Title

Total Synthesis of Eupalinilide E and Development of a Platform to Access Novel Thiopeptide Antibiotics

Permalink

https://escholarship.org/uc/item/6v60g1cp

Author

Johnson, Trevor Charles

Publication Date

2016
Peer reviewed|Thesis/dissertation

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Total Synthesis of Eupalinilide E and

 Development of a Platform to Access Novel Thiopeptide AntibioticsA dissertation submitted in partial satisfaction of the requirements for the degree

Doctor of Philosophy
in

Chemistry
by

Trevor Charles Johnson

Committee in charge:
Professor Dionicio Siegel, Chair
Professor William Gerwick
Professor Tadeusz Molinski
Professor Emmanuel Theodorakis
Professor Robert Tukey

Copyright

Trevor Charles Johnson, 2016

All rights reserved.

The Dissertation of Trevor Charles Johnson is approved, and it is acceptable in quality and form for publication on microfilm and electronically:
\qquad
\qquad
\qquad
Chair

University of California, San Diego

2016

DEDICATION

For my family

TABLE OF CONTENTS

Signature Page iii
Dedication iv
Table of Contents v
List of Figures vi
List of Schemes vii
List of Abbreviations x
Acknowledgements xviii
Vita. xix
Abstract of the Dissertation xx
Chapter 1: Total Synthesis of Eupalinilide E 1
Experimental Section 32
Chapter 2: Development of a Platform to Access Novel Thiopeptide Antibiotics 58
Experimental Section 90
Appendix A: Crystallographic Data for $\mathbf{8 5}$ 135
Appendix B: Crystallographic Data for 92 172
Appendix C: Crystallographic Data for 192 184
Appendix D: Catalog of Spectra 188
References 337

LIST OF FIGURES

Figure 1.1. Small molecule regulators of HSC homeostasis.. 2
Figure 1.2. Natural products that regulate HSC homeostasis .. 3
Figure 1.3. Eupalinilide E (7) and related sesquiterpene lactones tested for HSC expansion.4

Figure 1.4. The core guaianolide framework of eupalinilide E (7).................................... 6
Figure 1.5. Eupalinilide E (7) and related guaianolide natural products 9
Figure 1.6. Amount of total nucleated cells promoted by eupalinilide E (7) at different concentrations at 7 and 14 days.29

Figure 1.7. Percentage and total amount of CD34 ${ }^{+}$cells after treatment with 600 nM eupalinilide E (7) at 7 and 14 days

Figure 2.1. The most common antibiotic scaffolds.. 58
Figure 2.2. Thiopeptide antibiotics micrococcin P1 (118), lactocillin (119), nosiheptide (120), and GE2270 A (121).

LIST OF SCHEMES

Scheme 1.1. The biosynthesis of IPP (17) and DMAPP (18) 7
Scheme 1.2. Biosynthesis (+)-costunolide (27) from DMAPP (18) and IPP (17) 8
Scheme 1.3. Cyclization of (+)-costunolide (27) yields guaianolide precursor (30) 9
Scheme 1.4. A diastereoselective Favorskii rearrangement yields the highly substituted cyclopentane 38 10
Scheme 1.5. Lee and coworkers' synthesis of (+)-cladantholide (33) 11
Scheme 1.6. Lee and coworkers' synthesis of (-)-estafiatin (34) 12
Scheme 1.7. Xu and coworkers' synthesis of (+)-8-epigrosheimin (35) 13
Scheme 1.8. Proposed synthesis of eupalinilide E (7) from cyclopentane 56. 14
Scheme 1.9. Favorskii rearrangement of tribromide 57 to yield bicyclic lactone $\mathbf{6 1}$. 14
Scheme 1.10. . Favorskii rearrangement of tribromide 57 mediated by isopropyl amine 15
Scheme 1.11. Synthesis of aldehyde 67 from lactone 61 16
Scheme 1.12. Failed Barbier reaction between aldehyde 67 and bromide 68. 17
Scheme 1.13. Enyne and aldehyde-ene cyclizations form the 5,7,5-tricyclcle 79 18
Scheme 1.14. Attempts to streamline the route leads to incorrect diastereomer 85 20
Scheme 1.15. Synthesis of primary alcohol 92 21
Scheme 1.16. Synthesis of carbocycle 94 22
Scheme 1.17. Oxidation of the guaianolide core. 22
Scheme 1.18. Bachi and coworkers' vinyl trimethylsilane removal strategy 23
Scheme 1.19. Desilylation of the protected α-methylene- γ-butyrolactone 96 24
Scheme 1.20. Problems encountered when reducing enone 107 25
Scheme 1.21. Selective epoxidation of allylic alcohol 103 27
Scheme 1.22. Chlorohydrin formation completes the synthesis of eupalinilide E (7) 27
Scheme 2.1. Biosynthesis of micrococcin P1 (118) 63
Scheme 2.2. A heterocyclization reaction completes the biosynthesis of micrococcin P1 (118). 64
Scheme 2.3. Total synthesis of GE2270 A (121) by Bach and coworkers. 66
Scheme 2.4. Ciufolini and coworkers' synthesis of micrococcin P1 (118) 67
Scheme 2.5. Arndt and coworkers' synthesis of nosiheptide (120) 68
Scheme 2.6. The GE2270 A (121) analog LFF571 (146) entered phase II clinical trials for the treatment of C. difficile infection. 70
Scheme 2.7. Retrosynthetic analysis of lactocillin (119) 71
Scheme 2.8. Previous synthesis of $\mathbf{1 5 0}$ en route to the northern fragment of lactocillin (119). 72
Scheme 2.9. Improved synthesis of $\mathbf{1 5 0}$ using a nitrile-amino thiol condensation 73
Scheme 2.10. Synthesis of protected northern fragment 158 75
Scheme 2.11. Failed deprotection of protected northern fragment 158 76
Scheme 2.12. Synthesis of the deprotected northern fragment 164 77
Scheme 2.13. Synthesis of the nitrile 166 78
Scheme 2.14. Synthesis of protected southern fragment 177 79
Scheme 2.15. Synthesis of the pyridyl core of lactocillin (119) 80
Scheme 2.16. Coupling of the northern fragment 164 and the pyridyl core 165 81
Scheme 2.17. Preparation of bromide 188 82
Scheme 2.18. Preparation of stannane 191 83
Scheme 2.19. Cross coupling of chloride 181 and stannane 191 yields precyclized lactocillin (119) 84

