter of the domain corresponding to z > 0 and x > 0 is colored by
p

ρu2
τ

.

A slice of the computational grid, streamlines and isocontours of λ2 = −0.3

(
Ub

δ

)2

(using the λ2-criterion from [132]) are also shown.

Our setup value ofReτ was chosen for comparison purposes with one of the simulations

from [127, 126], which reports a (mean) value of Reτ = 143 using a simulation setup

enforcing a (constant) mass flow corresponding to Reb = 2, 800 for the same channel

geometry. Under these conditions, [127, 126] reports b = 0.0366 δ = 5.17 δτ and Us =

5.26uτ . Therefore, when compared to those results, our simulation leads to a reduced

flow rate for a comparable driving force (about 10% less) and to a smaller slip velocity as

well as a smaller slip length. Besides the difference in simulation setup (constant driving
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force as opposed to constant mass flow rate), such deviations may also originate from

numerical and/or modeling differences to be found between the two approaches. To assess

this, we also compare our results to the simulations of [133], who used a lattice-Boltzmann

method. We select their simulation whose value of L/δτ is closest to ours, since [127]

established that L/δτ is the single most important parameter that determines slip length

(at fixed gas fraction). We therefore compare our simulation, which has L/δτ = 53.6, to

the L/δτ = 56.2 case of [133], who found b/δτ = 4.23. This value is appreciably smaller

than the result of 5.17 of [127], but matches closely our b/δτ = 4.32.

In terms of modeling, [127, 126] opted for a simplified wall-treatment for the spanwise

velocity component w, by setting w|y=±δ = 0 instead of the stress-free condition (2.14)

above the free-slip wall regions. Enforcing w|y=±δ = 0 above the air pockets does not rely

on physical grounds, and may result in simplified near-wall flow structures that artificially

promote streamwise velocity. Indeed, this simplified condition results in
∂w

∂z
= 0, which

in turn simplifies the incompressibility condition, at the walls, into
∂u

∂x
+
∂v

∂y
= 0. At the

wall-located air interfaces, this latter equation stands as an artificial constraint, within

z-orthogonal planes, enabling transfer of kinetic energy only between wall-normal and

streamwise velocity components. This constraint could lead, in turn, to an overestimation

of the slip velocity and/or of the total mass flow across the channel, which could help

explain the difference between the results of [127] and those of subsequent simulations.

In terms of numerical methods, we emphasize that the use of a semi-Lagrangian

scheme for the advection terms comes with a significant amount of numerical dissipation,

which may in turn lead to overestimated viscous dissipation. While this cannot be

excluded, we also want to point out that our simulation setup makes use of a spatial

resolution that is 4 times finer than the resolution from [127], in both the streamwise

and spanwise directions. Firstly, such a fine resolution in the streamwise direction is

expected to alleviate the numerical dissipation associated with our advection scheme.
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Secondly, such a resolution in the spanwise direction may actually stand as a requirement

in order to capture the sharp variation in velocity profiles between free-slip and no-

slip wall regions. Indeed, figure 2.23 illustrates that
∂

∂z
〈u〉x,t

∣∣∣∣
y=±δ

is the largest near

the boundaries transitioning from free-slip to no-slip regions; therefore, using a coarse

spanwise resolution in that area may lead to an underestimation of the overall viscous

dissipation.

In order to quantify the relative importance of this term, we estimate its contribution

to the viscous dissipation taking place in near-wall layers and compare it to the con-

tribution of the mean, slice-averaged streamwise shear term (i.e., as if we were dealing

with a regular channel). Assuming that
∂

∂z
〈u〉x,t

∣∣∣∣
y=±δ

is not negligible within bands of

3δ/128 around solid ridges only (in our case, we have 16 such bands on either wall), our

comparative estimate is

6δ
16× 3δ

128
µ

(
∂

∂z
〈u〉x,t

∣∣∣∣
y=−δ

)2

6δ 3δ µ

(
∂

∂y
〈u〉x,z,t

∣∣∣∣
y=−δ

)2 ≈ 16

128

(
7.4uτ

3δ/128

)2

(
Us
b

)2 = 62.8%,

where we estimated
∂

∂z
〈u〉x,t

∣∣∣∣
y=−δ

=
7.4uτ

3δ/128
based on the results illustrated in figure

2.23 to produce a fair measure in comparison with the grid resolution from [127], although

∂

∂z
〈u〉x,t

∣∣∣∣
y=−δ

becomes almost twice as large as we approach the edge in our computa-

tional setting. Although wall viscous shear dissipation may be smaller than the overall

(bulk) turbulent dissipation, we expect it to be non-negligible nonetheless, in particular

when considering a relatively low friction Reynolds number as it is the case here8; in this

context, the above comparative estimation indicates that spanwise wall shear, though not

evenly distributed on the walls, is not a negligible factor to the overall viscous dissipation.

8In fact, if we consider an equivalent canonical channel with a mean, streamwise wall shear of Us/b

58



Simulating single-phase flows on parallel Quadtree/Octree grids Chapter 2

2.5 Summary

We have described a Navier-Stokes solver for simulating incompressible flows in irreg-

ular domains on a forest of Octrees in a distributed computing framework. The parallel

implementation of the solver requires the ability to access second- (or third-)degree cell

neighbors, which led to the need for an expanded ghost layer of cells. We have in-

troduced an algorithm to address that computational challenge on distributed forest of

octree grids. We also have introduced parallel algorithms for the unambiguous definition

and synchronization of global faces indices as required in a standard MAC arrangement.

The performance of these individual algorithms has been assessed in terms of strong

and weak scaling analyses. The strong scaling behavior of the entire solver has been

verified up to more than 32,000 cores using a problem on a grid of 6.1× 108 grid cells.

The performance of the solver has been assessed on several large-scale three-dimensional

problems: accurate results for the flow past sphere at various Reynolds numbers have

been shown, several illustrations of the capabilities of our adaptive refinement approach

have been provided and a simulation of the turbulent flow through a superhydrophobic

channel has been performed with unparalleled spanwise (and streamwise) spatial res-

olution over regions of interest. When flow structures have a limited lifetime and/or

are bounded to relatively small regions in the computational domain, our adaptive grid

refinement approach was shown to successfully simulate the problems of interest using

only a few percent of the number of grid cells that a uniform grid of equivalent finest

resolution would require. The encapsulation of such a feature in a distributed computing

that we assume constant over layers of at least 3
µ

ρuτ
, the viscous dissipation in these layers amounts for

2× 3
µ

ρuτ
× 6δ × 3δ × µ

(
Us
b

)2

' 105 ρu3
τδ

2

which represents about 1/6 of the energy injection rate 36δ3ρfxUb in our simulation setup.
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framework allows for very-large scale simulations to be considered tractable from a com-

putational standpoint and, therefore, to address increasingly complex multiscale and/or

multiphysics problems.
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Chapter 3

Transitioning to two-phase flows

3.1 Introduction

In this chapter, we turn our attention to the equations governing the dynamics of

two-phase incompressible viscous flows. While they are piecewise equivalent to the single-

phase flow problem, conditions coupling the flow dynamics across the interface separating

two immiscible fluids must be taken into account. After introducing those interface

conditions, we discuss their consequences on the extension of the numerical methodology

presented for single-phase to two-phase problems. Finally, we outline the description of

a flowchart that intends to account for these interface conditions while decoupling all

unknowns.

3.2 Governing equations and interface conditions

We consider the incompressible flow dynamics of two immiscible fluids in a domain

Ω. The fluids are separated by an interface Γ, which is represented as the zero-contour

of a levelset function φ, i.e., Γ = {x : φ (x) = 0}. The sign of φ naturally distinguishes
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Figure 3.1: illustrations of the two subdomains Ω+ and Ω−, separated by the interface
Γ, and its corresponding normal vector in two dimensions.

the two subdomains containing the distinct fluids Ω+ = {x ∈ Ω : φ (x) > 0} and Ω− =

{x ∈ Ω : φ (x) < 0}. We denote the unit vector normal to the interface pointing toward

Ω+ by n (see Figure 3.1). We make use of the superscript + (resp. −) for properties

related to the fluid in Ω+ (resp. Ω−). We denote by w the velocity of the interface,

whose kinematics is thus described by the following advection equation for the levelset

function

∂φ

∂t
+w · ∇φ = 0. (3.1)

Far away from the interface, the flow dynamics is governed by the incompressible

Navier-Stokes equations

∇ · u = 0 (3.2)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ ρf + µ∇2u (3.3)

where ρ and µ are respectively the mass density and shear viscosity of the appropriate

fluid.
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Across the interface Γ, the conservation of mass reads

[ρ (u−w) · n] = 0, (3.4)

wherein [q] = q+−q− represents the jump in the quantity q across Γ. Thus, (3.4) expresses

that the mass flux through the interface Ṁ = ρ (u−w) ·n must be continuous (no loss

nor creation of mass on the interface). In presence of two fluids of different nature, no

phase change may occur and therefore Ṁ = 0, but liquid-gas phase transition may be

considered when allowing Ṁ 6= 0 in general.

The conservation of momentum across the interface requires

[(
Ṁ2

ρ
+ p

)
n− 2µE · n

]
= −κγn+ (δ − nn) · ∇γ +G, (3.5)

where E =
1

2

(
∇u+ (∇u)T

)
is the strain rate tensor, κ = ∇ · n is the interface curva-

ture, δ is the second-order identity tensor, γ is the surface tension coefficient and G is an

interface-defined, i.e., singular, force that may account for other or additional interface

physics (e.g., hyper-elasticity of a membrane). In (3.5) and hereafter, (δ − nn) · a rep-

resents the projection of vector a orthogonal to n, that is (δ − nn) · a = a− (a · n)n.

Hence, (δ − nn) ·∇γ is the surface gradient of the surface tension coefficient (Marangoni

force).

In addition to the conservation of mass and momentum, one may need to account for

the conservation of energy if required (e.g. for problems involving heat transfer and/or

phase change). Far away from the interface, the conservation of energy reads

ρ

(
∂e

∂t
+ u · ∇e

)
= 2µE : E + k∇2T + Θ̇. (3.6)
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where e is the local internal energy (per unit mass), k is the thermal conductivity and Θ̇

represents a possible external heat source.

The corresponding conservation principle across the interface requires

[
Ṁ

(
h+

Ṁ2

2ρ2

)
− 2Ṁνn ·E · n− k∇T · n

]
= TI

(
D

Dt

(
dγ

dTI

)
+

dγ

dTI

∇s ·w
)
. (3.7)

where h = e+p/ρ is the local enthalpy (per unit mass), ν = µ/ρ is the kinematic viscosity

and TI is the interface temperature. The interested reader will find a detailed derivation

of (3.2)-(3.7) in appendix A.

3.2.1 Interface conditions on velocity components

Since we build upon the framework developed for the numerical simulation of single-

phase flows which decouples all velocity components, its extension to two-phase problems

would require expressions for [u] and either [µ∇u · n] or [µ∇u] (if using a Cartesian,

dimension-by-dimension approach for interface discontinuities).

The conservation of mass across the interface (3.4) may be reformulated as a jump

condition on the normal velocity across the interface. Indeed, since Ṁ = ρ (u−w) · n,

we have u · n =
Ṁ

ρ
+w · n on (either side of) Γ and therefore

[u · n] = Ṁ

[
1

ρ

]
(3.8)

since
[
Ṁ
]

= 0 and [w] = 0 (interface-defined quantities). Additionally, it has been

assumed in the derivation of the governing equations presented here above that the

tangential velocity components are continuous across the interface1. Mathematically,

1For viscous fluids, this is required to ensure finite shear rates everywhere (see appendix A.2.2).
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this translates into [(δ − nn) · u] = 0, which may be combined with (3.8) to obtain

[u] = Ṁ

[
1

ρ

]
n. (3.9)

We now consider [µ∇u]. Reproducing the developments by Kang, Fedkiw and Liu

[15, 16], one has, using index notations and Einstein Summation Convention2

[µ∂jui] = [µ∂kui (δkj − nknj)] + [µ∂kui nknj]

= [µ∂kui (δkj − nknj)] + [µ (δir − ninr) ∂kur nknj] + [µninr∂kur nknj]

= [µ∂kui (δkj − nknj)] + [µ (δir − ninr) (2Erk − ∂ruk)nknj] + [µninr∂kur nknj]

for the (i, j) component of [µ∇u]. Now note that the projection of (3.5) on the hyper-

plane normal to n reads

[2µ (δir − ninr)Erknk] = − (δir − ninr) (∂rγ +Gr) . (3.10)

By making use of the equality [AB] = A± [B] +B∓ [A], one may also exploit

[(δjk − njnk) ∂kui] = (δjk − njnk) ∂k
(
Ṁ

[
1

ρ

]
ni

)
. (3.11)

which holds true by differentiating (3.9) side by side along directions that are tangential

to the interface. In particular, a side result of (3.11) is

[n · ∇u · n] = [n ·E · n] = −κṀ
[

1

ρ

]
. (3.12)

2In index notations, ai represents the Cartesian component of vector a along direction i. Einstein
Summation Convention means that repeated indices implicitly represent a sum over those indices. For
instance, a = aiei where ei is the unit vector oriented along Cartesian direction i. Similarly, a ·b = aibi.
The reader is referred to the list of symbolic operations and notations on page 217 for more details.
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which results from the contraction over (i, j) of (3.11) and the incompressibility condition

∇ · u = 0.

When incorporating (3.10), (3.11) and (3.12) into the above expressions for [µ∂jui],

one obtains3

[µ∂jui] = µ± (δjk − njnk) ∂k
(
Ṁ

[
1

ρ

]
ni

)
+ [µ] (δjk − njnk) ∂ku∓i

− (δir − ninr) (∂rγ +Gr) nj

−µ± nj (δir − ninr) ∂r
(
Ṁ

[
1

ρ

])
− [µ] nj (δir − ninr) ∂ru∓k nk

−µ± ninj
(
κṀ

[
1

ρ

])
+ [µ] ninjnr∂ku

∓
r nk. (3.13)

If required instead of the latter4, the corresponding expression for [µ∇u · n] may be

obtained, for the ith velocity component, by multiplying (3.13) with nj, side by side,

which yields

[µ∂juinj] = − (δir − ninr) (∂rγ +Gr)

−µ± (δir − ninr) ∂r
(
Ṁ

[
1

ρ

])
− [µ] (δir − ninr) ∂ru∓k nk

−µ± ni
(
κṀ

[
1

ρ

])
+ [µ] ninr∂ku

∓
r nk.

The jump conditions (3.13) express the discontinuities in viscous flux generally, for

velocity component i along Cartesian direction j, as required when using a dimension-

by-dimension treatment of interface discontinuities (similarly to [16, 15]). As it can be

seen, solution-dependent terms are involved in the expansion (the same conclusion holds

3To the best of our knowledge, this expression stands as an original contribution which must be taken
into account if one intends to account for stress balance across the interface, in a sharp fashion. A similar
expression is derived in [134], by means of curvilinear axes local to the interface mapped back to the
computational reference frame

4If using jump solvers for the velocity components that rely on the jump in normal flux only, instead
of the jumps in all Cartesian flux components.
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for [µn · ∇u]) which underlines the need for an iterative strategy, if one wants to capture

the discontinuities implicitly.

A note about under-resolved interfaces As highlighted by (3.13), the discontinu-

ities in viscous fluxes require an accurate and reliable local description of the interface.

Indeed,

• several tangential ((δij − ninj) ∂j (·)) and normal derivatives (ni∂i (·)) are involved;

• derivatives of local normal vectors may also be required in presence of a mass flux

across the interface (if using a dimension-by-dimension jump solver).

Therefore, the consistent treatment of (3.13) in presence of locally under-resolved in-

terfaces stands as a challenge that is left for future work. In presence of locally under-

resolved interface, the standard evaluation of the interface normal vector by differentia-

tion of the levelset function, i.e., n =
∇φ
‖∇φ‖ , will usually lead to an inaccurate normal

vector (O (1) error, pointing in an arbitrary direction), and inaccurate local evaluations

of curvature as well.

3.2.2 Interface conditions on pressure

The projection of (3.5) onto n yields the following discontinuity in pressure

[p] = −κγ − Ṁ2

[
1

ρ

]
+ 2 [µn ·E · n] +G · n. (3.14)

Alongside the discontinuity in pressure (3.14), the value of

[
1

ρ
n · ∇p

]
needs to be

prescribed as well when decoupling velocity and pressure in a numerical simulation engine.

Though a formal derivation for

[
1

ρ
n · ∇p

]
may be found in case of Stokes flows (see [135],
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for instance), it cannot be extended to general flow dynamics. However, when considering

the conservation of momentum (3.3), one has

[∇p
ρ

]
= −

[
Du

Dt

]
+

[
µ

ρ
∇2u

]
(3.15)

which reduces to [∇p
ρ

]
=

[
µ

ρ
∇2u

]
(3.16)

in absence of a mass transfer across the interface, since the acceleration of fluid material on

either side of the interface must be continuous in that case. When allowing differentiation

across the interface for the evaluation of the divergence of the intermediary velocity field

within the projection step, one may show (see [26, 27]) that it introduces a singular

contribution that is equivalent to the the right hand side of (3.16) (which is therefore

naturally accounted for).

In the context of an entirely sharp approach, enforcing the general condition (3.15)

stands as yet another difficulty numerically which would require an order of accuracy on

the velocity components that is not matched even in single-phase problems. Therefore,

the current work considers the simplified condition

[
n · ∇p
ρ

]
= 0 (3.17)

instead.
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3.3 Decoupling degrees of freedom in simulation of

two-phase flows

Though pressure and velocity components are coupled across the interface as equa-

tions (3.14) shows, handling that inter-dependency between [p] and [µn ·E · n] directly

would require a discretization as a saddle-point system for all unknowns. In other words,

at every time step, one would need to solve a system of the kind




A −G

D 0






un+1

p


 =




r (un,un−1,f)

0


+




j (un+1, p)

m
(
Ṁ
)


 (3.18)

wherein A accounts for the (sharp) discretization of advection and implicit viscous terms,

G and D are (sharp) gradient and divergence discrete operators, r stands for known, bulk

and/or jump-related, right-hand side contributions to the (discretized) momentum equa-

tion whereas m
(
Ṁ
)

accounts for interface-located mass-flux contributions to ∇ · u and

j (un+1, p) accounts for the solution-dependent terms resulting from the incorporation

of (3.13) and (3.14) into the discretization ([33] considers such an approach in two-

dimensions). Beyond the need for an iterative procedure that would not be alleviated in

such a case (because of j (un+1, p)), the implementation and resolution of such a large

saddle-point systems may prove complex and prohibitive for applications in large-scale

computing.

We therefore opt for a projection method approach, instead. Introduced by Chorin

[107] for the calculation of single-phase incompressible flows (see [108] for a review), the

projection method relies on the Helmholtz-Hodge decomposition, which states that vector

fields may be split into curl-free and divergence-free components. One may thus advance

the momentum equations (3.3) in time while relaxing the divergence-free constraint (3.2)
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and find a curl-free (correction to the) pressure gradient thereafter. It can be shown

that such a strategy, also called fractional-step method, is actually equivalent to an

approximation of the block LU discretization of (3.18) (see [136, 137]).

Though extensively used in numerical simulations of two-phase flows as well, its ap-

plication ensuring strict consistency with (3.14) (and (3.16), in fact) requires careful

consideration about whether or not [(2)µn · ∇u · n] should be accounted for in the dis-

continuity of the projection variable (pressure in such a case), in light of the discretization

scheme used for viscous terms and the differentiation across the interface used when eval-

uating ∇ · u (as shown in [26]).

However, we mean to avoid any discretization across the interface (particularly un-

desirable in case of discontinuous velocity components). We therefore developed the

following numerical strategy that intends to approach (3.18) via a fix-point iteration, if

desired by the user, while decoupling velocity and pressure. The pressure gradient is

taken into account as the momentum equations are advanced in time. Since the subse-

quent projection is numerically equivalent to an a posteriori pressure correction, the user

may want to account for it and start the procedure over again.
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3.3.1 Semi-discrete workflow per time step

At time step n, given φn+1 and a possible estimate5 of u?,0:

0. Set p0 as the solution to the following sharp “pressure guess” problem





−∇ ·
(

1

ρ
∇p0

)
= 0,

[p0] = −γκ− Ṁ2

[
1

ρ

]
+ 2 [µn · ∇u?,0 · n] +G · n,

[
1

ρ
∇p0 · n

]
= 0,

(3.19)

and extrapolate the sharp solution from either side of the interface to the rest of

the domain;

1. Set an iteration counter k ← 0 and iterate until convergence or maximum number

of iterations kmax reached:

(a) solve the “viscosity step”: find the solution u?,k+1 to





ρ

(
α
u?,k+1 − und

∆tn
+ β

und − un−1
d

∆tn−1

)
= µ∇2u?,k+1 −∇pk + ρf

[
u?,k+1

]
= Ṁ

[
1

ρ

]
n

[µ∂ju
?
i ] = µ± (δjk − njnk) ∂k

(
Ṁ

[
1

ρ

]
ni

)
+ [µ] (δjk − njnk) ∂ku?,∓i

− (δir − ninr) (∂rγ +Gr) nj

−µ± nj (δir − ninr) ∂r
(
Ṁ

[
1

ρ

])
− [µ] nj (δir − ninr) ∂ru?,∓k nk

−µ± ninj
(
κṀ

[
1

ρ

])
+ [µ] ninjnr∂ku

?,∓
r nk

(3.20)

5Though not required conceptually (one could use u?,0 = 0), this estimate u?,0 was introduced to
improve the overall approach, in particular when using few iterations. Over the course of the simulation,
the solver defines this estimate as a time-extrapolation of previous sharp velocity fields. By default, a
linear time extrapolation of the two latest velocity fields is used.
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wherein α =
2∆tn + ∆tn−1

∆tn + ∆tn−1

and β =
−∆tn

∆tn + ∆tn−1

are second-order back-

ward differentiation formula parameters; und and un−1
d are velocities at semi-

lagrangian backtraced points (more details in subsection 7.2.1).

Extrapolate the sharp vector field u?,k+1 from either side of the interface to

the rest of the domain;

(b) find a pressure correction δpk+1 =
(
pk+1 − pk

)
such that u?,k+1 − ∆tn

αρ
∇δpk+1

is (piecewise) divergence-free. Solve the two-phase “projection step”





−∇ ·
(

1

ρ
∇Φk+1

)
= −∇ · u?,k+1

[
Φk+1

]
=

2∆tn
α

([
µn · ∇u?,k+1 · n

]
−
[
µn · ∇u?,k · n

])
,[

1

ρ
∇Φk+1 · n

]
= 0,

(3.21)

wherein Φk+1 =
∆tn
α
δpk+1 (Φ will be referred to as the Hodge variable). Ex-

trapolate Φk+1 from either side of the interface to the rest of the domain and

define p±,k+1 = p±,k +
α

∆tn
Φ±,k+1.

Set k ← k + 1 and repeat from step 1a with the updated pressure, if desired.

2. Make (extrapolated) velocity fields divergence-free: u±,n+1 = u±,?,k − 1

ρ±
∇Φ±,k

and interpolate from faces to nodes.

3. Advance time: determine the new time step ∆tn+1, compute the interface velocity

wn+1 and update the levelset function by advancing (3.1) from tn+1 to tn+2 =

tn+1 + ∆tn+1. Build the new grid that captures the zero-contour of φn+2, and

satisfies the other refinement criteria. Proceed to next time step.
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3.3.2 Some notes about the workflow per time step

About the termination of the fix-point iteration. By choosing kmax = 1, the

numerical approach corresponds to a fractional step method, in principle. If desired by

the user (by setting kmax > 1), the described flowchart enables fix-point iterations in

order to account for pressure corrections resulting from projection steps to be accounted

for when advancing the momentum equations. Enabling kmax > 1 was found necessary

in some test problems, in particular when the time step is significantly larger than with

an explicit treatment of viscous terms. If kmax > 1, the solver monitors the ratios

maxΩ±

∥∥∥∥
1

ρ±
∇Φk+1

∥∥∥∥
∞

maxΩ± ‖u?,k+1‖∞
(3.22)

in either subdomain, at every iteration k. If the measure (3.22) is found below a user-

defined threshold ξ (default is ξ = 1%) in either subdomain, the fix-point iteration

terminates even if k < kmax. Though usually monotonically decreasing in both subdo-

mains, this measure was often found to decrease slowly or plateau in the lighter-fluid

(gas-like) subdomain on adaptive grids, with the value of the numerator in (3.22) being

usually found at T-junctions, underlining a possible shortcoming of local grid resolution.

About the pressure guess. The use of a pressure guess was introduced in [32]. It

allows for Laplace pressure and other interface-defined forces and momentum disconti-

nuities to be (roughly) accounted for when advancing the momentum equations. It was

found to be necessary to ensure vanishing parasitic currents in benchmark test cases.

It also has the advantage of improving stability of the subsequent two-phase projection

step(s).
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About the stability of the projection step. The numerical stability of the pro-

jection step is a key requirement to ensure overall robustness in numerical simulations.

The specific discretization introduced for single-phase flows (see [55]) ensures stability

by constructing a mimetic equivalence with continuum operators for the discrete gradi-

ent of cell-sampled fields and the discrete divergence of face-sampled vector fields. This

mimetic equivalence ensures that the projection step is not responsible for creating spuri-

ous (kinetic) energy. While extending the reasoning for such discrete operators to strictly

sharp, two-phase problems is an open question, one may observe that their construction

basically relies on a cell-based, finite-volume approach. Therefore, it seems preferable

(regarding stability) to use a finite-volume approach as well for solving the two-phase

projection step problems, as well.

About the interface conditions in the projection step. The interface condition[
1

ρ
∇Φk+1 · n

]
= 0 is required to ensure [un+1 · n] = Ṁ [1/ρ]. Indeed, since the viscosity

step enforces
[
u?,k+1 · n

]
= Ṁ [1/ρ], one has

[
un+1 · n

]
=
[
u?,k+1 · n

]
−
[

1

ρ
∇Φk+1 · n

]
= Ṁ [1/ρ] ,

as desired.

The interface condition
[
Φk+1

]
=

2∆tn
α

([
µn · ∇u?,k+1 · n

]
−
[
µn · ∇u?,k · n

])
is de-

signed to account for the latest known velocity field in the pressure discontinuity. Indeed,

after K fir-point iterations, the pressure discontinuity reads

[
pK
]

=
[
p0
]

+
K∑

j=1

[
δpj
]

=
[
p0
]

+
α

∆tn

K∑

j=1

[
Φj
]

= −γκ− Ṁ2

[
1

ρ

]
+ 2

[
µn · ∇u?,K · n

]
+G · n. (3.23)
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About the difference between u? and un+1. Though the procedure described in

subsection 3.3.1 intends to reach minimal differences between u? and un+1 eventually, it

may be truncated after a finite number of kmax iterations in practice. The final divergence-

free projection un+1 = u?,kmax− 1

ρ
∇Φkmax may thus alter the following interface conditions

enforced during the viscosity step:

• the continuity of tangential fluid velocities may be altered: (δ − nn)·
[

1

ρ
∇Φkmax

]
=

0 is not enforced6, this may affect the continuity of fluid velocity, tangentially to

the interface;

• a similar argument holds for the balance of stress across the interface. In that

case, the projection-related terms polluting the interface conditions are second-

order derivatives of Φ (thus they cannot be evaluated and accounted for accurately

in our framework).

• by substituting u?,kmax = un+1 +
1

ρ
∇Φkmax into the discretization of the viscous

step, one finds that the finalized pressure field should read pkmax − µ∇ · u?,kmax .

This term alters all boundary and interface conditions enforced on the pressure.

In order to alleviate these sources of uncertainty (in particular related the continuity

of tangential fluid velocities), an alternative definition of the measure (3.22) may be

considered. For instance, one may evaluate how much the projection step alters interface

conditions by monitoring

max
ΩΓ±ε

max

(∣∣∣∣
∂xΦ

k+1

ρ±ex · u?,k+1

∣∣∣∣ ,
∣∣∣∣

∂yΦ
k+1

ρ±ey · u?,k+1

∣∣∣∣ ,
∣∣∣∣

∂zΦ
k+1

ρ±ez · u?,k+1

∣∣∣∣
)

(3.24)

instead of (3.22), and where ΩΓ±ε represents the part of the computational domain

layering the interface Γ with thickness ε > ∆x. By enforcing (3.24) to fall below a user-

6and cannot be enforced numerically in a single pass, except if using the method from [16].
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defined threshold, the continuity of tangential velocities across Γ is ensured within the

same (relatively) tolerance. The consideration of such alternative convergence measures

is left for future work.

3.4 Summary

In this chapter, we have outlined and discussed the governing equations for two-phase

incompressible viscous flows. In particular, the interface conditions coupling the flow

dynamics across the interface have been discussed and analyzed in light of the elaboration

of an appropriate numerical strategy decoupling velocity components and pressure. The

balance of stress across the interface reveals that, though decoupled far away from the

interface by virtue of the incompressibility condition, the velocity components are coupled

across the interface via solution-dependent jump conditions on viscous fluxes across the

interface. Their consideration in the context of an implicit treatment of viscous terms

thus requires an iterative strategy for elliptic interface problems involving face-sampled

vector fields.

In chapter 4, we introduce such a strategy for elliptic interface problems involving

scalar fields, and show that it is capable of recovering absolute convergence in gradients

when using a dimension-by-dimension numerical approach [16]. This strategy is then

extended to problems of interest when treating viscous terms implicitly with face-sampled

velocity components, in chapter 5. In chapter 6, we present the numerical tools used to

solve elliptic interface problems for cell-sampled scalar fields (i.e., for the pressure guess

and projection step) using a finite-volume approach. Finally, in chapter 7, we assess the

performance and present results for the two-phase flow solver outlined in this chapter,

assembling the computational tools described in the subsequent chapters.
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A strategy for scalar elliptic

interface problems with

solution-dependent flux

discontinuities

4.1 Introduction

We consider a computational domain Ω divided into two distinct regions by a smooth

interface Γ that we define as the zero-level set of a differentiable function φ. We have

two distinct regions

Ω− = {x ∈ Ω | φ (x) ≤ 0} , (4.1)

Ω+ = {x ∈ Ω | φ (x) > 0} . (4.2)
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Throughout the rest of this chapter, we will consider φ (x) to be the exact (signed)

distance from x to Γ, which gives a straightforward expression for the unit vector n

normal to Γ, as n = ∇φ (pointing toward Ω+). We are interested in problems of the

category (β > 0) 



−∇ · (β∇u) = f,

[u] = a,

[βn · ∇u] = b,

(4.3)

where [q] represents a discontinuity at the interface Γ in the quantity q, defined as [q] =

q+− q−, where q± (x) = limε→0, ε>0 q (x± εn) , ∀x ∈ Γ. The reader should understand a

and b as smooth extensions of the relevant fields defined on the co-dimension one interface

Γ, whenever implicitly considered as scalar fields defined over the whole domain Ω.

The problems that fall into the above category are ubiquitous in engineering and

applied physics. A non-exhaustive range of examples includes: electrostatics problems

where the potential must be continuous across the interface as well as the normal electric

displacement field (in the absence of interface electric charge); problems involving heat

conduction across different materials where the temperature must be continuous across

the interface as well as the normal heat flux (in the absence of a surface heat source); the

Young-Laplace equation for immiscible fluids and several others. As a consequence, a

plethora of methods have been developed over the last few decades to address problems

like (4.3) numerically.

The technical difficulties associated with the interface conditions [u] = a and

[βn · ∇u] = b in (4.3) can be significantly alleviated by using an interface-conforming

layout for the discrete unknowns, hence an unstructured grid. It is thus natural to find

early successes exploiting Finite Elements Methods (FEM), see for instance [138, 139].

More recently, this very same idea has been exploited successfully using a Finite Volume

(FV) approach with interface-tracking Voronoi diagrams (the VIM for Voronoi Interface
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Method), leading to second-order accurate results[140]. Given their ability to naturally

capture the relevant interface conditions in (4.3), these strategies may be considered

first-choice methods when it comes to scalar problems with static interfaces.

However, the construction of such a conforming mesh adds complexity and significant

workload to the numerical procedures, especially in case of moving interfaces and/or in

case of several equations like (4.3) coupling unknowns that are not collocated, e.g., the

velocity components in a Marker-And-Cell layout. Capturing the effects of an embedded

interface using a non-conforming mesh is preferable in such cases.

Still in the FEM community, methods like the eXtended Finite Element Method

(XFEM) and Discontinuous Galerkin (DG) Methods have proved successful in capturing

interface conditions by enriching the approximation function space locally for the ele-

ments crossed by the interface (see [141, 142, 143, 144, 145] and the references therein).

Regarding methods on Cartesian grids, the Immersed Interface Method (IIM) by

LeVeque and Li [146, 147, 148] was the first successful approach to capture such jump

conditions using a finite difference approach. The IIM builds upon second-degree Taylor

expansions on both sides of the interface, which are matched through the given jump

conditions and their local differentiation along the interface. The IIM achieves second-

order accuracy in infinity norm, at the expense of solving a non-symmetric linear system

of equations, with (rather arbitrarily chosen) extra discretization point(s) in the stencil,

and a fairly complex and challenging implementation, especially in a three-dimensional

setting[149].

In cases where [β] = 0, and [u] = 0, simplified approaches have been suggested. For

instance, such problems can be reformulated as regular Poisson equations in the entire

computational domain Ω = Ω−
⋃

Ω+ with singular source terms distributed on the co-

dimension one interface Γ, see [150, 151, 152].

In order to address more general problems on Cartesian grids, the idea of constructing
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a sharp numerical method based on well-defined ghost values across the interface soon

became the mainstream approach. This strategy overcomes most numerical challenges

associated with the intrinsic sharp discontinuities of the solution by virtually expanding

the subdomains where the solution can be considered locally smooth and differentiable at

the grid scale. For problems where [β] = 0 for instance, the approach becomes particularly

straightforward: well-defined ghost values can be defined as direct algebaric expressions

involving the value of b, as developed in [153] for solidification problems for instance. A

generalization to problems with [β] 6= 0 using a finite volume approach was developed

in [154], building upon techniques and analyses from [155]. This generalization leverages

local, one-sided, least-square field reconstructions to determine appropriate interpolation

weights for the solution-dependent terms that come into play. These weights are then

incorporated within the discretization scheme so that appropriate and accurate ghost

values are implicitly taken into account at all required grid nodes. This methodology

achieves second-order accuracy for the solution and second-order accurate gradients in

infinity norm but sacrifices the symmetry, and possibly the positive definiteness, of the

linear system to be solved. Nevertheless, [154] showed that the condition number is

bounded for any ratios of β+/β− and that the linear system can be solved efficiently.

Along the same lines, the Correction Function Method (CFM) [156] was shown to

achieve up to 4th order accurate results for problems with constant β throughout Ω

(and thus [β] = 0). The idea consists of defining a correction function D = u+ − u−

where u± is an extrapolation of u from Ω± to Ω, i.e. across the interface Γ. At grid

nodes where the standard discretization stencil crosses the interface, the node values of

D are then used to determine well-defined ghost-values u± = u±D. The function D is

shown to be governed by an elliptic Cauchy-problem for D in Ω, that is solved locally by

finding the local minimizer of a functional in a least-square sense. The CFM has been

further developed to address problems with piecewise constant β but [β] 6= 0 in [157]
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by combining it with a Boundary Integral Method based on the early work by Mayo

[158]. Although claimed to straightforwardly extend in a three-dimensional framework,

no three-dimensional examples are shown in [156, 157].

Similarly, the Matched Interface and Boundary (MIB) method by Zhou and al. [159]

uses an extended number of ghost values across the interface in order to achieve higher

orders of accuracy. These ghost values are extended recursively so that interpolants of

increasing degree match the jump conditions with increasing accuracy. The linear system

is no longer symmetric nor diagonally dominant. Up to sixth-order accurate results are

reported in cases where the interface allows the use of such extended stencils. However,

second-order accuracy seems to be the barrier otherwise, i.e., for general irregular in-

terfaces whose details are captured by a only few grid nodes. Alternatively, one could

add extra unknowns at intersections between grid lines and the interface Γ. This has

been used in [160] and naturally prevents the coupling of grid nodes across Γ. However,

the additional equations for the unknowns located on the interface use extended stencils

(wherever allowed by the interface) that break the symmetric positive definiteness of the

linear system.

The idea of using ghost values across an interface can be traced back to the Ghost

Fluid Method introduced in [17] as a way to capture Ranking-Hugoniot relations across

a strong shock. Building upon this idea, Liu, Fedkiw and Kang developed an interface-

capturing method for problems like (4.3) on Cartesian grids in [16]. We will refer to this

method as the GFM hereafter. Contrary to the other jump-capturing schemes mentioned

here above, the GFM captures sharp discontinuities on a regular Cartesian grid through

the resolution of a well-behaved symmetric positive-definite (SPD) linear system of equa-

tions. Moreover, it builds on the smallest possible discretization stencil, enhancing its

robustness with respect to (close to) under-resolved interfaces. These features make the

GFM very appealing and highly suited for large-scale simulations because of its ease of
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implementation in a distributed computing framework, for stability reasons and/or for

applications requiring robustness with respect to the interface geometry. As a conse-

quence, the GFM has been the focus of considerable academic attention over the last two

decades, especially within the community of sharp interface methods for computational

fluid dynamics and multiphase flows, see [50, 161, 15, 162, 163, 44, 164, 43, 48]. Its

convergence has been studied in [165] by means of a weak formulation of (4.3), which

was exploited in turn in [166] along with a triangulation of the Cartesian grid to develop

a second-order accurate version.

Nevertheless, the GFM suffers from the lack of convergence for the gradient of the

solution or, more precisely, for the flux β∇u. The latter may pose serious accuracy

issues, especially in the context of projection methods in multiphase incompressible flows,

because the accuracy of the updated incompressible fluid velocity is directly related to

the flux β∇u.

In this chapter, we introduce the xGFM: a union between extension techniques and

the GFM that intends to recover absolutely convergent gradients in the computational

domain. The structure of the linear system is not modified; only the right-hand side is

iteratively updated. First, we introduce an interpretation of the GFM as two distinct

Poisson problems coupled numerically through interface values, in a one-dimensional

setting. Then, we underline an inconsistency in the GFM for multi-dimensional problems

and we introduce an iterative approach to solve that problem. Illustrations are provided

in two and three spatial dimensions to illustrate the applicability and the robustness of

the method.
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4.2 An interpretation of the GFM

When it comes to solving problems like (4.3), the robustness of the numerical method

is essential if strong discontinuities across Γ are expected (e.g., very large or very small

values of β+/β−). In such a case, an efficient technique consists of decoupling the prob-

lems in Ω+ and in Ω− as much as possible. For instance, assuming that the function

u−Γ such that u−Γ (x) = limε→0, ε>0 u (x− εn) , ∀x ∈ Γ is known beforehand, then (4.3)

is equivalent to solving two decoupled Poisson equations in irregular domains: a first

one for u in Ω− with Dirichlet boundary condition u−Γ on Γ, a second one for u in Ω+

with Dirichlet boundary condition u+
Γ =

(
u−Γ + a

)
on Γ. Several well-known methods

can be found in the literature for solving such Poisson equations with Dirichlet boundary

conditions on an irregular domain using Cartesian grids, see e.g. [167, 168, 169, 170].

For instance, this strategy was recently exploited and developed in [171] where the

superconvergent Shortley-Weller [167] was used in the separate subdomains with match-

ing conditions through the interface. This was shown to yield second-order accurate

results for the solution and for its gradient, as expected. However, such quality results

come with a complexity of implementation and a computational cost that would very

likely prevent large-scale scientific computing applications. Indeed, the original nonsym-

metry of Shortley-Weller’s linear system is exacerbated by the addition of at least one

(resp. three) extra discretization node(s) in the stencil in two (resp. three) dimensions

in the best-case scenario; under-resolved geometries require to include up to (at least)

third-degree neighbors in the under-resolved Cartesian direction. On top of the costly

resolution of nonsymmetric and non positive-definite linear systems, this would also set

a requirement onto the layers of ghost grid nodes to cover at least three computational

cells (possibly more depending on the resolution of the geometry) in a distributed com-

puting framework, which would significantly increase the inter-process communications
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and limit its strong scalability. Besides, the behavior of the method is not clear regarding

grid node that would fall too close to the interface and the corresponding divisions by

very small numbers, if not zero1.

Following the same idea, we show that the GFM is conceptually an equivalent strategy,

making use of the second-order accurate symmetric scheme introduced by Gibou [170]

in the distinct regions Ω+ and Ω− instead of the Shortley-Weller method[167]. For

standard Poisson problems, this alternative building brick alleviates the above problems

(one obtains an SPD linear system, optimal compactness, no division by arbitrarily small

number) but sacrifices the second-order accuracy for the gradient of the solution to

first-order. However, this indicates that first-order accurate gradients are theoretically

reachable by slightly modifying the GFM.

For the sake of clarity, we show the reasoning in one spatial dimension. The exten-

sion to multi-dimensional problems is treated in a dimension-by-dimension fashion: it is

discussed thereafter and unravels the origin of the issue preventing convergence of the

gradients in the GFM. We consider the problem





− d

dx

(
β

du

dx

)
= f,

[u] = a,[
β

du

dx

]
= b,

(4.4)

for x ∈ (xmin, xmax), the boundary values u (xmin) and u (xmax) are known. We consider

1While the corresponding fix for standard Poisson problems is fairly straightforward (simply set the
local solution value to the known Dirichlet-boundary value), it cannot be transposed to problems like
(4.3). This issue is not discussed in [171].
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the values of u, φ, f , a and b to be sampled at points2

xi = xmin + ih, h =
xmax − xmin

N
, i = {0, 1, . . . , N − 1, N} . (4.5)

We use the notation ζj = ζ (xj) , ∀j ∈ {0, 1, . . . , N − 1, N} for any field ζ. Since the

scheme uses a three-point stencil, we call a grid node 0 < i < N regular, when φi−1, φi

and φi+1 are either all non-positive, or all strictly positive; otherwise, the grid node i is

called a jump node. Figure 4.1 illustrates the general case of a jump node i.

For a regular grid node j, the finite difference discretization is the standard 3-point

discretization

β± (uj − uj−1)− β± (uj+1 − uj)
h2

= fj, (4.6)

where the appropriate superscript for β is chosen based on the local sign of φj.

xi−2

Ω∓

h

xi−1

Ω∓
xi
Ω±

θlh θrh

xi+1

Ω∓
xi+2

Ω∓

Figure 4.1: general illustration for a jump node i in a one-dimensional framework.
The interface, defined by the set of points where φ = 0, crosses the stencil centered in
xi at a distance θlh (resp. θrh) to the left (resp. right) of grid node i (θl and θr are in
[0, 1]).

Let us now consider a jump node i, and let us assume first that the value of u− is

known (and thus u+ = u− + a is known as well) at points xI such φ (xI) = 0. In order to

consider all possible scenarii, we consider the most general case such that both neighbor

nodes of xi are jump nodes as well, as illustrated in Figure 4.1 (the case where only

one neighbor is in the other domain is a straightforward simpler configuration). In the

following, all upper superscripts are associated with φi−1 ≤ 0, φi > 0 and φi+1 ≤ 0, while

2For clarity purposes, the diffusion coefficients β± are assumed piecewise constant in this chapter so
that corresponding indices can be omitted (this is not a restriction of the method, though).
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lower superscripts are associated with φi−1 > 0, φi ≤ 0, and φi+1 > 0.

In such a case, assuming momentarily that 0 < θl < 1 and 0 < θr < 1, the application

of the symmetric scheme [170] for nodes i− 1, i and i+ 1 yields

β∓
ui−1 − ui−2

h
− β∓

u∓i−θl − ui−1

(1− θl)h

h
= fi−1, (4.7a)

β±
ui − u±i−θl

θlh
− β±u

±
i+θr
− ui

θrh
h

= fi, (4.7b)

β∓
ui+1 − u∓i+θr
(1− θr)h

− β∓ui+2 − ui+1

h

h
= fi+1. (4.7c)

In (4.7), the values of u±i−θl and u±i+θr , which have been assumed to be known beforehand,

are not arbitrary: they must be consistent with the interface condition

[
β

du

dx

]
= b.

Therefore, one can write

β±
ui − u±i−θl

θlh
− β∓

u∓i−θl − ui−1

(1− θl)h
= ±bi−θl , (4.8a)

β∓
ui+1 − u∓i+θr
(1− θr)h

− β±u
±
i+θr
− ui

θrh
= ∓bi+θr , (4.8b)

which yields

u∓i−θl =
(1− θl) β

±

β̃i−θl
ui +

θlβ
∓

β̃i−θl
ui−1 ∓

θl (1− θl)h

β̃i−θl
bi−θl ∓

β± (1− θl)

β̃i−θl
ai−θl , (4.9a)

u∓i+θr =
(1− θr) β

±

β̃i+θr
ui +

θrβ
∓

β̃i+θr
ui+1 ±

θr (1− θr)h

β̃i+θr
bi+θr ∓

β± (1− θr)

β̃i+θr
ai+θr , (4.9b)

where

β̃i−θl = (1− θl) β
± + θlβ

∓ and β̃i+θr = (1− θr) β
± + θrβ

∓. (4.10)
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Substituting (4.9) into (4.7), we have

β∓
ui−1 − ui−2

h2
− β̂i−1/2

ui − ui−1

h2
= fi−1 ∓ β̂i−1/2

(
θlbi−θl
β±h

+
ai−θl
h2

)
, (4.11a)

β̂i−1/2
ui − ui−1

h2
− β̂i+1/2

ui+1 − ui
h2

= fi ± β̂i−1/2

(
−(1− θl) bi−θl

β∓h
+
ai−θl
h2

)
(4.11b)

± β̂i+1/2

(
(1− θr) bi+θr

β∓h
+
ai+θr
h2

)
,

β̂i+1/2
ui+1 − ui

h2
− β∓ui+2 − ui+1

h2
= fi+1 ∓ β̂i+1/2

(
−θrbi+θr

β±h
+
ai+θr
h2

)
, (4.11c)

where

β̂i−1/2 =
β∓β±

β̃i−θl
and β̂i+1/2 =

β±β∓

β̃i+θr
, (4.12)

leading to a closed system of linear equations.

The approach leading to the above scheme (4.11) builds upon a sharp treatment of the

interface Γ and the use of an appropriate method in the distinct regions that Γ separates

in Ω (see equations (4.6) and (4.7)). The resulting scheme (4.11) is exactly the GFM and

the corresponding linear system to be solved is symmetric and positive definite.

Remark. As can be seen from (4.7), the cases such that θl = 0, θl = 1, θr = 0 or θr = 1

lead to ill-defined terms. In the context of solving Poisson problems on irregular domains,

a common fix consists of disregarding unknowns associated with grid nodes that are too

close to the interface and imposing the relevant Dirichlet condition instead. However, no

such ill-defined terms appear in (4.11) as a result of the algebraic calculations from (4.8)

and (4.9), which makes the method intrinsically robust with respect to the location of the

interface.

It is worth pointing out that an approximation of the derivative of u at grid nodes xi

can be found, consistently with the underlying framework from equations (4.7). Indeed,
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one can use

du

dx

∣∣∣∣
xi

'
θl

u±i+θr − ui
θrh

+ θr

ui − u±i−θl
θlh

θl + θr

'
θl

(
β∓ (ui+1 ± ai+θr − ui)± (1− θr)hbi+θr

hβ̃i+θr

)

θl + θr

+

θr

(
β∓ (ui − ui−1 ∓ ai−θl)± (1− θl)hbi−θl

hβ̃i−θl

)

θl + θr

, (4.13)

if θl 6= 0 or θr 6= 0. The case where both θl = 0 and θr = 0 would correspond to

φi = 0, φi−1 > 0 and φi+1 > 0, i.e., either an under-resolved case or Γ = {xi} in one

dimension. In a higher dimension setting however, such a configuration can be found

when considering the evaluation of the partial derivative of u along a direction locally

tangent to Γ, at the point of tangency. In such a case, we modify (4.13) slightly as

du

dx

∣∣∣∣
xi

' 1

β±

(
±bi + β∓

ui+1 − ui−1

2h

)
. (4.14)

Note that expressions (4.13) and (4.14) make use of points on either side of the

interface Γ, and of the values of a and b. In particular, it is noteworthy from the two

expressions that an error O (1) in b would prevent convergence for the approximation of

the derivative of u.

88



A strategy for scalar elliptic interface problems with solution-dependent flux discontinuities
Chapter 4

4.3 Recovering consistency for higher dimension prob-

lems

The results from section 4.2 can be extended to multi-dimensional problems in a

straightforward dimension-by-dimension fashion. However, this strategy actually leads

to extra degrees of freedom, since all (Cartesian) components of [β∇u] can be imposed in-

dependently of each other. Conceptually, the resulting numerical method can be thought

of as a computational tool to solve problems of the category





−∇ · (β∇u) = f,

[u] = a,

[β∇u] = c,

(4.15)

where c is a vector field defined on Γ.

Noticeably, problems like (4.15) are ill-posed unless c satisfies some problem-dependent

consistency conditions. Nevertheless, the above strategy is actually consistent with (4.15)

and does not encounter any obstacle at the discrete level: the linear system to be solved

is independent of the components of c (which assign the values of the right-hand side

only, see (4.11)), and therefore it is always SPD.

In fact, the GFM [16] reconciles (4.15) and (4.3) by setting

c = bn, (4.16)

where n is the unit vector normal to Γ (pointing toward Ω+). Although the latter

has been shown adequate to ensure the convergence of u, it does not satisfy elementary

consistency conditions at the interface since it inherently assumes that (δ − nn)·[β∇u] =

0, where (δ − nn) · v = v − (v · n)n represents the projection of v onto the hyperplane
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of unit normal vector n, i.e., onto the hyperplane tangent to Γ. In general, neglecting

(δ − nn) · [β∇u] would lead to O (1) errors in the components of [β∇u], thus impeding

the convergence of the gradient of u. The fact that the GFM neglects the tangential

component(s) of [β∇u] was pointed out by the authors themselves in [16]. However, they

focused their attention on the accuracy of the solution u only. In that context, they

showed that (4.16) was sufficient to ensure accurate results for u, which marked the birth

of the first (and only) SPD interface-capturing accurate solver on cartesian grids. In fact,

(4.16) can even be shown to hold true in some specific applications3, making the GFM

the most appropriate tool to use in such cases.