Scheme 2.20. Deprotection and thioester formation will complete the synthesis of lactocillin (119)85

Scheme 2.21. Retrosynthetic analysis of simplified thiopeptide (198)............................ 87
Scheme 2.22. Synthesis of the core of simplified thiopeptide (198)88

Scheme 2.23. Completing the synthesis of simplified thiopeptide (198)......................... 89

LIST OF ABBREVIATIONS

(+)-CSA	(1S)-(+)-10-camphorsulfonic acid
$(\mathrm{COCl})_{2}$	oxalyl chloride
2,2-DMP	2,2-dimethoxypropane
2,4,6-TCBC	2,4,6-trichlorobenzoyl chloride
3,5-DMP	3,5-dimethylpyrazole
3,5-DNBC	3,5-dinitrobenzoyl chloride
$\mathrm{Ac}_{2} \mathrm{O}$	acetic anhydride
AcOH	acetic acid
AIBN	2,2'-azobis(2-methylpropionitrile)
$\mathrm{Al}(\mathrm{Os}-\mathrm{Bu})_{3}$	aluminum tri-sec-butoxide
AlCl_{3}	aluminum trichloride
$\mathrm{B}_{2} \mathrm{pin}_{2}$	bis(pinacolato)diboron
$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	boron trifluoride diethyl etherate
$\mathrm{Boc}_{2} \mathrm{O}$	di-tert-butyldicarbonate
BOPCl	bis(2-oxo-3-oxazolidinyl)phosphinic chloride
Br_{2}	bromine

BrCCl_{3}	bromotrichloromethane
$\mathrm{Bu}_{3} \mathrm{SnH}$	tributyltin hydride
$\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$	cerium trichloride hexahydrate
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	methylene chloride
CrO_{3}	chromium (VI) oxide
$\mathrm{Cu}(\mathrm{OAc})_{2} \bullet \mathrm{H}_{2} \mathrm{O}$	copper(II) acetate monohydrate
CuCl	copper(I) chloride
CuSO_{4}	cupper(II) sulfate
DBU	1,8-diazabicycloundec-7-ene
DCC	N,N'-dicyclohexylcarbodiimide
DDQ	2,3-Dichloro-5,6-dicyano-1,4benzoquinone
DHP	3,4-dihydro-2H-pyran
DIBAL-H	diisobutylaluminium hydride
DIPEA	N,N-diisopropylethylamine
DMAP	4-dimethylaminopyridin
DMF	dimethylformamide
DMP	Dess-Martin periodinane

DMSO	dimethylsulfoxide
DPPA	diphenylphosphoryl azide
$\mathrm{EDC} \cdot \mathrm{HCl}$	N -(3-Dimethylaminopropyl)- N^{\prime} -
	ethylcarbodiimide hydrochloride
$\mathrm{Et}_{2} \mathrm{AlCl}$	diethylaluminum chloride
$\mathrm{Et}_{2} \mathrm{O}$	diethyl ether
$\mathrm{Et}_{3} \mathrm{~N}$	triethylamine
EtOH	ethanol
$\mathrm{H}_{2} \mathrm{C}=\mathrm{CHMgBr}$	vinyl magnesium bromide
$\mathrm{H}_{2} \mathrm{CNMe}_{2} \mathrm{I}$	N,N-dimethylmethyleneiminium
	iodide
$\mathrm{H}_{2} \mathrm{O}_{2}$	hydrogen peroxide
$\mathrm{H}_{2} \mathrm{SO}_{4}$	sulfuric acid
HATU	1-[Bis(dimethylamino)methylene]-1H-
	1,2,3- triazolo[4,5-b]pyridinium 3-oxid
	hexafluorophosphate
HBr	hydrobromic acid
HCl	hydrochloric acid

HMPA	hexamethylphosphoramide
HOBt	hydroxybenzotriazole
IPA	isopropanol
$i-\mathrm{PrMgCl} \cdot \mathrm{LiCl}$	isopropyl magnesium chloride lithium
	chloride complex
$i-\mathrm{PrNH}_{2}$	isopropylamine
$\mathrm{K}_{2} \mathrm{CO}_{3}$	potassium carbonate
KH	potassium hydride
LDA	lithium diisopropylamide
$\mathrm{Li}_{2} \mathrm{CO}_{3}$	lithium carbonate
LiAlH_{4}	lithium aluminum hydride
LiCl	lithium chloride
LiOH	lithium hydroxide
mCPBA	meta-chloroperbenzoic acid
Me	methyl
$\mathrm{Me}_{2} \mathrm{CO}$	acetone
MeCN	acetonitrile
MeI	methyl iodide

MeLi	methyllithium
MeOH	methanol
$\mathrm{MeP}\left(\mathrm{OPh}_{3}\right) \mathrm{I}$	methyltriphenoxyphosphonium iodide
$\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H} 2 \mathrm{O}$	manganese(III) acetate dihydrate
MnO_{2}	manganese(II) oxide
$\mathrm{Na}_{2} \mathrm{SO}_{4}$	sodium sulfate
NaBH_{4}	sodium borohydride
NaClO_{2}	sodium chlorite
NaH	sodium hydride
NaHCO_{3}	sodium bicarboante
NaIO_{4}	sodium periodate
NaOH	sodium hydroxide
NaOMe	sodium methoxide
NBS	N -bromosuccinimide
$n-\mathrm{Bu} 4 \mathrm{NOH}$	n-tetrabutylammonium hydroxide
$n-\mathrm{BuLi}$	n-butyllithium
NH_{3}	ammonia
$\mathrm{NH}_{4} \mathrm{Cl}$	ammonium chloride

$\mathrm{NH}_{4} \mathrm{OAc}$	ammonium acetate
$\mathrm{NH}_{4} \mathrm{OH}$	ammonium hydroxide
NBS	N-bromosuccinimide
NHS	N -hydroxysuccinimide
NMM	N-methylmorpholine
$\mathrm{P}_{2} \mathrm{O}_{5}$	phosphorus(V) oxide
$\mathrm{Pd}(\mathrm{OAc})_{2}$	palladium(II) acetate
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	tetrakis(triphenylphosphine)palladium(0)
$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	tris(dibenzylideneacetone)dipalladium(0)
$\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$	bis(triphenylphosphine)palladium(II)
	dichloride
PhMe	toluene
PhOH	phenol
PhSH	thiophenol
$\mathrm{PMBO}(\mathrm{C}=\mathrm{NH}) \mathrm{CCl}_{3}$	para-methoxybenzyl 2,2,2
	trichloroacetimidate
PPTS	pyridinium para-toluenesulfonate
$\mathrm{Sc}(\mathrm{OTf})_{3}$	scandium(III) trifluoromethanesulfonate

$\mathrm{Sn}_{2} \mathrm{Me}_{6}$	hexamethyldistannane
t-Bu	tert-butyl
TBAB	n-tetrabutylammonium bromide
TBAF	tetrabutylammonium fluoride
TBHP	tert-butyl hydroperoxide
TBSCl	tert-butyldimethylsilyl chloride
t - BuOH	tert-butanol
TCEP $\cdot \mathrm{HCl}$	tris(2-carboxyethyl)phosphine
	hydrochloride
$\mathrm{Tf}_{2} \mathrm{O}$	triflic anhydride
TFA	trifluoroacetic acid
TFAA	trifluoroacetic anhydride
TFP	tri(2-furyl)phosphine
THF	tetrahydrofuran
TIPSOTf	triisopropylsilyl trifluoromethanesulfonate
TMSCl	trimethylsilyl chloride
TMSCN	trimethylsilyl cyanide
TMSI	trimethylsilyl iodide

TsCl
TsNHNH_{2}
p-TsOH

UHP
$\mathrm{Yb}(\mathrm{OTf})_{3}$
para-toluenesulfonyl chloride
para-toluenesulfonyl hydrazide
para-toluenesulfonic acid
urea hydrogen peroxide addition complex
ytterbium(III) trifluoromethanesulfonate

ACKNOWLEDGEMENTS

A huge thanks to Professor Dio Siegel for taking a chance and giving me the opportunity to learn synthetic organic chemistry. Without his mentorship and support over the years, this work would not have been possible. I would also like to thank my incredibly talented coworkers whom I've had the pleasure of working with. Special thanks to Matt, Anders, Drew, Changxia, and Indra for helping me become the chemist that I am today. Above all, I would like to thank my family for their constant encouragement and support.

Chapter 1, in full, is a reprint of the material as it appears in Synthesis of Eupalinilide E a Promoter of Human Hematopoietic Stem and Progenitor Cell Expansion, J. Am. Chem. Soc. 2016, 138, 6068-6073. Co-authors Matthew R. Chin, Tianxu Han, John Paul Shen, Tariq Rana, and Dionicio Siegel express their consent for inclusion of this published material in Chapter 1 of this dissertation. The dissertation author was an investigator and author on this paper.