The present work presents a more general reconciliation relation than (4.16), which

in turn ensures the convergence of the flux β∇u. First note that for any scalar fields p

and q, one has

[pq] =
(
αp− + (1− α) p+

)
[q] +

(
αq+ + (1− α) q−

)
[p] (4.17)

for any scalar α, as developed in [43, 15]. Using such a decomposition with α = 0 and

α = 1 respectively, and making use of [u] = a, we obtain

(δ − nn) · [β∇u] = β+ (δ − nn) · ∇a+ [β] ((δ − nn) · ∇u)− (4.18)

= β− (δ − nn) · ∇a+ [β] ((δ − nn) · ∇u)+ (4.19)

3For instance, when considering the sharp numerical simulation of incompressible, inviscid and im-
miscible two-phase flows without mass transfer, the continuity of material acceleration of fluid particles

across the interface implies that

[
1

ρ
∇p
]

= 0 can be used in the projection step, instead of

[
1

ρ
n · ∇p

]
= 0

(where p and ρ are the pressure and mass density, respectively). This does not hold true in case of viscous
flows and/or in presence of mass transfer across the interface (as in phase change problems).
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which is non-zero in general. Therefore, the crux of the present method is to use either

c = bn+ β+ (δ − nn) · ∇a+ [β] ((δ − nn) · ∇u)− (4.20)

or

c = bn+ β− (δ − nn) · ∇a+ [β] ((δ − nn) · ∇u)+ (4.21)

instead of (4.16) in order to ensure consistency between the formulations (4.15), which is

compliant with the numerical discretization, and the mathematically well-posed problem

(4.3). Numerical tests seem to indicate that (4.20) is more well-behaved than (4.21) with

respect to accuracy and to the convergence rate of the iterative method when β− > β+,

and vice versa. In the rest of this section, we introduce the procedure when using (4.20).

The procedure for (4.21) is a straightforward equivalent and, in fact, the implemented

solver switches from one to another depending on the values of β− and β+.

The main bottleneck with such a strategy is the dependency of c on the solution

itself through the term [β] ((δ − nn) · ∇u)−. Since that dependency is linear in ∇u, an

appropriate discretization of this term could be included within the linear system to be

solved, conceptually. However, that maneuver would require an undesirable extension

of the discretization stencil close to the interface and, most importantly, it would very

likely break its symmetric positive-definiteness.

We present an alternative approach that consists of finding the appropriate correction

[β] ((δ − nn) · ∇u)− iteratively. Considering the discrete point of view so that problems

like (4.15) for arbitrary c can be considered, we define the desired u as the solution of





−∇ · (β∇u) = f,

[u] = a,

[β∇u] = bn+ β+ (δ − nn) · ∇a+ [β] ((δ − nn) · ∇u)− ,

(4.22)
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and the desired solution u is approached iteratively by a sequence uk, k ≥ 0.

This approach is motivated by the fact that the GFM is reported and shown conver-

gent for the solution field itself [165], supporting the idea that the information that was

omitted when using (4.16) could be somehow recovered a posteriori in order to apply con-

sistent jump conditions. In the two following subsections, we first present our approach

to estimate [β] ((δ − nn) · ∇u)− at relevant grid points, then the iterative method is

developed.

4.3.1 Evaluation of the correction jump terms

The evaluation of [β] ((δ − nn) · ∇uk)− at jump nodes stands as a building brick of

the iterative method, since it is required to calculate the appropriate corrections in order

to determine uk+1. For the sake of generality, let q be the field, sampled at all grid nodes

in Ω, such that 



−∇ · (β∇q) = f,

[q] = a,

[β∇q] = c.

(4.23)

Hereafter, we introduce the extension from the interface that allows a definition of an

extended node-sampled field qext over a layer of a few grid nodes across Γ such that

qext is consistent with q− on the interface Γ. Such an extension allows (∇q)− to be

estimated as ∇qext at the relevant jump nodes (even in Ω+) using standard central finite

differences. This has the advantage of bypassing the difficulties originating from one-

sided differentiation in locally under-resolved scenarii, thus making the overall approach

more systematic.

The method is inspired from the extrapolation over the interface introduced by Aslam

[172]. In fact, it can be viewed as a ‘two-sided constant extrapolation with subcell
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resolution’ for a field defined on the co-dimension one interface Γ, by the terminology

from [172]. Assuming that the field to extend has well-defined values q−Γ on Γ, one can

define qext as the solution of





∂qext

∂τ
+ sign (φ)n · ∇qext = 0,

qext (x) = q−Γ (x) , ∀x ∈ Γ,
(4.24)

at steady-state in pseudo-time τ . In the case of a field q satisfying (4.23), well-defined

values of q−Γ can be evaluated at intersections between Γ and grid lines by means of (4.9),

which carries over to multidimensional cases by replacing b by the appropriate Cartesian

component of c.

This method builds upon those locally-defined interface values and solves (4.24) to extend

them to relevant surrounding grid nodes in Ω, with sub-cell resolution at jump nodes.

Consider for instance a jump node (i, j) such that φi, j > 0 in a two-dimensional case,

as illustrated in Figure 4.2, the corresponding node value for the extended field qext
i, j is

defined as the steady state value of the pseudo-time problem

dqext
i, j

dτ
= −nx

qext
i, j − q−Γ (xi−θl, j)

θlhx
− ny

qext
i, j − q−Γ (xi, j−θb)

θbhy
(4.25)

where xi−θl, j (resp. xi, j−θb) represents the location of the intersection between Γ and the

grid line joining nodes (i− 1, j) (resp. (i, j − 1)) and node (i, j). We solve the latter

forward in pseudo-time τ until steady-state. Any time-integration technique can be used

for solving this pseudo-time problem. For simplicity and as a proof of concept, we choose

to advance (4.25) forward in time using the explicit Euler method. The pseudo-time step

∆τ is set to satisfy ∆τ ≤ θihi
D , ∀i ∈ {x, y} and D = 2 (or ∀i ∈ {x, y, z} and D = 3,

in three dimensions), which naturally ensures that the Courant number is everywhere

less than 1 since all normal components ni are bounded above by 1. The most critical
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extended values are to be obtained for the grid nodes close the interface and for their

own neighborhoods; we have used a fixed number of 20 pseudo-time steps for extending

interface values. Finally, the node value qext
i, j is set equal to q−Γ (xi−θl, j) (resp. q−Γ (xi, j−θb))

when θl ≤ εθ (resp. θb ≤ εθ), where εθ = min

(
hx

xmax − xmin

,
hy

ymax − ymin

)
.

The above subcell resolution establishes a difference with the original constant ex-

trapolation from [172]. It is meant to fully exploit the interface values q−Γ that are

well-defined through (4.9) and to better ensure consistency between the extension qext

and q−Γ . Moreover, the above extension procedure benefits from linearity, contrary to the

original linear and quadratic extrapolation technique from [172]: qext depends linearly

on the values of q−Γ and thus, linearly on the values of q. As discussed next, linearity

is essential in order to ensure the stability of the iterative procedure. Finally, it does

not require a minimal number of well-defined inner nodes with well-defined neighbors

since only the value of q−Γ are required. Therefore, this ensures a robust behavior even in

case of severely under-resolved interfaces (e.g., a sphere of radius of the order of the grid

spacing).

(i− 1, j − 1) (i, j − 1)

(i− 1, j) (i, j)

Ω+

Ω−

hx

hy

θlhx

θbhy

Figure 4.2: illustration of a jump node (i, j) in two dimensions.

4.3.2 Iterative method

In this section, we present the iterative method used to solve (4.22). Let m be the

total number of unknowns. We use the notation q ∈ Rm×1 for the column vector listing
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all the node values of a field q. We denote by A ∈ Rm×m the SPD matrix resulting of the

discretization detailed in section 4.2, applied in a dimension-by-dimension fashion. Note

that A is entirely defined by the interface Γ (and the node values of β in case of variable

β).

The vector u of the node values of the desired solution u is governed by

Au = f + j
(
a, b, uext

)
(4.26)

where j (a, b, uext) represents the contributions to the right-hand side, at jump nodes, due

to the jump conditions [u] = a and [β∇u] = bn+β+ (δ − nn) ·∇a+[β] (δ − nn) ·∇uext,

where uext is a consistent extension of u−Γ . Note that j is a multilinear map.

The iterative procedure approximates u by a converging iterative sequence uk, k ≥

0. Since no approximation of u (and thus uext) is known beforehand, the sequence is

initialized with the solution u0 of

Au0 = f + j (a, b, 0) (4.27)

and a consistent extension uext
0 can be evaluated, with the technique from subsection

4.3.1. A fix-point update ~uk+1 is then calculated as the solution of

A~uk+1 = f + j
(
a, b, uext

k

)
, (4.28)

as well as its extension ~uext
k+1, using the technique from subsection 4.3.1. The new element
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of the sequence uk+1 and its extension uext
k+1 are then defined as4

uk+1 = uk + ηk (~uk+1 − uk) (4.29)

uext
k+1 = uext

k + ηk
(
~uext
k+1 − uext

k

)
(4.30)

where ηk is chosen to minimize the `2−norm of the residual

rk+1 = Auk+1 − f− j
(
a, b, uext

k+1

)
. (4.31)

Using the multilinearity of j, we have

rk+1 = (1− ηk)
(
Auk − f− j

(
a, b, uext

k

))
+ ηk

(
A~uk+1 − f− j

(
a, b, ~uext

k+1

))

= (1− ηk) rk + ηk~rk+1 (4.32)

so that the value of ηk minimizing ‖rk+1‖2 is

ηk =
rk

T (rk − ~rk+1)

‖~rk+1 − rk‖2
2

. (4.33)

The iterative procedure repeats steps (4.28), (4.29) and (4.30) with (4.33) until conver-

gence, i.e., until either the `∞−norm of ηk (~uk+1 − uk) or the `2−norm of rk+1 falls below

a user-defined threshold.

Remark. A standard fix-point iterative method would follow the same procedure as above

but with a constant value of ηk = 1, ∀k ≥ 0. This was observed to be well-behaved very

often, but a standard fix-point method sometimes suffers from a slow convergence rate

and/or oscillatory behavior around the desired solution or even divergence, especially in

4uext
k+1 can indeed be defined with such a linear combination, by virtue of the linearity of the method

from subsection 4.3.1.
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the case of large ratios of the β coefficients across the interface. The above residue-

minimization method prevents such drawbacks.

Remark. Only the fields u0 and ũk, k ≥ 1, are extended using the method detailed in

subsection 4.3.1. The extended field uextk+1 is defined as a linear combination of the (known)

extended fields uextk and ũextk+1, see (4.30). Only one field extension is required per iterative

step.

Remark. The left-hand sides in linear systems (4.27) and (4.28) are k−independent,

only the right-hand sides differ between two iterations. Therefore, the additional cost as-

sociated with one step of the iterative procedure is mitigated, since 1) the same (precondi-

tioned) linear solver can be used for all iterative steps, 2) the only non-zero modifications

to the right-hand side terms are associated with jump nodes, 3) the use of uk as an initial

guess when solving (4.28) significantly accelerates the resolution of the successive linear

systems, as the procedure advances. In this work, we take advantage of the symmetric

positive-definiteness of the linear system by using the Conjugate Gradient solver with

a multigrid preconditioner (or a Modified Incomplete Cholesky preconditioner for serial

runs). Section 4.4 provides data on the additional computational cost of xGFM.

Remark. The xGFM recovers consistency immediately, i.e., ~u1 = u0, in cases where

[β] = 0.

4.4 Illustrations and examples in two spatial dimen-

sions

In this section, we show results obtained in two spatial dimensions using the strategy

described in section 4.3 with uniform grids of N×N grid cells. We analyze the numerical

accuracy of the components of ∇u (or β∇u in case of large ratios of coefficients β). The
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derivatives are evaluated using (4.13) at jump nodes, hence including every node of the

computational domain (even under-resolved ones) in the analysis.

4.4.1 Example 1

We consider the problem (4.3) in Ω = [−1, 1]× [−1, 1] with φ (x, y) =
√
x2 + y2− 1

2
,

f = 0, a = 0, b = 2, β+ = β− = 1 and Dirichlet boundary condition u (x, y) =

1 + log
(

2
√
x2 + y2

)
on ∂Ω. The exact solution is





u (x, y) = 1, ∀ (x, y) ∈ Ω−,

u (x, y) = 1 + log
(

2
√
x2 + y2

)
, ∀ (x, y) ∈ Ω+.

This is the fifth example from [16], which reports slightly better convergence for this

problem compared to the other examples they consider. This relates to our interpretation

of the method since c = bn actually satisfies the consistency requirement given that

(δ − nn) · ∇a = 0 and [β] = 0. As illustrated in Figure 4.3, both the solution and its

gradient converge in infinity norm, when the derivatives are evaluated with (4.13) for

jump nodes.
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Figure 4.3: convergence analysis for the example of subsection 4.4.1, using the GFM.
Left: errors in infinity norm for the solution field; right: errors in infinity norm for the
partial derivative with respect to x (the partial derivative with respect to y is totally
equivalent), as evaluated with equation (4.13) for the jump nodes. As it can be seen
in these graphs, the solution and its gradient do converge with the GFM for such a
problem. The respective orders of convergence are approximately 1.4 and 0.99.
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4.4.2 Example 2

In this example, we consider Ω = [−1, 1] × [−1, 1] with φ (x, y) =
√
x2 + y2 − 1

2
,

β− = β+ = 1. The exact solution is chosen to be





u (x, y) = x2 − y2, ∀ (x, y) ∈ Ω−,

u (x, y) = 0, ∀ (x, y) ∈ Ω+.

The right-hand side terms are chosen accordingly, as

f (x, y) = 0,

a (x, y) = y2 − x2,

b (x, y) = 4
(
y2 − x2

)
.

This is the seventh example from [16]. Note that c = bn does not satisfy the consistency

requirement, but that consistency can be recovered through c = bn+ β+ (δ − nn) · ∇a,

since [β] = 0, once again. No iterative procedure is required to recover the consistent

jump conditions in this case once again.

Figure 4.4 shows that the xGFM outperforms the GFM: the rate of convergence for

the solution is improved from approximately 0.90 to 1.35. This example illustrates the

recovery of convergent gradients by means of consistent jump conditions, as well. The

differences in the Cartesian components of [β∇u] between the values determined by the

xGFM and the GFM are illustrated in Figure 4.5. Figure 4.6 compares the magnitude

of the flux ‖β∇u‖, as evaluated by the xGFM and the GFM for N = 640.
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Figure 4.4: convergence analysis for the example of subsection 4.4.2. Top: illustration
of the solution for the example of subsection 4.4.2, with N = 640. Bottom left: errors
in infinity norm for the solution field. Bottom right: right: errors in infinity norm
for the partial derivative with respect to x (the partial derivative with respect to y is
totally equivalent), the slope of the dashed line is −0.89.
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Figure 4.5: differences, along the interface Γ, in the jumps

[
β
∂u

∂x

]
(left) and

[
β
∂u

∂y

]

(right), as enforced by the xGFM and the GFM, for the problem of subsection 4.4.2.
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Figure 4.6: magnitude of the flux ‖β∇u‖, as evaluated by the xGFM (left) and the
GFM (right), for the problem of subsection 4.4.2.

4.4.3 Example 3

In this example, we consider Ω = [0, 1]×[0, 1] with φ (x, y) =

√(
x− 1

2

)2

+

(
y − 1

2

)2

−
1

4
, β− = 2, β+ = 1. The exact solution is chosen to be





u (x, y) = exp (−x2 − y2) , ∀ (x, y) ∈ Ω−,

u (x, y) = 0, ∀ (x, y) ∈ Ω+.

The right-hand side terms are chosen accordingly, as

f (x, y) = −8
(
x2 + y2 − 1

)
exp

(
−x2 − y2

)
, ∀ (x, y) ∈ Ω−

a (x, y) = − exp
(
−x2 − y2

)
,

b (x, y) = 8
(
2x2 + 2y2 − x− y

)
exp

(
−x2 − y2

)
,

and f = 0 in Ω+. This is the third example from [16]. Note that the consistency require-

ment at the interface is more complicated in this case since [β] 6= 0. As a consequence,

the xGFM procedure is required in order to recover consistency, in this case.

As illustrated in Figure 4.7, the xGFM recovers the consistent jump conditions and
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outperforms the GFM with respect to accuracy for the solution and ensures convergence

for its gradient. The rate of convergence for the solution is improved from approximately

0.88 to 1.45 and the gradient of the solution does converge, as well. Table 4.1 compares

the cumulative number of iterations of the conjugate gradient solver between the xGFM

and the GFM. As shown in this table the xGFM requires two to three times as many

iterations of the conjugate gradient solver as the GFM. Noticeably, this ratio decreases

with increasing N . This table also reports the computational overhead, measured in

terms of execution time, due to extending the solution (possibly several times) and,

separately, the overhead due to solving the additional linear system(s) of equations. It

can be seen that the solution extension steps add a significant overhead for coarse grids

but this part becomes less and less significant, as the grid is refined. On the other hand,

the extra cost associated with the additional linear systems to be solved always compares

with the rough execution time of the GFM5. We also note that there is no difference in

the accuracy of the gradient whether one uses a linear or a quadratic interpolation to

locate the interface position, unlike the case of Dirichlet boundary conditions (see the

analysis of [173]). The differences in the Cartesian components of [β∇u] between the

values determined by the xGFM and the GFM are illustrated in Figure 4.8. Figure 4.9

compares the magnitude of the flux ‖β∇u‖, as evaluated by the xGFM and the GFM

for N = 640.

5Throughout this chapter, we use a fixed user-defined threshold value for convergence of the iterative
procedure, namely ‖rk+1‖2 ≤ 10−8

∥∥f + j
(
a, b, uext

k+1

)∥∥
2

(see subsection 4.3.2) independently of the level
of refinement of the grid. This means that the used convergence criterion is actually more stringent for
coarser than finer grids, effectively leading to more iterations of our iterative procedure overall hence
the significant overheads due to extension for coarse grids.
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Figure 4.7: convergence analysis for the example of subsection 4.4.3. Top: illustration
of the solution for the example of subsection 4.4.3, with N = 640. Bototm left: errors
in infinity norm for the solution field. Bottom right: errors in infinity norm for the
partial derivative with respect to x (the partial derivative with respect to y is totally
equivalent), the slope of the dashed line is −0.97
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Figure 4.8: differences, along the interface Γ, in the jumps

[
β
∂u

∂x

]
(left) and

[
β
∂u

∂y

]

(right), as enforced by the xGFM and the GFM, for the problem of subsection 4.4.3.
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Linear interpolation of φ Quadratic interpolation of φ
N GFM xGFM GFM xGFM
20 17 52 17 52
40 26 74 26 75
80 39 108 39 108
160 58 148 58 150
320 86 202 86 202
640 128 280 128 280
1280 191 384 190 383
2560 282 525 281 524

Execution time
xGFM: extension(s) xGFM: additional

N GFM and update(s) of RHS linear solve(s)
20 0.077 s 0.112 s +145.3% 0.015 s +18.9%
40 0.018 s 0.074 s +408.7% 0.008 s +47.0%
80 0.051 s 0.147 s +286.1% 0.036 s +69.4%
160 0.185 s 0.250 s +135.2% 0.158 s +85.3%
320 0.815 s 0.479 s +58.6% 0.684 s +83.9%
640 3.821 s 1.046 s +27.4% 2.997 s +78.5%
1280 19.23 s 4.969 s +25.8% 14.65 s +76.2%
2560 129.6 s 13.89 s +10.7% 94.21 s +72.7%

Table 4.1: performance and execution times. Top: cumulative number of iterations
of the preconditioned conjugate gradient solver for the problem of subsection 4.4.3.
Linear (resp. quadratic) interpolation of φ means that the values of the θ parameters
(as defined in section 4.2) are evaluated as the roots of a local linear (resp. quadratic)
interpolant of φ. Bottom: execution times obtained with a Dual Intel Xeon Gold
6148 processor with 64 GB of RAM (single core execution of a non-optimized Matlab
implementation).
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Figure 4.9: magnitude of the flux ‖β∇u‖, as evaluated by the xGFM (left) and the
GFM (right), for the problem of subsection 4.4.3.

4.4.4 Example 4

In this example, we consider Ω = [−1, 1] × [−1, 1]. The interface is defined as the

parameterized curve Γ ≡ (x (ϑ) , y (ϑ)) , ϑ ∈ [0, 2π[ where





x (ϑ) = 0.02
√

5 + (0.5 + 0.2 sin (5ϑ)) cos (ϑ) ,

y (ϑ) = 0.02
√

5 + (0.5 + 0.2 sin (5ϑ)) sin (ϑ) .
(4.34)

The corresponding levelset function is defined as the exact signed distance to Γ, negative

in the interior region. The coefficients are β− = 1 and β+ = 10, hence (4.21) is used

instead of (4.20). The exact solution is chosen to be





u (x, y) = x2 + y2, ∀ (x, y) ∈ Ω−,

u (x, y) = 0.1 (x2 + y2)
2 − 0.01 log

(
2
√
x2 + y2

)
, ∀ (x, y) ∈ Ω+,

the right-hand side f and the jump terms a and b are defined accordingly. This is the

eighth example from [16]. The consistency requirement at the interface is not trivial for

this test case once more, since [β] 6= 0 and because of the convoluted interface. As a

consequence, the xGFM procedure is required in order to recover consistency.
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Figure 4.10: convergence analysis for the example of subsection 4.4.4. Top: illustration
of the solution for the example of subsection 4.4.4, with N = 640. Bottom left: errors
in infinity norm for the solution field. Bottom right: errors in infinity norm for the
partial derivative with respect to x (the partial derivative with respect to y behaves
very similarly), the slope of the dashed line is −0.76.

As illustrated in Figure 4.10, the xGFM recovers the consistent jump conditions. It

outperforms the GFM in terms of accuracy for the solution (rate of convergence improved

from 0.92 to 1.60) but, more importantly, it also ensures convergence for its gradient.

Table 4.2 shows that the xGFM requires four to two and half times as many iterations

of the conjugate gradient solver as the GFM, this ratio decreasing with N . The obser-

vations regarding the computational overheads associated with extensions and with the

additional systems of equations to be solved are comparable to the conclusion drawn in

subsection 4.4.3.

The differences in the Cartesian components of [β∇u] between the values determined

by the xGFM and the GFM are illustrated in Figure 4.11.
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Linear interpolation of φ Quadratic interpolation of φ
N GFM xGFM GFM xGFM
20 19 85 18 84
40 28 105 28 105
80 40 140 40 141
160 58 204 58 202
320 85 260 85 258
640 125 343 125 343
1280 187 467 187 467
2560 280 640 281 642

Execution time
xGFM: extension(s) xGFM: additional

N GFM and update(s) of RHS linear solve(s)
20 0.078 s 0.176 s +226.9% 0.020 s +26.3%
40 0.017 s 0.178 s +1042.1% 0.009 s +53.4%
80 0.049 s 0.322 s +656.0% 0.058 s +118.0%
160 0.198 s 0.774 s +390.2% 0.294 s +148.3%
320 0.822 s 1.392 s +169.3% 1.044 s +127.1%
640 3.891 s 2.990 s +76.8% 4.491 s +115.4%
1280 19.43 s 5.530 s +79.9% 21.41 s +110.2%
2560 127.9 s 30.67 s +24.0% 137.9 s +107.8%

Table 4.2: performance and execution times. Top: cumulative number of iterations
of the preconditioned conjugate gradient solver for the problem of subsection 4.4.4.
Linear (resp. quadratic) interpolation of φ means that the values of the θ parameters
(as defined in section 4.2) are evaluated as the roots of a local linear (resp. quadratic)
interpolant of φ. Bottom: execution times obtained with a Dual Intel Xeon Gold
6148 processor with 64 GB of RAM (single core execution of a non-optimized Matlab
implementation).
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Figure 4.11: differences, along the interface Γ, in the jumps

[
β
∂u

∂x

]
(left) and

[
β
∂u

∂y

]

(right), as enforced by the xGFM and the GFM, for the problem of subsection 4.4.4.

4.4.5 Example 5

In this example, we consider Ω = [−1, 1] × [0, 3]. The interface is defined as the

parameterized curve Γ ≡ (x (ϑ) , y (ϑ)) , ϑ ∈ [0, 2π[ where





x (ϑ) = 0.6 cos (ϑ)− 0.3 cos (3ϑ) ,

y (ϑ) = 1.5 + 0.7 sin (ϑ)− 0.07 sin (3ϑ) + 0.2 sin (7ϑ) .
(4.35)

The corresponding levelset function is defined as the exact signed distance to Γ, negative

in the interior region. The coefficients are β− = 1 and β+ = 10, hence (4.21) is used

instead of (4.20) again. The exact solution is chosen to be





u (x, y) = exp (x) (x2 sin (y) + y2) , ∀ (x, y) ∈ Ω−,

u (x, y) = − (x2 + y2) , ∀ (x, y) ∈ Ω+,

the right-hand side f and the jump terms a and b are defined accordingly. This is the

ninth example from [16]. The consistency requirement at the interface is not trivial for

this test case, once more, since [β] 6= 0 and because of the convoluted interface. As a

108



A strategy for scalar elliptic interface problems with solution-dependent flux discontinuities
Chapter 4

consequence, the xGFM procedure is required in order to recover consistency.

As illustrated in Figure 4.12, the xGFM recovers the consistent jump conditions.

It outperforms the GFM regarding the accuracy for the solution u (rate of convergence

improved from 0.88 to 1.58) and it enables the accurate calculation of the gradient. Table

4.3 shows that the xGFM requires five to three times as many iterations of the conjugate

gradient solver as the GFM, this ratio decreasing with N . The observations regarding

the computational overheads associated with extensions and with the additional systems

of equations to be solved are comparable to the conclusions drawn here above for other

examples.

The differences in the Cartesian components of [β∇u] between the values determined

by the xGFM and the GFM are illustrated in Figure 4.13. Figure 4.14 compares the

magnitude of the flux ‖β∇u‖, as evaluated by the xGFM and the GFM for N = 640.

4.4.6 Example 6: large contrast of β coefficients

In this example, we consider Ω = [−1, 1] × [−1, 1]. The interface is defined as the

parameterized curve Γ ≡ (x (ϑ) , y (ϑ)) , ϑ ∈ [0, 2π[ where





x (ϑ) = (0.5 + 0.1 sin (5ϑ)) cos (ϑ) ,

y (ϑ) = (0.5 + 0.1 sin (5ϑ)) sin (ϑ) .
(4.36)

The corresponding levelset function is defined as the exact signed distance to Γ, negative

in the interior region. The coefficients are β− = 104 and β+ = 1. The exact solution is

chosen to be





u (x, y) =
exp (x) (x2 sin (y) + y2)

β−
, ∀ (x, y) ∈ Ω−,

u (x, y) = 0.5 + cos (x) (y4 + sin (y2 − x2)) , ∀ (x, y) ∈ Ω+,
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Figure 4.12: convergence analysis for the example of subsection 4.4.5. Top: illustration
of the solution for the example of subsection 4.4.5, with N = 640. Bottom left: errors
in infinity norm for the solution field. Bottom right: errors in infinity norm for the
partial derivative with respect to x (the partial derivative with respect to y behaves
very similarly), the slope of the dashed line is −0.81.
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Figure 4.13: differences, along the interface Γ, in the jumps

[
β
∂u

∂x

]
(left) and

[
β
∂u

∂y

]

(right), as enforced by the xGFM and the GFM, for the problem of subsection 4.4.5.
Note that different viewing angles are used between both sub-figures, for the sake of
clarity.
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Linear interpolation of φ Quadratic interpolation of φ
N GFM xGFM GFM xGFM
20 19 84 19 83
40 28 122 28 120
80 41 166 41 167
160 60 217 60 217
320 88 298 87 299
640 128 399 128 399
1280 188 537 187 537
2560 274 719 273 719

Execution time
xGFM: extension(s) xGFM: additional

N GFM and update(s) of RHS linear solve(s)
20 0.217 s 0.184 s +84.8% 0.020 s +9.3%
40 0.018 s 0.205 s +1170.3% 0.012 s +66.1%
80 0.121 s 0.373 s +307.1% 0.048 s +39.5%
160 0.178 s 0.715 s +403.1% 0.224 s +126.0%
320 0.871 s 1.572 s +180.3% 1.294 s +148.5%
640 4.356 s 8.634 s +198.2% 5.590 s +128.3%
1280 19.54 s 17.23 s +88.2% 25.77 s +131.9%
2560 124.9 s 42.68 s +34.2% 166.8 s +133.6%

Table 4.3: performance and execution times. Top: cumulative number of iterations
of the preconditioned conjugate gradient solver for the problem of subsection 4.4.5.
Linear (resp. quadratic) interpolation of φ means that the values of the θ parameters
(as defined in section 4.2) are evaluated as the roots of a local linear (resp. quadratic)
interpolant of φ. Bottom: execution times obtained with a Dual Intel Xeon Gold
6148 processor with 64 GB of RAM (single core execution of a non-optimized Matlab
implementation).
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Figure 4.14: magnitude of the flux ‖β∇u‖, as evaluated by the xGFM (left) and the
GFM (right), for the problem of subsection 4.4.5.

the right-hand side f and the jump terms a and b are defined accordingly.

This example is representative of cases that can be encountered in two-phase flows

problems, where large viscosity and/or mass density ratios can be encountered. Such large

ratios increase the condition number of the discretization matrix, hence the increased

number of iterations of the preconditioned gradient solver compared to other cases, see

Table 4.4. Nevertheless, Table 4.4 also shows that the xGFM requires two to four times as

many iterations of the conjugate gradient solver as the GFM, this ratio decreasing withN .

The observations regarding the computational overheads associated with extensions and

with the additional systems of equations to be solved are comparable to the conclusions

drawn here above for other examples. In particular, it is remarkable to notice that the

overheads associated with extensions become insignificant for fine grids comparatively to

the cost of solving the linear system(s).

This test case is designed to have comparable fluxes ‖β∇u‖ in both Ω− and Ω+

and therefore a finite value for b (as encountered in applications). As a consequence,

the variations of u are much less pronounced in Ω− than in Ω+, to such an extent that

misleading conclusions can be drawn regarding the convergence of the GFM for ∇u (or

β∇u). In order to illustrate this assertion, we introduce a twofold expansion of the
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convergence analysis. First, we analyze not only the convergence of ∇u but also that

of β∇u. Second, we consider an alternative evaluation of the partial derivatives: for

jump nodes, we consider the non-centered differentiation rule involving only the forward

or backward neighbor that lies on the same side of Γ as the considered jump node; if

the jump node is under-resolved, i.e. if no such neighbor can be found, the point is

disregarded from the analysis. We refer to this evaluation strategy as intrinsically one-

sided evaluation.

The results and an illustration are shown in Figure 4.15. For such a symptomatic test

case, the accuracy of u and the orders of convergence are very similar between the xGFM

and the GFM(observed rate of about 1.66). When using intrinsically one-sided evalua-

tions, ∇u seems to converge even when using the GFM although some points might be

disregarded from the analysis. However, this no longer holds above some level of grid

refinement6 when using (4.13), hence including all grid nodes. Finally, when evaluating

the flux β∇u, i.e., the quantity of interest in the context of a projection method in incom-

pressible multiphase fluid flow simulations for instance, the xGFM clearly outperforms

the GFM once again, no matter how the derivatives are evaluated.

The differences in the Cartesian components of [β∇u] between the values determined

by the xGFM and the GFM are illustrated in Figure 4.16.

6Given that the solution’s variations are scaled by β, analyzing ∇u instead of β∇u is effectively
equivalent to simply disregarding Ω− from the analysis unless the maximum error observed in Ω− is of
the same magnitude as the maximum variations of the solutions in Ω+.
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Figure 4.15: convergence analysis for the example of subsection 4.4.6. Top left: illus-
tration of the solution for the example of subsection 4.4.6, with N = 640. Top right:
errors in infinity norm for the solution field. Center left: errors in infinity norm for
the intrinsically one-sided partial derivatives (no significant difference between blue
and red markers in this case). Center right: errors in infinity norm for the partial
derivatives evaluated with (4.13). Bottom left: errors in infinity norm for the intrinsi-
cally one-sided flux components, the slope of the dashed line is −1.01. Bottom right:
errors in infinity norm for the flux components evaluated with (4.13), the slope of the
dashed line is −0.97.
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Figure 4.16: differences, along the interface Γ, in the jumps

[
β
∂u

∂x

]
(left) and

[
β
∂u

∂y

]

(right), as enforced by the xGFM and the GFM, for the problem of subsection 4.4.6.

Linear interpolation of φ Quadratic interpolation of φ
N GFM xGFM GFM xGFM
20 50 324 48 313
40 83 334 82 327
80 188 731 188 737
160 430 1521 436 1547
320 1088 3586 1090 3590
640 2577 7012 2603 7034
1280 5713 13627 5709 13593
2560 11277 24044 11255 23970

20 0.076 s 0.182 s +239.9% 0.024 s +31.9%
40 0.020 s 0.137 s +685.2% 0.020 s +97.4%
80 0.105 s 0.295 s +279.8% 0.219 s +208.0%
160 0.727 s 0.549 s +75.5% 1.481 s +203.7%
320 6.256 s 1.165 s +18.6% 13.56 s +216.7%
640 51.68 s 2.482 s +4.8% 86.96 s +168.2%
1280 421.2 s 12.32 s +2.9% 581.2 s +138.0%
2560 4306 s 24.94 s +0.6% 4843 s +112.5%

Table 4.4: cumulative number of iterations of the preconditioned conjugate gradient
solver for the problem of subsection 4.4.6. Linear (resp. quadratic) interpolation of φ
means that the values of the θ parameters (as defined in section 4.2) are evaluated as
the roots of a local linear (resp. quadratic) interpolant of φ.
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4.5 Adaptive grids and three-dimensional illustra-

tions

A significant advantage of our suggested approach is the optimally small stencil used in

both the discretization of the jump problem (see section 4.2) and the extension technique

(see section 4.3). Since every elementary operation involves only the direct Cartesian

neighbor, the method does not require prohibitively thick layers of ghost cells when

using a distributed memory paradigm. Moreover, the small stencil size and the focus of

the technique onto the jump nodes makes it fairly straightforward to couple with a solver

exploiting an adaptive grid far away from the interface.

In this section, we illustrate the above advantages with two- and three-dimensional

problems addressed by coupling the suggested technique with the method introduced in

[55] for stable projection in simulations of incompressible flows on quadtree or octree

grids. The full solver was parallelized using distributed memory, exploiting the p4est

library for grid management [174] and the PetSc library for handling the linear algebra

aspects [111, 112].

4.5.1 A multiscale two-dimensional problem

In this example, we consider Ω = [−1, 1] × [−1, 1]. The interface is defined as 15

non-overlapping small inclusions randomly located in the domain. These inclusions are

individually defined as circles deformed under a fictitious parabolic flow field of ran-

dom orientation; the radius of those circles (before deformations) is randomly chosen

in [0.005; 0.02]. The corresponding levelset function is defined as negative within the
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inclusions. The coefficients are β− = 103 and β+ = 1. The exact solution is chosen to be





u (x, y) =
cos (200π (x+ 3y))− sin (100π (y − 2x))

β−
, ∀ (x, y) ∈ Ω−,

u (x, y) = cos (x+ y) exp (−x2 cos2 (y)) , ∀ (x, y) ∈ Ω+,

the right-hand side f and the jump terms a and b are defined accordingly. The interfaces,

an adaptive grid and the analytical solutions are illustrated in Figure 4.17.

In order to capture the details of the interfaces, a grid resolution of h ∼ 0.002 (at least)

is required. Using uniform grids, this would lead to O (106) unknowns (at least) although

most of the computational domain does not require such a resolution: the inclusions

represent a small portion of the overall computational domain and the variations of the

solution in Ω+ occur over (much) larger length scales. Therefore, a significant amount

of computational resources can be saved by using an adaptive grid with equivalent finest

level of refinement. In this example, the grid cells are made smaller as they approach Γ

in Ω+ and are set to their smallest size in Ω−. The coarsest cells are 256 times bigger

(along every Cartesian direction) than the smallest cells. The convergence results are

illustrated in Figure 4.17 and show that the xGFM recovers convergence for β∇u once

again. Note that the maximum finest resolution that we consider with such an adaptive

approach would lead to O (109) unknowns with a uniform grid.

4.5.2 A three-dimensional problem with a convoluted interface

In this example, we consider the three-dimensional domain Ω = [−2, 2] × [−2, 2] ×

[−2, 2]. The interface is the surface parameterized by

r (ϑ, ϕ) =
3

4
+

5− 3 cos (6ϕ) (1− cos (6ϑ))

25
, ϑ ∈ [0, π] , ϕ ∈ [0, 2π[ (4.37)
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Figure 4.17: illustrations and results for the problem addressed in section 4.5.1. Top
left: computational domain and grid, elevated and colored by the analytical solution.
Top right: zoom-in on one of the inclusions. Bottom left: errors in infinity norm for
the solution field. Bottom right: errors in infinity norm for the x-component of the
flux vector (the y-component behaves similarly), the slope of the dashed line is −0.87.
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in standard spherical coordinates; the corresponding levelset function is built as negative

inside and positive outside. The coefficients are β− = 1 and β+ = 1250. The exact

solution is chosen to be





u (x, y) = exp

(
x− z

2

)
(x sin (y)− cos (x+ y) arctan (z)) , ∀ (x, y) ∈ Ω−,

u (x, y) = −1 +

5 arctan

(
x3y

10
+ 2z cos (y)− y sin (x+ z)

)

2β+
, ∀ (x, y) ∈ Ω+,

the right-hand side f and the jump terms a and b are defined accordingly. The interface,

the grid and its partition are illustrated in Figure 4.18. The coarsest cells are 8 times

bigger (along every Cartesian direction) than the smallest cells. This figure also shows

that xGFM recovers convergence for β∇u. These results were obtained using either 40

cores on a local workstation running a Dual Intel Xeon Gold 6148 processor with 64 GB

of RAM or Stampede2 supercomputer for the finest grids.

4.5.3 A three-dimensional problem with a not radially convex

interface

For this final example, we consider the three-dimensional domain Ω = [−1.5, 1.5] ×

[−1.5, 1.5] × [−1.5, 1.5]. The interface is defined as the revolution of the bone-shaped

interface from section 4.4.5 around one of its axis of symmetry. Periodic boundary condi-

tions are considered and the interface is translated so that it lies crosses all computational

boundaries, as illustrated in Figure 4.19. The coefficients are β− = 1 and β+ = 80. The

exact solution is chosen to be





u (x, y) = arctan

(
sin

(
2π

3
(2x− y)

))
log

(
3

2
+ cos

(
2π

3
(2y − z)

))
, ∀ (x, y) ∈ Ω−,

u (x, y) = tanh

(
cos

(
2π

3
(2x+ y)

))
arccos

(
1

2
sin

(
2π

3
(2z − x)

))
, ∀ (x, y) ∈ Ω+,
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Figure 4.18: top left: illustration of the star-shaped interface (truncated, in white), the
grid and the exact solution for the problem addressed in section 4.5.2; top right: con-
vergence analysis in infinity norm for the flux component β∂xu (the other flux compo-
nents β∂yu and β∂zu behave very similarly), the slope of the dashed line is −1.02. Bot-
tom: illustration of [β∇u]xGFM−[β∇u]GFM = β− (δ − nn)·∇a+[β] ((δ − nn) · ∇u)+

onto the interface, as calculated by the solver (x, y and z components from left to
right, respectively).
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Figure 4.19: left: illustration of the interface for the problem addressed in section
4.5.3; right: convergence analysis in infinity norm for the flux component β∂xu (the
other flux components β∂yu and β∂zu behave very similarly), the slope of the dashed
line is −0.98.

the right-hand side f and the jump terms a and b are defined accordingly. As illustrated

in Figure 4.19, convergent β∇u are recovered everywhere in the domain here again.

4.6 Summary

We introduced the xGFM, a robust numerical method that recovers consistency in

jump conditions when using the ‘boundary condition capturing method’ by Liu, Fedkiw

and Kang [16] (the Ghost Fluid Method) for capturing sharp interface conditions when

solving Poisson equations with discontinuities on a Cartesian grid. The strategy favors

the symmetric positive definiteness of the linear system of equations to be solved and

adopts an iterative technique to update correcting terms. The original inconsistency was

shown to be responsible for the lack of convergence for the gradient of the solution (and

thus of the flux). Point-wise convergence of the solution and its partial derivatives was

shown and illustrated on several two- and three-dimensional problems, including cases
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with large ratios of β coefficients. The approach was successfully implemented within a

parallel framework for adaptive quadtree/octree grids, in a distributed memory frame-

work. Future work should investigate the possibility to formulate the suggested method

into a single (possible not semi-positive definite) system of linear equations and/or theo-

retically investigate the formal rates of convergence (for the solution and its derivatives)

and numerical properties of the suggested method.
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Chapter 5

Sharp and implicit treatment of

viscous terms

5.1 Introduction

In this chapter, we present an extension of the strategy presented in Chapter 4 for the

resolution of elliptic interface problems of the kind (using index notations and Einstein

Summation Convention)





Ku− µ∇2u = r

[u] = mn

[µ∂jui] = µ± (δjk − njnk) ∂k (mni) + [µ] (δjk − njnk) ∂ku∓i
− (δir − ninr)Tr nj
−µ± nj (δir − ninr) ∂r (m)− [µ] nj (δir − ninr) ∂ru∓k nk

−µ± ninj (κm) + [µ] ninjnr∂ku
∓
r nk

(5.1)

for the vector field u = u1e1 + u2e2 + u3e3, with components ui sampled at the faces

of normal ei. In (5.1), K and µ are (piecewise) constant, positive scalars, r and T are
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known vector fields, and m is a known scalar field.

As outlined in Chapter 3, this problem is relevant for the “viscosity step”, when

treating viscous terms implicitly in simulations of incompressible viscous two-phase flows,

while accounting for stress balance across the interface. In that context, µ is the local

shear viscosity, K =
ρ (2∆tn + ∆tn−1)

(∆tn + ∆tn−1) ∆tn
at time step n, r accounts for discretized advec-

tion terms as well as pressure gradients, m = Ṁ [1/ρ] and T = ∇γ +G. As illustrated

in Figure 3.1, we denote by Ω the computational domain, and by Γ the interface which

separates Ω into Ω+ and Ω− (based on the sign of the levelset of zero-contour Γ). The

unit vector normal to Γ, pointing toward Ω+ is n.

Building upon the strategy developed in single-phase flows, we make use of a finite-

volume discretization leveraging Voronoi tessellations of the computational domain, away

from the interface. This strategy effectively decouples the velocity components and cre-

ates three (two in 2D) independent linear systems of equations for the separate compo-

nents of the vector field u. Although this approach provides an elegant solution for han-

dling non-uniform regions of the computational grid, it brings its share of complications

when extended to tackle interface problems like (5.1). Indeed, the interface conditions

on [µ∂jui] show that interface discontinuities are solution-dependent and that the veloc-

ity components are actually coupled across the interface (as a direct consequence of the

symmetry of the viscous stress tensor). Therefore, however the single-phase approach is

extended to capture interface discontinuities, this latter observation highlights the need

for an iterative strategy: a solution that is self-consistent with its interface conditions

cannot be determined in a single pass through 3 (2 in 2D) decoupled, independent solvers.

In this chapter, we present an extension of the strategy presented in Chapter 4 to

tackle vector problems like (5.1). We first present a discretization that couples a finite-

volume discretization on Voronoi tessellations away from the interface to the dimension-

by-dimension, finite difference discretization from [16] across the interface, in order to cap-
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ture interface conditions in a sharp fashion. This tool is thus suited for (over-determined)

problems like 



Ku− µ∇2u = r

[u] = mn

[µ∂jui] = Sij

(5.2)

for a known tensor field S. The equivalence between (5.1) and (5.2) is then recovered

by incorporating the dependence of S on the solution u itself, via an iterative method,

similarly to [28] (Chapter 4). This iterative strategy relies on extensions of interface-

defined values of the solution (as well as extrapolations, in this particular vector case):

a robust extension method for face-sampled fields is required as well. We thus introduce

PDE-based extension and extrapolation techniques inspired from [172], and adapted to

face-sampled fields on adaptive Quadtree/Octree grids. These two main elements (i.e., a

numerical method for (5.2) along with the extension and extrapolation tools) may then

be combined to tackle problems like (5.1). After presenting that iterative strategy, its

performance (and the correctness of the implementations) is assessed by analyzing the

accuracy of the solver on a three-dimensional Stokes flow problem that involves a gradient

of surface tension (i.e., a Marangoni force).

About the problem formulation. In this work, we have chosen to use the dimension-

by-dimension approach from [16] for handling interface discontinuities on velocity com-

ponents. This choice was motivated by the simplicity of implementation, the robustness

of the method and its low computational cost (compared to other methods which would

produce nonsymmetric matrices) in light of the need for embedding it within an iterative

procedure. Therefore, every component of [µ∇u] needs to be prescribed, hence the prob-

lem formulation (5.1) considered herein. If another interface-capturing scheme requiring

the discontinuity in normal flux only was used for the separate velocity components, the
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problem formulation would require [µ∇u · n] to be prescribed instead, as discussed in

Chapter 3. However, this does not alleviate the dependence of the interface conditions

on the solution itself: hence, this approach was not preferred in light of the increased

complexity and computation cost associated with such methods.

5.2 Numerical discretization

In this section, we present the numerical discretization of (5.2), which is a cornerstone

of the iterative method designed for solving (5.1). We distinguish cases away from the

interface (similar to the single-phase approach) and faces involving neighbors across the

interface.

5.2.1 Discretization away from the interface

Away from the interface, i.e., for faces of the computational grids that have all their

relevant neighbor faces in the same subdomain, we use a finite-volume approach on

Voronoi cells, seeded at the face centers. Given a set of seeds (center points of Voronoi

cells), the Voronoi cell associated with one such seed is the volume (area in two dimen-

sions) containing all points that are closer to that seed than to any other. As illustrated

in Figure 5.1, the construction procedure can be done locally, provided that all closest

direct neighbors are known. In the context of interest, we consider three (resp. two)

Voronoi tessellations, constructed by placing the seeds at the centers of the faces of the

computational grid of similar orientation. One such cell is illustrated in Figure 5.1 for

faces of normal e1. It can be shown that the set of faces associated with all second-degree

neighbor cells of the cell owning the seed of interest contains all relevant neighbor seeds,

for graded Quadtree/Octree grids of moderate aspect ratio, as we consider in applica-

tions (see [52] for considerations of large aspect ratio). We use the voro++ library [175]
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Figure 5.1: two-dimensional illustration of Voronoi cell construction and notations
used for the finite-volume discretization based on face-seeded Voronoi tessellations.
Left: illustration of the Voronoi cell associated with the green seed, constructed based
on an unstructured set of neighbor seeds in black. Provided that all the relevant
closest neighbors are found, this construction may be done locally: if provided, the
red neighbor is discarded as it does not contribute to the cell’s construction. Right:
illustration of the discretization notations for a voronoi cell VF associated with face
F of normal e1.

to build such Voronoi cells in three dimensions.

Let us consider a face F of normal ei. Let VF be the Voronoi cell associated with that

face and ngbd (F ) the set of neighbor faces of F , of normal ei, that are involved in the

construction of VF . For every neighbor face N involved in VF ’s construction, we denote

by dF,N the distance between the centers of F and N and by sF,N the area (length in 2D)

of the surface of VF orthogonal to the segment joining F and N , as illustrated in Figure

5.1.

Integrating Kui − µ∇2ui = ri side-by-side over VF , one has

K

∫

VF
ui dVF −

∫

∂Vf
µ∇ui · η d∂VF =

∫

VF
ri dVF , (5.3)

wherein η is the unit vector, normal to ∂VF pointing outward VF . Since the faces of VF
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are orthogonal to segments joining F and the relevant face neighbors N ∈ ngbd (F ), one

may use a finite-difference discretization for the net fluxes out of VF , that is

∫

∂Vf
µ∇ui · η d∂VF ≈

∑

N∈ngbd(F )

µ
ui,N − ui,F

dF,N
sF,N ,

where ui,F is the value of the ith velocity component, sampled at face F (of normal ei).

Approximating volume integrals to their leading term, we obtain the final discretization

form

Kvol (VF )ui,F +
∑

N∈ngbd(F )

µ
ui,F − ui,N

dF,N
sF,N = vol (VF ) ri,F . (5.4)

For faces nearby walls of the computational domain, the Voronoi cells are clipped to

the limits of the computational domain. Corresponding wall boundary condition are then

invoked for the discretization of the relevant flux on the faces of the Voronoi cells matching

domain boundaries. For Neumann boundary conditions, the flux value is prescribed and

used right away. For Dirichlet boundary conditions, the flux value is estimated by linear

interpolation between the cell’s seed and the value prescribed at the wall, or the value at

the cell’s seed is prescribed right away if the face is a wall itself.

5.2.2 Discretization capturing interface discontinuities

For faces of uniform neighborhood, Voronoi cells are parallelepipeds and the dis-

cretization (5.4) is equivalent to the standard 7-point (5-point, in 2D) stencil discretiza-

tion, multiplied by the volume of the cell. This enables the method to be naturally

coupled to a finite-difference approach close to the interface, as we enforce a band of

uniform cells across the interface.

Let F be a face of normal ei in a locally uniform patch of the computational grid.

We denote by F±ej the neighbor face of F (of same orientation) found in direction ±ej.
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Figure 5.2: illustration of the notations used in subsection 5.2.2 for faces in a lo-
cally uniform patch of the computational grid, possibly crossed by the interface. The
neighbor face of F (of same orientation) found in direction ±ej is denoted by F±ej .

We denote by hj the size of the computational cells along direction ej. If F and F±ej

lie across the interface, the distance between F and the intersection point between the

interface Γ and the line joining F and F±ej is denoted by θ±ejhj (θ±ej ∈ ]0; 1[). The

notations are illustrated in Figure 5.2, in two dimensions for a face of normal e2. A

first-order approximation of θ±ej can be obtained by linear interpolation of the levelset

values between F and F±ej , i.e., θ±ej =
|φF |

|φF |+
∣∣∣φF±ej

∣∣∣
. A second-order evaluation may

be derived similarly and requires second derivatives of the levelset function.