VITA

University of California, Santa Cruz, Santa Cruz, CA
B.S. in Biochemistry and Molecular Biology

Research Advisor: Professor Needhi Bhalla

2016
University of California, San Diego, La Jolla, CA
Ph.D. in Chemistry
Research Advisor: Professor Dionicio Siegel

PUBLICATIONS AND PATENTS

1. Johnson, T. C.; Chin, M. R.; Han, T.; Shen, J. P.; Rana, T.; Siegel, D. Synthesis of Eupalinilide E a Promoter of Human Hematopoietic Stem and Progenitor Cell Expansion, J. Am. Chem. Soc. 2016, 138, 6068-6073.
2. Camelio, A. M.; Johnson, T. C.; Siegel, D. Total Synthesis of Celastrol, Development of a Platform to Access Celastroid Natural Products, J. Am. Chem. Soc. 2015, 137, 11864-11867.
3. Camelio, A. M.; Liang, Y.; Eliasen, A. M.; Johnson, T. C.; Yuan, C.; Schuppe, A. W.; Siegel, D. Computational and Experimental Studies of Phthaloyl Peroxide-Mediated Hydroxylation of Arenes Yield a More Reactive Derivative, 4,5-Dichlorophthaloyl Peroxide, J. Org. Chem. 2015, 80, 8084-8095.
4. Johnson, T. C.; Siegel, D. Complanadine A, a selective agonist for the Mas-related G protein-coupled receptor X2, Bioorg. Med. Chem. Lett. 2014, 24, 3512-3515.
5. "Cyclic peroxide oxidation of aromatic compound production and use thereof." D. Siegel, A. Camelio, A. Eliasen, T. Johnson, A. Axelrod, C. Yuan. The University of Texas at Austin. (US 20140296544).

ABSTRACT OF THE DISSERTAION
Total Synthesis of Eupalinilide E and Development of a Platform to Access Novel Thiopeptide Antibiotics
by
Trevor Charles Johnson
Doctor of Philosophy in Chemistry
University of California, San Diego, 2016
Professor Dionicio Siegel, Chair

Control of stem cell fate is a central goal of regenerative medicine. Hematopoietic stem cells (HSCs) are in high demand because they are routinely used in bone marrow transplants. This has led to a shortage of clinically viable HSCs and there are no FDA approved methods for the growth and maintenance of these cells ex vivo. The natural product eupalinilide E (7) promotes the ex vivo self-renewal (expansion) of HSCs with a 983 -fold increase in growth after 14 days. The mode of action of eupalinilide E (7) remains unknown and appears to be independent of other known mechanism for HSC expansion. A synthetic route that can allow access to gram-scale quantities of eupalinilide E (7) has been developed.

There remains a constant need for novel antibiotics to combat the ever growing problem of antibiotic resistant infections. Thiopeptides are a well-studied family of natural products with potent antibiotic activity against several contemporary antibiotic resistant bacterial strains. Although having low toxicity against human cell lines and in vivo animal models, thiopeptides have only been used in the agricultural industry due to their low solubility in water. En route to the total synthesis of the thiopeptide lactocillin (119), a platform for the synthesis of novel thiopeptides has been developed. The route allows for rapid construction of the 29-membered macrocyclic core with synthetic handles for analog synthesis. Utilizing this route, derivative synthesis has begun with the intention of ultimately discovering novel thiopeptides with improved pharmacokinetics.

Chapter 1: Total Synthesis of Eupalinilide E

Research in the field of regenerative medicine remains predominately focused on developing stem cell based therapeutics for the treatment of various human disorders and diseases. ${ }^{1-3}$ Pluripotent embryonic stem cells differentiate into all cell types found in an adult organism and have been used in transplantation-based therapies. ${ }^{4-9}$ These therapies have been met with some success; however, controlling embryonic stem cell fate ex vivo has been inundated with problems, such as mutation, malignancy, and host-immune rejection. ${ }^{10-12}$ Moreover, ethics surrounding the isolation and use of pluripotent embryonic stem cells remains controversial. ${ }^{13}$

Somatic stem cells (adult stem cells) are tissue specific and can only differentiate into cells of a specific lineage. ${ }^{14-18}$ Like embryonic stem cells, somatic stem cells possess the ability to self-renew (expand) and differentiate in response to different biological cues. The cells persist throughout the course of an organism's lifetime and play important roles in physiological homeostasis and tissue repair. To bypass the problems associated with the use of embryonic stem cells, research has focused on promoting the in vivo or ex vivo selfrenewal of somatic stem cells.

Hematopoietic stem cells (HSCs) are somatic stem cells found primarily in bone marrow tissue and give rise to all blood cell types. ${ }^{19,20}$ They are the most well studied somatic stem cells and are routinely used in bone marrow transplants for the treatment of leukemias and anemias. ${ }^{21-25}$ With tens of thousands of transplants performed each year, there remains a large shortage of clinically viable HSCs. ${ }^{26-29}$ Therefore, methods that
promote the self-renewal or differentiation of HSCs are the key to unlocking their full therapeutic potential.

Within the last two decades, research has focused on identifying small molecules capable of modulating HSC homeostasis. ${ }^{1-3,30}$ Chlamydocin (1), a histone deacetylases inhibitor, was found to expand human HSCs by up to 7 -fold (Figure 1.1). ${ }^{31}$ Similarly, Stemregenin 1 (SR1, 2) along with several other purine-based small molecules were found to promote the ex vivo expansion of HSCs by activating the aryl hydrocarbon receptor (AHR). ${ }^{32,33}$ SR1 (2) remains the most active promotor of HSC self-renewal, with treated cells displaying a 50 -fold increase in growth at an EC_{50} of 120 nM . More recently, compounds related to the pyrimidoindole UM 171 (3) were identified to promote long term ex vivo expansion of HSCs. ${ }^{34}$ Cell populations treated with UM 171 (3) were expanded and maintained as pure cultures for up to six months via a mechanism independent of the AHR pathway.

chlamydocin (1)

SR1 (2)

UM 171 (3)

Figure 1.1. Small molecule regulators of HSC homeostasis.
Although natural products possess vast biological activities, few are known that are capable of regulating HSC homeostasis. This is likely a result of a lack of screening of natural products in this area of medicine. One report found that the plant derived natural
product euphohelioscopin A (4) is capable of promoting the differentiation of HSCs down the granulocyte cell lineage by activating protein kinase C (PKC, Figure 1.2). ${ }^{35}$ Similarly, phorbol esters (5) were shown to activate PKC and promote macrophage differentiation. ${ }^{36}$ The natural product garcinol (6) was also reported to expand HSCs by inhibiting histone acetyltransferase. ${ }^{37}$

euphohelioscopin A (4)

phorbol esters (5)

garcinol (6)

Figure 1.2. Natural products that regulate HSC homeostasis.
In an effort to find new small molecules capable of HSC self-renewal, Schultz and coworkers recently performed an unbiased screen of 704 pure natural products of microbial and plant origin. ${ }^{38}$ The plant derived natural product eupalinilide E (7) was found to selectively promote the ex vivo expansion of HSCs and prevent the in vivo development of erythrocytes (Figure 1.3). Moreover, its activity was synergistic with AHR antagonists such as SR1 (2), suggesting that eupalinilide E (7) is functioning through a novel mechanism.

eupalinilide E (7)

angeloyl-cumambrin B analog (8)

cumambrin A (9)

hyrcanin (10)

chlorojanerin (11)

Figure 1.3. Eupalinilide E (7) and related sesquiterpene lactones tested for HSC expansion.
To identify compounds that promote HSC expansion, Schultz and coworkers treated human CD34 ${ }^{+}$cells with $1 \mu \mathrm{M}$ of each natural product and analyzed the cell mixtures by flow cytometry after 7 days. The quantity and percentage of HSCs, HSC progenitor cells, and lineage-committed cells were determined based on their immunophenotype. Eupalinilide E (7) was the only natural product found to significantly expand and maintain $\mathrm{CD}_{3} 4^{+}$cells ex vivo at $600 \mathrm{nM}\left(\mathrm{EC}_{50}=210 \mathrm{nM}\right)$. Cord blood (CB) derived CD34 ${ }^{+}$cells in self-renewal media showed a 45 -fold increase in cell growth when treated with eupalinilide E (7) after 45 days. The CB CD34 ${ }^{+}$cells in self-renewal media supplemented with differentiation-inducing cytokines: erythropoietin (EPO), granulocyte macrophage colony stimulating factor (GMCSF), granulocyte colony stimulating factor (GCSF), and interleukin-3 (IL-3) proliferated at a slower rate when treated with eupalinilide E (7), suggesting that it not only promotes expansion of an early hematopoietic progenitor but also suppresses differentiation down the erythrocyte lineage. ${ }^{38}$

Schultz and coworkers conducted preliminary experiments to uncover the mode of action of eupalinilide E (7). Initially the compound wsa tested to see if it was functioning through the aryl hydrocarbon receptor like other known small molecule regulators of HSCs. ${ }^{1}$ Although eupalinilide E (7) did not give a positive response against the aryl hydrocarbon receptor, it was found to have a synergetic effect on CD34 ${ }^{+}$expansion when tested in combination with SR1 (2). ${ }^{33}$ This suggested that eupalinilide E (7) functions through a novel mechanism independent of the AHR pathway.

As eupalinilide E (7) is a sesquiterpene lactone, Schultz and coworkers tested the inhibition of the transcription factor NF- $\kappa \mathrm{B}$, which is the known protein target for many structurally related biologically active natural products. ${ }^{39}$ Several other sesquiterpene lactones 8-11 were tested for their ability to promote HSC expansion; however, none of these compounds possessed this activity and were in fact cytotoxic (Figure 1.3).

The mode of action of eupalinilide E (7) remains unknown and throughout the course of their initial study, Schultz and coworkers exhausted their sample of the natural product. ${ }^{40}$ Moreover, Schultz commented that: "the lack of synthetic routes to eupalinilide E hinders the generation of affinity probes for target identification." This makes eupalinilide E (7) an attractive target for total synthesis with the goal of ultimately synthesizing new analogs to discover its biological target.