We follow a sharp, dimension-by-dimension approach (see [16, 15, 28]) for capturing

interface discontinuities on every component of u, separately. Let s = + (resp. s = −) if

the center of F is in Ω+ (resp. Ω−); we denote by −s the sign opposite to s. Considering

the ith component of u in (5.2), we have the following discretization at face F

Kui,F +
3∑

j=1

(
µ̂+ej

ui,F − ui,F+ej

h2
j

+ µ̂−ej
ui,F − ui,F−ej

h2
j

)
= ri,F +

3∑

j=1

(
µ̂+ejJ+ej + µ̂−ejJ−ej

)

(5.5)
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where

µ̂±ej =





µs if F and F±ej are both in Ωs,

µsµ−s(
1− θ±ej

)
µs + θ±ejµ

−s if F ∈ Ωs and F±ej ∈ Ω−s,
(5.6)

and the contribution J of the interface discontinuities to the right-hand side of (5.5) are

J±ej =





0 if F and F±ej are both in Ωs,

s

(
±
(
1− θ±ej

)
Sij

µ−shj
+
mni
h2
j

)∣∣∣∣∣
F±θej

if F ∈ Ωs and F±ej ∈ Ω−s.
(5.7)

In (5.7), (·)|F±θej indicates that (·) is evaluated at the intersection point between the

interface and the line joining F and F±ej (see green squares in Figure 5.2, for instance).

As presented in [28], this discretization is consistent with the definition of interface

values at intersection points between the interface and the line joining face centers across

the interface (green squares in Figure 5.2). If F±ej is a neighbor face across the interface,

one may define usi,F±θej
as the value of usi at the intersection point between the interface

and the line joining F and F±ej . After calculations, this value is

usi,F±θej
=

(
1− θ±ej

)
µs

µ̃±ej
ui,F +

θ±ejµ
−s

µ̃±ej
ui,F±ej

(5.8)

±s
(
1− θ±ej

)
θ±ejhj

µ̃±ej
Sij|F±θej + s

θ±ejµ
−s

µ̃±ej
(mni)|F±θej

where µ̃±ej =
(
1− θ±ej

)
µs + θ±ejµ

−s. Similarly, one may define

u−si,F±θej
= usi,F±θej

− s (mni)|F±θej

as the value of u−si at the intersection point between the interface and the line joining F
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and F±ej . We obtain

u−si,F±θej
=

(
1− θ±ej

)
µs

µ̃±ej
ui,F +

θ±ejµ
−s

µ̃±ej
ui,F±ej

(5.9)

±s
(
1− θ±ej

)
θ±ejhj

µ̃±ej
Sij|F±θej − s

(
1− θ±ej

)
µs

µ̃±ej
(mni)|F±θej .

The interface-defined values (5.8) and (5.9) are unambiguously defined and identical

when evaluated from either side of the interface, so long as

• interface discontinuities Sij and (mni) are evaluated at interface intersection points

(green squares in Figure 5.2);

• the values of θ are consistent as seen from either face across the interface, i.e. they

sum up to 1.

5.3 PDE-based extensions and extrapolations for face-

sampled fields

In (5.1), [µ∂jui] are (implicitly meant) to be evaluated at the interface. There-

fore, (δjk − njnk) ∂ku∓i and (δir − ninr) ∂ru∓k actually represent tangential derivatives of

interface-defined values. On the other hand, nk∂ku
∓
r represents the normal derivatives of

u∓r at the interface.

The one-sided evaluation of such derivatives for points close to the interface comes

with its lot of complications (e.g. locally underdetermined and/or nonsymmetric differ-

entiation stencil). In order to circumvent those difficulties, we rely on the creation of two

alternative vector fields (sampled at faces, as well)

1. uΓ,± which extends the relevant interface-defined values ((5.8) or (5.9)) normally

to the interface;
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2. u± which extrapolates the value of u from Ω±.

By construction, those vector fields are well-defined in the neighborhood of any point

close to the interface, which alleviates the difficulty of evaluating one-sided tangential or

normal derivatives. We use uΓ,± for the evaluation of tangential derivatives while u± is

used for the evaluation of normal derivatives.

In this section, we present an adaptation of the PDE-based extension and extrapola-

tion strategies from [172] for face-sampled (components of) vector fields on Quadtree/Oc-

tree grids. Besides its robustness, this method presents one significant advantage com-

pared to geometric methods1: it can be associated with a subcell-resolution strategy to

capture intersections between the interface and grid lines, which allows for an extension

of the interface-defined values (5.8) and (5.9), as required.

5.3.1 Extension of interface-defined values

Without loss of generality, let us consider that uΓ,− is required, i.e., an extension of u

from Γ−. Mathematically, the ith component of uΓ,− may be defined as the steady-state

solution of 



∂uΓ,−
i

∂τ
+ sign (φ)n · ∇uΓ,−

i = 0

uΓ,−
i (x) = u−i (x) , ∀x ∈ Γ

1 (5.10)

in pseudo-time τ .

Let us consider first a face F in a locally uniform patch of the computational grid,

which may have face neighbors across the interface (see Figure 5.2 for an illustration in

2D). Using first-order upwind finite differences with subcell resolution, the semi-discrete

1Geometric extrapolation relies on the construction of an interpolation polynomial of arbitrary degree
along the line that follows the local normal vector. Points from the desired subdomain are fetched and
sampled along this line, an interpolation polynomial is constructed to match those sampled values and
evaluated at the point of interest thereafter. This technique may introduce undesirable local maxima
and requires a good resolution of the queried subdomain.
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form of (5.10) at face F reads

duΓ,−
i,F

dτ
= −

3∑

j=1

(
max (0, sign (φF )nj)

δ−j u
Γ,−
i,F

δ−j h
+ min (0, sign (φF )nj)

δ+
j u

Γ,−
i,F

δ+
j h

)
(5.11)

where the upwind finite-differences are defined as

δ±j u
Γ,−
i,F =




±
(
uΓ,−
i,F±ej

− uΓ,−
i,F

)
if F and F±ej are both on the same side of Γ,

±
(
u−i,F±θej

− uΓ,−
i,F

)
if F and F±ej are across Γ (see (5.8) and (5.9)),

(5.12)

and

δ±j h =





hj if F and F±ej are both on the same side of Γ,

θ±ejhj if F and F±ej are across Γ.
(5.13)

We define the minimal discretization distance ∆ext. associated with (5.11) as the minimal

value of δ±j h involved in (5.11). If any relevant δ±j h is found too small, it means that F

is too close to an interface-defined point and uΓ,−
i,F is set to that interface-defined value in

such a case.

Second, let us consider nonuniform patches of the computational grid, i.e., away from

the interface. Though the extension procedure must be specified in nonuniform regions

as well for completeness, the lack of a structured neighborhood makes the definition of

upwind differentiation operators more challenging locally. In such a case, sign (φ)n·∇uΓ,−
i

is discretized using a least-square discretization for ∇uΓ,−
i (see appendix B) constructed

with the face neighborsN of F that satisfy the upwind condition sign (φF )n·(xF − xN) ≥

0 (xF and xN are the coordinates of the centers of faces F and N). Second-degree

face neighbors are fetched if too few elements satisfy the upwind condition within the

first-degree neighbors for constructing a least-square gradient operator. In this case, we

define the minimal discretization distance ∆ext. as the minimum value of ‖xF − xN‖ for
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all neighbor face N involved in the construction of the discretized, least-square ∇uΓ,−
i .

Finally, for either of its semi-discrete form (i.e., using (5.11) or least-square upwind

gradient operators), (5.10) is integrated 20 pseudo-time steps ∆τ forward using an explicit

forward Euler method. The pseudo-time step is locally adapted to the discretization

distance via ∆τ = ∆ext./3 (resp. ∆τ = ∆ext./2 in 2D).

Note: for faces nearby boundaries of the computational domain, homogeneous Neu-

mann boundary conditions are used on the walls of the domain for uΓ,−
i .

5.3.2 Extrapolation of face-sampled vector fields

Without loss of generality, let us consider that u− is required, i.e., an extrapolation of

u from Ω−, and let us consider the ith component of u− (the extrapolation of u+ follows

the same principles, with a reverted normal vector). The extrapolation of u−i is a two-

step procedure: first its normal derivative u−n,i is extrapolated (constant extrapolation),

then u−i itself is extrapolated (linear extrapolation).

Let us consider a face F of normal ei. We define two indicator functions

Hi,F =





0 if F ∈ Ω−,

1 otherwise,
(5.14)

and

Hi,n,F =





0 if F and all its neighbors ∈ Ω−,

1 otherwise,
(5.15)

sampled at faces of normal ei.

At every face F such that Hi,n,F = 0, the normal derivative u−n,i may be evaluated

either as

u−n,i,F =
3∑

j=1

nj
u−i,F+ej

− u−i,F−ej

2hj
(5.16)
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if F is in a locally uniform patch, or by means of least-square derivatives constructed

with all its direct neighbors otherwise (see appendix B). Then, the values of u−n,i are set

in the rest of the domain by solving

∂τu
−
n,i +Hi,nn · ∇u−n,i = 0, (5.17)

until steady-state in pseudo-time τ . Afterwards, the values of u−i are set in the rest of

the domain by solving

∂τu
−
i +Hi

(
n · ∇u−i − u−n,i

)
= 0, (5.18)

until steady-state in pseudo-time τ .

In practice, (5.17) and (5.18) are solved for a finite number of pseudo-time steps

using a forward Euler integration scheme in pseudo-time: 20 pseudo-time steps are used

at every stage of the iterative strategy described hereafter2. Upwind discretization is

used for the spatial derivatives in (5.17) and (5.18). For instance, n · ∇u−i is discretized

as
3∑

j=1

max (nj, 0)
u−i,F − u−i,F−ej

hj
+ min (nj, 0)

u−i,F+ej
− u−i,F
hj

(5.19)

at face F if it belongs to a uniform patch of the computational grid. Upwind least-square

derivatives are used otherwise, as described in subsection 5.3.1. The pseudo-time step

∆τ is set to 1/3 (resp. 1/2 in 2D) of the minimal discretization distance involved in the

calculation of upwind derivatives (adaptive pseudo-time stepping).

About the interface-defined values. The interface-defined values (5.8) and (5.9) are

not used in the extrapolation procedure. Original attempts including them (with subcell

resolution) in the initialization of u−n,i resulted in numerically unstable simulations, in

230 iterations are used at termination of the iterative strategy to ensure convergence of the extrapo-
lations within a band of 3 smallest computational cells across the interface.
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two-phase flow applications.

5.4 xGFM approach for vector fields

Without loss of generality, let us assume that we use the values from the negative

subdomain3 to recover solution-dependent terms in (5.1). On may isolate the solution-

dependent terms in interface discontinuity conditions (5.1) by defining F (a, b) as (using

Einstein Summation Convention)

Fij (a, b) = µ+ (δjk − njnk) ∂k (mni) + [µ] (δjk − njnk) ∂kai

− (δir − ninr)Tr nj

−µ+ nj (δir − ninr) ∂r (m)− [µ] nj (δir − ninr) ∂rak nk

−µ+ ninj (κm) + [µ] ninjnr∂kbrnk, (5.20)

and recast the problem of interest (5.1) into





Ku− µ∇2u = r

[u] = mn

[µ∂jui] = Fij
(
uΓ,−,u−

)
(5.21)

where uΓ,− and u− are respectively extension of interface-defined values (5.8) and (5.9)

(which themselves must be self-consistent with the corresponding Fij) and extrapolation

of u from Ω−.

Let vi be the (column) array of the discretized ith component of a vector field v, sam-

pled at faces of normal ei. We also denote by Ai the discretization matrix for component

3We follow the same convention as for the scalar-field problem [28] regarding which side of the interface
is chosen for evaluating the solution-dependent terms: the upper (resp. lower) superscript is considered
for [µ∇u] in (5.1) when µ− > µ+ (resp. µ+ > µ−).
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ui in (5.21) and by ji (a, b) the contribution of jump terms to the discretized right-hand

side for component i when considering [µ∂jui] = Fij (a, b) (note that ji is a multilinear

map in a and b). For any candidate solution w, with extension wΓ,− and extrapolation

w−, one may measure its residual for component i via

resi
(
w,wΓ,−,w−

)
= Aiwi − r− ji

(
wΓ,−, w−

)
. (5.22)

Using this measure, the optimal (discrete) solution to (5.21) may be defined as the one

minimizing all resi
(
u,uΓ,−,u−

)
, in a given norm.

We present now the iterative method implemented to approach the solution u of

(5.21) as a sequence of solutions uk (k = 0, 1, . . .). We denote by uΓ,k,− the extension of

interface-defined values associated with iterate uk, and by uk,− the extrapolation of uk

from Ω−.

The method is initialized by defining u0 as the solution to





Ku0 − µ∇2u0 = r

[u0] = mn

[µ∂ju
0
i ] = Fij (0,0) .

(5.23)

After resolution of (5.23), uΓ,0,− and u0,− are determined, as described in section 5.3

(Sij = Fij (0,0) being used for the evaluation of interface-defined values, consistently

with (5.23)).

Thereafter, given an iterate uk as well as it its extension uΓ,k,− and extrapolation
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uk,−, a subsequent fix-point update ũk+1 may be defined as the solution to





Kũk+1 − µ∇2ũk+1 = r
[
ũk+1

]
= mn

[
µ∂jũi

k+1
]

= Fij
(
uΓ,k,−,uk,−

)
.

(5.24)

After resolution of (5.24), ũΓ,k+1,− and ũk+1,− are determined, as described in section 5.3

(Fij
(
uΓ,k,−,uk,−

)
being used for the evaluation of interface-defined values, consistently

with (5.24)).

The next iterate uk+1, its extension uΓ,k+1,− and extrapolation uk+1,− are then defined

as4 



uk+1 = uk + ηk
(
ũk+1 − uk

)

uΓ,k+1,− = uΓ,k,− + ηk
(
ũΓ,k+1,− − uΓ,k,−)

uk+1,− = uk,− + ηk
(
ũk+1,− − uk,−

)
(5.25)

where ηk is chosen to minimize the global residual measure

ck =
∑

i

∥∥resi
(
uk+1,uΓ,k+1,−,uk+1,−)∥∥2

2
. (5.26)

By defining the global residual measure as (5.26), we indirectly recover coupling between

velocity components and consider convergence on all components of the vector field of

interest.

We define the residuals ek+1
i = resi

(
uk+1,uΓ,k+1,−,uk+1,−), eki = resi

(
uk,uΓ,k,−,uk,−

)

4Since extrapolated values do not depend linearly on the face-sampled data, defining uk+1,− as

uk,− + ηk

(
ũk+1,− − uk,−

)
is an approximation strictly speaking. However, only its normal derivatives

are relevant within the solution-dependent interface conditions and the extrapolated normal derivatives
do depend linearly on face-sampled data by construction. We refer the reader to the alternative approach
described in subsection 5.4.1 for alleviating the need for extrapolations and strictly complying to linear
dependence on discretized data, if desired.
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and ẽk+1
i = resi

(
ũk+1, ũΓ,k+1,−, ũk+1,−). Since ji are multilinear maps, we have

ek+1
i = (1− ηk) eki + ηkẽ

k+1
i (5.27)

by construction, and the value of ηk minimizing ck is

ηk =

∑
i e

k
i

T (
ẽk+1
i − eki

)
∑

i

∥∥ẽk+1
i − eki

∥∥2

2

. (5.28)

The procedure repeats (5.24)-(5.28) until it declares termination either because it has

reached a user-defined maximum number of iterations or because
∥∥ηk

(
ũk+1 − uk

)∥∥
∞ falls

below an absolute threshold (default value is 10−8) and

(∑
i

∥∥eki
∥∥2

2∑
i ‖ri‖

2
2

)1/2

either falls below

a relative threshold (default is 10−12) or does not decrease by more than 10−6 relatively

to its value in the previous iteration.

As for the scalar case, the discretization matrices Ai are unchanged by the procedure,

only the discretized right-hand sides are modified at each iteration: this allows for efficient

reuse of (preconditioned) linear solvers as the iterative procedure progresses. Similarly

to the scalar problem as well, no iteration is required when [µ] = 0.

5.4.1 A note about using extensions only

As explained at the beginning of section 5.3, recovering consistency with (5.1) requires

the evaluation of normal derivatives of the solution from one side of the interface. Since

such normal derivatives are null by construction of uΓ,±, an extrapolation of u± is used

instead for their evaluation. This is a significant difference with the strategy for scalar-

field problems [28].

However, this could be alleviated by exploiting the incompressibility condition on u±.
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Indeed, by invoking (using Einstein Summation Convention)

0 = ∂iu
±
i = ((δij − ninj) + ninj) ∂ju

±
i ,

we have

ninj∂ju
±
i = − (δij − ninj) ∂ju±i ,

where the right-hand side involves only tangential derivatives of velocity components

and could be evaluated consistently as −∇ ·uΓ,±. We note that this had been presented

and used in [33], in two dimensions. It is not used in our implementation but could be

considered as a possible optimization improvement to gain execution time.

5.5 A relevant test case

In order to test and validate the implementation of the techniques presented here

before, we suggest to assess their performance by analyzing the accuracy obtained for a

velocity field on a relevant test problem. Since [∇ · u] = 0 is exploited in the derivation

of the interface conditions on the binormal component of [µ∇u] in (5.1), this prevents

the use of an arbitrary manufactured solution to verify convergence of numerical results

with grid refinement.

We therefore consider the analytical solution for the creeping flow of a viscous liquid

sphere of radius R in another viscous liquid, due to a uniform background gradient

of surface tension, i.e., γ (x) = γ0

(
1 + β

x · e3

R

)
. The theoretical analytisis of such

a problem was first considered by Hadamard [176] and Rybczynski [177], under the

assumption that the drop is and remains spherical. In [178], their derivations were

extended to account for possible discontinuities in (tangential) stress across the interface

(i.e., Marangoni forces). For the problem of interest, using spherical coordinates centered
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Figure 5.3: illustration of the flow field considered in section 5.5. Left: streamlines
in a transverse plane parallel to e3 (zoom-in). Right: azimuthal velocity uθ in the
equatorial plane x · e3 = 0 (note the discontinuity in derivatives across the interface
due to the existence of a background gradient in surface tension).

with the sphere, the analytical flow field is given by





u+
r (r, θ) = u∞

(
1−

(
R

r

)3
)

cos (θ)

u+
θ (r, θ) = −u∞

(
1 +

1

2

(
R

r

)3
)

sin (θ)

u+
φ = 0

p+ = 0





u−r (r, θ) =
3

2
u∞

(( r
R

)2

− 1

)
cos (θ)

u−θ (r, θ) = −3

2
u∞

(
2
( r
R

)2

− 1

)
sin (θ)

u−φ = 0

p− (r, θ) = 2
γ0

R
+ 15

µ−u∞r cos (θ)

R2

where u∞ = 2γ0β/ (3 (3µ− + 2µ+)) and Ω− is the interior of the sphere. This analytical

solution is illustrated in Figure 5.3.

This reference solution has been used in benchmark testing for numerical simulations

of two-phase flows in [9, 27]. Full flow dynamics was considered in such tests (simulating

from rest until steady-state) but with [µ] = 0. This choice simplifies dramatically the

problem as it annihilates the effects of solution-dependent terms in the stress balance

across the interface. Indeed, Table 5.1 shows that absolute convergence on the velocity

components is obtained, without any iteration as described in section 5.4, i.e. after

solving (5.23) only.
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`min/`max 3/6 4/7 5/8 6/9 7/10 8/11
0 iteration u1, u2 2.8e− 2 1.3e− 2 6.7e− 3 4.1e− 3 1.8e− 3 1e− 3

u3 3.0e− 2 2.6e− 2 8.1e− 3 7.1e− 3 2.7e− 3 1e− 3

Table 5.1: errors in infinity norm (normalized by u∞) on the velocity components
when solving (5.23), with a cubic computational domain [−5, 5]3 and a sphere of

radius 0.5 centered in that domain, µ− = µ+ = 0.1, γ0 = 0.075 and β = − 2

15
.

When µ− = µ+, no solution-dependent term is involved in interface conditions which
alleviates the need for iterations, as described in section 5.4.

We analyze the accuracy of the solution obtained when solving the corresponding

Stokes flow problem (using Einstein Summation Convention)





−µ∇2u = −∇p

[u] = 0

[µ∂jui] = − (δir − ninr) ∂rγ nj + [µ] (δjk − njnk) ∂ku∓i
− [µ] nj (δir − ninr) ∂ru∓k nk + [µ] ninjnr∂ku

∓
r nk

(5.29)

for [µ] 6= 0 with the methodology previously described. We feed the solver with −∇p

(calculated from the exact solution) and ∇γ; we consider a cubic computational domain

[−5, 5]3 and a sphere of radius 0.5 centered in that domain. We consider5 µ− = 0.1,

µ+ = 0.5, γ0 = 0.075 and β = − 2

15
. The exact velocity field is prescribed as a Dirichlet

boundary condition on the boundaries of the computational domain. We consider adap-

tive octree grids with a layer of fine cells covering 15% of the bubble radius on either side

of the interface.

The results summarizing the errors in infinity norm on the velocity components are

presented in Table 5.2, Figure 5.4 and Figure 5.5, for various maximum number of it-

erations of the strategy presented in section 5.4. As illustrated, the errors on velocity

5For this particular test case (Stokes flow), numerical experiments indicate that the required grid
refinement for observing convergence grows with µ+/µ−. Since we conduct the analysis with full three-
dimensional considerations, we restrict ourselves to a moderate value of µ+/µ−. Axisymmetric compu-
tational tools could be considered to push the analysis further at a limited computational cost.
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`min/`max 3/6 4/7 5/8 6/9 7/10 8/11
0 iteration u1, u2 1.5e− 1 1.7e− 1 1.7e− 1 1.8e− 1 1.8e− 1 1.8e− 1

u3 1.5 1.5 1.5 1.6 1.6 1.6
5 iterations u1, u2 2.2e− 1 1.6e− 1 9.8e− 2 5.1e− 2 3.1e− 2 2.3e− 2

u3 1.1 7.2e− 1 4.1e− 1 2.3e− 1 1.6e− 1 1.3e− 1
10 iterations u1, u2 2.2e− 1 1.6e− 1 9.6e− 2 5.5e− 2 2.7e− 2 1.4e− 2

u3 1.1 7.0e− 1 4.10e− 1 2.3e− 1 1.2e− 1 6.4e− 2
unlimited u1, u2 2.2e− 1 1.6e− 1 9.6e− 2 5.5e− 2 2.7e− 2 1.4e− 2

u3 1.1 7.0e− 1 4.1e− 1 2.3e− 1 1.2e− 1 6.2e− 2

Table 5.2: errors in infinity norm (normalized by u∞) on the velocity components when
solving (5.29), with the considered parameters. `min/`max denote the minimum and

maximum levels of refinement (the equivalent finest grid resolution is
(
2`max

)3
). The

leftmost column refers to the maximum number of iteration(s) set for the strategy
described in section 5.4 (“0 iteration” corresponding to the solution of (5.23), i.e.,
discarding solution-dependent terms).

components do not decrease with grid refinement when the solution-dependent terms

are simply discarded (0 iteration), whereas the suggested method successfully recovers

convergence on velocity components, even when restricting the number of iterations to

10.

This observation represents a fundamental difference with the problem for scalar

fields. Indeed, as shown in [16], disregarding solution-dependent terms when solving

elliptic interface problems for scalar fields with a dimension-by-dimension approach does

not affect the convergence of the solution itself (though its gradient is inaccurate [28]).

However, when solving for separate components of vector fields, as we consider here, this

no longer holds and the velocity components do not converge.

5.6 Summary

In this chapter, we have introduced and presented a numerical approach targeted

for the implicit and sharp treatment of viscous terms in simulations of incompressible,

viscous two-phase flows. A finite volume approach on Voronoi tessellations, first intro-
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Figure 5.4: graph representation of the data from Table 5.2. eui is the max error on
ui, normalized by u∞. The black and green circles overlap.

Figure 5.5: visualization of the error on u3 when solving (5.29), with the considered
parameters. Top: discarding solution-dependent terms in interface conditions (0 iter-
ation). Bottom: enabling the iterative method described in section 5.4 to run until
termination. From left to right, computational grids of increasing levels of refinement
(a portion of a slice in the grid is illustrated). The same color bar is used for all
images.
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duced in [55], is used away from the interface. On the other hand, the relevant interface

discontinuities are treated using a dimension-by-dimension approach (see [16, 15]). The

velocity components are effectively decoupled from one another in this approach, except

for the interface conditions which involve solution-dependent terms. In order to account

for those terms (unknown a priori), extension and extrapolation techniques from [172]

have been developed and adapted for face-sampled fields on adaptive quadtree/octree

grids. Their use within an iterative strategy, extending the idea from [28] to problems in-

volving vector fields, intends to recover such solution-dependent terms and include them

in the relevant interface conditions. The relevance of these developments has been as-

sessed and illustrated on a Stokes flow problem, highlighting the need to account for such

terms when [µ] 6= 0.
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Chapter 6

Finite volume approach for elliptic

interface problems with cell-sampled

scalar fields

6.1 Introduction

In this chapter, we present the finite-volume approach implemented for solving elliptic

interface problems of the kind





−∇ · (β∇ψ) = f,

[ψ] = a,

[βn · ∇ψ] = b,

(6.1)

for a cell-sampled scalar field ψ and piecewise constant diffusion coefficient β, as relevant

for the “pressure guess” and “projection step” problems outlined in chapter 3. As illus-

trated in Figure 3.1, we denote by Ω the computational domain, and by Γ the interface

which separates Ω into Ω+ and Ω− (based on the sign of the levelset of zero-contour Γ).
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The unit vector normal to Γ, pointing toward Ω+ is n.

While this might seem redundant with the content of chapter 4, the techniques pre-

sented therein were found inappropriate to use within a two-phase flow simulation en-

gine, as outlined in chapter 3. First, that iterative strategy requires accurate (tangential)

derivatives of a, which encompasses curvature-related terms as well as derivatives in ve-

locity components in the targeted applications (see (3.19)). Therefore, the evaluation

of (δ − nn) · ∇a would not lead to accurate, reliable results in our framework. Second,

the strategy from chapter 4 builds upon a finite-difference approach for capturing inter-

face discontinuities. While it can be coupled to the stability-guaranteeing finite-volume

approach from [55] away from the interface (see section 4.5), an entirely finite-volume

approach may be preferable regarding stability.

We therefore opt for the method introduced in [154] which alleviates the drawbacks

discussed here above. Originally implemented for node-sampled scalar fields and coupled

to the superconvergent discretization from [179] away from the interface, the targeted

application requires an implementation for cell-sampled scalar fields, coupled to the dis-

cretization presented in [55] away from the interface.

We also introduce a novel robust strategy for extrapolating the cell-sampled solution

of (6.1) from either subdomain to the rest of the domain. This extrapolation relies on

the PDE-based approach introduced in [172], which is adapted to cell-sampled fields on

quadtree/octree grids.

6.2 Numerical discretization

The numerical discretization of (6.1) relies on the duplication of unknowns in cells

that are crossed by the interface: in cell j which has its center in say Ω+, one defines the

primary unknown ψj = ψ+
j and an intermediary (ghost) unknown ψ−j which approximates
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the solution at the center of cell j as if it was in Ω−. When the superscript is omitted,

we implicitly refer to the primary unknown in a cell (that means ψC = ψ+
C if C has its

center in Ω+).

This duplication of unknowns allows one to safely assume that cells that are not

crossed by the interface have access to values corresponding to the same subdomain for

all their neighbors, even if any such neighbor has its center across the interface. However,

it also leads to an underdetermined system of equations, which is closed by constraining

the duplicates by means of truncated Taylor series, built consistently with the prescribed

interface conditions.

6.2.1 Discretization away from the interface

Away from the interface, we use the discretization introduced in [55]. We summa-

rize it here below and show that it is consistent with a finite-volume strategy, over the

computational cells. For a clear and succinct presentation, we omit the ± superscripts

and we consider (piecewise) constant diffusion coefficient β, as relevant for the targeted

application.

Consider a computational cell C that is not crossed by the interface, by integrating

−∇ · (β∇ψ) = f side-by-side over C and using the divergence theorem (see appendix

A.3), one has ∫

∂C
−β∇ψ · η d∂C =

∫

C
f dC (6.2)

wherein η is the unit vector normal to ∂C pointing outward C. For rectangular grid cells,

the left-hand side of (6.2) can be approximated by

∫

∂C
−β∇ψ · η d∂C ≈

∑

i=x, y, z

−β
(
∂iψ|∂Ci+1/2

− ∂iψ|∂Ci−1/2

)
sC⊥i (6.3)
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where ∂Ci+1/2 (resp. ∂Ci−1/2) is the face of C found in the positive (resp. negative)

cartesian direction i and sC⊥i is the area of the cross section of C, orthogonal to cartesian

direction i. We denote by hCi the length of cell C along Cartesian direction i (see Figure

6.1).

Now the discretization used for ∂iψ|∂Ci±1/2
requires special care as it may involve

nonuniform cell neighbors (consider ∂xψ|∂Dx+1/2
or ∂yψ|∂Ay+1/2

in Figure 6.1 for instance).

The discretization from [55] is used and may be generally described as follows. For ∂iψ|F
where F is any (non-wall) face orthogonal to the cartesian direction i

• find the biggest computational cell having F as (part of) one of its faces, let that

cell be Q;

• find all neighbor cells of Q across its face encompassing F and let that set of cells

be S;

• define the discretization distance

∆F =
∑

C∈S

sC⊥i
sQ⊥i

hCi + hQi
2

; (6.4)

• discretize ∂iψ|F as

∂iψ|F ≈ m
∑

C∈S

sC⊥i
sQ⊥i

ψQ − ψC
∆F

(6.5)

where m = +1 (resp. m = −1) if Q is found in the positive (resp. negative)

cartesian direction i, with respect to F.

It is shown in [55] that this discretization is second-order accurate, at the center of the

face of Q that encompasses F. Note that, by construction, the discretization described

here above will produce identical values of ∂iψ|F for all faces subdividing another, larger

face.
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Figure 6.1: two-dimensional illustration of the notations used in subsection 6.2.1.

For example, ∂xψ|∂Dx+1/2
in Figure 6.1 would be approximated as

∂xψ|∂Dx+1/2
≈ (2ψE − ψD − ψG) /2

(2hEx + hDx + hGx ) /4
,

and, by construction, the discretization produces ∂xψ|∂Dx+1/2
= ∂xψ|∂Gx+1/2

= ∂xψ|∂Ex−1/2
.

If the face F is a wall face, i.e., if F lies on a (non-periodic) border of the computational

domain, it corresponds to a boundary condition for ψ. Let C be the cell having F as a

face. In case of Dirichlet boundary conditions, ψF is prescribed, and one may use

∂iψ|F ≈ m
ψC − ψF
hCi /2

where m = +1 (resp. m = −1) if C is found in the positive (resp. negative) cartesian

direction i, with respect to F. In case of Neumann boundary condition, the value of

∂iψ|F is prescribed and thus used right away.

The right-hand side of (6.3) may be discretized as fvol (C) for arbitrary scalar field

f provided as a source term. However, in the context of simulations of incompressible

flows, the projection step (3.21) feeds f = −∇ · u? as a source term and the right-hand
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side of (6.3) then is discretized as

∫

C
−∇ · u? dC ≈

∑

i=x, y, z

−
(
〈u?i 〉∂Ci+1/2

− 〈u?i 〉∂Ci−1/2

)
sC⊥i (6.6)

wherein 〈u?i 〉F is evaluated as follows for a face F orthogonal to the cartesian direction i:

• find the biggest computational cell having F as (part of) one of its faces, let that

cell be Q;

• find all neighbor cells of Q across its face encompassing F and let that set of cells

be S;

• let s = + (resp. s = −) if Q is found in the positive (resp. negative) cartesian

direction i, with respect to F, then

〈u?i 〉F =
∑

C∈S

sC⊥i
sQ⊥i

u?i |∂C, i s 1/2 . (6.7)

Note that, by construction, this averaging procedure produces identical values for 〈u?i 〉F
on all faces subdividing another, larger face.

For example,
∫
C −∇ · u? dC in Figure 6.1 is discretized as

−sD⊥x
(

1

2

(
u?∂Dx+1/2

+ u?∂Gx+1/2

)
− u?∂Dx−1/2

)
− sD⊥y

(
v?∂Dy+1/2

− 1

2

(
v?∂Cy−1/2

+ v?∂Dy−1/2

))
,

in cell D.

As shown in [55], the discrete divergence operator D resulting from (6.6) and (6.7) is

linked to the discrete gradient operator G defined by (6.5) via LFG = −(LCD)T wherein LF

and LC are diagonal, positive-definite face- and cell-based operators, respectively. This

latter relation stands as a discrete mimetic property of the corresponding continuum
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operators and guarantees that the resulting projection step does not inject spurious

energy, as measured in the LF -norm.

6.2.2 Discretization for cells crossed by the interface

The discretization used for capturing the desired jump conditions from (6.1) was

introduced in [154]; it is briefly summarized here. Consider a computational cell C that

is crossed by the interface, let C+ = C ∩Ω+ and C− = C ∩Ω−. Integrating (6.1) over C−,

one has

−
∫

∂C∩Ω−
β−η · ∇ψ− d∂C −

∫

Γ∩C
β−n · ∇ψ− dΓ =

∫

C−
f−dC (6.8)

where η is the unit vector normal to ∂C pointing outward C and n is the unit vector

normal to Γ pointing toward Ω+ (see Figure 6.2). Similarly, the integration over C+ gives

−
∫

∂C∩Ω+

β+η · ∇ψ+ d∂C +

∫

Γ∩C
β+n · ∇ψ+ dΓ =

∫

C+

f+dC. (6.9)

Adding (6.8) and (6.9) side by side, the interface condition [βn · ∇ψ] = b may be used

and one obtains

−
∫

∂C∩Ω+

β+η · ∇ψ+ d∂C −
∫

∂C∩Ω−
β−η · ∇ψ− d∂C =

∫

C+

f+dC +

∫

C−
f−dC −

∫

Γ∩C
b dΓ.

(6.10)

The integrals in the left-hand side of (6.10) are discretized as

−
∫

∂C∩Ω±
β±η · ∇ψ± d∂C ≈

∑

i=x, y, z

−β±
(
s∂C±i+1/2

∂iψ
±∣∣
∂Ci+1/2

− s∂C±i−1/2
∂iψ

±∣∣
∂Ci−1/2

)

(6.11)

where s∂C±i+1/2
is the area of the portion of the face ∂Ci+1/2 that belongs to Ω± (note

that it might be 0 if the face is not intersected). The notations are illustrated in Figure

6.2. We use the toolbox from [116, 180] for the surface reconstruction within cells, the
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Figure 6.2: two-dimensional illustration of the notations used in subsection 6.2.2.
Since r lies in Ω−, the signed distance d is negative in this particular example.

evaluation of surface integrals and the calculation of surface areas.

In (6.11), the derivatives ∂iψ
±|F are discretized using standard central finite difference

between the values of ψ± associated with the two cells sharing the face F (the mesh is

uniform in the neighborhood of the interface). Those derivatives are required only if they

correspond to a nonzero value of s∂C±i±1/2
, which ensures by itself that the required value

of ψ+ or ψ− will be accessible in either cell.

Additional constraints on the duplicated unknowns in crossed cells must be provided

in order to fully determine the discretized system of equations. Consider the center r of

a cell C crossed by the interface, the normal vector n =
∇φ
‖∇φ‖ may be evaluated from

the levelset function and the (signed) distance between r and Γ is d =
φ (r)

‖∇φ‖ . One may

thus define the projection of r onto the interface as rpr. = r − dn (see Figure 6.2). A

Taylor expansion (truncated to linear terms) for ψ+−ψ− around rpr., along the direction
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of n allows to write

ψ+ (r)− ψ− (r) = [ψ] (rpr.) + d [∂nψ]

= a (rpr.) + d
b (rpr.)− [β] ∂nψ

−

β+
(6.12)

= a (rpr.) + d
b (rpr.)− [β] ∂nψ

+

β−
(6.13)

where we have used [AB] = A± [B]+ [A]B∓ to exploit the (sharp) solution from one side

of the interface only.

For the sake of clarity, let us consider that (6.12) is used to constraint the duplicated

unknowns in C. Let N−C be the set of neighbor cells of C in a 3 × 3 × 3 neighborhood

that have their centers in Ω−. If N−C allows it1, a least-square linear interpolant of ψ−

may be built around C, minimizing the sampling errors on C⋃N−C and its coefficients are

independent of the cell-sampled values of ψ− (see appendix B). By approximating ∂nψ
−

in (6.12) by the derivative of such a least-square interpolant, one finds the appropriate

coefficients c’s such that

∂nψ
− ≈ cCψ

−
C +

∑

D∈N−C

cDψD (6.14)

(note that ψD = ψ−D since D ∈ N−C ). Substituting (6.14) into (6.12), one obtains





ψ+
C = ψC + a+

d

β+
b− d [β]

β+

(
cCψC +

∑
D∈N−C

cDψD
)

ψ−C = ψC

(6.15)

1If not, that could be because N−C does not contain enough elements or because these elements are
geometrically degenerate (e.g. they all lie in a same plane, for instance).
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if the center of cell C lies in Ω−. Otherwise, if the center of cell C lies in Ω+, one has





ψ+
C = ψC

ψ−C = ψC − a−
d

β+
b+

d [β]

β+

(
cC

(
ψC − a−

d

β+
b

)
+
∑
D∈N−C

cDψD

)

(
1− cCd

[β]

β+

) .
(6.16)

Relations similar to (6.15) and (6.16) can be obtained in a totally similar way if (6.13)

is used instead of (6.12). Note that (6.15) and (6.16) express the intermediary (ghost)

unknowns in crossed cells entirely as linear combinations of surrounding primary un-

knowns. Therefore, the problem is entirely determined for the primary unknowns after

substituting (6.15) and (6.16) into the discretized form of (6.10) and (6.11).

The volume integrals in the right-hand side of (6.10) may be discretized as f+vol (C+)+

f−vol (C−) for an arbitrary scalar field f provided as a source term. However, in the con-

text of simulations of incompressible flows, the projection step (3.21) feeds f = −∇ · u?

as a source term and, in such a case, one has

−
∫

C+

∇·u?,+dC−
∫

C−
∇·u?,−dC = −

∫

∂C⋂Ω+

u?,+·η d∂C−
∫

∂C⋂Ω−
u?,−·η d∂C+

∫

Γ
⋂ C [u? · n] dΓ

(6.17)

which naturally handles a possible discontinuity in normal velocity components (as it is

the case in presence of phase change). In (6.17), the discretization

∫

∂C⋂Ω±
u?,± · η d∂C ≈

∑

i=x, y, z

(
s∂C±

i+1/2
u?,±i

∣∣
i+1/2

− s∂C±
i−1/2

u?,±i
∣∣
i−1/2

)
(6.18)

is used (note that we need velocity components extrapolated from either side, at faces of

C intersected by the interface).

The system of linear equations resulting from this discretization is non-symmetric
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and the discretized equations for crossed cells involve primary unknowns associated with

second-degree neighbors. We favor (6.12) (resp. (6.13)) when β+ > β− (resp. when β− >

β+) as that choice was shown to keep the condition number of the overall discretization

matrix bounded in numerical experiments (see [154]).

6.3 Resolution of the linear system

The resolution of the linear system resulting from the above discretizations is tackled

with a BiCGStab algorithm provided by PetSc [111]. By default, the solver uses Hypre

[181] as a right preconditioner. This allows BiCGStab to monitor the true residual to

determine convergence and termination.

Indeed, the simulation of three-dimensional buoyant bubbles in viscous fluids revealed

technical challenges with the resolution of this system of equations. When used as a

left preconditioner (hence monitoring convergence of the preconditioned residual within

BiCGStab), Hypre was found to produce spurious effects leading to a very large residual

in a few cells close to the interface in some cases. This in turn could either impede the

successful termination of BiCGStab (and crash simulations) or produce highly inaccurate

results on termination because the preconditioned residual was found below the relative

threshold as compared to its (very large) initial value, whereas the true residual had not

decreased much.

The use of HYPRE as a right preconditioner does not alleviate the production of

such numerical artifacts intrinsically, but it makes results more reliable upon successful

termination of BiCGStab, since the true residual is monitored in such a case. If BiCGStab

fails to converge, the following fall-back strategy is used for successive further attempts:

1. the “strong threshold” parameter of the Hypre preconditioner is increased to 0.9.

A larger value translates into an algebraic condition that is more likely to discard
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loosely connected degrees of freedom during the coarsening steps of the multigrid

method. This means that coarsening steps are less likely to involve degrees of

freedom that are loosely connected across the interface [182];

2. BiCGStab is used without preconditioner if the latter fails to converge;

3. GMRES is used without preconditioner if the latter fails;

4. an enhanced BiCGStab(L) algorithm is used without preconditioner if the latter

fails (reported most stable in [51]).

6.4 PDE-based extrapolation of cell-sampled fields

In order to ensure sharpness in our numerical approach, primary (sharp) fields of

interest need to be extrapolated from either subdomain. This is required to prevent

differentiation across interface discontinuities, for instance. Similarly, the points traced

back in time in the context of the semi-Lagrangian treatment of advection terms may land

across the interface and one must use extrapolated values to ensure a sharp discretization

in such a case.

Once the system of discretized equations is solved, its sharp solution is extrapolated

from either subdomain to the rest of the domain. We present here an adaptation of

the PDE-based, linear extrapolation method from [172] for cell-sampled scalar fields on

adaptive Quadtree/Octree grids. For the sake of clarity, we consider the extrapolation

of ψ− from Ω− hereafter (the extrapolation of ψ+ from Ω+ follows the same principles

with a reverted normal vector).

The methodology starts by defining the normal derivatives ψ−n = n · ∇ψ− at cells of

Ω− where it can be defined, i.e., where all the required well-defined neighbor values are
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accessible and valid (see subsection 6.4.1). In such a cell C, we discretize ψ−n as

∑

i=x, y, z

ni

(
∂iψ

−|∂Ci+1/2
+ ∂iψ

−|∂Ci−1/2

)

2
(6.19)

using the notations from subsection 6.2.1 (this is equivalent to the standard central finite

difference formula in locally uniform regions).

Let H−n = 0 in cells where ψ−n could be defined, and H−n = 1 where it could not.

These normal derivatives are then extrapolated using constant extrapolation along n, by

solving

∂τψ
−
n +H−nn · ∇ψ−n = 0 (6.20)

until steady-state in pseudo-time τ .

The procedure then extrapolates the values of ψ−. In cells having their centers in

Ω−, one has ψ− = ψ and ψ− may also be defined in cells crossed by the interface, by

exploiting relations (6.15) and (6.16) (this is further discussed in subsection 6.4.1). Let

H− = 0 in cells where ψ− could be defined, and H− = 1 where it could not. The value

of ψ− is then extrapolated along n by solving

∂τψ
− +H−

(
n · ∇ψ− − ψ−n

)
= 0 (6.21)

until steady-state in pseudo-time τ .

In practice, (6.20) and (6.21) are solved for a finite number of pseudo-time steps using

a forward Euler time discretization (we use 30 time steps to ensure convergence within

a band of 3 smallest computational cells across the interface) and upwind discretization
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for the spatial derivatives. For instance, n · ∇ψ− is discretized as

∑

i=x, y, z

max (ni, 0) ∂iψ
−∣∣

∂Ci−1/2
+ min (ni, 0) ∂iψ

−∣∣
∂Ci+1/2

(6.22)

in (6.21). The pseudo-time step ∆τ is set to 1/3 in 3D (resp. 1/2 in 2D) of the minimal

discretization distance (6.4) associated with the relevant derivatives in (6.22). Note that

adaptive pseudo time stepping is used (the pseudo-time step is larger in large computa-

tional cells).

6.4.1 About the use of ghost values for extrapolation purposes

As explained in subsection 6.2.2, cells that are crossed by the interface are augmented

with secondary (ghost) unknowns, corresponding to the subdomain across the interface.

For instance, ψ+ is defined via relation (6.15) in cell from figure 6.2 although its center

lies in Ω−. Including such ghost values in the initialization of the extrapolation methods

from section 6.4 (within calculations of (6.19), for instance) naturally expands the regions

of well-defined neighbors, which is desirable in case of locally under-resolved interfaces.

However, those ghost values were found to be inaccurate in two particular cases:

1. as stated in subsection 6.2.2, (6.12) is favored over (6.13) when β+ > β− (and vice

versa). Let us assume β+ > β− without loss of generality. For a given cell crossed

by the interface, one may not find enough cells in a 3 × 3 × 3 neighborhood with

their centers in Ω− and therefore the local construction of the required least-square

operator for ∂nψ
− (see (6.14)) cannot be done. In such a case, the discretization

resorts to using (6.13) locally instead, since the least-square operator for ∂nψ
+ can

be constructed with surrounding primary unknowns, in such a case. However, this

produces a much more ill-conditioned (numerically) definition for the ghost values,
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in particular in case of large ratios of diffusion coefficients, which may in turn lead

to inaccurate ghost values for the considered cell. This is illustrated in Figure 6.3

for one of the considered test cases in two dimensions.

2. the ghost value in crossed cell was found to be inaccurate when the volume across

the interface within the cell is very small. The smaller the volume, the less the

computational weight associated with such a ghost value within the discretization

scheme. Unless one uses a much more stringent (and less practical) termination

criterion on the (relative) residual, problems of this sort may occur for cells having

tiny portions of their volume across the interface.

In order to avoid ill-defined ghost values, the extrapolation procedure for cell-sampled

scalar fields addresses the above issues by considering ghost values in crossed cells valid

only if (6.12) (resp. (6.13)) could be used locally if β+ > β− (resp. if β− > β+) and if

the volume across the interface within the cell is at least 1% of the total volume of the

cell2.

6.5 Validation and illustrations

In order to validate the implementation of the solver as well as the extrapolation

procedure, we analyze the accuracy of the solution it produces on manufactured test

problems.

2This threshold value is arbitrary and was found to be large enough to stabilized projection steps in
simulations. A less arbitrary value would depend on the tolerance of the relative residual, the ratio of
diffusion coefficients and a very thorough analysis of the discretization scheme which goes beyond the
scope of this work.
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Figure 6.3: illustration of inaccurate ghost values obtained due to a lack of enough
cell neighbors on the slow-diffusion side of the interface for a given crossed cell. For
this fully periodic example, we have β− = 1 and β+ = 100, Ω− is the subdomain
interior to the interface. Left: error on the extrapolation of the solution from Ω−

when using all ghost values. A large error is found in one cell and propagates to its
domain of influence; the symptomatic cell has only one cell neighbor in Ω− within its
3 × 3 neighborhood and (6.13) is used locally instead of (6.12). Right: error on the
extrapolation of the solution from Ω− (using the same color scale) when using only
well-defined ghost values, i.e., discarding the ill-conditioned ghost value(s) built with
(6.13).
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6.5.1 In two dimensions

Benchmark test 1

We consider Ω = [−1, 1]× [0, 3]. The interface is defined as the parameterized curve

Γ ≡ (x (ϑ) , y (ϑ)) , ϑ ∈ [0, 2π[ where





x (ϑ) = 0.6 cos (ϑ)− 0.3 cos (3ϑ) ,

y (ϑ) = 1.5 + 0.7 sin (ϑ)− 0.07 sin (3ϑ) + 0.2 sin (7ϑ) .

The corresponding levelset function is defined as the exact signed distance to Γ, negative

in the interior region. The coefficients are β− = 1 and β+ = 10. The exact solution is

chosen to be





u (x, y) = exp (x) (x2 sin (y) + y2) , ∀ (x, y) ∈ Ω−,

u (x, y) = − (x2 + y2) , ∀ (x, y) ∈ Ω+,

the right-hand side f and the jump terms a and b are defined accordingly. Dirichlet

boundary conditions are used on the walls of the computational domain. This is the

ninth example from [16].

We analyze the performance of the solver and the extrapolation on this test problem.

The accuracy of the solution is analyzed on grids of increasing resolution: the finest

computational cells are set to be 8 times finer than the coarsest and the performance of

the solver is assessed on grids of increasing resolution. The solution is also extrapolated

from either subdomain and the accuracy of that extrapolation is analyzed in a band of

3 finest computational cells across the interface. The accuracy of the partial derivatives,

evaluated at faces of the computational grid is also analyzed.

As illustrated in Figure 6.4, the solver achieves close to second order accuracy on the
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Figure 6.4: convergence analysis for the benchmark test 1 in subsection 6.5.1. Top left:
maximum error on the solution for increasing grid resolutions. Top right: maximum
errors on the partial derivatives of the solution (evaluated at faces) for increasing grid
resolutions. Bottom: illustration of the solution and the computational grid for an
equivalent finest resolution of 5122.

solution and the extrapolations are also second order accurate. The derivatives of the

solution are first order accurate (note that the evaluation of derivatives at faces close to

the interface may involve extrapolated values).
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Benchmark test 2: large ratio of diffusion coefficients

We consider Ω = [−1, 1] × [−1, 1]. The interface is defined as the parameterized

curve Γ ≡ (x (ϑ) , y (ϑ)) , ϑ ∈ [0, 2π[ where





x (ϑ) = (0.5 + 0.1 sin (5ϑ)) cos (ϑ) ,

y (ϑ) = (0.5 + 0.1 sin (5ϑ)) sin (ϑ) .

The corresponding levelset function is defined as the exact signed distance to Γ, negative

in the interior region. The coefficients are β− = 104 and β+ = 1. The exact solution is

chosen to be





u (x, y) =
exp (x) (x2 sin (y) + y2)

β−
, ∀ (x, y) ∈ Ω−,

u (x, y) = 0.5 + cos (x) (y4 + sin (y2 − x2)) , ∀ (x, y) ∈ Ω+,

the right-hand side f and the jump terms a and b are defined accordingly. Dirichlet

boundary conditions are used on the walls of the computational domain. This is the

sixth example from [28], and it is designed to test the ability of the solver to deal with

large ratios of diffusion coefficients, though flux magnitudes are comparable across the

interface.

The accuracy of the solution is analyzed on grids of increasing resolution: the finest

computational cells are set to be 8 times finer than the coarsest and the performance of

the solver is assessed on grids of increasing resolution. The solution is also extrapolated

from either subdomain and the accuracy of that extrapolation is analyzed in a band of

3 finest computational cells across the interface. The accuracy of the components of the

flux vector β∇ψ, evaluated at faces of the computational grid is also analyzed.