Eupalinilide E (7) was isolated earlier from whole plant extracts of Eupatorium lindleyanum DC collected from the Songyang County of Zhejiang Province, People's Republic of China and was found to have potent cytotoxicity against the A-549 tumor cell line at $28 \mathrm{nM} .{ }^{41}$ Its structure was solved using conventional methods including 1D/2D

NMR and mass spectroscopy. Along with the 5,7,5-tricyclic core found in all guaianolide sesquiterpene natural products, eupalinilide E (7) contains an allylic alcohol, chlorohydrin, and tigloyl ester at the C 8 position (Figure 1.4). It also has a trans-annulated α-methylene-γ-butyrolactone, which is found in many other biologically active guaianolide natural products. ${ }^{42}$ This functionality is a well characterized Michael acceptor of biological nucleophiles, such as cysteine residues. ${ }^{43}$

guaianolide skeleton

eupalinilide $E(7)$

Figure 1.4. The core guaianolide framework of eupalinilide E (7).
The biosynthesis of guaianolide natural products has been well studied and begins with the union of three units of acetyl-CoA (12) via a Claisen condensation and aldol reaction to generate β-hydroxy- β-methylglutaryl-CoA (HMG-CoA, 14; Scheme 1.1). ${ }^{44-47}$ Reduction yields mevalonic acid (15), which is subsequently phosphorylated by mevalonate kinase. Pyrophosphomevalonic acid (16) then undergoes decarboxylation and dehydration to afford isopentenyl pyrophosphate (IPP, 17), which can isomerize to $\gamma, \gamma-$ dimethylallyl pyrophosphate (DMAPP, 18).

Scheme 1.1. The biosynthesis of IPP (17) and DMAPP (18).
Like many other terpenes, the C_{15} guaianolide core results from the cyclization of the linear sesquiterpene farnesyl pyrophosphate (FPP, 23, Scheme 1.2). Ionization of DMAPP (18) generates an allylic cation that is trapped by electrophilic addition of IPP (17). Stereoselective deprotonation yields geranyl pyrophosphate (GPP, 21), which is followed by another sequence of ionization, addition of IPP (17), and deprotonation to provide FPP (23). FPP (23) then cyclizes, after loss of pyrophosphate, to generate the 10 membered ring of $(+)$-germacrene $\mathrm{A}(\mathbf{2 4})$. The enzyme $(+)$-germacrene A hydroxylase installs a primary alcohol on the methyl of the isoprenyl group, which is further oxidized to the corresponding carboxylic acid to afford germacrene acid (26). ${ }^{48-51}$ Finally, stereospecific C6 hydroxylation followed by lactonization yields (+)-costunolide (27).

Scheme 1.2. Biosynthesis (+)-costunolide (27) from DMAPP (18) and IPP (17).
Cyclization of (+)-costunolide (27) is thought to proceed via two possible routes (Scheme 1.3). Selective enzymatic epoxidation yields parthenolide (28), poised to undergo a trans-annular cyclization to provide the guaianolide precursor (30) after dehydration. Similarly, (+)-costunolide (27) can undergo enzymatic hydroxylation at the C3 position to generate alcohol 31, which can ionize via loss of water and cyclize to give the same guaianolide precursor (30). ${ }^{52}$ This precursor is then modified to provide a variety functional groups generating the large and diverse family of guaianolide natural products.

Scheme 1.3. Cyclization of (+)-costunolide (27) yields guaianolide precursor (30).
Eupalinilide E (7) has not been previously synthesized; however, several other guaianolides bearing the same 5,7,5-tricyclic core and γ-butyrolactone have been prepared in the laboratory (Figure 1.5). These syntheses inspired our synthesis of eupalinilide E (7) by providing a robust route to form the cyclopentane moiety as well as several methods for constructing the γ-butyrolactone and 7-membered ring.

eupalinilide E (7)

(+)-cladantholide (33)

(-)-estafiatin (34)

(+)-8-epigrosheimin (35)

Figure 1.5. Eupalinilide E (7) and related guaianolide natural products.
The work pioneered by Lee and coworkers on the synthesis of the highly substituted cyclopentane $\mathbf{3 8}$ provided the platform for syntheses of several guaianolide natural
products (Scheme 1.4). ${ }^{53}$ Importantly, the single stereocenter found in commercially available (R)-carvone (36) was used to control the stereochemical outcome of all subsequent reactions. Epoxidation of (R)-carvone (36) under basic conditions followed by opening of the epoxide and protection of the resulting secondary alcohol provided chlorohydrin $\mathbf{3 7}$ as a single diastereomer. Chlorohydrin $\mathbf{3 7}$ then underwent a sodium methoxide mediated Favorskii rearrangement to afford the highly substituted cyclopentane 38. This intermediate provided the required methyl group at C 4 , the cis configuration between C 1 and C5, and also the methyl ester and disubstituted olefin for further chemical elaboration.

Scheme 1.4. A diastereoselective Favorskii rearrangement yields the highly substituted cyclopentane 38.

Following this work, Lee and coworkers went on to synthesize both (+)cladantholide (33) and (-)-estafiatin (34, Scheme 1.5). ${ }^{54}$ The methyl ester $\mathbf{3 8}$ was reduced to an aldehyde followed by addition of vinyl magnesium bromide to yield the secondary alcohol 39 as a single diastereomer. Alkylation provided acetal 40, which underwent two successive radical cyclization reactions to simultaneously form both the 5 and 7-membered rings with the required stereochemistry. Following deprotection and oxidation, ketone 43 was hydroxylated at the α-position. ${ }^{55}$ Synthesis of the enone was achieved using a Shapiro
reaction followed by Jones oxidation, which also oxidized the acetal to the desired lactone. ${ }^{56,57}$ Alkylation of the lactone with methyl iodide furnished (+)-cladantholide (33).

(+)-cladantholide (33)

Scheme 1.5. Lee and coworkers' synthesis of (+)-cladantholide (33).
Using a route similar to their synthesis of (+)-cladantholide (33), Lee and coworkers achieved the total synthesis of (-)-estafiatin (34, Scheme 1.6). ${ }^{54}$ Tricycle 47 was accessed starting from the same cyclopentane $\mathbf{3 8}$ using a slightly different radical cyclization strategy. Selective elimination of the secondary alcohol to give the trisubstituted olefin was performed successfully using methyltriphenoxyphosphonium iodide in hexamethylphosphoramide..$^{58} \mathrm{We}$ would later attempt to use this reaction to form the cyclopentene of eupalinilide E (7). The α-methylene- γ-butyrolactone was synthesized via alkylation with Eschenmoser's salt, which provided (-)-estafiatin (34) after epoxidation
with meta-chloroperbenzoic acid. ${ }^{59}$ Both of these syntheses detailed effective ring closing strategies and late stage modification of the cyclopentane ring.

Scheme 1.6. Lee and coworkers' synthesis of (-)-estafiatin (34).
The total synthesis of $(+)-8$-epigrosheimin (35) by Xu and coworkers provided another inspiring synthetic strategy for accessing related guaianolide natural products (Scheme 1.7). ${ }^{60,61}$ Both eupalinilide E (7) and (+)-8-epigrosheimin (35) contain a C 8 hydroxyl group, which cannot be installed easily using previous routes that relied on photochemical rearrangements, olefin metathesis or radical cyclizations to form the 7membered ring. ${ }^{62-70}$ Using the methodology developed in their synthesis of $(+)-8-$ epigrosheimin (35), Xu and coworkers were able to overcome the problem of installing a C8 hydroxyl group. Methyl ester 49, accessed using the same Favorskii rearrangement developed earlier by Lee, was reduced then oxidized to aldehyde $\mathbf{5 0}$, which was subjected to a zinc promoted Barbier reaction to bring in the α-methylene- γ-butyrolactone as a single piece after base promoted translactonization. Oxidation of primary alcohol 52 to an aldehyde setup for an efficient diastereoselective aldehyde-ene reaction with the
disubstituted olefin to close the 7-membered ring and install the desired C 8 hydroxyl group.
We would later adapt this sequence in our synthesis of eupalinilide E (7).

Scheme 1.7. Xu and coworkers' synthesis of (+)-8-epigrosheimin (35).
Our initial strategy for synthesizing eupalinilide E (7) required the synthesis of allylic alcohol 53 (Scheme 1.8). This intermediate could be accessed from either α-hydroxy ketone 54 using a Shapiro reaction or from allylic oxidation of trisubstituted olefin 55. These intermediates were synthesized from ketone 56 using a Rubottom oxidation and a reduction/dehydration sequence, respectively. Both of these initial routes were limited by
poor yields and a lack of reaction scalability, due largely to the instability of several intermediates.

Scheme 1.8. Proposed synthesis of eupalinilide E (7) from cyclopentanone 56.
While searching for alternative routes to allylic alcohol 53, we encountered a report from Wallach in 1899 of a Favorskii rearrangement of tribromide 57 (Scheme 1.9). ${ }^{71-73}$ Years later, Wolinsky and coworkers revisited this reaction and found tribromide 57 underwent Favorskii rearrangement with primary amines to yield bicyclic imidates 60, which could be hydrolyzed to lactone $\mathbf{6 1}$ with aqueous acid. ${ }^{74,75}$ Lactone $\mathbf{6 1}$ contained the same cis configuration between C 1 and C 5 and also directly provided the desired trisubstituted olefin.

Scheme 1.9. Favorskii rearrangement of tribromide 57 to yield bicyclic lactone $\mathbf{6 1}$.

The second generation route towards alcohol $\mathbf{5 3}$ began with hydrohalogenation of (R)-carvone (36) with dry hydrobromic acid to furnish carvone monobromide (Scheme 1.10). Further bromination of the trisubstituted olefin with bromine in acetic acid provided tribromide 57, which afforded bicyclic imidate 62 after isopropyl amine mediated Favorskii rearrangement. ${ }^{75}$ The imidate was hydrolyzed with aqueous acetic acid at $50^{\circ} \mathrm{C}$, yielding lactone 61 (50% yield over 4 steps) as a stable, crystalline solid after recrystallization from hexanes. This four step sequence was robust with over 300 grams of lactone $\mathbf{6 1}$ synthesized throughout the course of this project.

Scheme 1.10. Favorskii rearrangement of tribromide 57 mediated by isopropyl amine.
With large amounts of lactone 61 in hand, a synthetic route to aldehyde 67 was devised (Scheme 1.11). Mori and coworkers reported an allylic oxidation of lactone 61 with an excess of chromium trioxide and 3,5-dimethylpyrazole in methylene chloride to provide enone $\mathbf{6 3}$ with a yield of $16 \% .^{76}$ After optimizing both equivalences and time, we were able to increase the yield to 38% and run the reaction on 60 gram scale. We found that using Florisil® instead of silica gel as the solid phase during purification greatly increased the yield and consistency of the reaction. Selective 1,2-reduction of enone $\mathbf{6 3}$ was accomplished with sodium borohydride using Luche conditions and protection of the allylic alcohol with para-methoxybenzyl 2,2,2-trichloroacetimidate provided paramethoxybenzyl alcohol 63 on 16 gram scale. ${ }^{77}$