For this challenging problem, the default setup of BiCGStab with Hypre as a right-

preconditioner failed for the default value of the strong threshold (0.25 for two-dimensional
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Figure 6.5: convergence analysis for the benchmark test 2 in subsection 6.5.1. Top
left: maximum error on the solution for increasing grid resolutions. Top right: maxi-
mum errors on the flux components (evaluated at faces) for increasing grid resolution.
Bottom: illustration of the solution and the computational grid of equivalent finest
resolution 5122.

problems), on the finest grid considered. Therefore, the solver resorted to using a larger

value of the strong threshold of 0.9, which successfully enabled BiCGStab to solve the

system (see section 6.3). As illustrated in Figure 6.5, the solver achieves second order

accuracy on the solution and the extrapolations are also second order accurate. The

components of the flux vector are first order accurate.
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6.5.2 In three dimensions

We consider the three-dimensional domain Ω = [−2, 2] × [−2, 2] × [−2, 2]. The

interface is the surface parameterized by

r (ϑ, ϕ) =
3

4
+

5− 3 cos (6ϕ) (1− cos (6ϑ))

25
, ϑ ∈ [0, π] , ϕ ∈ [0, 2π[

in standard spherical coordinates; the corresponding levelset function is built as negative

inside and positive outside. The coefficients are β− = 1 and β+ = 1250. The exact

solution is chosen to be





u (x, y) = exp

(
x− z

2

)
(x sin (y)− cos (x+ y) arctan (z)) , ∀ (x, y) ∈ Ω−,

u (x, y) = −1 +

5 arctan

(
x3y

10
+ 2z cos (y)− y sin (x+ z)

)

2β+
, ∀ (x, y) ∈ Ω+,

the right-hand side f and the jump terms a and b are defined accordingly. Dirichlet

boundary conditions are used on the walls of the computational domain. This is the

example from section 5.2 in [28], and it is designed to test the ability of the solver to deal

with large ratios of diffusion coefficients, though flux magnitudes are comparable across

the interface.

The accuracy of the solution is analyzed on grids of increasing resolution: the finest

computational cells are set to be 8 times finer than the coarsest and the performance of

the solver is assessed on grids of increasing resolution. The solution is also extrapolated

from either subdomain and the accuracy of that extrapolation is analyzed in a band

of 3 finest computational cells across the interface. The accuracy of the components

of the flux vector β∇ψ, evaluated at faces of the computational grid is also analyzed.

As illustrated in Figure 6.6, the solver achieves second order accuracy on the solution

and the extrapolations are also second order accurate on sufficiently resolved grids. The
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Figure 6.6: convergence analysis for the three-dimensional benchmark test subsection
6.5.2. Top left: maximum error on the solution for increasing grid resolutions. Top
right: maximum errors on the flux components (evaluated at faces) for increasing grid
resolution. Bottom: illustration of the solution, the (truncated) interface and the
computational grid of equivalent finest resolution 5123.

components of the flux vector are first order accurate. This analysis was conducted on

12 KNL nodes, using 768 MPI tasks, on Stampede2.

6.6 Summary

In this chapter we have introduced and presented a finite-volume strategy for the

numerical resolution of scalar, elliptic interface problems. The discretization couples

the method introduced in [154] for capturing interface discontinuity conditions to the

method from [55] away from the interface, as it guarantees numerical stability for the
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projection step in simulation of single-phase flows. We also introduced an adaptation of

the PDE-based extrapolation scheme from [172] for cell-sampled scalar fields on adaptive

quadtree/octree grids. The performance of these methods and the quality of their im-

plementations was assessed by the the methods of manufactured solutions which showed

(close to) second-order accurate results for the solution and its extrapolations as well as

first-order accurate results for its gradient (and/or flux vector).
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Chapter 7

Simulation of incompressible,

viscous two-phase flows

7.1 Introduction

In this chapter, we consider the numerical simulation of incompressible, viscous two-

phase flows with a sharp levelset representation and implicit treatment of viscous terms.

As outlined in chapter 3 (see subsection 3.3.1), the developed solver builds upon the

novel numerical methods described in chapters 5 and 6. However, it also involves several

other, peripheral or well-established numerical methods and features that have not been

presented yet. After reviewing these omitted parts, we assess the performance of the

solver (accuracy in infinity norm) on validation problems and benchmark tests. The

simulation of actual two-phase flows is then considered and illustrated.
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7.2 Complementary numerical methods

In this section, we provide complementary descriptions and explanations pertaining

to additional peripheral or well-established numerical methods used within the solver.

7.2.1 Discretization of fluid advection terms

The implementation of simulation tools on adaptive grids comes with added complex-

ity, but it is usually motivated by the perspective of using extreme levels of resolutions,

with a limited computational cost. While fine spatial resolutions may be desirable, simu-

lations harnessing them would still be intractable if they are associated with a stringent

time-step restriction like ∆t ∼ O (∆x2).

This motivates the treatment of viscous terms in a fully implicit fashion, which

should alleviate such a constraint when associated with an unconditionally stable time-

integration scheme. Borrowing from the approach used in single-phase flows, the material

derivative
Du

Dt
is discretized with a semi-Lagrangian approach, combined with a second-

order backward differentiation formula [109, 87], in order to guarantee absolute stability.

Consider the fluid velocity u (x, t). For any point x0 and time t0, one may define the

material particle trajectory X(x0,t0) (t) such that




X(x0,t0) (t0) = x0,

dX(x0,t0)

dt
= u

(
X(x0,t0) (t) , t

)
.

Let U (t) = u
(
X(x0,t0) (t) , t

)
, then

dU

dt
=

(
∂u

∂t
+ u · ∇u

)

(X(x0,t0)(t),t)
. (7.1)
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The semi-lagrangian approach builds upon (7.1) and uses a discretization for
dU

dt
as

material advection terms. Using a second-order backward differentiation formula, we

have

(
∂u

∂t
+ u · ∇u

)

(x,tn+1)

' α
u (x, tn+1)− u

(
X(x,tn+1) (tn) , tn

)

∆tn
(7.2)

+β
u
(
X(x,tn+1) (tn) , tn

)
− u

(
X(x,tn+1) (tn−1) , tn−1

)

∆tn−1

where α =
2∆tn + ∆tn−1

∆tn + ∆tn−1

and β =
−∆tn

∆tn + ∆tn−1

.

Numerically, the backtraced points X(x,tn+1) (tn+1 − T ) (where T is either ∆tn or

∆tn + ∆tn−1) are evaluated with the following two-stage procedure. First, one approxi-

mates X(x,tn+1) (tn+1 − T/2) by

X̄ = x− T

2
u (x, tn) (7.3)

then

X(x,tn+1) (tn+1 − T ) ≈ x− Tv
(
X̄, tn+1 −

T

2

)
(7.4)

where v
(
X̄, t

)
is interpolating linearly in time between the velocity fields at times tn−1

and tn, i.e.,

v (X, t) = u (X, tn) +
u (X, tn)− u (X, tn−1)

∆tn−1

(t− tn) . (7.5)

The spatial interpolation of the velocity components at times tn and tn−1 in (7.2) and

(7.5) is done with quadratic interpolation of the appropriate node-sampled velocity fields,

i.e., the node-sampled velocities extrapolated from the subdomain that contains x at time

tn+1.
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7.2.2 Interface advection and levelset reinitialization

The final stage of the workflow per time step (see subsection 3.3.1) involves the ad-

vection of the interface from time tn+1 to time tn+2. This is done by solving the advection

equation on the levelset function (3.1) with an interface velocity w. Theoretically, this

interface velocity may be defined as either1

w = u+ − Ṁ

ρ+
n, (7.6)

or

w = u− − Ṁ

ρ−
n, (7.7)

or any linear combination of the two. The solver allows the user to choose either (7.6),

(7.7), an arithmetic average of the two, i.e.,

w =
1

2

(
u+ − Ṁ

ρ+
n

)
+

1

2

(
u− − Ṁ

ρ−
n

)
(7.8)

or a mass-weighted averaged of the two, i.e.,

w =
ρ+

ρ+ + ρ−

(
u+ − Ṁ

ρ+
n

)
+

ρ−

ρ+ + ρ−

(
u− − Ṁ

ρ−
n

)
. (7.9)

By default, (7.9) is used. However w is defined, its interface-defined values are then

extended normally to the interface in either subdomain, using the techniques from [172,

106].

Once the interface velocity w is defined, the levelset advection equation (3.1) is ad-

vanced from tn+1 to tn+2 using a second-order semi-Lagrangian method [106]: the value

1Since Ṁ = ρ (u−w) ·n, we have w ·n = u ·n− Ṁ/ρ on either side of the interface. Naturally, the
tangential components of w are set equal to the tangential components of the fluid velocity on either
side of the interface.
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of φ (x, tn+2) is set to φ
(
xd, tn+1

)
where xd is defined as

x̂ = x− ∆tn+1

2
w (x, tn+1) ,

xd = x−∆tn+1w̃

(
x̂, tn+1 +

∆tn+1

2

)
(7.10)

where w̃ (x, t) interpolates the interface velocity linearly (in time) between tn and tn+1,

i.e.,

w̃ (x, t) = w (x, tn) +
w (x, tn+1)−w (x, tn)

∆tn
(t− tn) . (7.11)

The velocity fields are interpolated in space with quadratic interpolation.

The interpolation in space of the levelset function is a user-defined choice. For a con-

sistent interface description (e.g. the evaluation of θ values in chapter 5 and the in-cell

interface reconstruction from chapter 6), the interpolation scheme must ensure a contin-

uous representation of the levelset function φ across adjacent cells of same size. Linear

interpolation or continuity-enforcing adaptations of the stabilized quadratic interpolation

from [106] are used2 (see appendix C).

Once advected, the levelset is systematically reinitialized to keep its signed-distance

property. The reinitialization equation

∂φ

∂τ
+ sign (φ) (|∇φ| − 1) = 0 (7.12)

is solved in pseudo-time τ using a Total Variation Diminishing second-order Runge-Kutta

method [183] with the subcell-resolution strategy from [184] (more details in [106]).

2Though satisfying the continuity requirement, Hermite quadratic interpolations may introduce spu-
rious results due to discontinuous derivatives in signed distance functions.
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7.2.3 Calculation of curvature

Though the numerical methods from subsection 7.2.2 are second order accurate, fluid

velocities are only first-order accurate (in infinity norm) in our framework, as shown

hereafter. As a consequence, the interface advection velocityw is only first-order accurate

as well and so is the levelset representation of the interface after a finite simulation time.

In comparison with using a numerically smeared sign function when solving (7.12) (see

[5]), the use of the second-order subcell, interface-pinning method from [184] alleviates

mass loss during reinitialization. However, it is less prone to filtering noise out of a

O (∆x) error signal at points close to the interface. This in turn may be responsible for

spurious results when considering derivatives of the levelset function to extract interface-

related properties, in particular if they depend on second derivatives (e.g. curvature).

As illustrated in Figure 7.1 (left), the evaluation of the curvature κ = ∇ ·
( ∇φ
‖∇φ‖

)
by

means of standard differentiation was found to produce noisy, spurious results in regions

of large curvatures, with significant variations over the length of one single grid cell.

In [10], comparable observations were made in the context of levelset simulations

associated with Discontinuous Galerkin methods, leading to dramatically inaccurate re-

sults in such a context. The authors introduced the following alternative method for

evaluating the curvature (and normal vectors) and showed that it produces significantly

better (more accurate and less noise-corrupted) curvature results.

For a given point (x̄, ȳ, z̄) where the curvature is desired, a quadratic form

φquad. (x, y, z) = α0 +αxx+αyy+αzz+αxx
x2

2
+αxyxy+αxzxz+αyy

y2

2
+αyzyz+αzz

z2

2
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is built such that the error measure

∑

(x,y,z)∈N 2(x̄,ȳ,z̄)

|φquad. (x− x̄, y − ȳ, z − z̄)− φ (x, y, z)|2

is minimized (see appendix B for more detail), where N 2 (x̄, ȳ, z̄) is the set of second-

degree node neighbors3 of point (x̄, ȳ, z̄). The local curvature at (x̄, ȳ, z̄) can then be

evaluated from the α coefficients as

κlsqr =
αxx + αyy + αzz
α2
x + α2

y + α2
z

− αxxα
2
x + αyyα

2
y + αzzα

2
z + 2αxyαxαy + 2αxzαxαz + 2αyzαyαz
(
α2
x + α2

y + α2
z

)3/2
.

(7.13)

As illustrated in Figure 7.1 (right), this approach significantly improves the evaluation

of local curvature in our framework, as well. A similar method is used for the evaluation

of ∇n (gradient of normal vector), as required in presence of a nonzero mass flux across

the interface.

7.2.4 Optional sub-refining grid for interface capturing

The sharp treatment of the interface requires the evaluation of the levelset function

at relevant degrees of freedom in the numerical methods from chapters 5 and 6. The use

of a MAC grid discretization naturally generates non-collocated degrees of freedom in the

computational grid. Face- and cell-sampled degrees of freedom are the primary unknowns

and the value of the levelset function at such points requires thus interpolation of the

(node-sampled) levelset function. As a consequence, the actual description of the interface

locally depends on the interpolation scheme for the levelset function, numerically.

The entire solver and the tools used therein have been extended with the possibility

3The set of second-degree node neighbors of a node (x̄, ȳ, z̄) is the set of vertices belonging to the
cells surrounding (x̄, ȳ, z̄) and to their neighbor cells.
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Figure 7.1: comparison between curvature evaluation by standard differentiation
(left) and by the least-square local reconstruction (7.13) based on second-degree node
neighborhood (right), for the steady state of a three-dimensional buoyant bubble
(µ+/µ− = ρ+/ρ− = 103, Eo = 116, Mo = 5.51). Top: truncated three-dimensional
view of the bubble. Bottom: views from the bottom of the bubble. The same color
map is used in all figures.

of using a sub-refining, interface-capturing grid, that basically copies (local partitions of)

the computational and exploits additional level(s) of refinement for cells crossed by the

interface. As illustrated in Figure 7.2, this naturally produces a grid with nodes that are

collocated with face and cell centers of the computational grid, close to the interface and

therefore provides an unambiguous representation of the interface, numerically.

The motivation for this optional feature is to enable identification of under-resolved

geometries and topology changes in future work, and the possible application of ad-hoc

local strategies in such cases, regarding the calculation of curvature and/or normal vector

for instance (see [185, 186, 187, 188]). Such a dual grid srategy has also been used in other

works (see [51]). The use of a sub-refining, interface-capturing grid was also found to

alleviate the inaccuracies in mass conservation inherent to levelset formulations, although

it naturally adds to the computational and memory load of the simulation.
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Figure 7.2: illustration of the use of a subrefining grid. The computational grid (solid
lines) produces non-collocated degrees of freedom in a MAC grid discretization. The
interface-capturing grid (solid and dashed lines) has its nodes collocated with the
relevant degrees of freedom close to the interface.

7.2.5 Time step

By treating viscous terms implicitly, the stringent time step restriction

∆tvisc.

(
max

(
µ+

ρ+
,
µ−

ρ−

)(
2

(∆x)2 +
2

(∆y)2 +
2

(∆z)2

))
< 1 (7.14)

(see [15]) is expected to be alleviated.

In presence of surface tension, guaranteeing numerical stability requires to ensure

that the numerical propagation speed for capillary waves does not exceed the theoretical

one. In [1], the time step constraint

∆t <

√
(ρ+ + ρ−) (∆x)3

4πγ
(7.15)

was derived from these considerations. However, this time step restriction alone neglects
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viscous effects as it results from a phenomenon governed by inertia and surface tension

only. At fine length scales, the balance between viscous and surface tension effects be-

comes more significant and a time scale of the order of µ∆x/γ may be better suited and

less computational restrictive than (7.15) for small ∆x.

In [32], the time step4

∆t = min


c0

∆x

maxΩ ‖u‖
,
c1µmin∆x

γ
+

√(
c1µmin∆x

γ

)2

+ c2
(ρ+ + ρ−) (∆x)3

4πγ


 (7.16)

has been introduced, as an extension of the work from [189] for fluids of different viscosi-

ties and mass densities (µmin = min (µ−, µ+)). We found our approach to be stable under

the same time step constraint (7.16): unless otherwise stated, we use c0 = 1, c1 = 0.95

and c2 = 0.95.

7.2.6 Grid refinement

The refinement and coarsening criteria necessary for the construction of the trees are

provided to p4est[101, 103] by means of cell-level callback functions. A combination of

distance-based and vorticity-based refinement criteria are used in this work for building

the computational grid. Specifically, consider a cell C and its vertices V (C). If C is not

already of maximum level of refinement, it may be marked for refinement in any of the

4Asymptotically, this time step definition satisfies ∆t ∼ O (∆x) , as ∆x → 0. However, the second
term in (7.16) can be rewritten as

c1µmin∆x

γ


1 +

√
1 +

c2
4πc21

(
ρmin + ρmax

ρmax

)(
µmax

µmin

)2
Re2

We

∆x

L




where the Reynolds and Weber numbers are defined as Re =
ρmaxUL

µmax
and We =

ρmaxU
2L

γ
for a given

velocity scale U and length scale L. Therefore, one may observe ∆t ∼ O (∆x) with reasonable grid

resolutions only for moderate values of

(
µmax

µmin

)2
Re2

We
.
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following cases:

1. C is within a user-defined band layering the interface. In Ω− (resp. Ω+), a band

of b− (resp. b+) finest grid cells is enforced around the interface, by marking for

refinement C if

min
v∈V (C)

v∈Ωs

|φ (v)| < bs max (∆xfinest,∆yfinest,∆zfinest) (7.17)

where ∆xfinest, ∆yfinest and ∆zfinest are the cell sizes along cartesian directions for

the finest cells.

2. C is too coarse and too close to the interface. C is marked for refinement if its

distance to the interface is found comparable to the length of its diagonal, i.e., if

min
v∈V (C)

|φ (v)| ≤ L diag (C) . (7.18)

Unless otherwise stated, we use L = 1.2.

3. C is in a region of high vorticity. Similarly to [83, 85, 52], a vorticity-based criterion

is used: C is marked for refinement if

hmax

maxv∈V (C)

v∈Ωs
‖∇ × u (v)‖2

maxΩs ‖u‖2

≥ P, (7.19)

where hmax is the largest edge length of cell C and P is a user-defined parameter

controlling the level of refinement (its value is the same for Ω− and Ω+ in the

current implementation). By P = ∞, we indicate that vorticity-based refinement

is considered.

Similar, consistent conditions with reverted inequality signs control whether or not com-

putational cells may be marked for coarsening.
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7.3 Numerical validation and benchmark testing

In this section we assess the performance of the solver and consider validation prob-

lems. In particular, we consider comparisons between our results and analytical (man-

ufactured) solutions in order to assess and evaluate the rates of convergence for the

primary unknowns of interest, i.e., fluid velocities and pressure. Actual two-phase flow

benchmark problems are also considered thereafter.

7.3.1 Accuracy analyses by comparison with manufactured so-

lutions

Manufactured problem 1

The first considered problem involves the manufactured velocity field (in non-dimensional

form)





u− = (y − t+ 0.5)
(
r (x, y, t)2 − 1

)
+ 1

u+ = 1





v− = − (x− t+ 0.5)
(
r (x, y, t)2 − 1

)
+ 1

v+ = 1

(7.20)

with the pressure field 



p− = 2− r (x, y, t)2

p+ = 0
(7.21)

where r (x, y, t) =
√

(x− t+ 0.5)2 + (y − t+ 0.5)2 and the moving interface is defined by

the levelset function φ (x, y, t) = r (x, y, t) − 1. The solution is stationary in a reference

frame moving with the interface.

The computational domain is [−2, 2]2, the simulation time window is [0, 1], the

material parameters are set to µ− = 0.01, µ+ = 0.1, ρ− = 0.1, ρ+ = 1 and γ = 0. On
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the walls of the computational domain, Dirichlet boundary conditions are considered for

velocity components with homogeneous Neumann boundary conditions for the pressure.

We feed the solver with the (sharp) source terms

f± = ρ±
(
∂u±

∂t
+ u± · ∇u±

)
+∇p± − µ±∇2u±, (7.22)

and the interface-defined force term

G = [pn− 2µE · n] , (7.23)

calculated from the manufactured solution (7.20)-(7.21) and the chosen parameters. This

problem was introduced in [33], where a full-block discretization approach was undertaken

(like (3.18)) combined with an iterative strategy similar to [28] (chapter 4) on all primary

unknowns.

This test problem involves a nontrivial solution in the least dynamically active phase

which makes it numerically more challenging. It also involves [µn · ∇u · n] 6= 0 (hence

coupling velocity components and pressure through (3.14)) and a nonzero tangential

component for the interface-defined force, i.e. (δ − nn) ·G 6= 0.

The errors (evaluated in max norm) are summarized in Table 7.1 for uniform grids

of increasing resolution, at the final simulation time. Uniform grids are considered for

comparison purposes with [33]. The ratio ∆t/∆tvisc. is also indicated to illustrate the gain

in time step from an implicit treatment of viscous terms (see (7.14) and (7.16), where

we have used c0 = 0.85, c1 = 0.95 and c2 = 0.95). We used kmax = 5 with ξ = 0.1% (see

3.3.1 and (3.22)) and limited the number of xGFM iterations to a maximum of 10 for

the viscous steps

Compared to the results from [33], we obtain more accurate results on comparable
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grids. We observe first order accurate results for the velocity components. While the

error on the interface location is observed to decrease with grid refinement, it indicates

a less clear convergence rate, though (better than) first-order accuracy is obtained when

comparing the coarsest and finest resolutions. The visualization of the error distributions

shows that better than first order accuracy is observed for the levelset function between

two successive grid resolutions (e.g. between the 322 and 642 grids) when the maximum

error on the velocity field is reached away from the interface. In such a case, the error on

the levelset due to advection, though first order, may be negligible for the considered grid

resolution in comparison to the reinitialization error (second order). The convergence on

the pressure seems more challenging which may be due to using

[
1

ρ
∂np

]
= 0 instead of

(3.16) but also to the nature of the problem involving a nontrivial solution in the least

dynamically active phase, producing interface conditions that require fine resolution to

be captured with accuracy. The maximum error on p is reached in Ω+ on grids up to

2562, then in computational cells crossed by the interface lying on either side for the

5122 grid before being found in computational cells crossed by the interface, lying in Ω−

on the 10242 grid. We note that our results for p are comparable (in fact, slightly more

accurate) to those from [33] on comparable grids.

Manufactured problem 2

The second considered problem involves the manufactured velocity field (in non-

dimensional form)

u− = u+ = sin (x) cos (y) sin (t) v− = v+ = − cos (x) sin (y) sin (t) (7.24)
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Grid resolution 322 642 1282 2562 5122 10242

Error on φ 3.5e− 2 7.9e− 3 4.5e− 3 1.3e− 3 1.0e− 3 5.2e− 4
order 2.15 0.81 1.79 0.38 0.94

Error on u 4.0e− 2 1.9e− 2 8.9e− 3 3.5e− 3 2.1e− 3 9.5e− 4
order 1.1 1.1 1.35 0.74 1.14

Error on v 4.9e− 2 1.9e− 2 7.4e− 3 3.3e− 3 1.7e− 3 9.0e− 4
order 1.4 1.4 1.2 0.97 0.92

Error on p 6.5e− 2 4.1e− 2 2.3e− 2 1.4e− 2 1.1e− 2 7.3e− 3
order 0.7 0.8 0.7 0.3 0.6

∆t/∆tvisc. 1.9 3.9 7.7 15.4 30.8 61.5

Table 7.1: maximum errors on all primary unknowns for the manufactured problem
1, at the final simulation time. The error on the levelset function is evaluated in a
band of 3∆x across the interface.

with the pressure field p− = p+ = 0. The interface is defined as the zero-level set of

φ (x, y) =





0.1− sin (x) sin (y) if (x, y) ∈ [0, π]2

0.1 otherwise.
(7.25)

One may easily show that Γ = {(x, y) : φ (x, y) = 0} is a streamline of the flow field (7.24)

and that it should thus remain static.

The computational domain is [−π/3, 4π/3]2, the simulation time window is [0, π],

the material parameters are set to µ− = 0.1, µ+ = 1, ρ− = 0.1, ρ+ = 1 and γ = 0.1. We

feed the solver with the (sharp) source terms

f± = ρ±
(
∂u±

∂t
+ u± · ∇u±

)
+∇p± − µ±∇2u±, (7.26)

and the interface-defined force term

G = − [2µE · n] + γκn, (7.27)
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calculated from the manufactured solution (7.24)-(7.25) and the chosen parameters. This

problem is adapted from [32] such that the interface does not intersect the walls of the

computational domain5.

This test problem involves [µn · ∇u · n] 6= 0 (hence coupling velocity components and

pressure through (3.14)) and a nonzero tangential component for the interface-defined

force, i.e. (δ − nn) ·G 6= 0, and a non-uniform curvature. It is also particularly well-

suited for testing the implementation of all numerical methods on adaptive grids in a

fairly straightforward fashion: since the streamlines of the flow field 7.24 correspond to

constant values of (7.25), the use of a refinement criterion based on the distance to Γ

only does not produce major under-resolution issues. The solution at time t = π/2 is

illustrated in Figure 7.3.

Figure 7.3: illustration of the computational grid (`min = 4, `max = 8), the interface
(thick black line) and streamlines in Ω− (colored by the velocity magnitude) for the
manufactured problem (7.24) at time t = π/2.

We consider quadtree grids with increasing maximum level of refinement `max and

5Wettability problems are left for future work.
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minimum level of refinement `min = `max − 4, with the following refinement parameters:

b− = b+ = 5, L = 1.2, and P = ∞ (see subsection 7.2.6). The errors (evaluated in

max norm) are summarized in Table 7.2 for grids of increasing resolution, at the final

simulation time. Note that this analysis does not refine every single computational cell

as the grid resolution is increased. The ratio ∆t/∆tvisc. is also indicated in Table 7.2 to

illustrate the gain in time step from an implicit treatment of viscous terms (see (7.14)

and (7.16), where we have used c0 = 0.85, c1 = 0.95 and c2 = 0.95). We used kmax = 10

with ξ = 0.1% (see 3.3.1 and (3.22)) and limited the number of xGFM iterations to a

maximum of 10 for the viscous steps (a value of kmax > 5 was necessary to ensure stability

on the two finest grids).

Compared to the results from [32], we obtain more accurate results for velocities and

interface location on comparable grids (the accuracy on p is not reported in [32]). Veloc-

ities and pressure seem to converge with (at least) first-order accuracy. The convergence

on the levelset function (i.e. on the interface location) seems more challenging in this

case. The visualization of the error distribution on the velocity field indicates that the

maximum errors are found in Ω− away from the interface on all considered grids but the

last one, as illustrated in Figure 7.4. Therefore, the rates of convergence on the velocity

components reported in Table 7.2 is not representative of the rates of convergence on

the velocity components close to the interface for this particular test. This explains why

one does not observe such a clear rate of convergence for the interface location in this

particular case.

Manufactured problem 3, nonzero mass flux

Finally, we consider the capability of the solver to handle a nonzero mass flux across

the interface (which represents a phase change phenomenon in practice). In actual appli-

cations, a nonzero mass flux would originate from additional physics being coupled to the
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Figure 7.4: error distribution for the velocity field on computational grid `min = 6,
`max = 10 (left) and `min = 8, `max = 12 (right), at final simulation time t = π. The
interface is illustrated as the black line.

fluid flow (e.g. boiling or cavitation, for instance), which therefore adds another layer

of complexity to the simulation tools. In this example, we are interested in assessing

the capability of the solver to handle a nonzero mass flux, independently of its physical

origin.

We therefore consider the growth of a gas bubble due to a constant and uniform mass

flow rate Ṁ , as considered first in [49]. In SI units, we consider a computational domain

`min/`max 4/8 5/9 6/10 7/11 8/12

Error on φ 2.1e− 3 1.6e− 3 1.0e− 3 7.9e− 4 4.4e− 4
order 0.4 0.7 0.3 0.8

Error on u, v 2.7e− 3 9.3e− 4 1.4e− 4 4.5e− 5 2.4e− 5
order 1.5 2.7 1.6 0.9

Error on p 3.0e− 3 1.0e− 3 2.7e− 4 1.2e− 4 5.6e− 5
order 1.6 1.9 1.2 1.1

∆t/∆tvisc. 117.5 235.1 470.2 940.4 1880

Table 7.2: maximum errors on all primary unknowns for the manufactured problem
2, at the final simulation time. The error on the levelset function is evaluated in a
band of 3∆x across the interface.
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Ω = [−0.004, 0.004]2 with a circular bubble of radius R0 = 0.001 initially (the negative

domain is inside the gas bubble); the mass flux across the interface is set to Ṁ = −0.1,

constant in time and space. The material properties are set to µ− = 1.78× 10−5, ρ− = 1,

µ+ = 1× 10−3, ρ+ = 103 and γ = 0.07 (all in Si units; this is similar to an air-water

system).

Assuming that the fluid is and remains at rest inside the gas bubble, the interface

velocity is −Ṁ
ρ−
er where er is the unit radial vector, meaning that the bubble growths

in an isotropic fashion and that its radius follows R (t) = R0−
Ṁ

ρ−
t, so the exact levelset

function at time t is

φ (x, y, t) =
√
x2 + y2 −

(
R0 −

Ṁ

ρ−
t

)
. (7.28)

Assuming rotational symmetry in an infinite (two-dimensional) medium and u− = 0, the

velocity field in the liquid phase is entirely governed by the interface conditions and the

incompressibility condition so that

u+ = Ṁ

[
1

ρ

](
R (t)√
x2 + y2

)
er. (7.29)

Finally, one may derive the corresponding pressure field6 in the absence of external force,





p− =
1

2
Ṁ2ρ+

[
1

ρ2

]
+ 2µ+ Ṁ

R (t)

[
1

ρ

]
+

γ

R (t)
,

p+ = +
ρ+

ρ−

[
1

ρ

]
Ṁ2 log

(√
x2 + y2

R (t)

)
− 1

2
ρ+

(
Ṁ

[
1

ρ

]
R (t)

)2

x2 + y2
,

(7.30)

down to a constant (arbitrarily set to 0).

This test problem involves [µn · ∇u · n] 6= 0 (hence coupling velocity components

6Due to the two-dimensional nature of this problem, the far-field pressure is not bounded. Though this
is a paradox from a physics viewpoint, this problem is numerically well-defined in a finite computational
domain and appropriate to assess the targeted capability of the solver.
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and pressure through (3.14)) and a nonzero mass flux across the interface Ṁ 6= 0. We

consider the numerical simulation of this test problem by feeding the solver with the

appropriate initial condition, material parameters, and no bulk or interface-defined source

terms, i.e., f = 0 and G = 0. The mass flux across the interface is externally defined

(constant in space and time), we consider a simulation time window t ∈ [0, 0.01] so

that R (tend) = 2R0, and we mimic outflow conditions on the walls of the computational

domain by using non-homogeneous Dirichlet (resp. Neumann) boundary conditions for

p (resp. u), consistent with (7.30) (resp. with (7.29)).

We consider uniform grids7 of increasing resolution and analyze the error (in infinity

norm), at the final simulation time. We have used c0 = 0.85, c1 = 0.95 and c2 = 0.95) for

the time step calculation (see (7.16)), and we have set kmax = 3, while limiting the number

of xGFM iterations to a maximum of 10 for the viscous steps. The results are presented in

Table 7.3 and the solution at final simulation time is illustrated in Figure 7.5. We observe

first-order of accuracy on velocity components and better than first-order accuracy on

the interface location. As underlined in [49, 48], one does not observe convergence on

interface location for such problems when using a smeared interface approach, which

highlights the need for sharp treatment of interface conditions.

We note that the convergence rate for the pressure could be improved with a better

curvature estimation and/or a less numerically polluted levelset function (i.e. more ac-

curate velocity components and interface velocity) after a finite simulation time. Indeed,

the error distribution on p was found to reach its maximum close to the interface and

to be correlated with significant errors in the numerical estimation of the local curvature

7We restrict the analysis to uniform grids in this case: the investigations on adaptive grids revealed
that a better-designed grid refinement criterion was required to ensure convergence in this particular
case. The error on p was found to reach its maximum at T-junctions away form the interface in case of
adaptive grids, and this maximum error failed to converge. However, the interface location was found
to be predicted accurately as the error on the levelset function was found to converge, indicating that
velocities near the interface (and interface jump conditions) are accurately captured.
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Grid resolution 322 642 1282 2562 5122

Error on φ 5.9e− 5 1.6e− 5 4.9e− 6 1.5e− 6 4.6e− 7
order 1.9 1.7 1.71 1.7

Error on u, v 4.2e− 3 1.2e− 3 7.5e− 4 3.9e− 4 1.8e− 4
order 1.8 0.7 0.9 1.1

Error on p 1.3 3.3e− 1 1.4e− 1 7.3e− 2 5.3e− 2
order 2.0 1.2 0.9 0.5

Table 7.3: maximum errors on all primary unknowns for the manufactured problem
3, at the final simulation time. The error on the levelset function is evaluated in a
band of 3∆x across the interface. All values are in the corresponding SI unit.

(which should be constant for a circular interface). Unfortunately, such numerical errors

in curvature estimation fail to converge with grid refinement (or indicate a convergence

rate lower than 1). This test problem motivated the development of the alternative cur-

vature evaluation from subsection 7.2.3, which improved former results (not shown in

this document) by one order of magnitude on the finest computational grids.

Figure 7.5: illustration of the final sharp pressure field (left) and final velocity field
(right) for the manufactured problem (7.28)-(7.30), on a 1282 computational grid.
Note that the (numerical) velocity vector in the gas phase is displayed as well but too
small to be observed.
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7.3.2 Analysis of parasitic currents in two dimensions

One of the most infamous consequences of modeling surface tension effects with a

continuum surface force model like [1] is the existence of strong parasitic currents. In

practice, this spurious numerical artifacts imposes a restriction on the range of physical

parameters that may be considered when using such modeling techniques. Reconciling

the numerical approach with a sharp interface description of the corresponding physics

dramatically reduces the magnitude of such parasitic currents.

In this analysis, we consider the canonical test of a circular, two-dimensional drop of

diameter D immersed in a fluid of same viscosity and density (i.e. µ− = µ+ and ρ− = ρ+)

with surface tension is γ (see [22, 14, 13, 19, 10, 32]). Of course, the exact solution of this

problem is u = 0 everywhere and a piecewise constant pressure field satisfying [p] = −γκ.

However, an imbalance between pressure gradient and surface tension exists numerically

and it is responsible for nonzero fluid velocities (i.e., parasitic currents).

Physically, this problem is fully determined by the Laplace number La =
γρD

µ2
. Based

on dimensional grounds, the magnitude of the parasitic currents should be proportional

to γ/µ, meaning that the capillary number Ca =
‖u‖µ
γ

should be independent of La.

We consider the simulation of the problem described here above in two dimensions,

with a drop of diameter D centered in a computational domain of side length 5D/2.

We set no slip boundary conditions on the walls of the computational domain with

homogeneous Neumann boundary conditions on the pressure field. The simulations are

conducted until t = 75µD/γ and the maximum value of ‖u‖ is monitored over the course

of the simulation. We consider quadtree grids with a minimum level of refinement `min = 2

and maximum levels of refinement `max ranging from 7 to 10 (`max ≥ 7 to ensure a mass

loss of less than 1%). The vorticity-based refinement criterion is deactivated (P = ∞

in (7.19)) and b− = b+ are chosen so that 15% of the bubble radius is covered with the
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La 1.2 12 120 1, 200 12, 000

`max = 7 8.1e− 5 8.0e− 5 6.8e− 5 4.4e− 5 2.0e− 5

`max = 8 1.9e− 5 1.8e− 5 1.4e− 5 1.1e− 5 6.1e− 6

`max = 9 6.0e− 6 5.9e− 6 6.0e− 6 5.8e− 6 4.6e− 6

`max = 10 1.7e− 6 1.7e− 6 1.7e− 6 1.6e− 6 1.4e− 6

Table 7.4: values of ‖u‖max µ/γ for various grid resolution and Laplace numbers.
‖u‖max is the maximum magnitude of parasitic currents observed over the course of
the simulation.

finest computational cells on either side of the interface. We used kmax = 3 for all runs,

except for the finest computational grid with La = 1.2 which required more iterations

for stability (we set kmax = 5 in that case). The results are presented in Table 7.4. We

observe close to second-order accurate results. Compared to previous works [22, 13], the

current methodology requires finer grid resolution for comparable magnitudes of parasitic

currents.

7.3.3 Shape oscillations of a three-dimensional droplet

At the microscopic scale, surface tension originates from the imbalance in cohesive

forces between materials. Unless these cohesive forces are locally modified and made

nonuniform (e.g., by the addition of surfactants), surface tension tends to minimize the

area of the interface between two fluids, hence producing spherical droplet and bubble

shapes at equilibrium in the absence of other forces.

Let us consider a drop of fluid of viscosity µ− and mass density ρ− surrounded by

another fluid of viscosity µ+ and mass density ρ+; the surface tension between the two

fluids is γ. Assuming a radially convex shape for the drop at all times and considering

spherical coordinates centered with the drop, the interface can be represented as Γ =

{x ∈ R3 : x = (R0 + δR (θ, φ, t)) er} where θ and φ are the inclination and azimuthal

angles, and er is the unit radial vector.
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The prediction of the interface kinematics for a given initial state was first consid-

ered theoretically for inviscid fluids by Sir Horace Lamb [190] who showed that, for an

infinitesimal initial perturbation as a spherical harmonic of order n, i.e., δR (θ, φ, 0) =

εPn (cos (θ)), the kinematics of the interface could be described asR0+εPn (cos (θ)) cos (ωnt)

where

ωn =

√
γ
n (n− 1) (n+ 1) (n+ 2)

R3
0 (ρ− (n+ 1) + ρ+n)

. (7.31)

Though strictly valid for inviscid fluids only, Lamb used this result to estimate the rate of

damping due to viscosity (neglecting viscous effects in Ω+) and conjectured that, in such

a case, the interface kinematics could be described as R0 + εPn (cos (θ)) cos (ωnt) e
−t/τn

where

τn =
R2

0ρ
−

µ− (2n+ 1) (n− 1)
. (7.32)

This analysis was refined later on by Miller and Scriven [191] and Prosperetti [192]. The

latter predicts an interface kinematics of the type R0 + εPn (cos (θ))R {eσt} where σ is

the complex root of a complex nonlinear characteristic equation.

In light of this strong theoretical basis, this problem has become a benchmark test for

the validation of simulation methods for two-phase flows as well (see [22, 26, 193, 12]).

We consider the numerical simulation of this phenomenon and compare our simulation

results to the theoretical predictions of Lamb [190] and Prosperetti [192]. A satisfying

match on the frequency of oscillation is obtained when inertia and surface tension are ad-

equately captured while a correct prediction for the damping rate requires viscous effects

to be accurately accounted for. Since no two-dimensional equivalent for the theoretical

damping rate could be found, we consider three-dimensional simulation runs.

We consider the same material parameters as in [22], for a drop of radius R0 centered

in a domain Ω = [−4R0, 4R0]3 and8 ε/R0 = 0.01. No-slip boundary conditions are set

8We set ε/R0 significantly lower than in other works to better comply with the underlying assumptions
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on the walls of the computational domain. We consider a drop deformation as a second

spherical harmonic, that is n = 2 and P2 (cos (θ)) =
3 cos2 (θ)− 1

2
(higher order modes

of deformation are damped more aggressively). Besides the ratio R0/L = 1/8 where L is

the side length of the computational domain, the problem is entirely determined by the

following nondimensional numbers

ε

R0

= 0.01,
µ−

µ+
= 1000,

ρ−

ρ+
= 1000,

γρ−R0

(µ−)2 = 1250. (7.33)

The simulations are run for two full oscillation cycles on octree grids. The interface

kinematics at time t is extracted by determining a2 (t) such that the levelset is best

represented by φ (r, θ, φ; t) = r − R0 (1 + a2 (t)P2 (cos (θ))), as in [26]. The maximum

level of refinement `max is increased from 7 to 9 (`max ≥ 7 because the mean radius of

the bubble shrinks by more than 1% otherwise) and the minimum level of refinement is

set to `min = `max − 3.

The results are presented in Figure 7.6 where we considered two different numerical

configurations: on one hand we used a fractional step approach (kmax = 1) with a limit of

10 xGFM iterations for the viscous steps and, on the other hand, we enabled a maximum

of kmax = 3 fix-point iterations (repeating viscous and projection steps), limiting the

number of internal xGFM iterations to 5 for the viscous steps. Except for the coarsest

computational grid on which the second configuration estimates a larger damping rate,

numerical results do not differ much in either case otherwise and agree well with the

theoretical prediction as the grid is refined.

For the particular choice of material parameter (7.33), the capillary time step restric-

tion is more restrictive than the (explicit) viscous time step restriction, which inhibits

the benefit of an implicit treatment of viscous terms. The same analysis was conducted

of the theoretical works [190, 191, 192].
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with the alternative set of parameters

ε

R0

= 0.01,
µ−

µ+
= 10,

ρ−

ρ+
= 100,

γρ−R0

(µ−)2 = 900 (7.34)

for which we could use a time step approximately 5 times larger than ∆tvisc. on the finest

computational grid. The results for a fractional step approach (kmax = 1) with a limit

of 10 xGFM iterations are presented in Figure 7.7. Although the numerical results do

approach the theoretical predictions as the grid is refined in this case as well, the damping

rate seems to be significantly overestimated, compared to the set of parameters (7.33),

which may be inherent to the implicit treatment of viscous terms in association with a

large time step. The frequency of oscillation is also underestimated in comparison.

The simulations on the finest computational grids were done using 80 cores on four

Intel 6148 CPUs on Pod cluster (center for scientific computing, UCSB). The run with

kmax = 1 and (7.33) required about 10 days of execution time.

7.4 Dynamics of buoyant bubbles in a viscous fluid

The rising motion of a gas bubble due to buoyancy in a surrounding viscous liquid is

probably one of the most familiar real-life application of incompressible two-phase flows

(in the absence of phase change). The direct numerical simulation of this phenomenon

has also attracted interest over the past decades [22, 23, 26, 32, 10]. Of course, this

phenomenon had also been extensively investigated experimentally in former works [194,

195, 196]: the ascension velocities they measured and the steady-state bubble shape they

observed provide key comparison points for assessing the performance of a simulation

tool on such a real-life application.

We consider a spherical bubble of diameter D and material properties µ−, ρ− (gas),
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Figure 7.6: amplitude of the second harmonic deformation of the drop for the problem
of subsection 7.3.3, with parameters (7.33). Top: kmax = 1 with a limit of 10 xGFM
iterations for the viscous steps; bottom: kmax = 3 with a limit of 5 xGFM iterations
for the viscous steps. The agreement with theoretical predictions gets better as the
computational grid is refined.

surrounded by another fluid of properties µ+, ρ+ (liquid); the surface tension between the

two fluids is γ. We are interested in the motion and deformation of the bubble resulting

from buoyancy, as gravity acts as the only bulk force per unit mass, i.e. f = −gey
where g is the gravity acceleration. This physical set-up is entirely determined by the
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Figure 7.7: amplitude of the second harmonic deformation of the drop for the problem
of subsection 7.3.3, with parameters (7.34). These results were obtained with kmax = 1
and a limit of 10 xGFM iterations for the viscous steps. The theoretical predictions
of Lamb and Prosperetti overlap in this case.

four nondimensional numbers

Πµ =
µ+

µ−
, Πρ =

ρ+

ρ−
, Eo =

ρ+D2g

γ
and Mo =

g (µ+)
4

ρ+γ3
. (7.35)

When considering the numerical simulation of this phenomenon, a finite computational

domain is considered with no-slip wall boundary conditions on all walls except the top

wall on which a homogeneous Neumann boundary condition is set on velocity components

along with a homogeneous Dirichlet boundary condition on pressure.

Over the course of the simulation, the ascension velocity of the bubble

〈V 〉 =

∫
Ω− u · ey dΩ∫

Ω− dΩ
(7.36)

is evaluated and monitored as a Reynolds number Re =
ρ+〈V 〉D
µ+

. The corresponding

Weber number is defined as We =
ρ+〈V 〉2D

γ
= Re2

√
Eo

Mo
.
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7.4.1 Small air cavity in water (two dimensions)

Although this problem is intrinsically three-dimensional, numerical simulations allow

a two-dimensional equivalent to be considered. As an intermediary step toward full

three-dimensional runs, we consider the numerical simulation of this problem in two

dimensions and consider the same parameters as in [15, 33] for comparison purposes

(air-water system). This choice of parameters corresponds to

Πµ = 63.9, Πρ = 815.7, Eo = 6.0 and Mo = 4.2× 10−11.

The computational domain is [−1.5D, 1.5D] × [−1.5D, 3D] and the bubble is initially

centered at the origin. We consider the simulation until the final (non-dimensional) time

γtend

µ+D
= 480. Besides the ascension velocity, we also monitor the circularity measure

circularity =
πD∫
Γ

dΓ
(7.37)

for comparison purposes with [33]. We consider uniform and adaptive grids of increasing

resolutions, with kmax = 5 and a limit of 5 xGFM iterations per viscous step. The shape

of the two-dimensional bubble at the final simulation time is illustrated in Figure 7.8

(left) for uniform grids of increasing resolutions: we obtain a good qualitative agreement

with the results from [15, 33]. As this figure also illustrates, one does not sacrifice

much accuracy on the interface kinematics when enabling adaptive grids: the predicted

interface location is close to the predicted result obtained on uniform grid of equivalent

finest resolution. The results for the ascension velocity and circularity are illustrated in

Figure 7.9 and show good agreement with [33] as well. The mass loss at final simulation

time on uniform grids of resolution 32×64, 64×128, 128×256, 256×512 were respectively

2%, 0.7%, 0.25% and 0.03%.
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Figure 7.8: shapes of the two-dimensional bubble at final simulation time for the
problem of subsection 7.4.1, with various grid resolution. Left: results on uniform
grids of increasing resolution (the black, blue, green and red interfaces correspond
respectively to 32 × 64, 64 × 128, 128 × 256 and 256 × 512 computational grids).
Right: comparison of the results obtained on uniform grids of resolution 64× 128 and
256× 512 (blue and red interfaces) with the result obtain on an adaptive grid sharing
the minimum and maximum levels of refinement of both (purple interface).
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Figure 7.9: evolution of the (nondimensional) ascension velocity (left) and interface
circularity (right) for the problem of subsection 7.4.1, with various grid resolution.
The “adaptive (6/8)” grid has a minimum resolution equivalent to 64 × 128 and a
maximum resolution equivalent to 256× 512.

7.4.2 Dynamics of three-dimensional bubbles in viscous fluids

We now consider the three-dimensional dynamics of buoyant bubbles in viscous liq-

uids. For this purpose, we consider 7 of the configurations experimentally observed and

reported by Bhaga and Weber [195]. We consider the computational domain [−5D, 5D]×

[−8D, 32D]× [−5D, 5D] and the gas bubble is placed at the origin initially. We set the

ratio of material properties to Πµ = Πρ = 103; the surface tension and gravity accelera-
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tion are determined accordingly to the desired values of9 Eo and Mo, for each considered

configuration.

The computational domain is meshed with 4 octrees (to ensure unit aspect ratio for

the computational cells) of minimum level of refinement `min = 6 and maximum level of

refinement `max = 9 or `max = 10 for cases involving more challenging interface dynamics,

and/or as to alleviate excessive mass loss. The number of (finest) grid cells per diameter

D is 2`max/10 (i.e., approximately 50 for `max = 9 and 100 for `max = 10). We consider

kmax = 3 with a threshold value of 0.1% for (3.22), while limiting the number of xGFM

iterations per viscous step to 10; the simulations are run until steady state. The vorticity-

based refinement criterion is used with P = 0.02 in (7.19) and b− = b+ are chosen so

that finest computational cells cover a layer of thickness 0.15D across the interface.

The evolution of the bubble for Eo = 116, Mo = 0.103 is illustrated with a slice in

the computational grid in Figure 7.11, for snapshots corresponding to annotated times

in Figure 7.10 showing the monitored ascension velocity of the bubble over the course of

the simulation. In this particular example, the bubble undergoes large transient defor-

mations that require a fine level of refinement to be correctly captured (see snapshot C

in Figure 7.11, for instance). As illustrated in Figure 7.11, the vorticity-based refinement

criterion produces regions of fine computational cells capturing the wakes generated by

the ascending motion of the bubble. This improves the estimation of the pressure differ-

ence above and below the bubble which plays an important role in the evaluation of the

ascension velocity. At steady state, the computational grid contains around 6× 106 com-

putational cells in our framework whereas a uniform grid of equivalent resolution would

9We note that this approach differs from the experimental procedure described in [195], in which the
main tuning parameter is the viscosity of the external liquid µ+ (aqueous sugar solution). In fact, the
value of Πµ is even larger than 105 in some cases of [195]. A strict equivalence of parameters would
have led to very challenging (and probably prohibitively expensive) simulations. Setting Πµ = 103 may
be responsible for discrepancies between our results and the expectations, although we expect little
dependence on Πµ so long as Πµ � 1.
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require more than 4× 109 grid cells. The final simulation state for Eo = 116, Mo = 1.31

is also illustrated in Figure 7.12 which shows that, in a reference frame moving with the

buoyant bubble, the streamlines do not cross the interface, as expected.
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Figure 7.10: evolution of the ascension velocity (in its nondimensional form) for the
simulation of the buoyant bubble with Eo = 116, Mo = 0.103. The dashed line repre-
sents the value reported in [195]. The bubble shape and (a slice of) the computational
grid are illustrated n Figure 7.11 for the annotated times.

In Figure 7.13, we compare the simulation results for the final bubble shape with the

experimental observations from [195]. As illustrated in this figure, the agreement with

the expected bubble shape (observed experimentally) is qualitatively satisfactory for the

considered parameters. In Table 7.5, the ascending Reynolds number is presented for each

considered run: the simulation results are found to be within 10% of the experimental

values. Since we use a levelset formulation for the interface representation, strict volume

conservation is not guaranteed over the course of the simulation: we note that the volume

of the bubble was found to increase in our framework for cases involving large bubble

deformations.

The simulations were run on SKX nodes on Stampede 2 (Intel Xeon Platinum 8160,

“Skylake”). 192 (resp. 384) MPI tasks were used for cases involving `max = 9 (resp.

`max = 10) and the total execution time ranged from several hours to several days of

computation (involving restarts).
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Figure 7.11: illustration of the (truncated) bubble shape along with a slice in the
computational grid for Eo = 116, Mo = 0.103. See Figure 7.10 for references to the
snapshot tags.
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Figure 7.12: illustration of the final state for the simulation of a buoyant bubble
with Eo = 116, Mo = 0.103. The truncated interface is represented along with two
perpendicular cross sections of the computational grid. The illustrated streamlines
correspond to the fluid velocity field inside the bubble, relatively to the bubble’s
ascension velocity.

7.5 Applications and illustrations with a nonzero mass

flux

In this final section, we consider actual two-phase flow problems involving a phase

change, i.e., problems that require Ṁ 6= 0. For simplification purposes, we will con-

sider problems involving phase transition of pure substances due to temperature, i.e.

evaporation or boiling of a pure liquid substance into its (pure) vapor phase.

As underlined by equation (3.7), the strict consideration of all interface phenomena

involved in the balance of energy across the interface leads to a nonlinear equation for

Ṁ involving viscous effects, which are unknown at the required time step n + 1, prior

to solving the considered time step. The exact consideration of such viscous terms when

determining Ṁ would require yet another iterative approach. However, it was show in
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Eo = 8.67, Mo = 711
Eo = 116, Mo = 848

Eo = 116, Mo = 266 Eo = 116, Mo = 41.1

Eo = 116, Mo = 5.51 Eo = 116, Mo = 1.31

Eo = 116, Mo = 0.103

Figure 7.13: comparison between the steady-state bubble shapes, as numerically
simulated, and the experimentaly observed shapes. For every run, the final shape
is illustrated (left subfigures), along with a truncated version (center subfigures)
and the experimental result (right subfigures) as reported in [195]. For every run,
Πµ = Πρ = 103.

[36] that viscous effects are negligible in (3.7) for the substances considered therein (in-

cluding water), in boiling flow applications. For simplification purposes, we also neglect

a dependence of the surface tension on temperature. Finally, it is common to neglect

the difference in kinetic energy across the interface (nonlinear terms in Ṁ in (3.7))

compared to the difference of enthalpy across the interface in boiling applications (see

[51, 50, 49, 44, 39]).

Taking such simplifying assumptions into consideration, the conservation of energy
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Re|tend
Re|tend

`min/`max ∆t/∆tvisc. (Vend − V0) /V0

(sim.) (exp. [195])

Eo = 8.67, Mo = 711 0.073 0.078 6/9 38.3 −5%
Eo = 116, Mo = 848 2.43 2.47 6/9 20.2 −5%
Eo = 116, Mo = 266 3.7 3.57 6/9 15.0 −3.4%
Eo = 116, Mo = 41.1 7.4 7.16 6/9 9.3 +1%
Eo = 116, Mo = 5.51 14.4 13.3 6/9 5.6 +14.6%
Eo = 116, Mo = 1.31 20.4 20.4 6/10 5.5 +3.3%
Eo = 116, Mo = 0.103 40.0 42.2 6/10 2.9 +6.5%

Table 7.5: quantitative results associated with the considered numerical simulation of
buoyant bubbles in viscous fluids. (Vend − V0) /V0 represents the relative difference in
bubble volume at final simulation time, compared to its initial value.

across the interface reduces to

Ṁ [h]− [k∇T · n] = 0, (7.38)

where h is the enthalpy per unit mass. Considering the interface entropy and the second

law of thermodynamics, the temperature must be continuous across the interface, i.e.

[T ] = 0 (see [197, 198]). Let TI be the interface temperature and Tsat be the saturation

temperature at the considered (ambient) pressure. Assuming linear dependence of h with

respect to temperature, we have

[h] = L+ [Cp] (TI − Tsat) , (7.39)

where L is the latent heat associated with the phase change of the considered substance

from Ω− to Ω+, at the saturation temperature.

In [36], models for (TI − Tsat) have been presented, accounting for variation of satura-

tion temperature with local pressure, thermodynamics considerations and other molecular

phenomena. Such models naturally make (TI − Tsat) another interface-defined unknown
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that depends on Ṁ (and other parameters). In this work, we do not account for such

considerations and we consider TI = Tsat, as commonly done in former works treating

boiling or evaporating flows (see [51, 50, 49, 38, 44, 39]). As a consequence, we evaluate

the mass flux across the interface as

Ṁ =
[k∇T · n]

L
. (7.40)

Phase-change problems require to account for the conservation of energy (3.6) in either

phase. Neglecting the viscous dissipation (usually negligible at low Mach numbers) and

assuming linear dependence between internal energy and temperature in the considered

temperature range, (3.6) can be written as the following temperature equation

ρCp
DT

Dt
= k∇2T + Θ̇. (7.41)

In our computational framework, the temperature is sampled at the nodes of the

computational grid. Prior to entering the flowchart from subsection 3.3.1 at time step n,

in either subdomain we solve the following implicit discretization of (7.41)

ρCp
DT

Dt

∣∣∣∣
n+1

= k∇2Tn+1 + Θ̇ (7.42)

where the material derivative of temperature is approximated with a second-order back-

ward differentiation formula in association with a semi-Lagrangian method, that is

DT

Dt

∣∣∣∣
n+1

=

(
α
T (x, tn+1)− T

(
X(x,tn+1) (tn) , tn

)

∆tn

+β
T
(
X(x,tn+1) (tn) , tn

)
− T

(
X(x,tn+1) (tn−1) , tn−1

)

∆tn−1

)
(7.43)
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at node located at x, using the same notations as in subsection 7.2.1. The interpolation in

space of temperature fields is done with a continuity-enforcing adaptation of the stabilized

quadratic interpolation from [106] (see appendix C). The discrete equation (7.42) is solved

in either subdomain with the interface Dirichlet boundary condition T |Γ = Tsat, using

the discretization from [179]. The temperature fields are then extrapolated from either

subdomain to the rest of the computational domain using the methods from [172, 199],

so that the mass flux can be evaluated as per (7.40) at every grid node. The interface-

defined values of Ṁ are then extended from the interface using constant extrapolation,

before the solver enters the flowchart described in subsection 3.3.1 accounting for this

computed mass flux.

7.5.1 Two-dimensional vaporization of a drop

As a first example and in order to illustrated the sharp treatment of interface condi-

tions, we consider the vaporization of a two-dimensional liquid drop into its vapor phase,

as presented in [44]. We consider a drop of initial radius 0.02 centered in a computa-

tional domain Ω = [−0.035, 0.035]2. The liquid (inside the drop) properties are ρ− = 200,

µ− = 0.1, k− = 40 and C−p = 400 while the vapor phase material parameters are ρ+ = 5,

µ+ = 0.005, k+ = 1 and C+
p = 200; the surface tension between the two fluids is set to

γ = 0.1 and the latent heat of vaporization is L = [h] = 103. (All quantities are expressed

in SI units).

We consider the vaporization of such a droplet in a super-heated vapor environment:

the walls of the computational domain are set to be kept at a prescribed temperature

Twall = Tsat + 10 generating a heat flux toward the droplet which, in turn, induces a

nonzero evaporation rate Ṁ 6= 0. A prescribed pressure value (Dirichlet boundary condi-

tion) is set on the walls of the computational domain along with a homogeneous Neumann
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boundary condition for the velocity components (mimicking a free inflow/outflow con-

dition). We consider a quadtree grid of minimum level `min = 5 and maximum level

`max = 7 with kmax = 3, a threshold value of 0.1% for (3.22), while limiting the num-

ber of xGFM iterations per viscous step to 10; the simulations is run until t = 1. The

vorticity-based refinement criterion is used with P = 0.02 in (7.19) and b− = b+ = 5.

In several ways, this problem resembles the third benchmark test considered in sub-

section 7.3.1. Besides the inversion of fluid phases (we consider a drop not a bubble), the

main difference stands in the boundary conditions that are not manufactured to enforce

rotational symmetry, in this case. Nonetheless, the sharp treatment of all interface con-

dition still produces negligible velocities everywhere in the liquid domain (as expected),

as illustrated in Figure 7.14.

Figure 7.14: drop evaporation problem from subsection 7.5.1. Left: illustration of the
computational grid at final simulation time along with the final (resp. initial) interface
in blue (resp. in red). Right: computed sharp velocity field at final simulation time
(displayed inside as well, though not distinguishable).
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7.5.2 Thin-film boiling in two dimensions

We now consider the numerical simulation of thin film boiling, as presented in [40]

and [44]. All quantities are expressed in SI units, hereafter. We consider a thin vapor

layer of material properties ρ− = 5, µ− = 0.005, k− = 1, C−p = 200 created by a hot wall

maintained at temperature Twall = Tsat + 5, submersed in a bulk of liquid of material

properties ρ+ = 200, µ+ = 0.1, k+ = 40 and C+
p = 400; the surface tension between the

two fluids is γ = 0.1 and the latent heat of vaporization is L = −104 (L < 0 in this case

since Ω+ corresponds to the liquid phase). Gravity is the only bulk force acting on the

system, i.e., f = −gey where g = 9.81.

In the absence of a hot wall, the vapor layer would progressively make its way upwards

by virtue of buoyancy, triggered by a Rayleigh-Taylor instability. However, the hot

bottom wall is responsible for a heat flux toward the liquid domain, which itself generates

an evaporation rate. The closer to the hot wall the interface is the larger the heat flux

and the local evaporation rate: as the Rayleigh-Taylor instability develops, a non-uniform

evaporation rate takes place across the interface and is responsible for nontrivial interface

kinematics as well as for maintaining a vapor film.

We consider the inception of a single bubble in two dimensions: in a x-periodic com-

putational domain Ω = [−λ2D/2, λ2D/2]× [0, λ2D] where λ2D = 2π
√

3γ/ (g (ρ+ − ρ−)) is

the most unstable wavelength (see [200]), we initialize the level function as

φ (x, y, t = 0) = y −
(

4 + cos

(
2πx

λ2D

))
λ2D

128
. (7.44)

The temperature field in the vapor phase is initialized as a linear variation from Twall

from the wall to Tsat at the interface. The boundary conditions are T = Twall, with no-

slip boundary conditions on the bottom wall while a prescribed pressure is set at the top

wall along with homogeneous Neumann boundary conditions on temperature and fluid
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velocity (free outflow). The simulation is run until t = 0.5 with kmax = 3, a threshold

value of 1% for (3.22), while limiting the number of xGFM iterations per viscous step

to 10. We consider quadtree grids with `max − `min = 2, the vorticity-based refinement

criterion is used with P = 0.02 in (7.19) and b− = b+ = 5.

The results at time t = 0.425 s are illustrated in Figure 7.15 for a quadtree of resolution

`min/`max = 6/8. As expected, a nearly constant pressure is observed inside the bubble

being formed while a quasi hydro-static pressure profile is found in the liquid domain.

For interpretation and explanation purposes, let us assume that the difference in pressure

across the interface is mostly balanced by surface tension effects. Away from the bottom

wall (in the bubble being formed), the local interface curvature adjusts for balancing the

nearly constant pressure inside with the quasi hydro-static pressure outside the bubble.

However, in thin film regions away from the bubble being formed, the interface is almost

flat leading to a less significant difference in pressure across the interface. Therefore, the

pressure is found larger in the thin film, resulting in a significant pressure gradient in the

gas phase pushing the vapor being produced in those regions towards the bubble being

formed.

In Figure 7.16, the interfaces at time t = 0.425 s as predicted on four quadtree grids

of increasing resolution are superimposed. As illustrated in this figure, we observe con-

vergence for the interface location under grid refinement: noticeably, the required time

for the bubble to separate from the thin film is delayed as the grid is refined. In this

case (Figure 7.16), the bubble has already detached on the coarsest grid while this stage

has not been reached yet on finer grids. The differences in interface location observed

between the finer computational grids are of the order of the size of the computational

cells. For this particular problem, we have ∆t = 5.4∆tvisc for the finest considered grid

(`min/`max = 7/9, i.e., equivalent finest uniform resolution of 5122).
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Figure 7.15: illustration of the computational results obtained on a 6/8 quadtree grid
at time t = 0.425 s. Left: illustration of the interface along with the computational
grid, colored by T − Tsat. Right: illustration of the pressure and velocity field, the
interface is colored with respect to [u · n] = Ṁ [1/ρ] (corresponding to the bottom
color legend). One observes a sharp treatment for the pressure terms and [u · n] is
larger for interface points that are close to the bottom wall (as expected).

7.5.3 Thin-film boiling in three dimensions

As a final illustration of the capabilities of the developed solver, we consider the simu-

lation of of the same problem as in subsection 7.5.2 but in three dimensions. We consider

the same material parameters for both fluid phases and we bring some modifications

and adaptations to the simulation setup. The x- and z-periodic computational domain is

Ω = [−λ3D/2, λ3D/2]× [0, 3λ3D]× [−λ3D/2, λ3D/2] where λ3D = 2π
√

6γ/ (g (ρ+ − ρ−)) =
√

2λ2D (see [38, 201]) and we initialize the level function as

φ (x, y, t = 0) = y −
(

5 +
1

4

(
1 + cos

(
2πx

λ3D

))(
1 + cos

(
2πz

λ3D

)))
λ

128
. (7.45)

The bottom wall is kept at temperature Twall = Tsat + 10 and the initial temperature

field in the vapor phase is set as a linear variation from Twall from the wall to Tsat at the
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Figure 7.16: interface location at time t = 0.425 s, as simulated numerically with
quadtree grids of resolution `min/`max = 4/6 (black), `min/`max = 5/7 (blue),
`min/`max = 6/8 (green) and `min/`max = 7/9 (red). Right: zoom-in onto the lower
right re-entrant portion of the bubble interface, with the finest computational grid in
the background.

interface. The boundary conditions are T = Twall, with no-slip boundary conditions on

the bottom wall while a prescribed pressure is set at the top wall along with homogeneous

Neumann boundary conditions on temperature and fluid velocity (free outflow). The

simulation is run with kmax = 3, a threshold value of 1% for (3.22), while limiting the

number of xGFM iterations per viscous step to 10. We use linear interpolation instead

of the continuity-enforcing stabilized quadratic interpolation for the levelset function in

this three-dimensional case. The computational domain is meshed with three octrees

(to ensure unit aspect ratio for the computational cells) of minimum level `min = 5 and

maximum level `max = 8, the vorticity-based refinement criterion is used with P = 0.02

in (7.19) and b− = b+ = 5. The simulation was run until two bubbles were fully created

and separated from the vapor film, corresponding a final simulation time of t ' 0.83 s

(corresponding to approximately 6250 time steps). The simulation was run on 160 cores

on 8 Intel 6148 CPUs on Pod cluster (center for scientific computing, UCSB) for about

211



Simulation of incompressible, viscous two-phase flows Chapter 7

10 days. As the simulation evolved, the total number of computational cells grew from

around 106 to 15× 106 (a uniform grid of equivalent finest resolution would contain

50× 106 computational cells).

We underline that this simulation created under-resolved interface configurations, at

the moment of bubble separation from the thin film, which would theoretically require

special, additional care for identification and robust numerical treatment, in particular

regarding the calculation of curvature and normal vectors (see the note at the end of

subsection 3.2.1). Nonetheless, in this particular case, the simulation engine could tackle

such under-resolved geometries10. As for the two-dimensional case, we illustrate the

results at time t = 0.34 s in Figure 7.17: the same observations and interpretations as in

the two-dimensional case hold. The dynamics is illustrated along with cross sections of

the computational grid colored by T − Tsat in Figure 7.18.

10We also point out that the use of a linear interpolation for the levelset function defaults the interface
reconstruction procedure to build linear elements, in cells crossed by the interface (as in chapter 6). This
was found to be significantly more stable and robust than quadratic interface reconstructions.
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Figure 7.17: illustration of the computational results obtained on a forest of three
5/8 octree grids at time t = 0.34 s (zoom-in close to the bottom wall and to the
interface). Left: illustration of the (truncated) interface along with the computational
grid, colored by T − Tsat. Right: illustration of the pressure and velocity field, the
interface is colored with respect to [u · n] = Ṁ [1/ρ] (corresponding to the bottom
color legend). One observes a sharp treatment for the pressure terms and [u · n] is
larger for interface points that are close to the bottom wall (as expected).
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t = 0 s t = 0.26 s t = 0.34 s t = 0.38 s

t = 0.44 s t = 0.50 s t = 0.54 s t = 0.60 s

t = 0.66 s t = 0.74 s t = 0.78 s t = 0.80 s

Figure 7.18: illustration of the (truncated) interface dynamics along with (slices of)
the computational grid colored by T − Tsat for the problem from subsection 7.5.3.
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Conclusion

We have presented an original numerical approach for simulating incompressible, viscous

two-phase flows. The strategy relies on a fully sharp treatment of all material proper-

ties and primary unknowns, enabling discontinuities not only in pressure but also in the

normal velocity component (as required for phase-change problems). The viscous terms

are treated fully implicitly and in a sharp fashion, building upon a generalization of the

treatment of viscous terms from Kang’s work [15] to problems that may involve a mass

transfer across the interface. Such an approach leverages on a numerical discretization

that consistently translates the governing equations from continuum-mechanics in the

limit sense of zero-thickness interfaces, which is the only way to observe absolute con-

vergence for such problems. To the best of our knowledge, this numerical approach is

innovative and stands as the first attempt in treating sharp interface conditions fully

implicitly in presence of mass flux across the interface, in dynamical two-phase fluid

simulations.

Building upon the computational framework originally developed for single-phase

problems, all primary unknowns (pressure and velocity components) are decoupled: while

this produces smaller and better-behaved linear systems of equations, it also prevents

the strict consideration of all interface conditions in a single pass and one requires to

iteratively approach it in this case. A nested iterative approach is presented to account for

(i) the balance of (tangential) stress across the interface (ii) the interdependence between
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pressure and viscous terms in the balance of normal stress across the interface. This

nested approach aims at approaching a saddle-point, block discretization theoretically.

However, its computational cost grows fairly quickly as every elementary subiteration

comes with extension and extrapolation of face-sampled velocity fields as well as the

inversion of corresponding linear systems. A formal termination criterion would need to

be determined to keep the overall number of iterations minimal: in our tests we observed

that truncating the iterative procedure to only a few iterations produced erroneous (nu-

merically unstable) results only in case of very large time steps, compared to an explicit

treatment of viscous terms. Nevertheless, such a nested iterative approach makes three-

dimensional simulation runs very expensive computationally and an explicit treatment

of viscous terms exploiting (3.13) might be preferable for practical applications where

implicit time stepping comes with a limited (or no) gain in time step. An explicit treat-

ment of viscous terms would also be less sensitive to under-resolved geometries compared

to its implicit counterpart.

The lack of strict volume conservation of the current levelset-based method is another

drawback that would need to be alleviated to enable long simulation runs at limited

computational cost. Well-established numerical strategies may be considered to that

purpose like coupling levelset and Volume-Of-Fluid approaches (as in [22]) although the

exponentially growing interest in machine and deep learning techniques may bring an

elegant solution to this issue in the near future.
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List of symbolic operations and

notations

ESC Einstein Summation Convention: when an index appears twice in an expression,

it implies summation over all the values of the index. Example: aibi actually

represents
∑

i aibi.

(e1, e2, e3) right-handed orthonormal basis.

v vector of components vi (i = 1, 2, 3), v = viei, using ESC.

a · b inner product between vectors a and b, a · b = aibi, using ESC.

a× b cross product between vectors a and b, the ith component of a × b is given by

εijkajbk, using ESC, where εijk is the Levi-Civita symbol.

ab dyadic product of two vectors a and b, also sometimes represented by abT or a⊗ b.

The result of this operation is the second-order tensor of rank one aibjeiej, using

ESC.

εijk Levi-Civita symbol: εijk is 1 if (i, j, k) is an even permutation of (1, 2, 3), −1 if

(i, j, k) is an odd permutation of (1, 2, 3), and 0 if any index is repeated.

∇a gradient of the vector a: ∇a is the second-order tensor
∂ai
∂xj

eiej using ESC.

217



List of symbolic operations and notations

R second-order tensor of components Rij, R = Rijeiej, using ESC.

RT transpose of the second-order tensor R. If R = Rijeiej, then RT = Rjieiej, using

ESC.

a ·R left inner product between a vector a and a second-order tensor R, the result is

akRkiei, using ESC.

R · a right inner product between a second-order tensor R and a vector a, the result is

Rijajei, using ESC.

a ·R · b bilinear form of vector arguments a and b built on the second-order tensor R,

the result is aiRijbj, using ESC. Note that a ·R · b = (a ·R) · b = b · (a ·R) =

a · (R · b) = (R · b) · a.

R ·R simple inner product between two second-order tensors R and R, the result is the

second-order tensor RijRjkeiek, using ESC.

R : R double inner product between two second-order tensors R and R, we define the

scalar result as RijRij, using ESC. Note that R : ab = a ·R · b.

∇ ·R divergence of the second-order tensors R, the ith component of ∇ · R is
∂Rik

∂xk
,

using ESC.

κ total curvature (twice the mean), defined as κ = ∇ · n, where n is the unit normal

vector to the liquid-gas interface.

h enthalpy per unit mass, h = e +
p

ρ
where e is the internal energy per unit mass, p is

the thermodynamic pressure and ρ is the mass density.

λ expansion viscosity.
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List of symbolic operations and notations

Cp heat capacity per unit mass.

Φ Hodge variable.

ψ interfacial energy per unit area.

e internal energy per unit mass.

ν kinematic viscosity, ν = µ/ρ where µ is the shear viscosity and ρ is the mass density.

φ levelset function.

ρ mass density.

µ shear viscosity.

v specific volume, v = ρ−1 where ρ is the mass density.

γ surface tension coefficient.

T temperature.

k thermal conductivity.

p thermodynamic pressure.

Θ̇ volumetric heat source.

E total energy per unit mass, E = e+
‖u‖2

2
where e is the internal energy per unit mass

and u is the fluid velocity.

f body force per unit mass.

u fluid velocity.

q heat flux.
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n unit normal vector to Σ (t), where Σ (t) is a portion of the liquid-gas interface.

τ unit vector tangent to ∂Σ (t), where Σ (t) is a portion of the liquid-gas interface. The

orientation of τ is determined from n to ensure the consistency when applying

Stokes’ theorem.

m unit vector, outward normal to ∂Σ (t), tangent to Σ (t). We have m = τ × n.

w velocity of the liquid-gas interface.

η outer unit normal vector to any considered material volume.

G interface-defined singular force.

δ identity second-order tensor, δ = δijeiej, using ESC, and where δij is the Kronecker

delta: δij = 1 if i = j, 0 otherwise.

E strain rate tensor, E =
1

2

(
∇u+ (∇u)T

)
=

1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
eiej, using ESC.

σ stress tensor. For Newtonian fluids,

σ = −pδ +

(
λ− 2µ

3

)
(∇ · u) δ + 2µE,

where p is the thermodynamic pressure, δ is the identity tensor, λ is the expansion

viscosity, µ is the shear viscosity, u is the fluid velocity and E is the strain rate

tensor.

ΩΣ(t), ε volume of thickness 2ε extruded symmetrically on both sides of the arbitrary

portion of liquid-gas interface Σ (t). Mathematically, ΩΣ(t), ε = ΩΣ(t), ε−
⋃

ΩΣ(t), ε+ .
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List of symbolic operations and notations

ΩΣ(t), ε− volume of thickness ε extruded on one side of the arbitrary portion of liquid-gas

interface Σ (t) (the side pointed by the negative interface normal vector). Mathe-

matically,

ΩΣ(t), ε− = {z | z = s+ `n, s ∈ Σ (t) , −ε ≤ ` ≤ 0} ,

where n is a unit normal vector to the liquid-gas interface.

ΩΣ(t), ε+ volume of thickness ε extruded on one side of the arbitrary portion of liquid-gas

interface Σ (t) (the side pointed by the interface normal vector). Mathematically,

ΩΣ(t), ε+ = {z | z = s+ `n, s ∈ Σ (t) , 0 ≤ ` ≤ ε} ,

where n is a unit normal vector to the liquid-gas interface.

Ṁ net mass flux through the interface, Ṁ = ρ (u−w) · n where n is the unit normal

vector to the liquid-gas interface and w is the velocity of the liquid-gas interface.

Σ (t) arbitrary portion of the liquid-gas interface at time t.

ε half the thickness of the material volume across the interface on both sides of the

interface.
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Chapter 8

Geometric discretization of the

multidimensional Dirac delta

distribution - Application to the

Poisson equation with singular

source terms

8.1 Introduction

The Poisson equation appears in many problems ranging from diffusion-dominated

phenomena to incompressible flows. Because of this ubiquitous prominence, substantial

efforts have been devoted over the past decades to developing efficient and accurate nu-

merical methods for its solution. As a result, several advances have been made in the

context of irregular domains and free boundaries to impose Dirichlet boundary conditions

[170, 202, 169], discontinuous coefficient and/or discontinuous solutions across an inter-
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face [146, 15, 17, 106, 5, 140, 203], and Robin boundary conditions [204, 205, 206, 64].

Concurrently, improvements have been made for the discretization of singular source

terms like Dirac delta function1 supported on a level set, as they are needed to evaluate

surface tension forces for instance [146, 207, 5, 151, 208, 3].

However, very little has been proposed for the discretization of point-located Dirac

delta source terms in equations like

−∇ · (β∇u) =
∑

i

δ (x− yi) , (8.1)

in a (possibly irregular) domain Ω (yi ∈ Ω), with given boundary conditions at its

boundary ∂Ω (here β is bounded from below by a positive constant). Two typical exam-

ples are stresslet calculations using fundamental solutions of the creeping flow equations

[209, 210, 211], and the calculation of the total electrostatic potential due to the nu-

clei and the electron charge distribution in the context of Kohn-Sham density functional

theory [212, 213].

Given a function f defined in some domain Ω ⊂ Rd, the d-dimensional Dirac distri-

bution δ is defined by

∫

Ω

f (x) δ (x− y) dx = f (y) , ∀y ∈ Ω. (8.2)

This mathematical entity has some profound theoretical importance since any function

can be written as the convolution between itself and that distribution. Therefore, in the

context of a linear PDE in Rd, i.e. L [u] (x) = g (x), x ∈ Rd, u and g being functions from

Rd to R and L being a linear (integro-)differential operator (with constant coefficients),

1Although the Dirac delta δ has to be understood in the sense of distribution or as a linear functional,
i.e. if δ acts on a function f , δ belongs to the space that is dual to the function space of f , we may
misuse the word “function” hereafter by referring to δ as the “Dirac delta function”.
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if one knows the solution to such a right-hand side as δ (x), say h (x) (referred to as the

fundamental solution), the solution to any general input g (x) can be expressed as the

convolution between g and h, i.e.

u (x) =

∫

Rd
g (ξ)h (x− ξ) dξ (8.3)

when that latter integral exists.

Motivated by the computation of the semiclassical limit for Schrödinger equations and

high-frequency geometrical optics, several approaches have been suggested over the last

decade for the calculation of integrals like or similar to (8.2) when the source location y is

defined as the (non-degenerate) intersection of d codimension one surfaces in d dimensions

[214, 215, 216, 217]. The most stringent challenge in those problems arises from the lack

of consistency associated with naive approaches when the codimension one surfaces are

not aligned with the grid axes or, in the worst case scenario, when the surfaces are close to

degenerate (e.g. almost parallel). When the source location y is known, these techniques

can be used very simply by defining d codimension one surfaces that are parallel to the

grid axes and whose intersection is y to compute integrals like (8.2) accurately. However,

the corresponding result and the discretized form of δ that one may obtain based on such

an approach do depend on the choice of the d codimension one surfaces more generally,

hence a lack of geometric robustness.

In this chapter, we present a geometric approach for calculating integrals like (8.2) by

discretizing the domain into a disjoint union of simplices. The approach leads to second-

order accurate results. An explicit discretization for the Dirac d-dimensional distribution

(d = 2 or 3) is then derived by comparing this approach to the standard second-order

approximate integral for scalar field on uniform grids. This discretization is consistent (in

the discrete sense) with the method for Dirac distribution on codimension one surfaces
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that is presented in [152, 152]. Finally, we use this approximation of the Dirac distribution

to solve a Poisson equation with point-distributed singular source terms. Results for

such problems with possibly many such source terms are then presented in two and three

dimensions. Superlinear convergence of the solution and its gradient is observed and

illustrated; based on our numerical experiments, the order of accuracy of the solution

and of its gradient is either 2 or slightly smaller. Supra-convergence for the gradient of

the solution is desirable for the calculation of electric fields and electrostatic energy for

instance.

8.2 Numerical integration

In this section we present a numerical approximation to
∫

Ω
f (x) δ (x− y) dx. This

approximation builds on second-order accurate linear interpolation in a simplex, which is

first presented. The method is then developed for a general domain that we decompose

into a disjoint union of simplices. The following applies equally in the context of uni-

form or Quadtree/Octree grids by virtue of the local nature of the approach. Since the

approach is simplex-based, triangulated meshes could also use the formula in a straight-

forward way.

8.2.1 Second-order interpolation in a simplex

Consider a point y ∈ Ω ⊂ Rd contained in a d-simplex S defined by (d+ 1) affinely

independent points z0, z1, . . . ,zd (see Figure 8.1). Let f be a twice differentiable function

in Ω and fi the sampled value of f at point zi, i = 0, . . . , d. Then, the Taylor expansions
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of f around y gives

fi = f (y) +
d∑

k=1

∂f

∂xk

∣∣∣∣
y

(zi − y) · ek +O
(
∆2
)

(8.4)

where ei represents the ith canonical unit basis vector and ∆ = maxi ‖zi − y‖. Hence,

the linear combination
∑d

i=0 αifi is a second-order accurate approximation of f (y) iff




1 1 · · · 1

e1 · (z0 − y) e1 · (z1 − y) · · · e1 · (zd − y)

e2 · (z0 − y) e2 · (z1 − y) · · · e2 · (zd − y)

...
...

. . .
...

ed · (z0 − y) ed · (z1 − y) · · · ed · (zd − y)







α0

α1

α2

...

αd




=




1

0

0

...

0




from which we deduce

αi =
vol (Szi↔y)

vol (S)
, i = 0, . . . , d (8.5)

wherein vol (S) denotes the area (resp. the volume) of the simplex S in 2D (resp. 3D)

and Sp↔q denotes the new simplex created from S by replacing its point p by a new

point q.

•
z0

•z1

•z2

•
y

Sz1↔y

Sz2↔y

Sz0↔y

Figure 8.1: a 2-simplex S containing y and its inner simplices Szi↔y.
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8.2.2 Systematic approach by triangulation

Based on the results from section 8.2.1 and the definition (8.2), a second-order accu-

rate approximation of ∫

Ω

f (x) δ (x− y) dx

follows right away. This approach has the advantage of being local to each simplex: it does

not require values of f from another simplex. In order to build a systematic approach,

even in case of non-triangulated meshes, we choose to decompose into simplices the grid

cell in which y is located (if needed) and consider only the (sub)-simplex that contains

y in that cell.

In the rest of this chapter, we will consider uniform and Quad-/Oc-tree grids2 with

a node-based field sampling, i.e. the scalar or vector field of interest is sampled at the

vertices of the grid cells. In any case, the computational domain is decomposed into

elementary regular d-dimensional grid cells whose edges are aligned with the Cartesian

axes. Therefore, any grid cell that contains the source of a Dirac-distributed term needs

to be decomposed into elementary d-simplices and only the sub-simplex containing the

source is further considered to apply the above reasoning. Since we restrict ourselves

to d = 2 or 3, we prefer the middle cut triangulation to the Kuhn triangulation. The

general middle-cut triangulation is illustrated in Figure 8.2.

Denoting by conv (P1, . . . , Pn) the simplex defined by the points P1, . . . , Pn, we define

2In a d-dimensional space with a Cartesian orthonormal basis e1, e2, . . . , ed, a uniform grid of seed
w and (real) grid sizes h1, h2, . . . , hd (along the basis vectors and based on which one defines h =∑d
k=1 hkek) is a set of uniformly spaced nodes

Ωw
h =

{
z ∈ Rd : z = w + i1h1e1 + . . .+ idhded, {i1, i2, . . . , id−1, id} ∈ I ⊆ Zd

}
.

A Quad-/Oc-tree grid is a nonuniform two-/three-dimensional Cartesian grid, it is formally defined in
section 8.5.1.
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the triangulation T (C) of a cell C by

T (C) = {conv (P00, P10, P11) , conv (P00, P01, P11)}

in 2D and

T (C) = {conv (P000, P100, P010, P001) , conv (P110, P100, P010, P111) , conv (P101, P100, P111, P001) ,

conv (P011, P111, P010, P001) , conv (P111, P100, P010, P001)}

in 3D. Any grid cell C is then equivalent to
⋃
S∈T (C) S. Consequently, we have

∫

Ω

f (x) δ (x− y) dx =
∑

C:grid cell

∑

S∈T (C)

∑

k∈N (S)

δk (S,y) fk +O
(
∆2
)
, (8.6)

where δk is defined as

δk (S,y) =





0 if y /∈ S,
vol(Szk↔y)

vol(S)
otherwise,

(8.7)

and N (S) is the set of indices k such that the grid node zk is a vertex of simplex S.

P00 P01

P10
P11

P000 P001

P101
P100

P010

P011

P111

P110

Figure 8.2: middle-cut triangulation of a two- (left) and three- (right) dimensional cell.
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8.3 Integration examples

In this section, we show that the approach presented here above produces second-

order accurate results to (8.2) in two and three spatial dimensions by comparing the

right-hand side of (8.6) to f (y).

8.3.1 Results in two spatial dimensions

We illustrate the order of accuracy by evaluating integrals of the type (8.2) where

Ω = [−1, 1]2, f (x) = cos (x · e1) sin (x · e2) and for a point y randomly located in Ω.

We use uniform grids of increasing refinement level3. The error is averaged over 50 trials

for various random points y in Ω. The results are presented in Table 8.1 and show the

second-order rate of convergence. Our results are compared with the approximations

found by using a product of one-dimensional discretized delta functions from [3]. As it

can be seen in Table 8.1, the error is comparable with both approaches.

Remark. Although the approximations always converge, the rate of convergence may

fluctuate around 2 in the case of one single trial. However, second-order accuracy is

obtained in the mean-sense, as illustrated in Table 8.1. This table also indicate that the

minimum, the maximum and the standard deviation of the error distribution converge,

which is a compelling evidence that the approximation of the integral is convergent.

8.3.2 Results in three spatial dimensions

We repeat a similar example as in the section 8.3.1 with Ω = [−1, 1]3 and f (x) =

cos (x · e1) sin (x · e2) exp (x · e3), for a point y randomly located in Ω. We use uniform

grids of increasing refinement level, the error is averaged over 50 trials. The results

3A refinement level p corresponds to cells of size 2−p for a domain [0, 1].
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Statistics of 50 trials for computing an integral like (8.2) in Ω ⊂ R2

Results using (8.6)

Grid level Average error Order SD Min Max
10 3.05e-07 2.03e-07 2.31e-08 8.52e-07
11 7.37e-08 2.05 5.52e-08 3.40e-09 2.07e-07
12 1.82e-08 2.02 1.19e-08 2.85e-10 4.49e-08
13 4.38e-09 2.05 3.40e-09 1.46e-10 1.33e-08
14 1.09e-09 2.01 8.06e-10 6.58e-11 3.43e-09
15 2.71e-10 2.01 1.97e-10 2.11e-11 8.69e-10

Results using a product of one-dimensional delta functions from [3]

10 7.74e-07 4.52e-07 1.72e-08 1.67e-06
11 1.93e-07 2.00 1.12e-07 4.38e-09 4.24e-07
12 4.81e-08 2.00 2.80e-08 1.08e-09 1.04e-07
13 1.20e-08 2.00 7.03e-09 2.73e-10 2.68e-08
14 3.00e-09 2.00 1.75e-09 6.71e-11 6.65e-09
15 7.57e-10 1.99 4.41e-10 1.66e-11 1.64e-09

Table 8.1: second-order accurate integration in 2D

are presented in Table 8.2 and show the second-order rate of convergence. Our results

are compared with the approximations found by using a product of one-dimensional

discretized delta functions from [3]; the error is comparable with both approaches, here

again.

8.4 Discretization of the multidimensional Dirac dis-

tribution

Building upon the results presented here above, we can formulate a consistent dis-

cretization for the d-dimensional Dirac distribution. Indeed, using bi-/tri-linear interpo-

lation for the scalar field f , we have the following second-order accurate approximation

∫

cell C

f dx ≈ 1

2d

∑

i∈N (C)

fi vol (C) . (8.8)
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Statistics of 50 trials for computing an integral like (8.2) in Ω ⊂ R3

Results using (8.6)

Grid level Average error Order SD Min Max
10 4.49e-07 2.98e-07 1.27e-08 1.45e-06
11 1.14e-07 1.98 8.44e-08 2.42e-09 3.62e-07
12 2.86e-08 2.00 2.43e-08 6.90e-10 8.55e-08
13 6.82e-09 2.07 5.68e-09 6.72e-11 2.01e-08
14 1.61e-09 2.09 1.27e-09 6.54e-11 4.99e-09
15 3.40e-10 2.24 2.87e-10 9.82e-12 1.16e-09

Results using a product of one-dimensional delta functions from [3]

10 5.01e-07 1.26e-11 4.48e-07 5.64e-07
11 1.26e-07 1.99 7.94e-13 1.14e-07 1.37e-07
12 3.13e-08 2.01 4.92e-14 2.79e-08 3.45e-08
13 7.77e-09 2.01 3.03e-15 6.90e-09 8.55e-09
14 1.94e-09 2.01 1.88e-16 1.72e-09 2.13e-09
15 4.81e-10 2.01 1.16e-17 4.37e-10 5.28e-10

Table 8.2: second-order accurate integration in 3D

Hence, the contribution of the kth grid node to
∫

Ω
f dx is found to be fk vol (C) by

summing this result over the grid cells of a uniform grid. Therefore, the contribution of

node k (located at zk) to the integral
∫

Ω
f (x) δ (x− y) dx can be written as

fkδ̂ (zk,y) vol (C) (8.9)

wherein δ̂ (zk,y) would be some appropriate discretization of δ (zk − y). Yet, that con-

tribution is also known to be

fk
∑

C∈Vk

∑

S∈T (C)

δk (S,y) (8.10)
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where Vk is the set of grid cells surrounding the node k and δk is defined in (8.7). Hence,

by comparing (8.9) and (8.10), we have the following discretization δ̂ (zk,y) for δ (zk − y)

δ̂ (zk,y) =
1

vol (C)

∑

C∈Vk

∑

S∈T (C)

δk (S,y) . (8.11)

We recall that this approach makes sense only if the grid is uniform in some neighborhood

of y. This discretization (8.11) satisfies the equivalent discrete forms of
∫

Ω
δ (y − x) dx =

1 and
∫

Ω
xδ (y − x) dx = y, ∀y ∈ Ω.

8.4.1 Link with interface delta in two spatial dimensions

This discretization is consistent with what is suggested in [152] for the Dirac distri-

bution over a co-dimension one interface. Indeed, consider a regular co-dimension one

interface (in 2D)

Γ =
{
x ∈ R2|x = r (s) , s ∈ [a, b] ⊂ R

}

wherein r is an invertible differentiable mapping between [a, b] and Γ. Then, for a scalar

field g defined over Ω, we have

∫

Ω

g δΓ dΩ =

∫

Γ

g dΓ =

∫ b

a

g (r (s))

∣∣∣∣
∂r

∂s

∣∣∣∣ ds =

∫ b

a

∫

Ω

g (x)

[∣∣∣∣
∂r

∂s

∣∣∣∣ δ (x− r (s))

]
dx ds

=

∫

Ω

g (x)

∫ b

a

[∣∣∣∣
∂r

∂s

∣∣∣∣ δ (x− r (s))

]
ds dx

so that

δΓ (x) =

∫ b

a

∣∣∣∣
∂r

∂s

∣∣∣∣ δ (x− r (s)) ds. (8.12)

Consider now the two possible cases (see [116]) of an interface crossing a 2-simplex,

as illustrated in Figure 8.3. Let φk be the signed distance from zk to the interface4, and

4Without loss of generality, the simplex nodes are sorted in a decreasing order of φ.
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assume φ0 > 0. Approximating the interface by a straight line in the simplex, one can

use the curvilinear coordinate r (s) = z02 + (ze − z02) s/L where L = ‖ze − z02‖, ze

stands for either z12 or z01 and where zik = zi + (zk − zi)φi/ (φi − φk) when φi and φk

are of different signs.

Then, building upon (8.11) and (8.12) a consistent approximation for the contribution

of the considered simplex S (included in cell C) to δΓ (z0) would be

1

vol (C)

∫ L

0

δ0 (S, r (s)) ds =
L

vol (C)

|(z2 − r (L/2))× (z1 − r (L/2))|
|(z2 − z0)× (z1 − z0)| .

After calculations, the above expression yields to

‖z12 − z02‖
2 vol (C)

φ2

φ2 − φ0

or
‖z01 − z02‖

2 vol (C)

(
φ1

φ1 − φ0

+
φ2

φ2 − φ0

)
(8.13)

respectively when φ1 > 0 and φ2 < 0 (i.e. ze = z12) or φ1 < 0 and φ2 < 0 (i.e.

ze = z01). Both expressions in (8.13) are exactly the approximations derived in [152] for

the contribution of the simplex S to δΓ (z0).

8.4.2 Link with interface delta in three spatial dimensions

The same consistency is observed in the 3D case. Consider, a regular co-dimension

one interface (in 3D)

Γ =
{
x ∈ R3|x = r (s, t) , (s, t) ∈ Λ ⊂ R2

}
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wherein r is an invertible differentiable mapping between Λ and Γ. Then, for a scalar

field g defined over Ω, we have

∫

Ω

g δΓ dΩ =

∫

Γ

g dΓ =

∫

Λ(s,t)

∫

Ω

g (x)

[∣∣∣∣
∂r

∂s
× ∂r

∂t

∣∣∣∣ δ (x− r (s, t))

]
dx ds dt

=

∫

Ω

g (x)

∫

Λ(s,t)

[∣∣∣∣
∂r

∂s
× ∂r

∂t

∣∣∣∣ δ (x− r (s, t))

]
ds dt dx

so that

δΓ (x) =

∫

Λ(s,t)

∣∣∣∣
∂r

∂s
× ∂r

∂t

∣∣∣∣ δ (x− r (s, t)) ds dt. (8.14)

For the sake of illustration, consider now one of the three possible different cases

for an interface crossing a 3-simplex (see [116]), as illustrated in Figure 8.3. For this

illustration, we assume φ0 > 0, φ1, φ2 and φ3 negative. Let the vectors u, v and w be

u = z2 − z1, v = z3 − z1, w = z0 − z1,

then we have

z01 = z1+
φ1

φ1 − φ0
w, z02 = z1+

φ2

φ2 − φ0
w− φ0

φ2 − φ0
u, and z03 = z1+

φ3

φ3 − φ0
w− φ0

φ3 − φ0
v,

and we can use the mapping r (s, t) = z01 + s (z02 − z01) + t (z03 − z01), s ∈ [0, 1] , t ∈

[0, 1− s], and δ0 (S, r (s, t)) reads

(u× v) · (r (s, t)− z1)

(u× v) ·w =
φ1

φ1 − φ0

+ s

(
φ2

φ2 − φ0

− φ1

φ1 − φ0

)
+ t

(
φ3

φ3 − φ0

− φ1

φ1 − φ0

)
.

Therefore, the discrete equivalent of (8.14) for the contribution of the current simplex S
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(included in cell C) to δΓ (z0) yields after calculations5

2A (z01z02z03)

vol (C)

∫ 1

0

∫ 1−s

0

δ0 (S, r (s, t)) dtds =
1

3

A (z01z02z03)

vol (C)

(
φ1

φ1 − φ0
+

φ2

φ2 − φ0
+

φ3

φ3 − φ0

)
,

which is exactly what is suggested in [152]. The same conclusion holds for the two other

cases.

•
z0

•z2

•z1

•
z02

•z12

•
r (s)

•
z0

•z2

•z1

•
z02

•z01

•
r (s)

z0

z1

z2

z3

z01

z02

z03

Figure 8.3: top: the two distinct cases for an interface crossing a 2-simplex, as
described in [116]. Bottom: one of the three cases for an interface crossing a 3-simplex
(see Fig. 4 in [116] for the two other cases).

8.5 Solving Poisson equation with singular source

terms

In this section, we show that the discrete formula of δ can be used for solving Poisson

equations with singular source terms. When dealing with constant coefficient Poisson

5Note that

∣∣∣∣
∂r

∂s
× ∂r

∂t

∣∣∣∣ = 2A (z01z02z03) with the considered mapping r (s, t), where A (zizjzk) is

the area of the triangle defined by points zi, zj and zk.
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equations, a very convenient and well-known way to circumvent any difficulty raised by

such singular source terms is the following approach. Consider the problem

−∆u = f (x) +
S∑

s=1

αsδ (x− xs) for x ∈ Ω, and B [u] (x) = g (x) for x ∈ ∂Ω,

where f and g are continuous functions, S ≥ 1 is an integer, αs ∈ R, xs ∈ Ω and B is a

linear functional representing the boundary condition(s) on u. Since the latter problem

is fully linear in u, we can write the solution as u (x) := v (x)+
∑N

s=1 αsw (x− xs) where

w is a fundamental solution of −∆w = δ (x) in Rd, e.g. w (x) = − 1
2π

log |x| if d = 2,

and v satisfies

−∆v = f (x) for x ∈ Ω, and B [v] (x) = g (x)−
S∑

s=1

αsB [w] (x− xs) for x ∈ ∂Ω.

which has the advantage of being well posed in the entire domain Ω and free of singular

source terms.

While this approach is preferable when it can be used, it does not easily extend to

more general cases like nonlinear boundary conditions, periodic boundary conditions or

variable diffusion coefficients for instance. In the following, we aim to show that the

discretization of δ presented here above stands as a more general way to address such

problems from a purely computational point of view.

First, we recall the finite difference discretization of the Poisson equation that is used

throughout this section. Then, we show that the resulting solutions to the Poisson equa-

tion with Dirac-distributed source terms converge in the L1- and L∞-norms, in both two

and three spatial dimensions. Supra-convergence of the gradients is observed as well: the

convergence of the solutions and their gradients is superlinear. The order of convergence

is either 2 or slightly smaller. Although we show only the results obtained with the
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above discretization here below (for the sake of conciseness), we have compared them to

results found with products of one-dimensional discretized delta functions from [3]: the

errors were of the same order of magnitude in all cases. However, for the applications

illustrated in sections 8.5.2, 8.5.2, 8.5.3 and 8.5.3, the extended stencil associated with

the approach from [3] made it impossible to use for the coarsest considered grids. Hence,

the discretization (8.11) gains significant practical interest compared to the method from

[3] for multi-scale applications.

8.5.1 Discretization of the Poisson equation

We restrict ourselves to two spatial dimensions for the presentation of the numerical

scheme, the extension to three spatial dimensions being straightforward. More details

about this scheme and formal proofs of its convergence can be found in [179]. We also

refer the interested readers to [218, 219] for formal proofs of the second-order convergence,

and [220] for the second-order convergence of the gradient in the L2-norm. In all cases,

such proofs of rate(s) of convergence (in the entire domain Ω) always assume well-defined,

smooth, non-singular source terms.

Let us consider the variable coefficient Poisson equation −∇ · (β∇u) = f on a Carte-

sian domain Ω with Dirichlet boundary conditions on its boundary ∂Ω (β is bounded

from below by a positive constant). In the case of a uniform grid (xi, yj) = (ihx, jhy),

i = 0, 1, . . . , I, j = 0, 1, . . . , J , the standard finite difference discretization can be written

as

− 1

hx

(
βi+1,j + βi,j

2

ui+1,j − ui,j
hx

− βi,j + βi−1,j

2

ui,j − ui−1,j

hx

)
(8.15)

− 1

hy

(
βi,j+1 + βi,j

2

ui,j+1 − ui,j
hy

− βi,j + βi,j−1

2

ui,j − ui,j−1

hy

)
= fi,j,
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0 < i < I, 0 < j < J , where ui,j is the numerical approximation of the unknown function

u at node (xi, yj) and fi,j = f (xi, yj). This scheme has been used extensively and

produces second-order accurate results for u and its derivatives (assuming f is bounded

in Ω).

Uniform grids restrict the range of tractable problems since the computational cost

is proportional to the number of grid points, regardless of whether the grid needs to be

refined only locally or not. Quadtree and Octree grids preform much more efficiently

with such problems since they allow for local grid refinement. More precisely, consider

the case depicted in Figure 8.4 in two spatial dimensions: the entire rectangular domain

is originally associated with the root of the tree and then split into four cells of equal

sizes, called the children of the root. The discretization proceeds recursively, i.e. each

cell can be in turn split into four children and so forth. A cell with no children is called

a leaf. By definition, the level corresponding to the root is zero and is incremented by

one every time a new generation of children is added.

Level=0

Level=1

Level=2

Level=3

Level=4

Figure 8.4: discretization of a two-dimensional domain (left) and its Quadtree rep-
resentation (right). The entire domain corresponds to the root of the tree (level 0),
and each cell subdivided further points to its four children. In this example, the tree
is not graded since the difference of level between neighboring cells can exceed one.

In the following sections, we use the node-based discretization of the Poisson equation

on Quad-/Oc-tree introduced in [179]. Consider first the case of a point having four
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neighboring nodes along the x and y axes, as illustrated in Figure 8.5. In that case, the

discretization of the Poisson equation reads

−
(
β1 + β0

2

u1 − u0

s1

− β0 + β3

2

u0 − u3

s3

)
2

s1 + s3

(8.16)

−
(
β2 + β0

2

u2 − u0

s2

− β0 + β4

2

u0 − u4

s4

)
2

s2 + s4

= f0

where f0 is the value of the function f at the node associated with u0. Note that this

scheme reduces to (8.16) in the case of a locally uniform grid (i.e. when s1 = s3 = hx

and s2 = s4 = hy).

In the more general case of a T-junction, one of the grid nodes in (8.16), say u1 and β1,

might be missing and a linear interpolation based on available neighboring nodes is used

instead (see Figure 8.5, nodes 5 and 6 would be used in that case). [179] observed that

this produces a spurious term (to first order) that is proportional to ∂y (β∂yu). In the

case of a node-based discretization, this spurious term can be canceled appropriately by

weighting the approximation for ∂y (β∂yu) which does not require such an interpolation.

The Poisson discretization at u0 is thus:

−
(

β5+β0

2
s6

s5+s6
(u5 − u0) + β6+β0

2
s5

s5+s6
(u6 − u0)

s1

− β0 + β3

2

u0 − u3

s3

)
2

s1 + s3

−
(
β2 + β0

2

u2 − u0

s2

− β4 + β0

2

u0 − u4

s4

)
2

s2 + s4

w = f0 (8.17)

where the weight w = 1 − s5s6

s1 (s1 + s3)
cancels the spurious term induced by the linear

interpolation due to the missing grid node 1. This numerical scheme extends to three

spatial dimensions in a very similar way (see [179] for the details).
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u0 u1

u2

u3

u4

s1

s2

s3

s4

u0 u1

u5

u6

u2

u3

u4

s1

s5

s6

s2

s3

s4

Figure 8.5: discretization of the Poisson equation. Left: case of a five-point stencil;
right: general case of a T-junction.

8.5.2 Numerical examples in two spatial dimensions

In this section, we show that the discrete formula of δ can be applied to solving

Poisson equations with point-located singular source terms, in two spatial dimensions.

We show the superlinear convergence for the resulting solutions (and their gradients) in

the L1- and L∞-norms.

One singular source term

Consider the Poisson equation

−∆u (x) = 2πδ (x− x) ∈ Ω

u (x) = 1− ln

( |x− x|
diag (Ω)

)
on ∂Ω

where Ω = [−1, 1] × [−1, 1] and diag (Ω) = 2
√

2 can be seen as an arbitrary length

chosen to make the argument of the logarithm non-dimensional. The exact solution is

u (x) = 1− ln

( |x− x|
diag (Ω)

)
in Ω\ {x}, thus singular at x.

This equation is solved using the above discretization for the multidimensional delta
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function. Since the analytic solution itself is singular at x, we define

Ωα = {x : x ∈ Ω, |x− x| ≥ α}

(α ∈ ]0, diag (Ω)]) for the error analysis. Table 8.3 shows that our discretization pro-

duces results that are second-order accurate in the L1-norm and in the L∞-norm in

Ω0.05 diag(Ω). The convergence of the discrete fundamental solution to the corresponding

fundamental continuous Green function on a uniform (infinite) grid away from the source

location is well-known and studied (see [221] for instance); the current example shows

that convergence on Quadtree grids holds as well.

A note on refinement: by integrating both sides of the Poisson equation over a ball

B of radius ρ centered at x where a source term αδ (x− x) acts, the divergence theorem

leads to

∇nu ∼
α

2πρ
, ρ→ 0, (8.18)

where n =
y − x
|y − x| , y ∈ ∂B is the outer normal vector and ∇nu =

1

2πρ

∫
∂B n · ∇u dy

is the average of the normal gradient of u over ∂B. The behavior (8.18) shows that the

gradient of u diverges close to Dirac-distributed sources. Therefore, the closer to a Dirac

source a region is, the more computationally expensive it is to capture the exact behavior

of the solution in that region in the sense that it requires finer grids for a given level of

accuracy. Nevertheless, the solution outside a small region away from the source can be

computed accurately.

Building upon that observation, we propose the procedure 8.5.1 for constructing a

grid of maximum level M and minimum level m (at least), which we refer to as an m/M

Quadtree grid. This procedure is meant to balance the computational effort efficiently in

the domain: for one single Dirac source, it decomposes the entire computational domain
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in circular annuli containing at least two grid cells and such that the local truncation

error is comparable from one annulus to another, hoping for a balanced error in the whole

domain.

If there exists a distance below which the numerical solution is irrelevant for the

considered application, it makes sense to set d (see procedure 8.5.1) equal to that distance.

For the results in Table 8.3, we chose d = b = 0.05 diag (Ω) consistently with the error

analysis in Ωb. Examples of such grids are illustrated in Figure 8.6.

Construction procedure 8.5.1.

Construction of an m/M Quadtree grid.

Given a minimal distance of interest d to the Dirac-distributed sources and

the dimensions Lx, Ly of the computational domain Ω, define the threshold

distances tk, k = 0, . . . ,M −m− 1 such that tM−m−1 = d
√

2 and

tM−m−1−k = max

(
√

2 tM−m−k, tM−m−k +

√
L2
x + L2

y 2k+1

2M−m

)
,

k = 1, 2, . . . ,M −m− 1.

Starting from a root cell of dimensions Lx, Ly, split it m times.

Then, let an integer k run from 0 to M −m− 1 and split any cell C if

min
v∈vertices(C)

φ (v) ≤ tk

where v refers to a vertex (node) of the cell C and φ is the smallest distance

to a Dirac-distributed source.

Note that the threshold distances tk in procedure 8.5.1 depend only on (M −m), for a

given domain Ω and a distance d. Hence, the m/M Quadtree grid that it creates can

be understood as the mth refinement of the corresponding 0/ (M −m) Quadtree grid,
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which explains why the minimum level of the m/M grid may be greater than m. Besides,

considering the 0/ (M −m) Quadtree grid, it makes sense to require its finer grid size is

to be smaller than d, hence

M −m > log2

(√
L2
x + L2

y

d

)
.

We restrict ourselves to grids satisfying that condition when using Quadtree grids.

One singular source term with variable diffusion coefficient

The case of a variable diffusion coefficient is of significant interest both from a theo-

retical and a practical point of view. Indeed, in presence of a variable diffusion coefficient,

the usual procedure to circumvent difficulties raised by the presence of Dirac-distributed

source terms (as detailed in the beginning of section 8.5) cannot be applied in a straight-

forward manner since no general fundamental solution can be formulated easily in pres-

ence of a variable diffusion coefficient β (x). Moreover, a well-chosen diffusion coefficient

β can help alleviate the unbounded growth of the solution gradient close to the source

location and lead to a bounded solution in Ω, allowing for an error analysis in the entire

domain (for any p-norm with p finite).

Consider for instance

β (x) = 2

√
diag (Ω)

|x− x| , x ∈ Ω\ {x}

for some randomly located x ∈ Ω and the corresponding variable diffusion coefficient
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(0/5) (1/6)

(2/7) (3/8)

Figure 8.6: grids generated for problem 8.5.2. The distance d (see procedure 8.5.1)
is chosen equal to b = 0.05 diag (Ω).
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Error analysis for solving a problem like 8.5.2.

Grid level
‖u−uh‖∞
‖u‖∞

rate
‖ux−uh,x‖∞
‖ux‖∞

rate
‖uy−uh,y‖∞
‖uy‖∞

rate

QUADTREES
0/5 4.796e-03 7.148e-02 6.434e-02
1/6 1.810e-03 1.406 3.047e-02 1.230 2.731e-02 1.236
2/7 5.709e-04 1.665 6.665e-03 2.193 6.801e-03 2.006
3/8 1.357e-04 2.073 1.768e-03 1.914 1.216e-03 2.484
4/9 3.934e-05 1.786 5.175e-04 1.773 4.992e-04 1.284
5/10 9.146e-06 2.105 1.152e-04 2.168 1.233e-04 2.017
6/11 2.749e-06 1.734 3.267e-05 1.818 1.768e-05 2.802
7/12 5.097e-07 2.431 5.509e-06 2.568 6.766e-06 1.386

Mean order 1.886 1.952 1.888
UNIFORM GRIDS

5/5 4.297e-03 7.201e-02 6.498e-02
6/6 2.025e-03 1.085 2.994e-02 1.266 2.696e-02 1.269
7/7 6.768e-04 1.581 6.700e-03 2.160 6.756e-03 1.996
8/8 1.027e-04 2.721 1.746e-03 1.940 1.205e-03 2.488
9/9 4.827e-05 1.089 5.145e-04 1.763 4.927e-04 1.290
10/10 1.106e-05 2.126 1.137e-04 2.178 1.226e-04 2.007
11/11 2.018e-06 2.454 3.183e-05 1.837 1.749e-05 2.809
12/12 3.314e-07 2.607 5.298e-06 2.587 6.635e-06 1.398

Mean order 1.952 1.962 1.894

Grid level
‖u−uh‖1
‖u‖∞vol(Ω) rate

‖ux−uh,x‖1
‖ux‖∞vol(Ω) rate

‖uy−uh,y‖1
‖uy‖∞vol(Ω) rate

QUADTREES
0/5 3.286e-04 2.834e-03 2.704e-03
1/6 1.069e-04 1.620 8.581e-04 1.724 8.250e-04 1.713
2/7 3.917e-05 1.449 2.434e-04 1.818 2.516e-04 1.713
3/8 1.113e-05 1.816 6.733e-05 1.854 5.907e-05 2.091
4/9 3.199e-06 1.798 1.784e-05 1.916 1.706e-05 1.792
5/10 8.269e-07 1.952 4.288e-06 2.057 4.495e-06 1.924
6/11 2.039e-07 2.020 1.183e-06 1.857 9.617e-07 2.225
7/12 5.217e-08 1.967 2.583e-07 2.196 2.739e-07 1.812

Mean order 1.803 1.917 1.890
UNIFORM GRIDS

5/5 1.468e-04 1.139e-03 1.068e-03
6/6 4.637e-05 1.663 3.167e-04 1.846 2.975e-04 1.844
7/7 1.608e-05 1.528 8.544e-05 1.890 9.041e-05 1.718
8/8 2.470e-06 2.703 2.066e-05 2.048 1.452e-05 2.638
9/9 1.142e-06 1.113 6.161e-06 1.745 5.618e-06 1.370
10/10 2.530e-07 2.174 1.282e-06 2.265 1.472e-06 1.932
11/11 4.539e-08 2.479 3.700e-07 1.792 2.133e-07 2.787
12/12 8.687e-09 2.385 5.822e-08 2.668 7.110e-08 1.585

Mean order 2.006 2.037 1.982

Table 8.3: accuracy analysis of the Poisson problem 8.5.2: one trial for a random
source location x. All norms are in Ωb where b = 0.05 diag (Ω). The Quadtree grids
are constructed using procedure 8.5.1 with d = b. For this specific problem, one
obtains comparable maximum errors between uniform grids and Quadtrees if d = b.
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Poisson equation

−∇ · (β∇u) = 2πδ (x− x) ∈ Ω\ {x}

u (x) = 1−
√
|x− x|
diag (Ω)

on ∂Ω

where Ω and diag (Ω) are as before6. The exact solution is u (x) = 1−
√
|x− x| /diag (Ω)

(note that it is bounded in Ω).

This problem is solved using the above discretization for the multidimensional delta

function. Since the exact solution has unbounded derivatives close to x, convergence

in the L∞-norm is not ensured in the entire domain Ω. However, Table 8.4 shows that

the numerical approximation still converges in the L∞-norm in Ω0.01diag(Ω) (as defined in

section 8.5.2) and in the L1-norm in the entire domain Ω. The order of convergence is

about 1.6-1.7 for both the solution and its derivatives in any considered norm.

Multiple singular source terms

Consider now the Poisson equation with N Dirac source terms (N ∈ N∗ = N\ {0})

−∆u (x) =
N∑

k=1

αk δ (x− xk) ∈ Ω

u (x) = 1−
N∑

k=1

αk
2π

ln

( |x− xk|
diag (Ω)

)
on ∂Ω

where Ω and diag (Ω) are as before. In this problem, the points xk are randomly located

in Ω and the intensities αk are random variables with uniform probability density in

6The components of the random source location x are defined as
π

4

q

Q
where Q = 1024 and q is a

random integer in [−Q, Q], so that x cannot coincide with a grid node and the grid values of β are
well-defined at the grid nodes.
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Error analysis for solving a problem like 8.5.2.

Grid level
‖u−uh‖∞
‖u‖∞

rate
‖ux−uh,x‖∞
‖ux‖∞

rate
‖uy−uh,y‖∞
‖uy‖∞

rate

0/7 3.001e-03 5.499e-03 4.139e-03
1/8 6.231e-04 2.268 1.885e-03 1.545 1.312e-03 1.657
2/9 2.603e-04 1.259 6.812e-04 1.468 4.543e-04 1.530
3/10 1.223e-04 1.089 1.635e-04 2.059 9.980e-05 2.187
4/11 2.771e-05 2.142 3.584e-05 2.190 2.558e-05 1.964
5/12 9.544e-06 1.538 1.414e-05 1.342 7.246e-06 1.820
6/13 2.551e-06 1.904 3.776e-06 1.905 1.943e-06 1.899
7/14 7.030e-07 1.859 1.023e-06 1.884 6.048e-07 1.683

Mean order 1.723 1.770 1.820

Grid level
‖u−uh‖1
‖u‖∞vol(Ω)

rate
‖ux−uh,x‖

1

‖ux‖∞vol(Ω)
rate

‖uy−uh,y‖
1

‖uy‖∞vol(Ω)
rate

0/7 2.179e-04 1.095e-04 7.824e-05
1/8 1.514e-04 0.526 3.301e-05 1.731 2.344e-05 1.739
2/9 5.295e-05 1.516 1.085e-05 1.606 7.486e-06 1.647
3/10 1.808e-05 1.550 2.613e-06 2.054 2.409e-06 1.636
4/11 4.565e-06 1.986 7.164e-07 1.867 6.924e-07 1.799
5/12 1.053e-06 2.115 2.517e-07 1.509 2.161e-07 1.680
6/13 2.641e-07 1.996 7.013e-08 1.844 6.186e-08 1.804
7/14 8.194e-08 1.689 2.158e-08 1.700 1.915e-08 1.692

Mean order 1.625 1.759 1.714

Table 8.4: accuracy analysis of the variable diffusion coefficient Poisson problem 8.5.2:
one trial for a random source location x. L∞ norms are in Ω0.01 diag(Ω) and L1-norms
are in the entire domain Ω. The grid construction follows the procedure 8.5.1 with
d = 0.01diag (Ω).
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[−4 π, 4 π]. The exact solution is

u (x) = 1−
N∑

k=1

αk
2π

ln

( |x− xk|
diag (Ω)

)

in Ω\⋃N
k=1 {xk}, hence singular at points xk (k = 1, . . . , N).

It is solved using the above discretization for the multidimensional delta function.

Since the analytic solution itself is singular at xk, we define

Ωα = {x : x ∈ Ω, |x− xk| ≥ α, ∀k = 1, . . . , N}

(α ∈ ]0, diag (Ω)]) for the error analysis. Table 8.5 shows that our discretization produces

results that converge in the L1-norm and in the L∞-norm in Ωb where b = 0.01 diag (Ω),

the order of convergence being at least7 1.8. A typical example of the exact and numerical

solutions is illustrated in Figure 8.7. The grid construction follows exactly the procedure

8.5.1, such grids are illustrated in Figure 8.8.

Multi-scale problem

In this section, we show that the proposed discretization also allows us to deal

with multi-scale problems using highly graded quad-tree grids. In order to illustrate

that feature, we solve the same problem as 8.5.2 except that the domain is now Ω =

[−100, 100]× [−100, 100], and the points xk are located randomly in

Λ = [µ− 0.5, µ+ 0.5]× [ν − 0.5, ν + 0.5] ,

7Note that the order of convergence gets closer and closer to 2 as the grid is refined. Since the coarsest
considered grids barely capture the solution’s behavior, the solution enters the asymptotic convergence
regime only after a few grid refinement, which accounts for this observation.
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Error analysis for solving a problem like 8.5.2 with N = 20.

Grid level
‖u−uh‖∞
‖u‖∞

rate
‖ux−uh,x‖∞
‖ux‖∞

rate
‖uy−uh,y‖∞
‖uy‖∞

rate

0/7 1.073e-02 9.585e-02 1.380e-01
1/8 4.768e-03 1.170 4.389e-02 1.127 6.250e-02 1.143
2/9 1.171e-03 2.025 8.727e-03 2.330 1.182e-02 2.402
3/10 3.450e-04 1.764 2.587e-03 1.754 3.126e-03 1.919
4/11 7.614e-05 2.180 5.859e-04 2.143 6.355e-04 2.298
5/12 2.067e-05 1.881 1.459e-04 2.006 2.453e-04 1.373
6/13 5.563e-06 1.893 3.892e-05 1.906 6.926e-05 1.824
7/14 1.298e-06 2.100 1.062e-05 1.874 1.870e-05 1.889

Mean order 1.859 1.877 1.836

Grid level
‖u−uh‖1
‖u‖∞vol(Ω)

rate
‖ux−uh,x‖

1

‖ux‖∞vol(Ω)
rate

‖uy−uh,y‖
1

‖uy‖∞vol(Ω)
rate

0/7 1.010e-03 1.526e-03 1.973e-03
1/8 4.781e-04 1.079 4.644e-04 1.717 5.651e-04 1.804
2/9 1.799e-04 1.411 1.339e-04 1.794 1.610e-04 1.811
3/10 4.884e-05 1.881 3.747e-05 1.838 4.334e-05 1.894
4/11 1.293e-05 1.918 1.013e-05 1.887 1.075e-05 2.012
5/12 3.380e-06 1.935 2.515e-06 2.010 2.804e-06 1.938
6/13 8.549e-07 1.983 6.499e-07 1.952 7.045e-07 1.993
7/14 2.151e-07 1.991 1.656e-07 1.972 1.790e-07 1.977

Mean order 1.742 1.881 1.918

Table 8.5: accuracy analysis of the Poisson problem 8.5.2: one trial for N = 20 random
source locations xk. All norms are in Ωb where b = 0.01 diag (Ω).
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Figure 8.7: exact (left) and numerical (right) solutions for a problem of type 8.5.2.

µ and ν being random variables uniformly distributed in [−99.5, 99.5]. Assuming that

we are interested only in the solution further than a distance of diag (Ω) /30000 from

the sources, we need a local grid level of at least dlog2 (30000)e = 15 which would be

intractable and prohibitively expensive in terms of computational resources with uniform

grids since it would lead to 230 ∼ 109 unknowns. On the other hand, the construction

procedure 8.5.1 leads to a system of 3116 unknowns for the 0/15 grid in this case, yet

producing results that are about 1% accurate as indicated in Table 8.6. The order of

convergence for the solution and its gradient is at least 1.8 in this case too. The 2/17

grid is illustrated in Figure 8.9.

8.5.3 Numerical examples in three spatial dimensions

In this section, we show that the discrete formula of δ can be applied to solving

Poisson equations with point-located singular source terms, in three spatial dimensions.

Superlinear convergence of the resulting solutions and its gradient in the L1- and L∞-
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Error analysis for solving a problem like 8.5.2 with N = 10 sources

Grid level
‖u−uh‖∞
‖u‖∞

rate
‖ux−uh,x‖∞
‖ux‖∞

rate
‖uy−uh,y‖∞
‖uy‖∞

rate

0/15 1.059e-02 1.732e-01 1.537e-01
1/16 5.290e-03 1.001 5.218e-02 1.731 5.795e-02 1.407
2/17 1.283e-03 2.044 1.676e-02 1.639 1.449e-02 1.999
3/18 3.317e-04 1.952 4.202e-03 1.996 3.619e-03 2.002
4/19 8.348e-05 1.991 8.031e-04 2.387 1.033e-03 1.809
5/20 2.261e-05 1.884 2.508e-04 1.679 2.606e-04 1.986
6/21 6.624e-06 1.771 7.074e-05 1.826 5.250e-05 2.312
7/22 1.524e-06 2.120 1.764e-05 2.003 1.768e-05 1.571

Mean order 1.823 1.894 1.869

Grid level
‖u−uh‖1
‖u‖∞vol(Ω)

rate
‖ux−uh,x‖

1

‖ux‖∞vol(Ω)
rate

‖uy−uh,y‖
1

‖uy‖∞vol(Ω)
rate

0/15 2.304e-04 5.116e-07 5.056e-07
1/16 1.521e-04 0.599 2.495e-07 1.036 2.320e-07 1.124
2/17 3.177e-05 2.259 5.578e-08 2.161 5.117e-08 2.181
3/18 6.157e-06 2.367 1.270e-08 2.135 1.189e-08 2.105
4/19 2.122e-06 1.537 3.831e-09 1.729 3.542e-09 1.748
5/20 5.633e-07 1.913 1.004e-09 1.932 9.280e-10 1.932
6/21 1.491e-07 1.918 2.622e-10 1.936 2.414e-10 1.943
7/22 3.734e-08 1.997 6.579e-11 1.995 6.065e-11 1.993

Mean order 1.799 1.846 1.861

Table 8.6: accuracy analysis of the Poisson problem 8.5.2: one trial with N = 10
sources randomly located. All norms are in Ωb where b = diag (Ω) /30000.
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Figure 8.8: grids generated with the refinement criterion 8.5.1 for problem 8.5.2.
Left: 1/8 grid; right: 2/9 grid.

norms is observed and discussed.

One singular source term

Consider the Poisson equation

−∆u (x) = 4π diag (Ω) δ (x− x) ∈ Ω

u (x) = 1 +
diag (Ω)

|x− x| on ∂Ω

where Ω = [−1, 1]3 and diag (Ω) = 2
√

3 can be seen as an arbitrary length chosen to

make u non-dimensional. The exact solution is u (x) = 1 +
diag (Ω)

|x− x| in Ω\ {x}, thus

singular at x.

This equation is solved using the above discretization for the multidimensional delta

function. Since the analytic solution itself is singular at x, we define

Ωα = {x : x ∈ Ω, |x− x| ≥ α}
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Figure 8.9: left: highly graded (2/17) grid constructed to solve problem 8.5.2. Right:
enlarged image of the region including the sources points.

(α ∈ ]0, diag (Ω)]) for the error analysis. Table 8.7 shows that our discretization produces

results that converge in the L1-norm and in the L∞-norm in Ω0.01 diag(Ω). Fine grid

resolutions beyond level 11 cannot be investigated because of memory limitations but

results from Table 8.7 seem to indicate that the order of convergence is at least 1.8.

The Octree grid is constructed in a way that is totally similar to the procedure 8.5.1.

The only major difference is that the local truncation error τ (∆x,∆y,∆z) associated with

a uniform grid of spacing (∆x,∆y,∆z) behaves now as

τ (∆x,∆y,∆z) ∼ O
(

(∆x)2 + (∆y)2 + (∆z)2

r5

)
(8.19)

where r is the distance to the source location x. Therefore, we adapt the procedure 8.5.1

in the following way
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Error analysis for a problem like 8.5.3. b = 0.01 diag (Ω)

Grid level
‖u−uh‖∞
‖u‖∞

rate
‖ux−uh,x‖∞
‖ux‖∞

rate
‖uy−uh,y‖∞
‖uy‖∞

rate
‖uz−uh,z‖∞
‖uz‖∞

rate

0/7 5.74e-02 2.86e-01 2.02e-01 3.03e-01
1/8 2.46e-02 1.22 8.62e-02 1.73 1.51e-01 0.42 7.29e-02 2.05
2/9 5.24e-03 2.23 2.45e-02 1.82 2.00e-02 2.92 2.23e-02 1.71
3/10 1.27e-03 2.04 4.88e-03 2.33 6.20e-03 1.69 6.56e-03 1.77
4/11 3.16e-04 2.01 1.37e-03 1.84 1.55e-03 2.00 1.43e-03 2.20

Mean order 1.88 1.93 1.76 1.93

Grid level
‖u−uh‖1
‖u‖∞vol(Ω)

rate
‖ux−uh,x‖1
‖ux‖∞vol(Ω)

rate
‖uy−uh,y‖1
‖uy‖∞vol(Ω)

rate
‖uz−uh,z‖1
‖uz‖∞vol(Ω)

rate

0/7 4.09e-05 1.89e-05 1.86e-05 2.04e-05
1/8 2.15e-05 0.93 5.38e-06 1.81 5.67e-06 1.71 5.94e-06 1.78
2/9 6.80e-06 1.66 1.59e-06 1.76 1.48e-06 1.93 1.80e-06 1.72
3/10 2.02e-06 1.75 4.10e-07 1.96 4.23e-07 1.81 4.87e-07 1.88
4/11 5.59e-07 1.85 1.11e-07 1.88 1.13e-07 1.91 1.27e-07 1.94

Mean order 1.55 1.85 1.84 1.83

Table 8.7: accuracy analysis of the Poisson problem 8.5.3. One trial for a random
source x in Ω. All norms are in Ωb where b = 0.01 diag (Ω).

Construction procedure 8.5.2.

Construction of an m/M Octree grid.

Given a minimal distance of interest d to the Dirac-distributed sources and

the dimensions Lx, Ly, Lz of the computational domain Ω, define the thresh-

old distances tk, k = 0, . . . ,M −m− 1 such that tM−m−1 = d 22/5 and

tM−m−1−k = max

(
22/5 tM−m−k, tM−m−k +

√
L2
x + L2

y + L2
z 2k+1

2M−m

)
,

k = 1, 2, . . . ,M −m− 1.

Starting from a root cell of dimensions Lx, Ly, Lz, split it m times.

Then, let an integer k run from 0 to M −m− 1 and split any cell C if

min
v∈vertices(C)

φ (v) ≤ tk

where v refers to a vertex (node) of the cell C and φ is the smallest distance

to a Dirac-distributed source.
to produce a grid such that the local truncation error τ is comparable from one grid-
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level region to another. If there exists a distance below which the numerical solution is

irrelevant for the considered application, it makes sense to set d equal to that distance.

For the results in Table 8.7, we chose d = b = 0.01 diag (Ω) consistently with the error

analysis in Ωb.

One singular source term with variable diffusion coefficient

Three-dimensional problems involving variable diffusion coefficients can be addressed

alike. Consider for instance the diffusion coefficient

β (x) = 2

(
diag (Ω)

|x− x|

) 3
2

, x ∈ Ω\ {x}

for some randomly located x ∈ Ω and the corresponding variable diffusion coefficient

Poisson equation

−∇ · (β∇u) = 4π diag (Ω) δ (x− x) ∈ Ω\ {x}

u (x) = 1−
√
|x− x|
diag (Ω)

on ∂Ω

where Ω and diag (Ω) are as before8. The exact solution is u (x) = 1−
√
|x− x| /diag (Ω)

(note that it is bounded in Ω).

This problem is solved using the above discretization for the multidimensional delta

function. Since the exact solution has unbounded derivatives close to x, convergence

in the L∞-norm is not ensured in the entire domain Ω. However, Table 8.8 shows that

the numerical approximation still converges in the L∞-norm in Ω0.01diag(Ω) (as defined in

section 8.5.3) and in the L1-norm in the entire domain Ω. Fine grid resolutions beyond

8The components of the random source location x are defined as
π

4

q

Q
where Q = 1024 and q is a

random integer in [−Q, Q], so that x cannot coincide with a grid node and the grid values of β are
well-defined at the grid nodes.
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Error analysis for solving a problem like 8.5.3.

Grid level
‖u−uh‖∞
‖u‖∞

rate
‖ux−uh,x‖∞
‖ux‖∞

rate
‖uy−uh,y‖∞
‖uy‖∞

rate
‖uz−uh,z‖∞
‖uz‖∞

rate

0/7 5.55e-03 2.48e-02 2.09e-02 2.25e-02
1/8 1.11e-03 2.32 7.10e-03 1.80 6.21e-03 1.75 6.67e-03 1.76
2/9 3.99e-04 1.48 2.19e-03 1.70 1.99e-03 1.64 2.11e-03 1.66
3/10 9.10e-05 2.13 6.07e-04 1.85 5.47e-04 1.86 5.84e-04 1.86
4/11 1.73e-05 2.39 1.25e-04 2.28 1.11e-04 2.30 1.21e-04 2.27

Mean order 2.08 1.91 1.89 1.89

Grid level
‖u−uh‖1
‖u‖∞vol(Ω)

rate
‖ux−uh,x‖

1

‖ux‖∞vol(Ω)
rate

‖uy−uh,y‖
1

‖uy‖∞vol(Ω)
rate

‖uz−uh,z‖
1

‖uz‖∞vol(Ω)
rate

0/7 2.07e-04 1.62e-04 1.59e-04 1.69e-04
1/8 6.78e-05 1.61 5.24e-05 1.63 5.20e-05 1.61 5.55e-05 1.61
2/9 1.99e-05 1.77 1.57e-05 1.74 1.47e-05 1.82 1.57e-05 1.82
3/10 5.50e-06 1.85 4.28e-06 1.87 3.96e-06 1.89 4.28e-06 1.88
4/11 1.45e-06 1.93 1.13e-06 1.92 1.05e-06 1.93 1.13e-06 1.92

Mean order 1.79 1.79 1.81 1.81

Table 8.8: accuracy analysis of the variable diffusion coefficient Poisson problem 8.5.3:
one trial for a random source location x. L∞ norms are in Ω0.01 diag(Ω) and L1-norms
are in the entire domain Ω. The grid construction follows the procedure 8.5.2 with
d = 0.01diag (Ω).

level 11 cannot be investigated because of memory limitations but results from Table 8.8

seem to indicate that the order of convergence is about 1.8-1.9.

Multiple singular source terms

Consider now the Poisson equation (N ∈ N0)

−∆u (x) =
N∑

k=1

αk δ (x− xk) ∈ Ω

u (x) = 1 +
N∑

k=1

αk
4π |x− xk|

on ∂Ω
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where Ω and diag (Ω) are as in section 8.5.3. In this problem, the points xk are randomly

located in Ω and the intensities αk are random variables with uniform probability density

in [−8π diag (Ω) , 8π diag (Ω)]. The exact solution is

u (x) = 1 +
N∑

k=1

αk
4π |x− xk|

in Ω\⋃N
k=1 {xk}, hence singular at points xk (k = 1, . . . , N).

It is solved using the above discretization for the multidimensional delta function.

Since the analytic solution itself is singular at xk, we define

Ωα = {x : x ∈ Ω, |x− xk| ≥ α, ∀k = 1, . . . , N}

(α ∈ ]0, diag (Ω)]) for the error analysis. Table 8.9 shows that our discretization produces

results that converge in the L1-norm and in the L∞-norm in Ωb where b = 0.01 diag (Ω).

Fine grid resolutions beyond level 10 cannot be investigated because of memory limita-

tions but results from Table 8.8 seem to indicate that the order of convergence is at least

1.8. The Octree grid, the exact and numerical solutions are illustrated in Figure 8.10.

The grid construction follows exactly the procedure 8.5.2, φ being now the distance to

the closest point xk.

Multi-scale problem

In this section, we show that the proposed discretization also allows us to deal with

multi-scale problems using highly graded Octree grids. In order to illustrate that feature,

we solve the same problem as 8.5.3 except that the domain is now Ω = [−100, 100]3, and
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Error analysis for a problem like 8.5.3

Grid level
‖u−uh‖∞
‖u‖∞

rate
‖ux−uh,x‖∞
‖ux‖∞

rate
‖uy−uh,y‖∞
‖uy‖∞

rate
‖uz−uh,z‖∞
‖uz‖∞

rate

0/7 7.77e-02 4.94e-01 2.61e-01 4.26e-01
1/8 1.97e-02 1.98 1.29e-01 1.94 1.31e-01 0.99 8.41e-02 2.34
2/9 4.68e-03 2.07 2.28e-02 2.50 2.48e-02 2.40 2.70e-02 1.64
3/10 1.34e-03 1.81 5.83e-03 1.97 6.63e-03 1.91 6.90e-03 1.97

Mean order 1.95 2.14 1.77 1.98

Grid level
‖u−uh‖1
‖u‖∞vol(Ω)

rate
‖ux−uh,x‖1
‖ux‖∞vol(Ω)

rate
‖uy−uh,y‖1
‖uy‖∞vol(Ω)

rate
‖uz−uh,z‖1
‖uz‖∞vol(Ω)

rate

0/7 1.69e-04 1.05e-04 1.05e-04 1.02e-04
1/8 8.62e-05 0.98 3.24e-05 1.69 3.31e-05 1.66 3.25e-05 1.65
2/9 3.00e-05 1.52 9.43e-06 1.78 9.68e-06 1.77 9.66e-06 1.75
3/10 8.96e-06 1.74 2.66e-06 1.83 2.65e-06 1.87 2.64e-06 1.87

Mean order 1.41 1.77 1.77 1.76

Table 8.9: accuracy analysis of the Poisson problem 8.5.3. One test for N = 20 sources
xk randomly located in Ω. All norms are in Ωb where b = 0.01 diag (Ω).

the points xk are located randomly in

Λ = [ξ − 0.5, ξ + 0.5]× [ν − 0.5, ν + 0.5]× [µ− 0.5, µ+ 0.5] ,

ξ, ν and µ being random variables uniformly distributed in [−99.5, 99.5]. Assuming that

we are interested only in the solution further than a distance of diag (Ω) /30000 ' 0.01

from the sources, we need a local grid level of at least dlog2 (30000)e = 15 which would be

intractable and prohibitively expensive in terms of computational resources with uniform

grids since it would lead to 245 ∼ 35 1012 unknowns. In comparison, the construction

procedure 8.5.2 leads to a system of about 72000 unknowns for the 0/15 grid in this

case, yet producing results that are about 10% accurate as indicated in Table 8.10. Fine

grid resolutions beyond level 18 cannot be investigated because of memory limitations

but results from Table 8.8 seem to indicate superlinear convergence with an order of

convergence that is at least 1.5.
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Figure 8.10: top: color map (restricted to [−50, 50]) of the exact (left) and numer-
ical (right) solutions for a problem of type 8.5.3. Bottom: color map superimposed
onto the Octree grid. The three regions Σ1 = {x ∈ Ω|x · e1 < 0 and x · e3 < 0},
Σ2 = {x ∈ Ω|x · e2 > 0 and x · e3 < 0} and Σ3 = {x ∈ Ω|x · e1 < 0 and x · e2 > 0}
have been truncated for visualization purposes.
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Error analysis for solving a problem like 8.5.3 with N = 10 sources.

Grid level
‖u−uh‖∞
‖u‖∞

rate
‖ux−uh,x‖∞
‖ux‖∞

rate
‖uy−uh,y‖∞
‖uy‖∞

rate
‖uz−uh,z‖∞
‖uz‖∞

rate

0/15 1.04e-01 5.15e-01 3.14e-01 5.36e-01
1/16 2.92e-02 1.83 1.71e-01 1.59 1.30e-01 1.27 1.75e-01 1.61
2/17 7.45e-03 1.97 3.30e-02 2.37 3.63e-02 1.84 3.83e-02 2.19
3/18 1.95e-03 1.94 8.63e-03 1.93 8.66e-03 2.07 8.16e-03 2.23

Mean order 1.91 1.97 1.73 2.01

Grid level
‖u−uh‖1
‖u‖∞vol(Ω) rate

‖ux−uh,x‖1
‖ux‖∞vol(Ω) rate

‖uy−uh,y‖1
‖uy‖∞vol(Ω) rate

‖uz−uh,z‖1
‖uz‖∞vol(Ω) rate

0/15 1.35e-07 1.24e-10 1.57e-10 1.26e-10
1/16 1.07e-07 0.34 5.14e-11 1.27 7.54e-11 1.05 5.25e-11 1.26
2/17 2.93e-08 1.86 1.44e-11 1.83 2.15e-11 1.81 1.46e-11 1.84
3/18 9.04e-09 1.70 4.33e-12 1.74 6.34e-12 1.76 4.36e-12 1.74

Mean order 1.30 1.61 1.54 1.62

Table 8.10: accuracy analysis of the Poisson problem 8.5.3. One test for N = 10
sources randomly located in a cube of side length 1 within a [−100; 100]3 domain. All
norms are in Ωb where b = diag (Ω) /30000 ' 0.01.

8.6 Summary

We have introduced a second-order accurate discretization of the multidimensional

Dirac delta distribution in two and three spatial dimensions. We have shown its accuracy

through several numerical examples, using benchmark test cases. We have shown that

using the proposed discretization of the multidimensional Dirac delta distribution for

solving the variable or constant coefficient Poisson equation with singular source terms

leads to (close to) second-order accurate solutions in the L1-norm and in the L∞-norm

away from some support of the singular sources, or even in the entire domain when

the solution is bounded everywhere. This method is consistent, in the discrete sense,

with the discretizations for codimension one interface delta functions that are presented

in [116, 152]. We have also proposed appropriate procedures to construct non-uniform

quadtree/octree grids for such applications in a way that does not impede convergence,

yet enables the numerical solution of multi-scale problems.
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Chapter 9

Fast and scalable algorithms for

constructing Solvent-Excluded

Surfaces of large biomolecules

9.1 Introduction

Modeling solute-solvent interactions stands as a cornerstone within the plethora of al-

gorithmic and numerical challenges associated with computational biomolecular physics:

these interactions play a fundamental role in the estimation of free energies related to

chemical processes, see e.g. [222, 223]. Explicit solvent models, i.e., treating solvent

molecules explicitly and resolving their fundamental dynamics, are believed to give the

most detailed description of such interactions. However, their computational cost quickly

becomes intractable for large-scale systems. On the other hand, implicit solvent mod-

els treat the solvent as a continuum medium and capture the solvent-solute interactions

through a classical electrostatic scalar field Ψ. Implicit solvent models have been used

successfully and showed to be satisfactory in the last decades [224, 225, 226, 227].
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Mathematically, the electrostatic potential Ψ is a scalar field that obeys an exponen-

tially nonlinear Poisson-Boltzmann Equation (PBE), in the context of implicit models

allowing mobile ions in the solvent. The permittivity ε is discontinuous across the solvent-

solute interface, with a discontinuity of at least one order of magnitude. Dirac-distributed

source terms model (partial) atom electric charges. Finally, specific interface jump con-

ditions at the solute-solvent interface impose the continuity of Ψ and εn · ∇Ψ across the

interface, where n is the vector normal to the interface.

Starting from the late 1980s, several advances have been made to address this problem

numerically, either using Finite Element/Volume (FE/FV) methods like APBS [228, 229,

230], Finite Difference (FD) methods [231, 232, 233, 234, 235], or even, more recently,

Boundary Integral (BI) methods [236, 237, 238]. The linearized version of PB, refered to

as Debye-Huckel theory, has been considered in some of these works; however, the model

becomes accurate only when the solution ionic strength approaches zero, a contradiction

with typical biochemical applications that involve relatively high ionic strengths. We

refer the interested reader to the reviews [239, 240] for more details about the PBE and

related numerical aspects.

Because of their ability to enforce the continuity conditions at the interface and their

natural capability for adaptive refinement, possibly with a priori error estimates, the

FE/FV techniques soon outperformed the FD approach and thus became methods of

choice. Indeed, original FD attempts were constrained to uniform grids; moreover, grid

points were simply marked as solvent-accessible or not, and the same discretization stencil

was applied throughout the computational domain, disregarding any conditions at the

solute-solvent interface [241, 242]. From a numerical point of view, such a strategy leads

to poor performances because of undesirable grid-size-dependent numerical smearing of

the interface, although sometimes supported qualitatively in the literature by overlap of

wavefunctions in a quantum mechanics sense [243]. However, more recent developments
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in FD techniques have addressed the issues of the continuity conditions at the solute-

solvent interface [140, 244, 159] and/or adaptivity [245, 206, 246]. Moreover, typical finite

element approaches rely on body-fitted meshes that are not trivial to construct in general,

especially when considering the constant remeshing needed to study folding of molecules.

Finite differences, on the other hand, treat such cases straightforwardly so that there

is nowadays a clear advantage to use this strategy. The level-set method introduced

by Osher and Sethian [63] stands as a linchpin in this context: relevant interfaces are

implicitly represented by the zero-level set of a function φ. We refer the interested reader

to [247] for a recent review of the capabilities of level-set methods.

When adaptivity comes into play, the ability to construct an adaptive mesh efficiently

in a distributed computing framework is a key feature for efficient and/or large-scale nu-

merical simulations. Such a mesh may be built upon a triangulation of the solvent-solute

interface, which can be constructed efficiently by optimized tools like the MSMS [248] (al-

though unable to process very large molecules, see [249]) or the EDTSurf [250] sequential

softwares. In [251], the authors present another sequential strategy that struggles with

molecules having more than 200 atoms and/or regions of high curvature. In [252], a mesh

is built upon the triangulation of an alternative, approximated definition of the solvent-

solute interface, defined as a level-set of a sum of Gaussian functions associated with all

atoms: no equivalence with the actual molecular surface or accuracy analysis is showed

to validate the technique. Finally, another meshing technique is used in APBS [230]. It

was successfully implemented on parallel architectures [253, 254] although partitioning

the grid leads to computational overheads: smaller problems, on a coarse mesh, need

to be solved by every single process in order to determine the domain partitions, which

slows down the procedure and impedes its scalability.

On the contrary, FD methods in a level-set framework allow grid lines and grid cells

to be crossed arbitrarily by the interface, where special treatment and vigilant care in
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the implementation is required. Among all conceptual tools available in the level-set

framework, the reinitialization [5, 184, 106, 255] plays an essential role, as it allows the

calculation of a signed distance to the interface, while handling topological difficulties

inherently, in its own mathematical formulation. Moreover, those techniques have proved

scalable and capable of capturing highly convoluted surfaces [256, 247].

In this chapter, we present a fast and scalable algorithm to create an implicit rep-

resentation of the Solvent-Excluded Surface ΓSES (also dubbed Molecular Surface in the

literature) of a biomolecule using the zero-level set of a function φ and to build a cor-

responding adaptive Cartesian Octree grid, of aspect ratio 1. The latter is represented

as a set of distributed adaptive octree, as implemented in the open-source p4est library

[174, 103]. We note that the algorithms presented in this work have been optimized for

the above purpose. When considering the (area of the) Solvent-Accessible Surface only,

other efficient and optimized approaches may be better suited [257, 258].

Our refinement criterion is based on the local distance to ΓSES: a grid cell C is refined

if

min
v∈V(C)

dist (v,ΓSES) ≤ L diag (C)

2
, (9.1)

where V (C) denotes the set of all vertices of cell C, the proportionality constant L ≥ 1

is a free parameter determining the thickness of the computational grid, and diag (C) is

the diagonal of cell C. If L = 1, this criterion ensures that cells of diagonal length d have

all of their vertices farther than d/2 from the interface. The corresponding coarsening

criterion is

min
v∈V(C)

dist (v,ΓSES) ≥ L diag (C) , (9.2)

and a family of children cells of a same parent cell are merged together if they all satisfy

the latter criterion.

We first describe the three relevant surfaces in biomolecular applications: the van
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der Waals Surface, the Solvent-Accessible Surface and the Solvent-Excluded Surface. A

useful unifying theorem is introduced and proved. The algorithms are then presented

and detailed. Results and illustrations are presented along with a discussion of accuracy

and scalability analyses. Two-dimensional illustrations are used throughout the chapter

but the reasoning, the implementation and the general structure of the algorithm are

fully three-dimensional.

9.2 Three relevant surfaces

Implicit solvent models usually represent a moleculeM as a list of its nM constituent

atoms1 modeled as balls of center ci ∈ R3 and of van der Waals radius ri (i = 1, . . . , nM).

Let2 B (c, r) = {x ∈ R3| ‖x− c‖ < r} represent the open ball inR3 of center c and radius

r. The simplest representation of the surface of moleculeM is the van der Waals Surface

ΓvdW which can be defined as

ΓvdW = ∂ΩvdW where ΩvdW =

nM⋃

i=1

B (ci, ri). (9.3)

ΓvdW represents the most exhaustive set of points that can come in contact with an

imaginary volumeless solvent molecule. Nevertheless, real solvent molecules are not vol-

umeless and the spatial extension of one such molecule can be modeled by a solvent-sized

spherical probe of radius rp > 0. Therefore, when considering real solvents, not all points

in ΩC
vdW = R3\ΩvdW are accessible by solvent molecules, which leads to the definition of

two additional surfaces.

Consider the set of points traced out by the center of one such probe sphere as it

rolls over ΓvdW. This describes the Solvent-Accessible Surface ΓSAS [260], which can be

1We use the pdb2pqr tool [259] to obtain the list of atom centers and radii.
2In this chapter, we use ‖x‖ to represent the Euclidean norm

√
x2

1 + x2
2 + x2

3 of x = (x1, x2, x3) ∈ R3.
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mathematically defined as

ΓSAS = ∂ΩC
SAV where ΩC

SAV =

nM⋃

i=1

B (ci, ri + rp). (9.4)

Note that the Solvent-Accessible Volume ΩSAV = R3\ΩC
SAV is the set of points where the

spherical probe of radius rp can be centered without intersecting ΩvdW.

Finally, the definition of ΓSAS allows for a clear and straightforward identification of

the set of points that cannot come in contact with solvent molecules, i.e., the definition

of the Solvent-Excluded Volume (SEV) [261, 262]

ΩSEV =
{
x ∈ ΩC

SAV| dist (x,ΓSAS) > rp

}
, (9.5)

the surface of which is referred to as the Solvent-Excluded Surface ΓSES = ∂ΩSEV, in this

chapter. Those concepts are all illustrated (in 2D) in Figure 9.1 for a simplistic set of

two atoms.

Remark. The definition (9.5) of ΩSEV does not prevent the existence of compact subsets

of ΩC
SEV = R3\ΩSEV being encapsulated by ΩSEV. We refer to such encapsulated regions as

internal cavities. Since those regions are isolated from the outer domain by the molecule

itself, solvent molecules cannot fill those regions. As a consequence, it is essential to

identify those regions in order to apply proper treatments (in the context of this chapter,

those regions are added to ΩSEV); a fast and robust identification method is presented in

this chapter (see section 9.4.2).
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9.3 A germane theorem

Consider a set of atom centers ci ∈ R3 and radii ri ≥ 0, (i = 1, . . . , nM), and consider

the α-family Fα, α ≥ 0, of sets of nM functions ρα, i : R3 7→ R defined as

ρα, i (x) = α + ri − ‖x− ci‖ , i = 1, . . . , nM, (9.6)

and the corresponding α-family Fα of global functions ρα : R3 7→ R defined as

ρα (x) = max
i∈{1,...,nM}

ρα, i (x) . (9.7)

The family Fα plays an important role since the zero-level set Γα of ρα is the definition

of ΓvdW (resp. of ΓSAS) when α = 0 (resp. α = rp). Note that Γα is a collection of

portions of spherical surfaces since Γα ⊆
⋃nM
i=1 ∂B (ci, ri + α). Theorem 9.3.2 presented

below links the local value of ρα (x) to dist (x,Γα).

First note that the functions ρα, i are signed distance functions, since |ρα, i (x)| =

dist (x, ∂B (ci, ri + α)), ρα, i being positive inside the ball, and negative outside. Hence,

from a geometrical point of view, it represents the (signed) distance from x to its pro-

jection x′i on ∂B (ci, ri + α),

x′i = x+
x− ci
‖x− ci‖

ρα, i (x) , |ρα, i (x)| = ‖x− x′i‖ , (9.8)

assuming x 6= ci. Given a collection of nM atoms, the three-dimensional space R3 can

be divided into the regions

Ri =
{
x ∈ R3|ρα, i (x) > ρα, j (x) ∀j ∈ {1, 2, . . . , nM} \ {i}

}
, (9.9)
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for i = 1, . . . , nM. The regions Ri are independent of α by definition.

Lemma 9.3.1. The regions Ri are star-shaped with respect to ci if non-empty: if x ∈ Ri,

Ri contains all points (1− t)x+ tci, where t ∈ [0, 1] is a real parameter.

Proof. For any point x ∈ Ri and j ∈ {1, . . . , nM} \ {i}, consider

fij (t) = ρα, i (x+ t (ci − x))− ρα, j (x+ t (ci − x))

= ri − rj + ‖x− cj + t (ci − x)‖ − |1− t| ‖x− ci‖ ,

for t ∈ [0, 1]. This function is monotonically increasing since

dfij
dt

= (ci − x) · x− cj + t (ci − x)

‖x− cj + t (ci − x)‖ + ‖ci − x‖ ≥ 0, t ∈ ]0, 1[

by application of the Cauchy-Schwartz inequality. Therefore, for all j ∈

{1, . . . , nM} \ {i}, fij (t) ≥ fij (0) and fij (0) > 0 given that x ∈ Ri; thus (1− t)x+tci ∈

Ri too.

Theorem 9.3.2. If ρα (x) ≤ 0, we have dist (x,Γα) = −ρα (x), i.e., ρα (x) is already a

(negative) distance function where it is negative. If ρα (x) > 0, we have dist (x,Γα) ≥

ρα (x).

Proof. For any point x in Ri, consider the ball B (x, |ρα, i (x)|). That ball is such that

B (x, |ρα, i (x)|) ∩ Γα = ∅.

Indeed,

• if ρα, i (x) < 0, B (x, |ρα, i (x)|) ∩ ∂B (ci, ri + α) = ∅, by definition. Therefore,

B (x, |ρα, i (x)|) ∩ Γα 6= ∅ would imply the existence of a point y on a sphere
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∂B (cj, rj + α), j 6= i such that ‖x− y‖ ≤ |ρα, i (x)| and thus ρα, j (x) ≥ ρα, i (x),

which is a contradiction since x ∈ Ri;

• if ρα, i (x) > 0, B (x, |ρα, i (x)|) ⊂ B (ci, ri + α) and B (ci, |ρα, i (x)|) ∩ Γα = ∅ since

B (ci, ri + α) ∩ Γα = ∅.

As a consequence, dist (x,Γα) ≥ |ρα, i (x)|. Hence, ρα (x), which is equal to ρα, i (x) in

Ri, is indeed a signed distance function only if x′i ∈ ∂B (x, |ρα, i (x)|), as defined in (9.8),

lies on Γα or, equivalently, if ρα (x′i) = 0 = ρα, i (x
′
i), i.e., if x′i ∈ Ri itself too. Since

Ri is star-shaped with respect to ci, the latter is true for any point x ∈ Ri such that

ρα, i (x) < 0 by virtue of Lemma 9.3.1.

•c1

r1
•c2

r2

ΓvdW

ΓSAS

×
rp

ΓSES

Figure 9.1: the three standard biomolecular surfaces for a simplistic system of two
atoms in two spatial dimensions. ΓvdW is drawn in solid green line; ΓSAS is drawn in
solid red line; ΓSES is represented in dashed blue line. The light (resp. dark) shaded
gray area is the only region of points x such that |ρrp (x) | 6= dist (x,ΓSAS) (resp.
|ρ0 (x) | 6= dist (x,ΓvdW)).
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9.4 Capturing the interface and building an adaptive

grid

In this section, we present two methods designed to build a computational grid sat-

isfying criteria (9.1) and (9.2). An appropriate node-sampled function is built on-the-fly

and its zero-level set represents ΓSES implicitly. We refer to the first method as the con-

struction by reinitialization while the second technique is called construction by direct

calculation. We point out that we have developed the construction by direct calculation

for the sole purpose of showing the first-order accuracy of the construction by reinitializa-

tion (see section 9.6.1), since it leads to the exact signed distance to ΓSES. Optimization

and acceleration of the construction by direct calculation is possible but is beyond the

scope of this work.

The two algorithms ensure consistent values for the node-sampled functions in a layer

of m finest grid cells on both sides of ΓSES, where m is either 1 or 2. We use distributed

computing over P processes of ranks 0, 1, . . . , P − 1. The methods share the same

following backbone:

1. construction of a grid and a node-sampled function ϕSAS whose zero-level set rep-

resents ΓSAS implicitly;

2. correction of the values of ϕSAS at every grid node z such that ϕSAS (z) > 0 and

dist (z,ΓSAS) ≤ rp + mδ, where δ is the length of the diagonal of the finest grid

cells. For this operation,

• the construction by reinitialization solves a nonlinear hyperbolic partial dif-

ferential equation, with first order accuracy in the region of interest;

• the construction by direct calculation calculates the exact distance from ΓSAS

at every node of interest.
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A new node-sampled function φ is then defined by subtracting rp from φSAS, the

updated ϕSAS: the zero-level of φ represents ΓSES implicitly;

3. identification of internal cavities and application of ad-hoc treatment (in this chap-

ter, those internal cavities are removed by being added to ΩSEV);

4. coarsening of the computational grid based on criterion (9.2);

5. imposition of the desired minimum grid level.

Each of the steps above is explained in further details in the following sections: the

computational workload is kept as low as possible at each step and load-balancing is

addressed throughout the exposition to ensure the strong scalability of the algorithm.

The step-by-step progression of the algorithm is illustrated with the construction of a

5/13 computational grid distributed over 8 processes, with L = 1.2, m = 2 and rp = 1.4 Å.

For the sake of clarity, this step-by-step illustration is made two-dimensional by building

the grid based on an imaginary planar molecule, constructed by projecting all atoms of

the 3J6D protein (131664 atoms) onto a plane. This example serves no other purpose

than to illustrate intermediary steps of our algorithm. We emphasize that the algorithm

and its derivation are intrinsically three-dimensional and happen to be translatable to

two spatial dimensions: the actual three-dimensional representation of those illustrations

were created with our method too and can be found in Figures 9.10, 9.11 and 9.12.

The implementation of the algorithm relies on the existence of basic parallel tools for

handling adaptive meshes such as:

• the ability to locally (and possibly recursively) refine and/or coarsen cells based on

a cell-level boolean criterion;

• the ability to partition the grid and cell-associated constant-size data (at least one

integer per cell), over processes with respect to a cell-level weight function;
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• unique global cell- and node-orderings, that are independent of the grid partition-

ing.

Our implementation builds upon the p4est library [174, 103], which provides all of the

above features. Nevertheless, it is translatable to any other framework with corresponding

tools. Every process p ∈ {0, 1, . . . , P − 1} has access to the full list of atom coordinates

and radii.

9.4.1 Capturing the Solvent-Accessible Surface

As pointed out in [263, 245] and described in section 9.3, ΓSAS is represented implicitly

in a straightforward fashion by the zero level-set of

ρrp (x) = max
i=1,...,nM

rp + ri − ‖x− ci‖ . (9.10)

Geometrically, the center of a solvent-sized spherical probe can be located at any point

x where ρrp (x) ≤ 0 without intersecting ΓvdW, and the probe is in contact with ΓvdW if

and only if ρrp (x) = 0.

The first step of the algorithm consists of constructing an adaptive grid alongside

a node-sampled function ϕSAS. Local differences between ϕSAS and ρrp may exist in

ΩSAV = R3\ΩC
SAV, but ϕSAS and ρrp share the same zero-level set ΓSAS numerically, as

shown in subsection 9.4.1. Algorithm 3 shows how this initial (adaptive) grid and the

corresponding function ϕSAS are constructed. Figure 9.2 illustrates the resulting grid

and ΓSAS as the zero-level set of ϕSAS for our two-dimensional illustration, for the two

methods.

Refinement criterion
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Algorithm 3 Construction of the initial grid. This algorithm builds the initial grid of
desired maximum level lmax from the root cell Croot representing the entire computational
domain. phi_sas is the (distributed) vector of node-sampled values of ϕSAS.

1: function construct sas grid and levelset(root cell Croot, lmax)
2: phi_sas ← new vector of node-sampled values; . 8 components for the root cell.
3: calculate the values of ϕSAS at the vertices of Croot and fill phi_sas
4: for (i = 0; i < lmax; i+ +) do
5: phi_sas_coarse ← phi_sas;
6: loop through all cells in the grid and refine those marked true

by Algorithm 4 for the construction by reinitialization or
by Algorithm 5 for the construction by direct calculation;

7: phi_sas ← new vector of node-sampled values;
8: scatter the already-known values from phi_sas_coarse to phi_sas;
9: destroy phi_sas_coarse and release corresponding memory;

10: partition the grid over the pool of processes {0, 1, . . . , P − 1} for
load balancing (subsection 9.4.1) and update phi_sas’ layout accordingly;

11: calculate the values of ϕSAS at the newly added grid points and fill the
corresponding (yet undetermined) components of phi_sas (Algorithm 7);

12: end for
13: if method_to_use is construction_by_reinitialization then
14: partition the grid over the pool of processes {0, 1, . . . , P − 1} for load balancing

for next step (section 9.4.1) and update phi_sas’ layout accordingly;

15: end if
16: end function
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Figure 9.2: outcome of Algorithm 3 for the illustrative planar molecule, rp = 1.4 Å,
L = 1.2 and m = 2, the maximum level of refinement (lmax = 13) is such that
rp/δ ' 14.8, where δ is the diagonal of the finest grid cells. Note that projecting
the atoms of protein 3J6D onto a plane packs them all in the torus-shaped region of
the domain limited by the red contour lines, which explains the high density of fine
cells in that region. Top left: computational grid created by Algorithm 3. Each color
represents one grid partition. Top right: a zoom-in version of the top left subfigure;
the red curve is the zero-level set of ϕSAS, i.e., ΓSAS. Bottom left: zoom-in close
to ΓSAS, grid created for the construction by reinitialization. Bottom right: zoom-in
close to ΓSAS, grid created for the construction by direct calculation.
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For the construction by reinitialization, the adaptive refinement criterion from

Algorithm 4 (see line 6 from Algorithm 3) fulfills several conditions that we intend to

develop and explain here. As detailed in subsection 9.4.1, ϕSAS and ρrp might differ

locally; these local differences are shown to be consistently irrelevant with the inequalities

here below. Therefore, ϕSAS and ρrp can be invariably substituted in the (in)equalities

in this context, which explains why ϕSAS is used instead of ρrp in Algorithm 4.

In the context of the construction by reinitialization, the initial grid and the function

ρrp serve as the basis for subsequent calculations leading to ΓSES, eventually. Let φSAS be

the reinitialized version of ρrp , i.e., φSAS is a signed distance function that shares the same

sign and the same zero-level set as ρrp . A node-sampled version of this signed-distance

function φSAS is obtained by solving a pseudo-time problem on the initial computational

grid created by Algorithm 3 and its rp-level set is critical for the definition of ΓSES (see

step number 2 on p. 271 and section 9.4.1).

As a consequence, the grid must obey the following requirements in order to ensure

the accurate implicit representation of ΓSES:

• it must be tessellated with the finest cells in the region ΩC
SAV\ΩSEV in order to

ensure the accurate computation of the rp-level set of φSAS;

• m layer(s) of finest cells must also cover ΓSAS in ΩSAV to ensure the accurate local-

ization of ΓSAS.

Those two latter constraints are required to ensure the accuracy of the calculations. They

dictate the (maximum) level of refinement in parts of the computational domain. The

grid nodes z that satisfy

−mδ ≤ φSAS (z) ≤ rp (9.11)
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fall under these two categories. Note that

ρrp (z) = φSAS (z) if ρrp (z) ≤ 0 and

ρrp (z) ≤ φSAS (z) if ρrp (z) > 0,

by virtue of Theorem 9.3.2. Therefore, the set of points z satisfying (9.11) is actually a

subset of the set of points z′ satisfying

−mδ ≤ ρrp (z′) ≤ rp. (9.12)

Since ρrp is known beforehand while φSAS is not, the latter criterion is used to enforce

those two accuracy constraints: line 4 in Algorithm 4 takes the above condition into

account. The effect of that criterion is clearly illustrated in Figure 9.5.

Regarding the region of the domain that is not affected by these constraints, one can

divide it two different cases:

• the points in ΩSAV, i.e., where ρrp < −mδ. In this case, the exact distance to

ΓSES is known to be rp − ρrp . Therefore, the exact adaptive local grid level can be

determined and imposed right away. Line 8 of Algorithm 4 imposes this condition;

• the points in ΩC
SAV, i.e., where ρrp > rp. Then, the distance to ΓSES is known to

be φSAS − rp, which is unknown beforehand. By using ρrp − rp instead, more fine

cells than needed might be created since ρrp − rp ≤ φSAS − rp in this case (see

Theorem 9.3.2). Yet, this inequality also ensures that no further distance-induced

refinement3 is required afterwards. Line 6 of Algorithm 4 enforces this condition.

3We distinguish two reasons for refining a grid cell: a) for imposing the desired minimum level of
refinement of the computational grid, b) because of criterion (9.1). We refer to the latter as distance-
induced refinement.
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For the construction by direct calculation, the adaptive refinement criterion from

Algorithm 5 (see line 6 from Algorithm 3) differs from Algorithm 4 and is somehow

optimal in order to reduce the workload for subsequent direct calculations to ΓSAS. As

pointed it out in the proof of Theorem 9.3.2, for a grid node v such that ρrp (v) >

0, we have ρrp (v) ≤ dist (v,ΓSAS). However, it was also emphasized that ρrp (v) =

dist (v,ΓSAS) if ρrp (v′i) = 0, where v′i is the projection of v on ∂B (ci, ri + rp), as defined

in (9.8). For every grid node v such that 0 < ρrp (v) ≤ rp + mδ, this gives us a

straightforward condition to check if ρrp (v) = dist (v,ΓSAS). The evaluation of that

condition is not prohibitively expensive since the number of atoms is optimally reduced

(see subsection 9.4.1), and this strategy allows to tag all such nodes that ρrp (v) <

dist (v,ΓSAS).

In the context of the construction by direct calculation, the exact distance to ΓSAS is

calculated afterwards for all grid nodes v belonging to a grid cell of maximum refinement

level. Therefore, by refining a grid cell C only if

∃v ∈ V (C) :
∣∣∣ρrp (v)− rp

∣∣∣ ≤ Ldiag (C)

2
or v has been tagged, (9.13)

the subsequent workload is minimized. Algorithm 5 summarizes the above condition, its

effect is illustrated in Figure 9.5.

For both methods, note that subsequent coarsening steps intend to remove all unnec-

essary fine cells that have been eventually created (see section 9.4.2). Besides, refining a

cell for the sole purpose of imposing a desired minimum level for the final computational

grid is disregarded until the very last step of the global algorithm, as it would increase

the computational workload unnecessarily until then.

Although a formal definition of ρrp is available (see (9.10)), its brute force calculation,
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Algorithm 4 Refinement criterion for the creation of the initial grid for the construction
by reinitialization. This algorithm determines if a grid cell C needs to be refined based
on the value of ϕSAS at its vertices, the desired maximum level of refinement lmax, the
desired proportionality constant L and the desired m ∈ {1, 2}.

1: function refine based on sas for reinitialization(C, lmax, L, m)
2: for v ∈ V (C) do
3: read value of ϕSAS (v);
4: if −mδ ≤ ϕSAS (v) ≤ rp then
5: return true;
6: else if 0 ≤ (ϕSAS (v)− rp) ≤ L diag (C) /2 then
7: return true;
8: else if (ϕSAS (v) < −mδ) ∧ (rp − ϕSAS (v) ≤ L diag (C) /2) then
9: return true;

10: end if
11: end for
12: return false;
13: end function

Algorithm 5 Refinement criterion for the creation of the initial grid for the construction
by direct calculation. This algorithm determines if a grid cell C needs to be refined based
on the value of ϕSAS at its vertices, the desired maximum level of refinement lmax, the
desired proportionality constant L and the desired m ∈ {1, 2}. A grid node v is tagged
when 0 < ρrp (v) < rp +mδ and ρrp (v) 6= dist (v,ΓSAS)

1: function refine based on sas for direct calculation(C, lmax, L, m)
2: l← level of cell C;
3: for v ∈ V (C) do
4: read value of ϕSAS (v);
5: if |ϕSAS (v)− rp| ≤ L diag (C) /2 ∨ v is tagged then
6: return true;
7: end if
8: end for
9: return false;

10: end function
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i.e., by looping through all nM atoms in order to find the atom index i maximizing

rp + ri − ‖z − xi‖ for every single grid node z, would be extremely inefficient especially

for very large molecules (large nM) and fine computational grids. In this section we

present a method that dramatically reduces the computational cost associated with these

calculations. The method is based on a traditional divide-and-conquer approach and is

thus very similar to [241], but uses an analytical function to represent the interface

implicitly and accurately. Similar techniques have been implemented and shown to be

successful in (fixed radius) nearest-neighbor-search problems [264, 265, 266]. Some minor

modifications inherent to variable van der Waals radii ri ≥ 0 in the functions ρrp, i (x) =

rp + ri − ‖x− ci‖ (i = 1, . . . , nM) and to the structure of the grid to be constructed are

required, as detailed next.

The idea consists of reducing the list of atom indices to consider when evaluating

a slightly modified version ϕSAS of ρrp as the grid is further and further refined. At

the beginning of a given iteration of the for loop in Algorithm 3, the current finest

cells of the grid under construction are all associated with reduced lists of atom indices.

These lists are optimally reduced in the sense that they contain only the atom indices

that are relevant either to determine the desired local refinement level or such that the

corresponding atoms are closer than

• mδ away for the construction by reinitialization, to ensure the accurate localization

of ΓSAS;

• rp +mδ away for the construction by direct calculation, to ensure the exactness of

the direct calculation of the distance to ΓSAS, within rp +mδ.

The lists corresponding to cells that are eventually marked not to be refined by

Algorithm 4 are deleted at the end of the current iteration of the for loop: since the

final cell level has been determined, the lists are no longer needed and the corresponding
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memory can be freed. On the other hand, when one of those cells is further refined, one

new reduced list of atom indices is built for each of the eight children cells that have

been created. Each of these eight new reduced lists is built by reducing the list of the

parent cell, which is itself eventually deleted afterwards. The values of ϕSAS at newly

created grid nodes are initialized to −D, i.e., a lower bound of ρrp in the computational

domain. Then, when evaluating the values of ϕSAS at those newly added points (line 11

of Algorithm 3), one loops through all newly created cells Cnew and updates the values

of ϕSAS (v) at their vertices v by:

ϕSAS (v)← max

(
ϕSAS (v) , max

j∈L(Cnew)
(rp + rj − ‖v − cj‖)

)
, (9.14)

where L (C) is the reduced list of atom indices associated with cell C. At the beginning

of Algorithm 3, the root cell is associated with the full list of nM atoms; the procedure

naturally creates lists of O (1) element(s) when the cells are small enough, accelerating

the local calculations of the ΓSAS-capturing level-set function drastically, as the grid is

refined. Let Droot be the diagonal of the root cell(s) of the computational domain, the

diagonal of the finest cells for a desired maximum level lmax is thus δ = Droot 2−lmax .

For the construction by reinitialization, as underlined in section 9.4.1, when the

value of ρrp is strictly smaller than −mδ (m = 1 or 2), its exact value becomes irrelevant

regarding the accurate localization of ΓSAS. Indeed, consider en edge E = [zE1 , zE2 ]

crossed by ΓSAS, i.e., such that ρrp (zE1) ρrp (zE2) ≤ 0, the point ζ ∈ E where ρrp (ζ) = 0

is approximated by the root of:

• the linear interpolant of ρrp along E when m = 1;

• the quadratic interpolant of ρrp along E when m = 2. The second-oder derivative of

the interpolant is set to minmod
(
∂2ρrp
∂s2

(zE1) ,
∂2ρrp
∂s2

(zE2)
)

where s is the direction of

281



Fast and scalable algorithms for constructing SES of large biomolecules Chapter 9

the edge E . Those second-order derivatives are approximated by standard centered

finite differences, which extends the exactness requirement for ρrp by one layer of

width δ.

Therefore the exact value of ρrp is required at a grid node z only when ρrp (z) ≥ −g

where g = mδ.

For the construction by direct calculation, we intend to calculate the exact dis-

tance to ΓSAS within a layer of width rp +mδ, eventually. Therefore, any atom of index

j that is farther than rp + mδ away, i.e., such that ρrp, j < −g where g = rp + mδ, is

irrelevant for that purpose.

For both methods, when the latter inequality is not satisfied, i.e., ρrp < −g, one only

needs to know whether

rp − ρrp ≤ L diag (C) /2 (9.15)

is true or not for refinement purposes only (see line 8 from Algorithm 4). As a con-

sequence, any substitution function ϕSAS, sampled at the nodes of the initial grid, and

satisfying the two following equivalence conditions

ϕSAS (v) = ρrp (v) , where ρrp (v) ≥ −g (9.16)

and, for any cell C of the grid,

ρrp (v) < rp −
L diag (C)

2
∀v ∈ V (C)⇔ ϕSAS (v) < rp −

L diag (C)

2
∀v ∈ V (C) (9.17)

satisfies all the requirements for accurately capturing ΓSAS and determining the correct

desired cell levels in ΩSAV.
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Algorithm 6 presents a method to create the reduced list of atom indices to associate

with a newly created cell, based on the reduced list of its parent cell. As detailed below,

the resulting node-sampled function ϕSAS satisfies the two equivalence conditions (9.16)

and (9.17) by construction and is thus a valid substitution for ρrp . The rationale behind

Algorithm 6 can be developed as follows: consider a newly created cell Cchild and the

reduced list of atom indices L (Cparent) associated with its parent cell Cparent. The list

L (Cchild) is a subset of L (Cparent) constructed by the following rules:

I. (lines 13 to 16) for all integer(s) j in L (Cparent), if there exists a point z in Cchild

such that

I.i. either ρrp, j (z) ≥ −g,

I.ii. or ρrp, j (z) > rp − L diag (Cchild) /4,

j must be added to L (Cchild);

II. (lines 17 to 24 and 26 to 28) if no atom index has been added to L (Cchild) by the

above rule I, L (Cchild) is set to contain the single atom index k ∈ L (Cparent) such

that:

rp + max
v∈V(Cchild)

(rk − ‖v − ck‖) = rp + max
i∈L(Cparent)

max
v∈V(Cchild)

(ri − ‖v − ci‖) . (9.18)

Rule I.i ensures the equivalence (9.16) and also ensures that all atoms that are closer than

g from Cchild are kept in the list. On the other hand, rules I.ii and II intend to keep track

of the smallest list of atom indices that might be responsible for adaptive grid refinement

and thus, they ensure the equivalence (9.17). Indeed, let us consider a newly created

cell C in ΩSAV that is farther away than a distance g from ΓSAS, at a given iteration of
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the for loop in Algorithm 3. Since C is farther than g away from ΓSAS, C is irrelevant

regarding the accurate localization of ΓSAS (for the construction by reinitialization) or

regarding the direct calculation of the distance to ΓSAS (for the construction by direct

calculation). Nevertheless, the cell may need further refinement at the next iteration of

the for loop in Algorithm 3, depending on the distances from its vertices to ΓSAS. As

a consequence, an appropriate reduced list of atoms must be associated with the cell to

ensure the correct cell sizes in ΩSAV. In this context, we distinguish two cases:

a) C does need to be refined at the next stage and (some of) its eight children cells

might need to be further refined too;

b) C might need to be refined or not at the next stage but, if it does, none of its

children cells need to be further refined.

Any atom index j ∈ L (Cparent) satisfying I.ii corresponds to case a. However, if no

atom in L (Cparent) satisfies I.ii, then C might need to be refined or not, depending on

the maximum value of ρrp at its vertices, for which one needs to keep track of the only

atom index that may trigger the cell refinement. This is the purpose of rule II which

corresponds to case b.

Reducing the list to that single atom index might lead to differences between ρrp and

ϕSAS at some grid nodes; however, those differences are irrelevant with the inequalities

from subsection 9.4.1 and do not interfere with the final local grid levels since it is

absolutely certain that none of the children cells of C need further refinement if C itself

is refined. Figure 9.3 illustrates the regions of interest for the list reduction technique,

in two spatial dimensions without loss of generality.
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Algorithm 6 Build the reduced list of atom indices associated with cell C, based on the
reduced list L (Cparent) associated with its parent cell. m ∈ {1, 2} is the desired order of
accuracy, lmax is the maximum level of the grid cells, L is the proportionality constant
used for grid construction, δ = Droot 2−lmax .

1: function reduce list of atoms(C, L (Cparent))
2: create an empty list L;
3: s← −∞; . s = maxj∈L(Cparent) maxv∈V(C) ρrp, j (v).
4: j ← 0; . Index of the atom maximizing s.
5: n← 0; . Number of atom indices added to L
6: if method_to_use is construction_by_reinitialization then
7: g ← mδ
8: else
9: g ← mrp + δ

10: end if
11: for i ∈ L (Cparent) do
12: d← rp + ri −minz∈C ‖z − ci‖
13: if d ≥ min (−g, rp − L diag (C) /4) then
14: add i to L;
15: n← n+ 1;
16: end if
17: if n == 0 then
18: for v ∈ V (C) do
19: if rp + ri − ‖v − ci‖ > s then
20: s← rp + ri − ‖v − ci‖;
21: j ← i;
22: end if
23: end for
24: end if
25: end for
26: if n == 0 then
27: add j to L;
28: end if
29: return L;
30: end function
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Load balancing

Load balancing is a key feature to avoiding stalling processes and thus ensuring the

strong scalability of a parallel algorithm. When it comes to multi-dimensional problems

involving (possibly adaptive) meshes, partitioning the mesh uniformly over the available

processes might give satisfactory results (a) if elementary calculations need to be per-

formed at all cells or nodes of the mesh and, (b) if those calculations have a roughly

constant number of floating point operations. In the context of the list-reduction algo-

rithm presented in this section, none of these conditions (a) and (b) are met. When

a
a/2

La/4

La/2

Figure 9.3: illustrations of relevant regions for recursive reduction of list of atom
indices associated with cells in ΩSAV, for L = 1.3 in two spatial dimensions. Let R
be the red region; let G be the union of the green region and R; let Y be the union
of the yellow region and G. For a cell C in ΩSAV (solid black rectangle), if there exist
indices j such that B (cj , rj) ∩ R 6= ∅, C needs to be refined and one of its children
needs to be refined once more. However, it is easier and computationally much less
expensive to check if B (cj , rj) ∩ G is empty or not. If there exist indices j such that
B (cj , rj) ∩ G 6= ∅, C needs to be refined and one of its children might need further
refinement, too. If B (cj , rj) ∩ G = ∅ ∀j, C needs to be refined only if there exists an
atom index k such that B (ck, rk) ∩ Y 6= ∅, but none of its children cells need further
refinement if C itself is refined.
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considering a brute-force version, i.e., when calculating ρrp at all newly created grid

nodes (without reduced lists) instead of ϕSAS, only condition (a) is not satisfied.

In order to ensure load balancing, each cell C is given a computational weight integer,

W (C), before the grid is partitioned across the P available processes (line 10 of Algorithm

3). The grid-partitioning operation then ensures that the total computational workload

per process,Wtot, is made as uniform as possible. We defineWtot for process p asWtot =
∑

C∈CpW (C), where Cp is the set of grid cells attributed to p when partitioning the grid

[174, 103]. Since new values of ϕSAS are only calculated at newly created grid nodes

by looping through reduced lists of newly created cells (see (9.14)), the computational

weight4

WSAS (C) =





0 if the level of grid cell C is not the current maximum level,

|L (C)| if the level of grid cell C is the current maximum level,

(9.19)

is a suitable local measure of the computational workload due to line 11 of Algorithm 3.

However, repartitioning the grid for load-balancing leads to a complication: when

a cell C that was initially owned by process p (prior to grid partitioning) is moved to

another process p′ 6= p, its reduced list L (C) must be communicated from p to p′ too.

However, reduced lists do not have all the same number of elements; therefore, those

cell-level data of non-constant size cannot be redistributed alongside the grid cells by the

above partitioning process. In order to be able to find the reduced list associated with

any cell C, an unsigned integer tag T (C) is attached to C (and communicated alongside

C, if C is). The tag T (C) is defined as

T (C) = p2s−q + J (C) , (9.20)

4The notation |S| represents the cardinality of the set S.
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where s is the number of bits used to encode T (C), p is the rank of the process that

owns C before grid partitioning, q = dlog2 (P )e is the minimal number of bits necessary

to encode the process ranks {0, 1, . . . , P − 1} and J (C) is the index of the reduced list

associated with C, locally to process p. Assuming that J (C) < 2s−q, one can easily find

p and J (C) from T (C) by the following bit-wise operations:

p =
(
T (C) & (2q − 1) 2s−q

)
>> (s− q) , (9.21)

J (C) =
(
T (C) &

(
2s−q − 1

))
, (9.22)

where a& b represents the bit-wise logical and between a and b and a >> b represents

the right bitwise shift of a by b bits (the b leftmost bits of a are filled with 0’s). Using this

technique the appropriate reduced list(s) can be queried by any process that is attributed

a cell that belonged to another process prior to the grid partitioning. Algorithm 7 shows

the procedure to update values of ϕSAS at newly created grid nodes (line 11 of Algorithm

3).

Remark. The technique from (9.20), (9.21) and (9.22) breaks down if the assumption

J (C) < 2s−q is violated. However, its violation would imply that a process owns 2s−q

reduced lists at least. Assuming a roughly constant number of reduced lists per process

and the existence of at least 2q−1 processes, the total number of reduced lists would be

O (2s−1), and the computational grid would contain even more cells. If s = 32 (resp.

64), 2s−1 ' 2× 109 (resp. 9× 1018) which is much larger than any sensible number

of grid cells of interest. A warning flag has been implemented in our version of the

algorithm: none of our tests have ever activated it.

When Algorithm 3 has terminated, an adaptive computational grid of maximum level

lmax has been created and a function ϕSAS sampled at its nodes is available. However, the
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Algorithm 7 Calculate the values of ϕSAS at newly created grid nodes. p is the rank of
the executing process, i is the loop index from Algorithm 3, the current maximum level
of refinement of the computational grid is thus i+ 1. phi_sas is the (distributed) vector
of node-sampled values of ϕSAS.

1: function update phi sas at new grid nodes
2: initialize an empty query_map, mapping process rank p′ to a vector of

indices of the reduced lists, queried by process p but owned by process p′;
3: initialize an empty map_of_cells_of_remote_lists, mapping process rank p′ to

a vector of indices of cells that are local to process p
and whose reduced lists are owned by process p′;

4: initialize an empty vector locally_known_cell_indices;
5: nlocal ← 0;
6: for C ∈ Cp such that level (C) == i+ 1 do
7: read cell tag T (C);
8: determine the rank p′ of the owner process prior to grid partitioning, using

(9.21);
9: if p′ 6= p then

10: determine the index J (C) of the reduced list, local to process p′, using
(9.22);

11: add J (C) to the vector query_map (p′);
12: add the local cell index of C to map_of_cells_of_remote_lists (p′);
13: else
14: add the local cell index of C to locally_known_cells;
15: nlocal ← nlocal + 1;
16: end if
17: end for
18: nreplies ← 0; . Number of expected replies.
19: nqueries ← 0; . Number of expected queries.
20: initialize a vector queried_proc of P integers, all equal to 0;
21: for process rank p′ 6= p such that query_map (p′) 6= ∅ do
22: send the vector query_map (p′) to process p′; . Non-blocking.
23: nreplies ← nreplies + 1;
24: queried_proc (p′)← 1;
25: end for
26: reduce and scatter vectors queried_proc over all processes, to deduce nqueries;
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27: j ← 0;
28: done = ((j == nlocal) ∧ (nreplies == 0) ∧ (nqueries == 0));
29: while ¬done do
30: if j < nlocal then
31: C ← grid cell of local index locally_known_cells (j);
32: find the corresponding reduced list of atom indices L (C)

indexed by J (C), found using (9.22);
33: for v ∈ V (C) do
34: phi_sas (v)← max

(
phi_sas (v) ,maxj∈L(C) (rp + rj − ‖v − cj‖)

)
; .

(9.14)
35: end for
36: j ← j + 1;
37: end if
38: if nqueries > 0 then
39: probe for any pending incoming query from another process p′ 6= p;
40: receive the vector of indices of queried reduced lists from p′; . Blocking.
41: initialize an empty vector serialized_reply;
42: for j ∈ indices of queried lists do
43: L ← reduced list of local index j;
44: add |L| to serialized_reply; . serialization of the reply.
45: add L to serialized_reply; . serialization of the reply.
46: end for
47: send serialized_reply to process p′; . Non-blocking.
48: nqueries ← nqueries − 1;
49: end if
50: if nreplies > 0 then
51: probe for any pending incoming reply from another process p′ 6= p;
52: receive the vector serialized_reply from p′; . Blocking.
53: deserialize serialized_reply and associate the corresponding reduced lists

with the appropriate cells identified in map_of_cells_of_remote_lists;
54: for cells C identified by map_of_cells_of_remote_lists do
55: L (C)← newly added reduced lists from the serialized reply;
56: for v ∈ V (C) do
57: phi_sas (v)← max

(
phi_sas (v) ,maxj∈L(C) (rp + rj − ‖v − cj‖)

)
;

. (9.14)
58: end for
59: end for
60: nreplies ← nreplies − 1;
61: end if
62: done = ((j == nlocal) ∧ (nreplies == 0) ∧ (nqueries == 0));
63: end while
64: end function
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values of ϕSAS at grid nodes v belonging to a finest grid cell and such that 0 < ϕSAS (v) ≤

rp + mδ are not equal to dist (v,ΓSAS), in general, and need correction: in this section

we show how to correct those values.

For the construction by reinitialization

The grid and ϕSAS are constructed in such a way that ΩC
SAV\ΩSEV and m layers of

width δ over ΓSAS in ΩSAV are tessellated with finest grid cells. Besides, the node values

of ϕSAS are equal to ρrp in that region as shown in subsections 9.4.1 and 9.4.1. These

conditions allow an accurate calculation of dist (v,ΓSAS) for all grid nodes v ∈ ΩC
SAV\ΩSEV

by using an mth order accurate reinitialization method, detailed hereafter. We note

that this technique does not claim better than first-order accurate results because of

the presence of numerous kinks in the definition of ΓSAS. However, one obtains more

accurate results when m = 2, although the results are still only first-order accurate.

The computational efficiency of this technique compared to the construction by direct

calculation makes it the method of choice if the user is not interested in higher-order

quantities associated with ΓSES like its curvature, for instance.

An accurate implicit representation of ΓSES as the zero-level set of a function φ, can

be found by subtracting rp from the signed distance φSAS to ΓSAS. This latter node-

sampled scalar function can be calculated by reinitializing ϕSAS [5, 106], i.e., by solving

the following pseudo-time problem for ϕ (x, τ):

∂ϕ

∂τ
+ sgn (ϕ0) (‖∇ϕ‖ − 1) = 0, with ϕ (x, 0) = ϕ0 = ρrp (x) , (9.23)
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for τ ≥ 0 and where the sgn function is defined as:

sgn (a) =





−1 if a < 0,

0 if a = 0,

1 if a > 0.

Usually, a smoothed version of the sgn function like sgn (a) = a/
√
a2 + h2 (where h is

the smallest cell size) is used instead, without affecting the correctness of the method.

The steady-state (viscosity) solution limτ→∞ ϕ (x, τ) has the same sign as ρrp and has a

normed gradient everywhere: it is thus the signed distance to ΓSAS, i.e., φSAS.

The problem (9.23) is solved using the technique from [106]. This technique approx-

imates the solution to (9.23) by solving its corresponding semi-discrete version

dϕ

dτ
+ sgn (ϕ0)

[
H
(
∇+ϕ,∇−ϕ, ϕ

)
− 1
]

= 0, with ϕ (v, 0) = ϕ0 = ϕSAS (v) , (9.24)

where ∇+ϕ and ∇−ϕ are mth-order accurate gradients of ϕ (when ϕ is smooth) based

on one-sided forward and backward derivatives, respectively, and where the Godunov

Hamiltonian H is defined as

H (a, b, β) =





√∑3
k=1 max

(
(max (ak, 0))2 , (min (bk, 0))2) if β ≤ 0,

√∑3
k=1 max

(
(min (ak, 0))2 , (max (bk, 0))2) if β > 0,

(9.25)

where ak and bk are the kth components of vectors a and b respectively. The equation

(9.24) is then integrated in time using a mth-order TVD Runge-Kutta scheme with adap-

tive time-stepping [267]. Details related to the sub-cell fix method to prevent the motion

of the interface and to non-uniform cartesian grids have been omitted since they are

beyond the scope of this work [184, 255]. The interested reader is referred to [247] for a
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recent review of level-set methods.

We note that the Fast Sweeping Method (FSM) [268, 269, 270, 271] and the Fast

Marching Method (FMM) [272, 273, 274, 275, 276] are known to have optimal complexity

for solving Hamilton-Jacobi equations like (9.23) and should thus be preferred over the

above method, in principle. However, although serial versions of those methods have

been implemented successfully on adaptive Quad-/Oc-trees [277], the implementation of

a strongly scalable parallel version, in the paradigm of distributed computing, is still an

open problem.

Note that we have ϕSAS = ρrp when ρrp ≥ −mδ (by construction) and that ρrp is

already a signed distance function wherever it is negative, by Theorem 9.3.2. More-

over, the correct distance-based grid levels have already been determined in the region

{z ∈ R3|ϕSAS (z) < −mδ} (by construction too). Therefore, the value of φSAS needs to

be calculated only in the region PϕSAS
where the set of points Pf is defined as

Pf =
{
x ∈ R3|f (x) > 0

}
. (9.26)

Hence, equation (9.24) is evolved in time only at grid nodes z ∈ PϕSAS
in order to keep

the computational workload minimal and load balancing is ensured by partitioning the

grid according to the local computational weight WPϕSAS
(C) where WPf (C) is defined

as

WPf (C) =





0 if V (C)
⋂Pf = ∅,

1 else,
(9.27)

before termination of Algorithm 3 (see line 14 of Algorithm 3).

Finally, a finite final resolution pseudo-time τend must be determined when solving

(9.23). The analysis of (9.23) by the method of characteristics shows that the solution

ϕ (x, τ) propagates from ϕ−1
0 (0), i.e., the zero-level set of ϕ0, along its normal with a
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pseudo-velocity of magnitude one. Therefore, after a pseudo-time τ > 0, we have

|ϕ (x, τ)| = dist
(
x, ϕ−1

0 (0)
)
, ∀x such that dist

(
x, ϕ−1

0 (0)
)
< τ.

As a consequence, the final pseudo-time when solving (9.23) must be strictly greater

than rp + mδ to ensure the accurate localization of the rp-level set of φSAS. It has

been found (through extensive tests including the cases illustrated below) that the final

pseudo-time τend = 3 (rp +mδ) ensures convergence of the calculations. The number of

pseudo-time steps for solving (9.24) is thus set to the smallest integer greater than or equal

to
3 (rp +mδ)

∆τ
where pseudo-time step ∆τ satisfies the CFL condition ∆τ = h/ (m+ 1),

h = hroot2
−lmax being the smallest grid size5.

Once φSAS is calculated by the above procedure, an implicit representation of ΓSES

is given by its rp-level set or, equivalently, the zero-level set of φ = φSAS − rp. Figure

9.5 illustrates the resulting representation of ΓSES as the zero-level set of φ for our two-

dimensional illustration.

In this case, the grid is constructed in such a way that φSAS, i.e., the exact distance to

ΓSAS, needs to be calculated at every grid node v that belongs to one of the finest cells.

Our procedure uses calculations similar to [263, 278], that we develop and illustrate here

after. Let ξ ∈ ΓSAS be the closest point to v, the goal of this approach is to find ξ for all

grid nodes v such that dist (v,ΓSAS) < rp +mδ, and set φSAS (v) = ‖v − ξ‖.

As showed in subsection 9.4.1, every finest cells C is associated with a reduced list

containing only the indices of atoms that are closer than rp + mδ from C (see line 9

and lines 13 to 16 in Algorithm 6). Therefore, it contains all atom indices i that are

potential candidates for satisfying ξ ∈ ∂B (ci, ri + rp). The following procedure intends

to find ξ and is guaranteed to be exact for all grid nodes v such that ρrp (v) ≥ 0 and

5This is true in that context despite the adaptive time stepping (i.e., ∆τ being proportional to the
local smallest grid size) because of ΩC

SAV\ΩSEV has been tessellated with the finest desired grid cells.
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dist (v,ΓSAS) < rp + mδ, by construction of the reduced lists. If the method fails to

find ξ, it means that dist (v,ΓSAS) > rp + mδ and v is thus irrelevant for the accurate

localization of ΓSES.

Given a finest cell C, its reduced list of atoms L (C), and a grid node v ∈ V (C),

consider any pair of intersecting spheres ∂B (ci, ri + rp) and ∂B (cj, rj + rp), where

{i, j} ∈ L (C), as illustrated in Figure 9.4. The intersection of the two spheres is a

circle of center

o = λci + (1− λ) cj, where λ =
1

2
+

(rp + rj)
2 − (rp + ri)

2

2 ‖cj − ci‖2 , (9.28)

of radius

ζ =

(
(rj + rp)2 + (ri + rp)2

2
− ‖cj − ci‖

2

4
−
(
(rj + rp)2 − (ri + rp)2)2

4 ‖cj − ci‖2

)1/2

, (9.29)

and contained in a plane of normal vector n =
cj − ci
‖cj − ci‖

. Let

µ =
(v − o)− ((v − o) · n)n

‖(v − o)− ((v − o) · n)n‖ and ν = n× µ (9.30)

be two vectors that are orthogonal to n, all points on ∂B (ci, ri + rp)
⋂
∂B (cj, rj + rp)

can be parameterized with ϑ ∈ [−π, π[ by

s (ϑ) = o+ ζ cos (ϑ)µ+ ζ sin (ϑ)ν. (9.31)

Note that ‖v − s (ϑ)‖ is an even function of ϑ that is minimal for ϑ = 0 and strictly

increasing with |ϑ|. Therefore, we intend to find the smallest value of |ϑ| ∈ [0, π] such

that ρrp (s (|ϑ|)) = 0 or ρrp (s (− |ϑ|)) = 0.
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A point s (ϑ) is not valid if there exists at least one atom index k ∈ L (C) such that

ρrp, k (s (ϑ)) > 0. In such a case, s (ϑ) belongs to the following set of points

(
∂B (ci, ri + rp)

⋂
∂B (cj, rj + rp)

)⋂
B (ck, rk + rp) (9.32)

which should all be rejected as potential candidates for the closest point to v on ΓSAS.

Let

c′k = ck − ((ck − o) · n)n (9.33)

be the projection of ck onto the plane of normal n through o and

r′k =

√
(rk + rp)2 − ‖c′k − ck‖2 (9.34)

be the radius of the intersection of ∂B (ck, rk + rp) in that plane. All points in the set

(9.32) can be parameterized by s (ϑ) with θ ∈ ]β − α, β + α[, the angles β and α being

β =





arccos

(
(c′k − o) · µ
‖c′k − o‖

)
if (c′k − o) · ν ≥ 0,

− arccos

(
(c′k − o) · µ
‖c′k − o‖

)
if (c′k − o) · ν < 0,

(9.35)

α = arccos

(
‖c′k − o‖2 + ζ2 − (r′k)

2

2 ‖c′k − o‖ ζ

)
, (9.36)

as illustrated in Figure 9.4.

Algorithm 13 in the appendix 9.7 uses the above results to find the closest point

from v on ΓSAS from the reduced list of atoms indices. We note that the complexity of

Algorithm 13 is O
(
|L (C)|3

)
. However, we point out that

• |L (C)| = O (1) when the grid cells are fine enough;

• most loops in Algorithm 13 can be shortcut if a good, valid candidate point ξ̂ ∈ ΓSAS
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is already known and close to the actual ξ ∈ ΓSAS that is sought: ξ cannot belong

to a ball that is farther away than ‖ξ̂− v‖ from v. Since nodes and quadrants are

locally and globally ordered using a Z-order code (Morton code) [279, 174], locality

of successive nodes is ensured and the point ξ found for a grid node v is a good

guess ξ̂ for the next investigated grid node, which helps reduce the workload.

We reiterate that this method is not claimed to be optimized, but it gives us an exact

comparison basis to validate the construction by reinitialization and show its accuracy.

9.4.2 Identification of internal cavities

As pointed out in Remark 9.2, the representation of ΓSES by the zero-level set of φ

does not prevent the existence of internal cavities. In other words, one may find compact

•
ciri + rp

•
cj rj + rp

‖cj − ci‖

•v
•v′

•
o

ζ

n

µ

•
ν

•
o ζ

n

µ

ν

•
v′

•
c′k

r′k

β−α

+α

•

•

Figure 9.4: illustrations for the strategy to find the closest point on ΓSAS from a
grid node v. Left: image of the intersection between two spheres ∂B (ci, ri + rp)
and ∂B (cj , rj + rp) in the plane containing ci, cj and v; Right: image of
∂B (ci, ri + rp)

⋂
∂B (cj , rj + rp) in its own plane. The dashed circles represent the in-

tersection of another candidate sphere ∂B (ck, rk + rp) in the respective planes. Note
that we use v′ = s (0).
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Figure 9.5: illustration of the representation of ΓSES as the zero-level set of φ, as
defined in section 9.4.1. Note that the kinks from ΓSAS (as in Figure 9.2) have given
birth to smooth portions of circular interfaces. Top: the implicit representation of ΓSES

as defined in section 9.4.1. Bottom left: zoom-in close to ΓSES for the construction by
reinitialization. Bottom right: zoom-in close to ΓSES for the construction by direct
calculation. (The reader is invited to compare these figures to Figure 9.2)
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sets of points z where φ (z) ≤ 0 that are encapsulated in ΩSEV =
{
x ∈ R3|φ (x) > 0

}
.

Such sets of points require a special treatment as they are internal cavities: those regions

are not connected to the outer domain and no solvent molecule can reach them. In the

current context, our treatment consists of simply removing all such cavities: let Q be the

set of grid nodes identified as belonging to a cavity, the sign of the node values of φ (v)

is reversed for all grid nodes v ∈ Q.

We note that the method presented in Algorithm 8 identifies Q without distinction

of all its simply connected subsets in a robust and efficient way, as this is sufficient for

the above purpose. If one needs to decompose Q in all its simply connected subsets,

additional operations are required. However, this goes beyond the scope of this work and

we refer the interested reader to the island numbering strategy from [280] in the context

of the Island Dynamics model of [281, 282, 283]. Let N be the subset of grid nodes

from ΩC
SEV = R3\ΩSEV that are simply connected to the boundary of the computational

domain, then Q = ΩC
SEV\N . Our method starts by marking all grid nodes in N using a

region-growing technique from Algorithm 9, explained here below. Then, the sign of the

node-sampled function φ is reversed at all unmarked grid nodes v such that φ (v) < 0.

As the lists of atom centers and radii are read and stored in memory, the centroids

CM of every molecule M, defined as:

CM =
1

nM

nM∑

i=1

ci, (9.37)

are calculated on-the-fly. Then a second pass through the lists of atoms allows the

calculation of the minimum side lengths of virtual cubes ΞM of centers CM, and such

thatM is entirely contained in ΞM. Each cube ΞM is virtually attached to moleculeM:

it moves and scales withM whenM is translated, rotated or scaled. Those cubes allow

for a straightforward and robust identification of a rather big subset of N .
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Algorithm 9 starts by tagging all grid nodes that do not belong to any cube ΞM as

members of N (line 2). Then, every process p loops through every grid node v in its

domain partition that is not tagged yet. If v has a neighbor grid node inN and φ (v) < 0,

then v is tagged as member of N (see Algorithm 10). The tags associated with layering

grid nodes are updated between two iterations using non-blocking communications: the

nodes owned by process p that are close to the border of its domain partition are ghost

nodes for (an)other process(es) p′, their tags must be updated on process(es) p′ (see

lines 9 and 13). The method terminates when no new grid node is tagged. Figure 9.6

illustrates the identification of cavities.

Algorithm 8 Removal of internal cavities identified by complement of outer domain.

1: function removal of internal cavities(φ)
2: tag all grid nodes v ∈ N ; . See Algorithm 9.
3: for local grid nodes v that are not tagged and such that φ (v) < 0 do
4: φ (v)← −φ (v);
5: end for
6: end function

After step 3 of the global grid construction algorithm, the zero-level set of φ is an

implicit representation of a cavity-free ΓSES. However, as pointed out in section 9.4.1,

the computational grid contains too many fine cells, i.e., cells violating the coarsening

criterion (9.2). As such fine grid cells would dramatically and unnecessarily increase the

corresponding number of unknowns in further calculations, we intend to remove them by

a succession of coarsening steps.

Eight sibling cells are grouped together and replaced by their parent cells if criterion

(9.2) is satisfied for all eight sibling cells together. For a given cell C, determining whether

(9.2) is true or not generally requires to know the greatest lower bound of the distance

to ΓSES for all vertices v ∈ V (C). In the context of the construction by reinitialization,

we showed in subsection 9.4.1 that the correct distance-based grid levels are already
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Algorithm 9 Identification of N by region-growing. See Algorithm 10 for lines 7 and
11.

1: function tag all grid nodes in outer domain(φ)
2: tag all grid nodes v such that v /∈ ΞM, ∀M;
3: not_converged← true;
4: while not_converged do
5: not_converged← false;
6: for untagged v ∈ layer nodes do
7: not_converged← is_point_in_outer_domain (v);
8: end for
9: begin to update tags of layer grid nodes; . Collective and non-blocking.

10: for untagged v ∈ local inner nodes do
11: not_converged← is_point_in_outer_domain (v);
12: end for
13: finish updating tags of layer grid nodes; . Collective and non-blocking.
14: collective reduction of not_converged

(logical or over all process’ not_converged variables);
15: end while
16: end function

Algorithm 10 Determine if grid node v ∈ N .

1: function is point in outer domain(v)
2: if φ (v) ≥ 0 then
3: return false;
4: end if
5: get neighbor grid nodes of v;
6: for vertices v′ in neighbor grid nodes of v do
7: if v′ is tagged then
8: tag v;
9: return true;

10: end if
11: end for
12: return false;
13: end function
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Figure 9.6: illustration of the cavity-identification method for the illustrative planar
molecule: the zero-level set of φ (after cavity removal) is the green contour line while
the yellow contour line circles all grid nodes that have been marked as cavity nodes.
We emphasize that this illustrative result cannot be extrapolated back to the actual
three-dimensional 3J6D protein: this two-dimensional cavity corresponds to the planar
projection of a hole in the three-dimensional toroidal topology of protein 3J6D. The
cavities of the actual three-dimensional protein are illustrated in Figure 9.11. The
reader is invited to compare this figure to Figure 9.5 (top).
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determined for all cells in the outer domain that are farther than mδ away from ΓSAS or,

equivalently, farther than mδ+ rp away from ΓSES. Furthermore, the calculation of φ by

reinitialization of ϕSAS (see section 9.4.1) ensures that φ is an accurate signed distance

function to ΓSES at all grid nodes v such that − (mδ + rp) ≤ φ (v) ≤ mδ. The same

conclusion holds for the construction by direct calculation. As a consequence, one only

needs to estimate the local distance to ΓSES for grid nodes in Pφ−mδ, i.e., the grid nodes

z where φ (z)−mδ > 0.

The method from Algorithm 11 uses a recursive layer-by-layer approach to coarsen

the grid. Starting from a stage index k = 0, at each stage k the method intends to

estimate the distance to ΓSES for one new layer of grid nodes in Pφ. Since accuracy

is irrelevant for that purpose, we choose to apply the less resource-intensive first-order

accurate reinitialization method for solving (9.23) for all grid nodes z ∈ Pφ−mδ. The

layer of the new width is L δ2k, as dictated by (9.2), so that the number of iterations at

stage k for solving (9.23) until pseudo-time τend,k = L δ2k must be greater than
τend,k

∆τk
,

where ∆τk is the pseudo-time step at stage k. Since the method works recursively layer

by layer, one can consider ∆τk as the minimum of the adaptive pseudo-time steps in

Pφ−Lδ2k where the current coarsening method ensures that the finest grid cells are of

level lmax − k. Hence, ∆τk =
hroot2

−(lmax−k)

2
= h2k−1, so that the theoretical minimum

number of iterations becomes:

L δ2k

h2k−1
= 2L

δ

h
, (9.38)

which is independent of k. In practice, we use the smallest integer greater than or equal

to 3L δ/h. Note that δ/h =
√

3 for a cubic computational domain.

As such, each stage k of the above procedure ensures that φ (z) is a reliable estimate
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of the distance to ΓSES at all grid nodes z such that dist (z,ΓSES) ≤ L δ2k. However, let

Ik =
{
x ∈ Pφ | dist (x,ΓSES) ≥ L δ2k

}
, (9.39)

the values of φ (z) at grid nodes z ∈ Ik are still undetermined: supposedly, φ (z) ≥ L δ2k

but this is not ensured by the above procedure. As a consequence, φ is not reliable in

Ik with respect to the implementation of (9.2) from Algorithm 12. Nevertheless, all grid

nodes z ∈ Ik such that φ (z) < Lδ2k, i.e., grid nodes that would be false negatives with

respect to Algorithm 12, can be easily identified as cavities if one subtracts L δ2k from

φ, temporarily. Once false negatives are identified, the local sign of the temporary φ is

reversed6. Then, L δ2k is added back to the temporary φ: all the false negative grid

nodes have been removed and the implicit representation of ΓSES is unaffected. This

latter maneuver (lines 6 to 8 in Algorithm 11) can be viewed as an accelerator of the

reinitialization procedure. Figure 9.7 and Figure 9.8 illustrate some of the coarsening

steps for our two-dimensional illustration.

9.4.3 Imposing the desired minimum level of refinement

The final operation of our general algorithm consists of imposing the desired minimum

level lmin of refinement in the computational grid. Imposing a minimum level of refinement

might be desired for the purpose of ensuring accuracy of further calculations that would be

performed on the computational grid, for instance when solving the Poisson-Boltzmann

equation in order to determine the electrostatic potential Ψ in the domain.

Except for Algorithm 12, we have purposefully omitted to ensure that no computa-

6If another ad-hoc treatment than simply removing all cavities is required (see section 9.4.2), then
one can assume that relevant cavities to be kept were uniquely tagged in the previous step of the global
algorithm (see [280] for a tag-numbering technique, using level-set methods and distributed computing).
Then, one would reverse the sign of φ only for false negative grid nodes that were not tagged as cavities.
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Algorithm 11 Coarsen the grid based on criterion (9.2). phi represents the (distributed)
vector of node-sampled values of φ.

1: function coarsening procedure
2: grid_has_changed← true;
3: k ← 0;
4: while grid_has_changed do
5: run d3L δ/he iterations of the first-order accurate

reinitialization procedure for all grid nodes z ∈ Pφ−mδ;
6: phi← phi− L δ2k;
7: call Algorithm 8;
8: phi← phi + L δ2k;
9: coarsen all local families of eight sibling cells that were

all marked true by Algorithm 12 and update grid_has_changed;
10: collective reduction of grid_has_changed

(logical or over all process’ grid_has_changed variables);
11: if grid_has_changed then
12: fine_phi← phi;
13: create a new node-sampled function phi;
14: scatter appropriate values from fine_phi to phi;
15: destroy fine_phi and release corresponding memory;
16: partition the grid over the pool of processes using local computational

weight WPφ (C), enforcing sibling cells of the same level to belong
to the same grid partition, and update phi’s layout accordingly;

17: end if
18: k ← k + 1;
19: end while
20: end function
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Figure 9.7: computational grid after the first and third coarsening stages for the
illustrative planar molecule. The green contour line represents the cavity-free ΓSES.
Top left: computational grid after the first coarsening stage. Grid nodes affected by
the acceleration maneuver are highlighted in pink. Top right: zoom-in close to the
interface. Bottom left: computational grid after the third coarsening stage. Bottom
right: zoom-in close to the interface.
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Figure 9.8: computational grid after the fourth, fifth and sixth coarsening stages for
the illustrative planar molecule.
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Algorithm 12 Coarsening criterion based on criterion (9.2) and a desired minimum
refinement level lmin. Note that the distance-based criterion (9.2) is shortcut by line 6
since it is irrelevant to coarsen cells that are meant to be refined again eventually.

1: function coarsening criterion(family of eight sibling cells of the same level l,
lmin, L)

2: if l ≤ lmin then
3: return false;
4: else
5: for cell C in the family of cells do
6: for v ∈ V (C) do
7: if φ (v) ≤ LDroot 2−l then
8: return false;
9: end if

10: end for
11: end for
12: end if
13: return true;
14: end function

tional cell has a refinement level smaller than lmin in order to keep the workload and the

memory requirement at its bare minimum. Therefore, we eventually refine (recursively)

every grid cell C whose refinement level would be smaller than lmin. Every cell of level

l < lmin is thus replaced by its 23(lmin−l) descendant cells. The methodology presented

in the previous subsections ensures that the maximum refinement level is imposed in

A = {x ∈ R3 | dist (x,ΓSES) ≤ mδ} and that the node values φ (z) are accurate or exact

signed distances to ΓSES for all nodes z ∈ A. Therefore, the node values of φ at the newly

created grid nodes are irrelevant accuracy-wise and they are evaluated by simple linear

interpolation using the vertices of the appropriate ancestor cell. The grid is partitioned

using the local computational weight

W (C) = 2max(lmin−l,0) , where l is the level of cell C, (9.40)

prior to this operation to ensure a quasi-uniform grid partition at the termination of the

308



Fast and scalable algorithms for constructing SES of large biomolecules Chapter 9

general algorithm. Figure 9.9 illustrates this final operation.

9.5 Illustrations for 3J6D in three spatial dimensions

In this section, we illustrate the above procedure for the same protein 3J6D (131664

atoms), but in three spatial dimensions, i.e., the actual representation of the protein.

The minimum and maximum refinement levels are lmin = 5 and lmax = 12 respectively,

the proportionality factor is L = 1.2. The grid was constructed with m = 2 using the

construction by reinitialization with 2048 processors for a cubic computational domain

of side length 1: the protein and all its atom radii are scaled to be contained in a cubic

box of side length 0.5 centered in the domain, and so is the probe radius rp = 1.4 Å. The

maximum level is such that the diagonal of the finest grid cells δ satisfies rp/δ ' 6.

Figure 9.10 illustrates ΓSAS and a truncated version alongside a part of a slice in the

computational grid as created by Algorithm 3 (and Algorithm 4). Figure 9.11 shows ΓSES

and illustrates the identification of cavities. Figure 9.12 shows ΓSES alongside part of a

slice in the final computational grid, after coarsening steps.

9.6 Performances of the construction by reinitializa-

tion

In this section, we analyze the accuracy of the construction by reinitialization and

show the strong scalability of our implementation. For these purposes, we focus on 6

different molecules of various sizes:

• 1d65, with 760 atoms;

• 2err, with 1638 atoms;
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Figure 9.9: illustration of the final step of the grid construction, the desired minimum
level of refinement (in this case, 5) is imposed everywhere. Note the very small
difference in grid partitions between the bottom two figures, supporting the local
computational weight (9.40). Top left: computational grid before imposition of the
desired min level. Top right: computational grid after imposition of the desired min
level. Bottom left: grid partitions as determined by computational weight (9.40).
Each color represents one grid partition. Bottom right: exact uniform grid partitions
(each cell being given an equal weight).
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Figure 9.10: illustration of ΓSAS for the protein 3J6D (131664 atoms) and the corre-
sponding computational grid, as constructed by Algorithm 3 (and Algorithm 4). Left:
representation of ΓSAS. Right: truncated version with a slice in the computational
grid.

Figure 9.11: illustration of ΓSES for the protein 3J6D (131664 atoms), as obtained by
solving (9.23), and the cavities identified with Algorithm 8. Left: representation of
ΓSES. Right: clipped version of ΓSES with a representation of the cavities, in yellow.
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Figure 9.12: illustration of the final computational grid associated with ΓSES for the
protein 3J6D (131664 atoms). The reader is invited to compare these figures to Figure
9.10. Left: truncated version of the left figure in Figure 9.11 with a slice in the final
computational grid. Right: zoom-in close to part of ΓSES, in the truncated region.

• 2aid, with 3128 atoms;

• 1a2k, with 13627 atoms;

• 3J6D, with 131664 atoms;

• 1htq, with 177240 atoms;

with a probe radius rp = 1.4 Å. Only the 4 first molecules are considered for the accuracy

analysis as we intend to run the analyses up to levels of refinements such that δ < rp/8

at least. This would require lmax ≥ 13 for the last two molecules, which would lead to

more than 1× 109 grid nodes for the grid created by Algorithm 3 and Algorithm 4.

For every analysis, the molecule and all its atom radii are scaled to be contained in a

cubic box of side length 0.5 centered in the domain of side length 1, and so is the probe

radius rp = 1.4 Å. The Solvent-Excluded Surfaces of the 6 molecules here above, and

slices of the final grids are illustrated in Figure 9.13.
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Figure 9.13: illustration of ΓSES for the 6 molecules of interest for the performance
analyses, and slices of the constructed computational grid. Top left: 1d65. Top right:
2err. Middle left: 2aid. Middle right: 1a2k. Bottom left: 3J6D. Bottom right:
1htq.
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9.6.1 Accuracy

We show the accuracy of the construction by reinitialization by analyzing the inter-

polated values of the node-sampled level set function φ at the actual definition of ΓSES,

found using the construction by direct calculation. Starting from the minimal value of

lmax such that δ < rp, the analysis is performed for increasing lmax ≤ 12. For each level,

we define two distinct error measures:

• the 1−norm of the error, defined as

∫

ΓSES

∣∣φ (x)
∣∣ dx (9.41)

where the integral is evaluated with the method from [116];

• the ∞−norm of the error, defined as

max
{∣∣φ (x)

∣∣ : x ∈ E
⋂

ΓSES

}
(9.42)

where E is the set of all grid edges.

The first error (9.41) averages the localization error over ΓSES, while the second error

(9.42) considers only the worst case scenario within all relevant localization errors. The

results are illustrated in Figure 9.14, for the 1−norm and the ∞−norm. As illustrated

in Figure 9.14 (left), the construction by reinitialization is clearly first-order accurate in

average and one obtains slightly more accurate results with m = 2. As it can be observed

from Figure 9.14 (right), the∞−norm converges too provided lmax is such that δ < rp/4.

We relate this observation to the natural condition of resolving all kinks in ΓSAS.

314



Fast and scalable algorithms for constructing SES of large biomolecules Chapter 9

2−16

2−15

2−14

2−13

2−12

2−11

2−10

2−9

∫ Γ
S
E
S
|φ

(x
)|
d
x

7 8 9 10 11 12
Maximum level lmax

 

 

1a2k
1d65
2aid
2err
ideal 1st order

2−12

2−11

2−10

2−9

2−8

2−7

2−6

2−5

m
a
x
{

|φ
(x
)|
:
x
∈
E
⋂
Γ
S
E
S

}

7 8 9 10 11 12
Maximum level lmax

 

 

1a2k
1d65
2aid
2err
ideal 1st order

Figure 9.14: accuracy analyses for the four molecules 1d65, 2err, 2aid and 1a2k.
Circles: m = 1; diamonds: m = 2. Left: error analysis in 1−norm for the construc-
tion by reinitialization. Right: error analysis in ∞−norm for the construction by
reinitialization.

9.6.2 Strong scalability

Our implementation of the construction by reinitialization benefits from strong scal-

ability as illustrated in Figure 9.15. These scalability tests were performed for the con-

struction of a given computational grid, with an increasing number of processors. Two

different maximum level of refinement were chosen: lmax is set to the smallest integer

such that either a) δ < rp, or b) δ < rp/4, where δ is the diagonal of the finest grid

cells. The minimum level of refinement lmin is set to lmax − 5. The tests were run on the

Stampede 2 cluster at the Texas Advanced Computing Center (TACC). As illustrated

in those graphs, the construction by reinitialization with m = 2 is more than two times

slower than with m = 1.

9.7 Summary

We have presented a construction by reinitialization to build an implicit represen-

tation of the Solvent-Excluded Surface of a biomolecule using level-set strategies and to
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Figure 9.15: scaling analysis of the construction by reinitialization for the six
molecules under consideration. Circles: m = 1; diamonds: m = 2. Top left: 1d65.
Top right: 2err. Middle left: 2aid. Middle right: 1a2k. Bottom left: 3J6D. Bottom
right: 1htq.

316



Fast and scalable algorithms for constructing SES of large biomolecules Chapter 9

construct an adaptive Octree grid satisfying criterion (9.1), in the paradigm of distributed

computing. Numerous illustrations have showed the capability of the construction by

reinitialization to capture features of the Solvent-Excluded Surface regardless of their

topological complexity. The method is showed to be first-order accurate and strongly

scalable.

The implementation of such a robust method in a distributed computing framework

offers new perspectives. For instance, representations of very large molecular structures

can be handled and the corresponding adaptive Octree grids can be constructed, whereas

the memory requirement would be intractable for a single-CPU architecture. Figure 9.16

illustrates such capabilities. For moderately large molecules (O (103 − 104) atoms) on

the other hand, constructing the adaptive computational grid and the Solvent-Excluded

Surface takes a few seconds at most (see Figure 9.15), allowing more efficient and eas-

ier analyses, and providing a practical tool for coupling electrostatic computation with

dynamical molecular simulations.

As pointed out in our scaling analyses, the reinitialization of the level-set function is

the most resource-intensive operation of the construction by reinitialization. We point

out that the method can be further accelerated by implementing a parallel version of

the Fast Sweeping Algorithm on adaptive Quad-/Oc-tree grids, which would make it

optimally fast. Similarly, we believe that the method can be made second-order accurate

when using m = 2, by taking special care of grid nodes located near kinks in the Solvent-

Accessible Surface, at low additional cost. Finally, although using the construction by

reinitialization in order to remesh the computational domain starting from the root cell

would not be prohibitively expensive for moderately large molecules, in a dynamical

simulation setting, we believe that the reduced lists as described in section 9.4.1 can

be dynamically updated in an optimal fashion in order to save computational resources,

when atoms’ location change. These improvements would make for interesting future
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Figure 9.16: truncated view of ΓSES of 3J3Q, the HIV-1 capsid. The structure contains
4, 884, 312 atoms, the probe radius is 1.4 Å. The computational grid has a minimum
refinement level lmin = 6 and a maximum refinement level lmax = 12, the diagonal δ of
the finest grid cells is 0.78rp. The computational grid was built with 2, 048 processors
in 194 s and has 249, 484, 789 grid nodes. Right: zoom-in close to the surface.

work.

Algorithm for calculating the construction by direct

calculation
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Algorithm 13 Direct calculation of dist (v,ΓSAS), based on the reduced list L (C) of a
finest cell having v as a vertex. ξ̂ is an initial guess in ΓSAS for ξ (in/out variable).

function get exact distance to sas(v, L (C), ξ̂)
ξ← any point out of the domain;
for (ii = 0; ii < |L (C)| ; ii+ +) do

sort the list of atom indices n ∈ L (C) by decreasing ρrp, n (v);

i← iith atom index in the sorted list;

if
∣∣ρrp, i (v)

∣∣ > min
(
‖ξ̂ − v‖, ‖ξ − v‖

)
then

continue;
end if
z ← projection of v on ∂B(ci, ri + rp), see (9.8);

point_is_valid←
(
i = argmaxn∈L(C) ρrp, n (z)

)
;

if ¬point_is_valid then
for (jj = 0; jj < |L (C)| ; jj + +) do

sort the list of atom indices n ∈ L (C) by decreasing ρrp, n (z);

j ← jjth atom index in the sorted list;

if
∣∣ρrp, j (v)

∣∣ > min
(
‖ξ − v‖ , ‖ξ̂ − v‖

)
then

continue;
end if
calculate o, n, µ, ν, λ and ζ . see (9.28), (9.29) and (9.30).
set_is_empty← false;
initialize ϑ− ← 0, ϑ+ ← 0;
while ¬point_is_valid ∧ ¬set_is_empty do

set_is_empty←
(
ϑ+ − ϑ− = 2π

)
;

ϑ← ϑ+ if
∣∣ϑ+

∣∣ < ∣∣ϑ−∣∣ , ϑ← ϑ− otherwise;
z ← s (ϑ); . see (9.31).

if ‖z − v‖ > min
(
‖ξ̂ − v‖, ‖ξ − v‖

)
then

break;
end if
k = argmaxn∈L(C) ρrp, n (z)

point_is_valid←
(
ρrp, k (z) = 0

)
if ¬point_is_valid then

calculate c′k and r′k; . see (9.33) and (9.34)

if r′k >
∥∥c′k − o∥∥+ ζ then

ϑ+ ← π, ϑ− ← −π, set_is_empty← true

else
calculate α and β; . see (9.35) and (9.36)
ϑ+ ← max

(
ϑ+,min

(
β + α, 2π − ϑ−

))
;

ϑ− ← min
(
ϑ−,max

(
β − α,−

(
2π − ϑ+

)))
;

end if
end if

end while
if point_is_valid ∧ ‖z − v‖ < ‖ξ − v‖ then
ξ← z;

end if
point_is_valid← false;
z ← projection of v on ∂B(ci, ri + rp), see (9.8);

end for
else if ‖z − v‖ < ‖ξ − v‖ then
ξ← z;

end if
end for
if ‖ξ − v‖ <

∥∥∥ξ̂ − v∥∥∥ then

ξ̂← ξ;
end if
return min

(
‖ξ̂ − v‖, ‖ξ − v‖

)
;

end function
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Appendix A

Detailed derivation of the governing

equations for incompressible viscous

two-phase flows

In this appendix, the equations governing the two-phase flow of immiscible, linear,

isotropic fluids are derived. By linearity and isotropy of the fluids, it is meant that

• the fluids are Newtonian: the components of the deviatoric stress tensor are

isotropic linear functions of the components of the velocity gradient,

• heat conduction is accurately dictated by Fourier’s law,

for small departures from thermodynamic equilibrium, namely small rate of strain and

small temperature gradients. As discussed by Batchelor ([284], pages 141-156), the New-

tonian fluid assumption holds surprisingly well over a large range of strain rates for fluids

that have isotropic structures, like most simple fluids. Mathematically, linearity and
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isotropy translate into the two following constitutive laws1

σ = −pδ +

(
λ− 2µ

3

)
(∇ · u) δ + 2µE, (A.1)

(see [284] and [287]) and

q = −k∇T, (A.2)

where σ is the local stress tensor, q is the local heat flux, u is the local fluid velocity, p is

the local thermodynamic pressure, E =
1

2

(
∇u+ (∇u)T

)
is the local strain-rate tensor,

T is the local temperature, λ is the expansion viscosity (also called second coefficient of

viscosity), µ is the shear viscosity, k is the thermal conductivity and δ is the identity

second-order tensor.

Furthermore, the present work focuses on incompressible flows, i.e., flows such that

the mass density of a material element may be assumed constant (unless the material

element undergoes a phase change). As shown hereunder, this flow property, along with

the conservation of mass, has the mathematical consequence of constraining the velocity

1There is a certain lack of consensus in the literature about the exact definition of the expansion
viscosity (also known as “bulk” or “second” viscosity). In this document, we follow the lines by Batchelor
[284], supported by the fact that shear stresses do not contribute to a net isotropic stress (in other words,
shear stresses do not contribute to mechanical pressure). However, in the literature, it is not uncommon
to find the stress constitutive law for isotropic linear fluids written as

σ = −pδ + ζ (∇ · u) δ + 2µE

where ζ is dubbed “bulk viscosity” (or “second coefficient of viscosity”, or “dilatational viscosity”, ...)
in such a context. This differs from our formulation in (A.1), that follows Batchelor’s lines [284], by

ζ = λ− 2µ

3
.

This remark might lead to serious practical implications when matching experimentally measured
coefficients for instance. Similarly, Stokes suggested in 1880 [285] that the departure of the mechanical

pressure
−σii

3
from the thermodynamic pressure p is negligible, leading to λ = 0 in our formulation

(A.1), but ζ = −2µ

3
in the above. This is known as Stokes’ hypothesis, which lacks formal physical and

experimental support but is used quite often in the literature. The expansion viscosity λ can be shown
to be exactly 0 (or ζ = −2µ/3) for ideal gas; however there is no correlation between λ and µ in liquids
in general, and the value of λ can be of the same order of magnitude as µ or even much larger [286]. For
water at approximately 20 ◦C for instance, µ ' 1× 10−3 kg m−1 s−2 while λ ' 3.09× 10−3 kg m−1 s−2
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field to be solenoidal, i.e., ∇ · u = 0 (away from the interface). Therefore,

σ = −pδ + 2µE (A.3)

will be used in place of (A.1) when incorporating the constitutive stress-strain relation

into the final forms of the governing equations.

In subsection A.1, the partial differential equations describing the flow physics far

from the interface are determined from first principles. As expected, the Navier-Stokes

equations are recovered as a result, along with the familiar balance equation for internal

energy. In subsection A.2, the first principles are then applied to a control volume en-

capsulating the two fluids under consideration in order to determine, without ambiguity,

the mathematical conditions coupling the flow of the two distinct fluids, across the sharp

interface that separates them. Since no field of interest may be assumed continuous a

priori (unless rigorously proven so and/or physically justified), the mathematical toolkit

needs to be extended in order to handle such discontinuities when applying macroscopic

first principles.

The set of partial differential equations derived in subsection A.1 augmented with the

interface conditions determined thereafter in subsection A.2 provides so a complete math-

ematical translation of the fundamental conservation principles, which is fully consistent

with continuum mechanics in the limit of infinitesimally thin and massless interfaces.

A.1 Balance equations in each separate phase

In order to derive the fundamental conservation equations, we consider an arbitrary

material volume V (t), i.e., a volume whose boundary is moving with the fluid velocity

u (x, t) so that it encapsulates the same material element at all time. The surface of
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that volume is denoted by S (t), its outer unit normal vector is η. For a given (scalar,

vector or tensor) field q (x, t), the association of Leibniz Integral Rule and the divergence

theorem (see app. A.3) yields

d

dt

∫

V(t)

q (x, t) dV =

∫

V(t)

∂q (x, t)

∂t
dV +

∫

S(t)

q (x, t)u (x, t) · η dS

=

∫

V(t)

(
∂q (x, t)

∂t
+∇ · (q (x, t)u (x, t))

)
dV. (A.4)

Here after, the dependence of the fields of interest on x and t will be omitted for the

sake of clarity in the exposition. In this subsection, we assume that V (t) contains

only one fluid phase and is free of phase transition around time t. As a consequence,

every thermodynamic variable may be assumed to be continuous and twice differentiable

function of any two other independent thermodynamic variables over V (t) and/or S (t).

A.1.1 Balance of mass

The conservation of mass for the material volume V (t) reads

d

dt

∫

V(t)

ρ dV =

∫

V(t)

(
∂ρ

∂t
+∇ · (ρu)

)
dV = 0, (A.5)

using (A.4), and holds for any material volume V (t). Therefore, we have

∂ρ

∂t
+∇ · (ρu) = 0. (A.6)

For incompressible flows

For incompressible flows, the mass density of material elements is assumed to remain

constant so long as it does not undergo a phase change. This common flow property
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translates mathematically into
Dρ

Dt
=
∂ρ

∂t
+ u · ∇ρ = 0 and is known to be a suitable

assumption, even for gas flows, so long as the local Mach number remains sufficiently low

everywhere.

A direct consequence on the above conservation of mass (A.6) follows: the velocity

fields must be solenoidal in both phases, i.e.

∇ · u = 0, (A.7)

which mathematically prevents material volumes to expand or contract (so long as they

do not go across the interface).

A.1.2 Balance of momentum

The conservation of momentum for the material volume V (t), i.e., Newton’s second

law reads

d

dt

∫

V(t)

ρu dV =

∫

V(t)

ρf dV +

∫

S(t)

σ · η dS (A.8)

where f is the body force per unit mass, σ is the stress tensor. Using (A.4) for the LHS

and the divergence theorem for the second term of the RHS, this equation becomes

∫

V(t)

(
∂

∂t
(ρu) +∇ · (ρuu)− ρf −∇ · σ

)
dV = 0 (A.9)

which holds for any material volume V (t). Therefore,

∂

∂t
(ρu) +∇ · (ρuu) = ρf +∇ · σ. (A.10)
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For incompressible flows of linear, isotropic fluids

Taking into account (A.6) and using (A.3), the balance of momentum reads

ρ

(
∂u

∂t
+ u · ∇u

)
= ρf −∇p+ µ∇2u. (A.11)

for incompressible flows of linear, isotropic fluids (µ is assumed constant away from the

interface).

A.1.3 Balance of internal energy

The conservation of energy for the material volume V (t), i.e., the first law of ther-

modynamics reads

d

dt

∫

V(t)

ρE dV =

∫

V(t)

ρf ·u dV+

∫

S(t)

u · (σ · η) dS−
∫

S(t)

q ·η dS+

∫

V(t)

Θ̇ dV (A.12)

where E is the total energy per unit mass, that is E = e +
‖u‖2

2
where e is the internal

energy per unit mass, q is the heat flux and Θ̇ is a volumetric heat source. Using (A.4)

for the LHS and the divergence theorem for the two last terms of the RHS, we have

∫

V(t)

(
∂

∂t
(ρE) +∇ · (ρEu)− ρf · u−∇ · (u · σ) +∇ · q − Θ̇

)
dV = 0 (A.13)

which holds for any material volume V (t). Therefore,

∂

∂t
(ρE) +∇ · (ρEu) = ρf · u+∇ · (u · σ)−∇ · q + Θ̇. (A.14)
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On the other hand, by taking the dot product side-by-side of (A.11) with u and adding

(see (A.7))

‖u‖2

2

(
∂ρ

∂t
+∇ · (ρu)

)
= 0

side-by-side, one obtains the balance of kinetic energy

∂

∂t

(
ρ
‖u‖2

2

)
+∇ ·

(
ρu
‖u‖2

2

)
= ρf · u+ u · (∇ · σ) . (A.15)

The balance of internal energy results from (A.15) and (A.14). Indeed, subtracting

the former from the latter side-by-side, one obtains

∂

∂t
(ρe) +∇ · (ρeu) = σ : E −∇ · q + Θ̇, (A.16)

wherein E =
1

2

(
∇u+ (∇u)T

)
is the strain rate tensor 2.

For incompressible flows of linear, isotropic fluids

Taking into account (A.6), using (A.3) and (A.2), the balance of internal energy reads

ρ

(
∂e

∂t
+ u · ∇e

)
= 2µE : E + k∇2T + Θ̇. (A.17)

for incompressible flows of linear, isotropic fluids (k is assumed constant away from the

interface).

2One may show that σ is symmetric from the conservation of angular momentum.
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A.2 Balance equations across the interface

The mathematical description of conservation laws across the interface requires special

care, not only because of discontinuities in material properties but also because interface

phenomena may take place. In the context of this work, we take into account surface

tension effects as well as the possible existence of an interface-defined, i.e., singular, force

G that may account for other or additional interface physics (e.g., hyper-elasticity of

a membrane, interface-distributed stress due to coupled electromagnetic effects, etc.).

Although conceptually equivalent to take into consideration from a mathematical view-

point, an interface-defined heat source will not be considered in the following, owing to

its limited practical interest3.

Let Σ (t) be a portion of the interface, we denote by τ a unit vector tangent to

∂Σ (t). Let n be the unit vector normal to Σ (t) with positive orientation: at every point

on ∂Σ (t), m = τ × n is a unit vector, outward normal to ∂Σ (t), and tangent to Σ (t);

this is illustrated in the left sketch of Figure A.1. The local velocity of the interface4 is

denoted by w.

We define the extruded volumes ΩΣ(t), ε− and ΩΣ(t), ε+ on either side of the interface

by

ΩΣ(t), ε± = {z | z = s± `n, s ∈ Σ (t) , 0 ≤ ` ≤ ε} . (A.18)

Note that ΩΣ(t), ε− and ΩΣ(t), ε+ are both included in distinct fluid phases for ε small

enough. Interface conditions coupling the dynamics of the two fluids across the interface

result from the application of conservation principles to the control volume ΩΣ(t), ε =

ΩΣ(t), ε−
⋃

ΩΣ(t), ε+ , in the limit of ε → 0. We denote by η the unit vector, normal to

3If an electrical current flows across the interface, the Peltier effect could be an example of such an
interface-defined heat source, as pointed out in [288].

4While the interface kinematics is entirely determined by the normal component of the interface
velocity w ·n only, taking into consideration a tangential motion of interface points may be required to
account for local stretching of the interface.
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∂ΩΣ(t), ε pointing outward ΩΣ(t), ε, as illustrated in the right sketch of Figure A.1, in two

dimensions.

When considering a field q that is continuous and differentiable in either phase but

may be discontinuous across the interface, Leibniz Integral Rule applies only on either

side of the interface strictly speaking5, i.e., only in ΩΣ(t), ε− and ΩΣ(t), ε+ but not in their

5Unless one resorts to distribution theory and exploits Dirac delta functions, which is suitable theo-
retically but known to be inappropriate when translated as such in a numerically framework.

τ

m

n

Σ (t)

∂Σ (t)

Σ (t)

ΩΣ(t), ε+

ΩΣ(t), ε−∂ΩΣ(t), ε

n

η

ε

Figure A.1: Left: portion of an arbitrary three-dimensional interface Σ (t) (shaded
region); τ is the unit tangent vector to ∂Σ (t), n is the unit normal vector to Σ (t)
with positive orientation: at every point on ∂Σ (t), m = τ × n is a unit vector,
outward normal to ∂Σ (t), tangent to Σ (t). Right: illustration of the control volume
under consideration for the derivation of balance relations across the interface, in two
dimensions.
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union. Therefore, one has (along the lines of [288], chapter 2)

d

dt

∫

ΩΣ(t), ε

q dΩ =
d

dt

∫

ΩΣ(t), ε+

q dΩ +
d

dt

∫

ΩΣ(t), ε−

q dΩ

=

∫

ΩΣ(t), ε+

∂q

∂t
dΩ +

∫

ΩΣ(t), ε−

∂q

∂t
dΩ

+

∫

∂ΩΣ(t), ε+\Σ(t)

qw · η d∂Ω +

∫

∂ΩΣ(t), ε−\Σ(t)

qw · η d∂Ω

+

∫

Σ(t)

q+w · (−n) dΣ +

∫

Σ(t)

q−w · n dΣ

=

∫

ΩΣ(t), ε

∂q

∂t
dΩ +

∫

∂ΩΣ(t), ε

qw · η d∂Ω−
∫

Σ(t)

[q]w · n dΣ (A.19)

where the interface quantities q± (s) are defined as

q± (s) = lim
`>0,`→0

q (s± `n) , (A.20)

for s ∈ Σ (t) and the jump in q across the interface is defined as [q] = q+ − q−.

Furthermore, though the mass of the interface is negligible, one may need to take into

consideration thermodynamic material fields per unit area on Σ (t) (see [197, 198]). Let

ζ be such a quantity, the corresponding form of (A.4) for such interface-defined fields is

the surface transport theorem which states

d

dt

∫

Σ(t)

ζ dΣ =

∫

Σ(t)

∂ζ

∂t
+w · ∇ζ + ζ (δ − nn) : ∇w

=

∫

Σ(t)

Dζ

Dt
+ ζ∇s ·w dΣ, (A.21)

wherein ∇s · w = (δ − nn) : ∇w is the surface divergence of the interface velocity. A

formal proof of (A.21) requires the use of advanced differential geometry ([198] refers the

interested reader to [289]).
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Finally, while ΩΣ(t), ε is a time-dependent control volume, it is not a material volume.

Therefore, net transfers of mass, momentum and total energy advected through ∂ΩΣ(t), ε

must be taken into account when applying the conservation of mass, Newton’s second

law and the first law of thermodynamics, respectively. If q is a material quantity (i.e., a

quantity associated, and therefore advected, with material elements), the rate of variation

of
∫

ΩΣ(t), ε
q dΩ due to advection through ∂ΩΣ(t), ε is

∫

∂ΩΣ(t), ε

q (u−w) · η d∂Ω. (A.22)

Remark. In the derivation of (A.19) and (A.22), the velocity of every point on ∂ΩΣ(t), ε

was considered to be w. While it should be w+`ṅ, with 0 ≤ |`| ≤ ε, this latter expression

differs from w by a term proportional to ε, at most. Since one intends to consider the

limit ε → 0 eventually, it is appropriate to consider that the velocity of every point on

∂ΩΣ(t), ε is w, without loss of generality in the conclusions.

A.2.1 Balance of mass across the interface

The conservation of mass applied to the control volume ΩΣ(t), ε reads (the interface

itself is massless)

d

dt

∫

ΩΣ(t), ε

ρ dΩ +

∫

∂ΩΣ(t), ε

ρ (u−w) · η d∂Ω = 0. (A.23)

Using (A.19), we get

∫

ΩΣ(t), ε

∂ρ

∂t
dΩ +

∫

∂ΩΣ(t), ε

ρu · η d∂Ω−
∫

Σ(t)

[ρ]w · n dΣ = 0. (A.24)
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When ε→ 0, the first term in (A.24) becomes negligible as it scales as ε while the other

terms do not. Moreover,

lim
ε→0

∫

∂ΩΣ(t), ε

ρu · η d∂Ω =

∫

Σ(t)

[ρu · n] dΣ.

Therefore, in the limit ε→ 0, (A.24) dictates

∫

Σ(t)

[ρ (u−w) · n] dΣ = 0 (A.25)

which must hold for any portion of interface Σ (t) so that

[ρ (u−w) · n] = 0. (A.26)

This last equation translates the continuity of the local mass flux Ṁ = ρ (u−w) · n

through the interface.

A.2.2 Balance of momentum across the interface

The application of Newton’s second law to the control volume ΩΣ(t), ε gives

d

dt

∫

ΩΣ(t), ε

ρu dΩ +

∫

∂ΩΣ(t), ε

ρu (u−w) · η d∂Ω =

∫

ΩΣ(t), ε

ρf dΩ +

∫

∂ΩΣ(t), ε

σ · η d∂Ω

+

∫

∂Σ(t)

γm d∂Σ +

∫

Σ(t)

G dΣ (A.27)
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where γ is the surface tension coefficient. Since the interface itself is massless, its mo-

mentum is discarded from (A.27). Using (A.19), one has

∫

ΩΣ(t), ε

∂

∂t
(ρu) dΩ +

∫

∂ΩΣ(t), ε

ρuu · η d∂Ω−
∫

Σ(t)

[ρu]w · n dΣ (A.28)

=

∫

ΩΣ(t), ε

ρf dΩ +

∫

∂ΩΣ(t), ε

σ · η d∂Ω +

∫

∂Σ(t)

γm d∂Σ +

∫

Σ(t)

G dΣ.

In (A.28), the integrals over ΩΣ(t), ε scale as ε while the other terms do not; therefore

those terms becomes negligible when ε→ 0. Moreover, note that

lim
ε→0

∫

∂ΩΣ(t), ε

R · η d∂Ω =

∫

Σ(t)

[R · n] dΣ

for any second-order tensor R. Therefore, in the limit ε→ 0, (A.28) dictates

∫

Σ(t)

[ρu (u−w) · n] dΣ =

∫

Σ(t)

[σ · n] dΣ +

∫

∂Σ(t)

γm d∂Σ +

∫

Σ(t)

G dΣ. (A.29)

As shown in appendix A.5.1, we also have

∫

∂Σ(t)

γm d∂Σ =

∫

Σ(t)

((δ − nn) · ∇γ − κγn) dΣ (A.30)

where κ = ∇ · n is the curvature of the interface. Therefore, (A.29) is equivalent to

∫

Σ(t)

[
Ṁu− σ · n

]
dΣ =

∫

Σ(t)

((δ − nn) · ∇γ − κγn+G) dΣ (A.31)

which must hold for any portion of interface Σ (t), so that

[
Ṁu− σ · n

]
= (δ − nn) · ∇γ − κγn+G. (A.32)
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This last relation expresses the balance of momentum across the interface in an inertial

reference frame. It is usually preferred (and more natural) to express it in a reference

frame moving with the interface. By subtracting
[
Ṁw

]
= 0 side-by-side from (A.32),

one has
[
Ṁ (u−w)− σ · n

]
= (δ − nn) · ∇γ − κγn+G, (A.33)

wherein the contributions of the usual surface tension effects (Laplace pressure and

Marangoni forces) appear in the RHS as well as the interface-defined, singular, force

term (if any).

This vector balance relation (A.33) may naturally be separated into normal and

tangential parts. When considering the normal component in (A.33), one has

[
Ṁ (u−w) · n− n · σ · n

]
= −κγ + n ·G, (A.34)

while the tangential part reads

[
Ṁ (δ − nn) · (u−w)− (δ − nn) · σ · n

]
= (δ − nn) · (∇γ +G) . (A.35)

Although not strictly enforced by the latter equation, tangential components of the

velocity fields are usually assumed continuous across interfaces in presence of viscous

forces. Indeed, the existence of discontinuous tangential velocities across an interface

would imply an unbounded shear rate at the interface that viscous effects would tend to

eliminate immediately. As discussed in [284] (page 149):

The condition of continuity of the velocity is thus not an exact law, but a

statement of what may be expected to happen, approximately, in normal

circumstances.

On the other hand, if at least one of the two fluid phases is considered inviscid, there
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is no physical argument to enforce continuous tangential velocity components across the

interface (as in [290], for instance): this work does not allow nor consider such limit

cases.

The continuity of tangential velocities across the interface translates into

[(δ − nn) · u] = 0 so that
[
Ṁ (δ − nn) · (u−w)

]
= 0 as well, given that

[
Ṁ
]

= 0

(see (A.26)) and [w] = 0 by definition. Therefore, (A.33) becomes

[(
Ṁ2

ρ
+ p

)
n− 2µE · n

]
= −κγn+ (δ − nn) · ∇γ +G, (A.36)

for incompressible two-phase flows of linear isotropic fluids.

A.2.3 Balance of internal energy across the interface

The application of the first law of thermodynamics to the control volume ΩΣ(t), ε gives

d

dt

∫

ΩΣ(t), ε

ρE dΩ +

∫

∂ΩΣ(t), ε

ρE (u−w) · η d∂Ω +
d

dt

∫

Σ(t)

ψ dΣ (A.37)

=

∫

ΩΣ(t), ε

ρf · u dΩ +

∫

∂ΩΣ(t), ε

u · σ · η d∂Ω−
∫

∂ΩΣ(t), ε

q · η d∂Ω +

∫

ΩΣ(t), ε

Θ̇ dΩ

+

∫

∂Σ(t)

γm ·w d∂Σ +

∫

Σ(t)

G ·w dΣ
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where ψ is the interfacial energy (see [197, 198]). Using (A.19) and (A.21), this equation

can be written as

∫

ΩΣ(t), ε

∂

∂t
(ρE) dΩ +

∫

∂ΩΣ(t), ε

ρEu · η d∂Ω−
∫

Σ(t)

[ρE ]w · n dΣ +
d

dt

∫

Σ(t)

ψ dΣ(A.38)

=

∫

ΩΣ(t), ε

ρf · u dΩ +

∫

∂ΩΣ(t), ε

u · σ · η d∂Ω−
∫

∂ΩΣ(t), ε

q · η d∂Ω +

∫

ΩΣ(t), ε

Θ̇ dΩ

+

∫

∂Σ(t)

γm ·w d∂Σ +

∫

Σ(t)

G ·w dΣ.

Here again, in (A.38), the integrals over ΩΣ(t), ε scale as ε while the other terms do not;

therefore those former terms becomes negligible when ε→ 0. In the limit ε→ 0, (A.38)

thus dictates

∫

Σ(t)

[ρE (u−w) · n] dΣ +
d

dt

∫

Σ(t)

ψ dΣ =

∫

Σ(t)

[u · σ · n] dΣ−
∫

Σ(t)

[q · n] dΣ (A.39)

+

∫

∂Σ(t)

γm ·w d∂Σ +

∫

Σ(t)

G ·w dΣ.

As shown in appendix A.5.2, we also have

∫

∂Σ(t)

γm ·w d∂Σ =

∫

Σ(t)

∇s · (γ (δ − nn) ·w) dΣ. (A.40)

Therefore, (A.39) is equivalent to

∫

Σ(t)

[
ṀE − u · σ · n+ q · n

]
+

Dψ

Dt
+ψ∇s·w dΣ =

∫

Σ(t)

(∇s · (γ (δ − nn) ·w) +G ·w) dΣ

which must hold for any portion of interface Σ (t), so that

[
ṀE − u · σ · n+ q · n

]
+

Dψ

Dt
+ ψ∇s ·w = ∇s · (γ (δ − nn) ·w) +G ·w. (A.41)
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This last relation expresses the balance of total energy through the interface in an inertial

reference frame.

In order to express this balance in a reference frame moving with the interface (which

is more convenient), consider the inner product of w with both sides of equation (A.32).

This leads to

[
Ṁu ·w −w · σ · n

]
= w · (δ − nn) · ∇γ − κγw · n+G ·w. (A.42)

Similarly, multiplying side by side (A.26) by
‖w‖2

2
leads to

[
Ṁ
‖w‖2

2

]
= 0. (A.43)

Adding side-by-side (A.43) to (A.41) and subtracting side-by-side (A.42) from the result,

one obtains

[
Ṁ

(
e+
‖u−w‖2

2

)
− (u−w) · σ · n+ q · n

]
= γ∇s ·w. (A.44)

which is the desired balance in a reference frame moving with the interface.

Furthermore, since tangential velocities are continuous, note that

[
‖u−w‖2

2

]
=

[
‖(δ − nn) · (u−w)‖2 + ((u−w) · n)2

2

]
=

[
((u−w) · n)2

2

]
=

[
Ṁ2

2ρ2

]
,
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and

[(u−w) · σ · n] = [(((u−w) · n)n+ (δ − nn) · (u−w)) · σ · n]

= [((u−w) · n)n · σ · n] + (δ − nn) · (u−w) · [σ · n]

=

[
Ṁ

ρ
n · σ · n

]
,

since (δ − nn) · (u−w)|Σ(t) = 0. Indeed, since tangential velocities are continuous

across Σ (t), it is natural to define the tangential components of the interface velocity

equal to either fluid’s.

Therefore, the first law of thermodynamics translates into the following relation across

the interface

[
Ṁ

(
e+

Ṁ2

2ρ2

)
− Ṁ

ρ
n · σ · n+ q · n

]
= −Dψ

Dt
+ (γ − ψ)∇s ·w. (A.45)

Finally, it is shown in [198] (pages 32-34) that fundamental thermodynamics implies

Dψ

Dt
= −TI

D

Dt

(
dγ

dTI

)
and γ − ψ = TI

dγ

dTI

(A.46)

for a massless interface of thermodynamic temperature TI. Hence, conservation of energy

across Σ (t) translates into

[
Ṁ

(
e+

Ṁ2

2ρ2

)
− Ṁ

ρ
n · σ · n+ q · n

]
= TI

(
D

Dt

(
dγ

dTI

)
+

dγ

dTI

∇s ·w
)
. (A.47)
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For incompressible two-phase flows of linear isotropic fluids, (A.47) becomes

[
Ṁ

(
h+

Ṁ2

2ρ2

)
− 2Ṁνn ·E · n− k∇T · n

]
= TI

(
D

Dt

(
dγ

dTI

)
+

dγ

dTI

∇s ·w
)
.

(A.48)

wherein h = e+
p

ρ
is the enthalpy per unit mass in (A.48), and Ṁ = ρ (u−w) ·n is the

mass flux across the interface (toward the positive domain).

A.3 Divergence theorem

Also known as Gauss’s theorem or Ostrogradsky’s theorem, the divergence theorem

shows the equality between the integral of a flux across a closed surface Σ and the integral

of the flux divergence over the volume Ω encapsulated by Σ. In other words,

∫

Σ

Qab...ni dΣ =

∫

Ω

∂

∂xi
(Qab...) dΩ (A.49)

where n is the outer unit normal vector to Σ, and Qab... are the components of a general

N th order tensor.

A.4 Stokes’ theorem

The Stokes’ theorem relates the circulation along a closed curve Γ to a surface integral

over any surface Σ bounded by Γ. In other words,

∫

Γ

Qab...τi dΓ =

∫

Σ

εkli
∂

∂xl
(Qab...)nk dΣ (A.50)
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where τ is a unit tangent vector to Γ and n is the unit normal vector to Σ with positive

orientation: at every point on Γ, τ × n is a unit vector, outward normal to Γ, tangent

to Σ.

A.5 Surface tension effects

A.5.1 Contribution to balance of momentum across the inter-

face

We show here relation (A.30). Let T =
∫
∂Σ(t)

γm dΣ =
∫
∂Σ(t)

γτ × n dΣ, consider

the ith component of T , we have (using Stokes’ theorem, see app. A.4)

Ti =

∫

∂Σ(t)

γmi d∂Σ =

∫

∂Σ(t)

εijkγτjnk d∂Σ

=

∫

Σ(t)

εpqj
∂

∂xq
(εijkγnk)np dΣ =

∫

Σ(t)

εjpqεjki
∂

∂xq
(γnk)np dΣ

=

∫

Σ(t)

(δpkδqi − δpiδqk)
∂

∂xq
(γnk)np dΣ =

∫

Σ(t)

(
∂

∂xi
(γnk)nk −

∂

∂xk
(γnk)ni

)
dΣ

=

∫

Σ(t)

(
∂γ

∂xi
− ∂γ

∂xk
nkni − γκni

)
dΣ

which is the ith component of

∫

Σ(t)

((δ − nn) · ∇γ − γκn) dΣ.

Remark. We define the curvature by κ = ∇ · n =
∂nk
∂xk

.
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A.5.2 Contribution to balance of energy across the interface

We show here relation (A.40). Using Stokes’ theorem, see app. A.4, we have

∫

∂Σ(t)

γm ·w d∂Σ =

∫

∂Σ(t)

γεijkτjnkwi d∂Σ =

∫

Σ(t)

εpqj∂xq (γεijknkwi)np dΣ

=

∫

Σ(t)

εjkiεjpq∂xq (γnkwi)np dΣ

=

∫

Σ(t)

(δkpδiq − δkqδip) ∂xq (γnkwi)np dΣ

=

∫

Σ(t)

(∂xi (γnkwi)nk − ∂xk (γnkwi)ni) dΣ

=

∫

Σ(t)

(∂xi (γwi)− nink∂xk (γwi)− γwiniκ) dΣ

=

∫

Σ(t)

((δik − nink) ∂xk (γwi)− γwiniκ) dΣ

=

∫

Σ(t)

((δik − nink) ∂xk ((δij − ninj) γwj)) dΣ

=

∫

Σ(t)

(δ − nn) : ∇ (γ (δ − nn) ·w) dΣ.
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Appendix B

Least-square interpolation and

differential operators

In this appendix, we present the methodology used to build interpolation and differential

operators based from a set of unstructured points. Consider a set of (unstructured)

points {x0, x1, . . . , xN} and the corresponding values of a (scalar) field u sampled at

those points {u0, u1, . . . , uN}. Let x̄ be the point where the value of u and/or its

derivatives is/are sought; let x = (x− x̄) · ex, y = (x− x̄) · ey and z = (x− x̄) · ez.

We locally approximate u by an interpolation polynomial p (x, y, z) such that (up to

second-degree)

p (x, y, z) = xaT (B.1)

wherein

a =

(
a0 ax ay az axx axy axz ayy ayz azz

)
(B.2)

and

x =

(
1 x y z x2 xy xz y2 yz z2

)
. (B.3)
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If a lesser degree of interpolation is desired or required, one obtains a linear (resp. con-

stant) interpolation polynomial by truncating (B.2) and (B.3) to their 4 (resp. 1) first

elements.

Let xi = (xi − x̄) · ex, yi = (xi − x̄) · ey and zi = (xi − x̄) · ez, i = 0, . . . , N . We

define the matrix

X =




1 x0 y0 z0 x2
0 x0y0 x0z0 y2

0 y0z0 z2
0

1 x1 y1 z1 x2
1 x1y1 x1z1 y2

1 y1z0 z2
1

...
...

...
...

...
...

...
...

...
...

1 xN yN zN x2
N xNyN xNzN y2

N yNzN z2
N



. (B.4)

The sampling errors ei = p (xi, yi, zi)− ui are obtained via

eT = XaT − uT (B.5)

where in u = (u0 u1 . . . uN) and e = (e0 e1 . . . eN). The least-square method aims to

minimize the two-norm of the sampling errors ei, which means minimizing

‖e‖2
2 = eeT = aXTXaT − 2aXTuT + uuT. (B.6)

The minimum of the positive-definite quadratic form (B.6) is obtained for the coefficients

ā =
(
XTX
)−1

XTuT, (B.7)

wherein we evaluate
(
XTX
)−1

by Cholesky factorization of XTX.

This final result (B.7) shows that every coefficient ā can be expressed as a linear

combination of the values of u sampled on the surrounding data points. By extracting

rows of
(
XTX
)−1

XT, one obtains the weights of that linear combination (which are inde-
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pendent of u) producing the corresponding coefficient in a, once applied to a particular

set of values u.

In particular, let rk be the kth row of
(
XTX
)−1

XT, we have

• a0 = r0u
T = p(0, 0, 0) which interpolates u at x̄;

• ax = r1u
T = ∂xp|0 which one may use to approximate ∂xu|x̄;

• ay = r2u
T = ∂yp|0 which one may use to approximate ∂yu|x̄;

• az = r3u
T = ∂zp|0 which one may use to approximate ∂zu|x̄;

• axx = r4u
T =

1

2

∂2p

∂x∂x

∣∣∣∣
0

which one may use to approximate
1

2

∂2u

∂x∂x

∣∣∣∣
x̄

;

• axy = r5u
T =

∂2p

∂x∂y

∣∣∣∣
0

which one may use to approximate
∂2u

∂x∂y

∣∣∣∣
x̄

;

• axz = r6u
T =

∂2p

∂x∂z

∣∣∣∣
0

which one may use to approximate
∂2u

∂x∂z

∣∣∣∣
x̄

;

• ayy = r7u
T =

1

2

∂2p

∂y∂y

∣∣∣∣
0

which one may use to approximate
1

2

∂2u

∂y∂y

∣∣∣∣
x̄

;

• ayz = r8u
T =

∂2p

∂y∂z

∣∣∣∣
0

which one may use to approximate
∂2u

∂y∂z

∣∣∣∣
x̄

;

• azz = r9u
T =

1

2

∂2p

∂z∂z

∣∣∣∣
0

which one may use to approximate
1

2

∂2u

∂z∂z

∣∣∣∣
x̄

;
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Appendix C

Quadratic non-oscillatory

interpolation schemes ensuring

continuity in uniform regions

Let us consider a computational cell C = [0; hx] × [0; hy] × [0; hz], and a point (x, y, z)

within that cell. Let q be a scalar field to be interpolated at (x, y, z) from its values (and

second derivatives) sampled at the vertices of C. We denote by qabc = q (ahx, bhy, chz),

where a, b and c are either 0 or 1.

Let

Fi (z) =





1− z if i = 0,

z if i = 1,
(C.1)

then the multilinear interpolation of q in C, at point (x, y, z) reads

qlin. (x, y, z) =
1∑

i=0

1∑

j=0

1∑

k=0

qijkFi (x)Fj (y)Fk (z) (C.2)

and is continuous on faces shared between cells of same size, by construction.
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Quadratic non-oscillatory interpolation schemes ensuring continuity in uniform regions Chapter C

One may build a quadratic interpolant by augmenting (C.2) with quadratic terms in

the following fashion

qquad. (x, y, z) = qlin. (x, y, z)− qxx
x (1− x)

2
− qyy

y (1− y)

2
− qzz

z (1− z)

2
. (C.3)

In [106], a stabilized quadratic interpolation scheme like (C.3) is introduced with

qxx = minmod(i,j,k)∈{0, 1}3 (Dxxqi,j,k) , (C.4)

and similarly for qyy and qzz. However, this interpolation scheme does not ensure con-

tinuity across cells in uniform regions because the value of qxx (for instance) may differ

across a face that is parallel to direction x.

Here below, we present two alternative interpolation schemes that alleviate this issue

by splitting the minmod operation in (C.4) and combining it with linear interpolation

in relevant cross-section. For the sake of clarity, we present only the calculation of qxx

hereafter but the reasoning is similar for qyy and qzz.

A first version ensuring continuity in uniform regions. Let ejk be the edge of

C parallel to direction x of coordinates y = jhy and z = khz. For every such edge, one

may define

qxx,jk = minmodi∈{0, 1} (Dxxqi,j,k) , (C.5)

and subsequently define

qxx =
1∑

j=0

1∑

k=0

qxx,jkFj (y)Fk (z) . (C.6)

By construction, this operation ensures that, at any point of a face parallel to x, qxx
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depends only on the values of Dxxqi,j,k at the vertices of that face.

A second version ensuring continuity in uniform regions. Consider the faces of

C perpendicular to direction x and interpolate the values of Dxxq on those faces. One

obtains

qxx,0 =
1∑

j=0

1∑

k=0

Fj (y)Fk (z) Dxxq0,j,k, (C.7)

and

qxx,1 =
1∑

j=0

1∑

k=0

Fj (y)Fk (z) Dxxq1,j,k. (C.8)

One may then define

qxx = minmod (qxx,0, qxx,1) . (C.9)

By construction, this operation ensures that, at any point of a face parallel to x, qxx

depends only on the values of Dxxqi,j,k at the vertices of that face, as well.
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