61

$$
60 \text { gram scale }
$$

63

Scheme 1.11. Synthesis of aldehyde 67 from lactone 61.
The lactone was opened with lithium aluminum hydride and the resulting primary alcohol was protected as an acetate under standard conditions in 80% yield. Elimination of the tertiary alcohol to give the desired disubstituted was difficult and often resulted in decomposition facilitated by the neighboring para-methoxybenzyl protected alcohol via an unknown mechanism. Ultimately, Burgess reagent in tetrahydrofuran at ambient temperature proved optimal, with a modest yield of $42 \% .{ }^{78}$ Removal of the acetate with lithium aluminum hydride and oxidation of the primary alcohol with Dess-Martin periodinane afforded aldehyde 67 on 5 gram scale.

Inspired by Xu and coworkers' synthesis of (+)-8-epigrosheimin (35), we anticipated using a Barbier reaction between aldehyde 67 and bromide 68 to yield α -methylene- γ-butyrolactone 69 (Scheme 1.12). Unfortunately, aldehyde 67 was found to be completely unreactive under the reported conditions. Attempts to use other metals such as indium and samarium were also ineffective and upon heating, the trisubstituted olefin in 67 would isomerize. The reaction was thought to proceed through a 6 -memembered
transition state and it's believed that the unsaturation between C 3 and C 4 in 67 created unfavorable steric interactions between the electrophile and the nucleophile. This hypothesis was later proved wrong by the fact that aldehydes 70-74 also did not successfully undergo Barbier coupling with bromide 67.

72

73

74

Steric Interaction

Scheme 1.12. Failed Barbier reaction between aldehyde 67 and bromide 68.
Instead of installing the α-methylene- γ-butyrolactone in a single reaction, we aimed to bring this piece in portion wise and use a radical or transition metal catalyzed cyclization reaction to form the 5-memebred ring. Vinyl magnesium bromide was added into aldehyde 67 to afford alcohol 75 as a single diastereomer (Scheme 1.13). This alcohol was reluctant towards alkylation and only by using potassium hydride, 18-crown-6, and propargyl bromide were we able to produce useful quantities of enyne 76 in 31% yield.

Scheme 1.13. Enyne and aldehyde-ene cyclizations form the 5,7,5-tricyclcle 79.
Our group and others had previous experience developing palladium catalyzed borylative enyne cyclizations to synthesize highly substituted 5-membered rings with an appended primary alcohol. ${ }^{79,80}$ We planned to use this alcohol in a subsequent aldehydeene reaction to close the 7 -membered ring. Thus, treatment of enyne 76 with bis(pinacolato)diboron, palladium (II) acetate, and methanol in toluene at $50^{\circ} \mathrm{C}$ afforded the desired cyclic ether 77 after oxidation of the intermediate primary boronate with hydrogen peroxide and sodium hydroxide. This reaction was completely diastereoselective, and provided the required trans configuration between C6 and C7. We were confident that the activated methylene position would undergo a late-stage oxidation to give our desired lactone. Oxidation of the primary alcohol under Swern conditions and treatment of the resulting aldehyde with diethylaluminum chloride yielded the 5,7,5tricycle 78 as a white solid in 76% yield. ${ }^{61,81}$ For proof of concept, the secondary alcohol was protected and the activated methylene of the 5 -memebred ring was oxidized with Jones
reagent with concomitant deprotection and oxidation of the para-methoxybenzyl protected alcohol to give the dione 79. ${ }^{57}$

Although we successfully synthesized the core of eupalinilide E (7), the route was plagued with low yields and poor reaction scalability. In an attempt to streamline the route, a new synthesis of enyne $\mathbf{7 6}$ was devised (Scheme 1.14). Conversion of lactone $\mathbf{6 3}$ to the corresponding lactol and subsequent addition of vinyl magnesium bromide provided diol 80 in good yield. This sequence allowed the bypass of several functional group manipulations that were encountered en route to aldehyde 67. Alkylation of the secondary alcohol was achieved using more mild conditions and was performed on 19 gram scale. The tertiary alcohol was eliminated using Burgess reagent and tricycle $\mathbf{8 4}$ was synthesized after enyne and aldehyde-ene cyclizations. This improved route allowed for multigram quantities of tricycle 84. 3,5-dinitrobenzyl chloride was appended to the secondary alcohol to provide ester $\mathbf{8 5}$ and suitable crystals were grown for X-ray diffraction. Although the molecule had the correct atomic connectivity, we observed inverted stereochemistry for C6, C7, and C8. We hypothesized that this was the result of chelation controlled vinyl addition into the lactol of $\mathbf{6 3} .^{82}$ This was opposed to the vinyl addition into discrete aldehyde 66, which was predicted to follow the Felkin-Anh model. ${ }^{83,84}$

Scheme 1.14. Attempts to streamline the route leads to incorrect diastereomer $\mathbf{8 5}$.
With this setback, we continued attempts to improve the yield and scalability of the route in order to explore the late stage chemistry required to complete the total synthesis. Although both allylic oxidations were performed successfully, these reactions were low yielding and it was ultimately decided to do both oxidations in a single reaction towards the end of the synthesis. Opening of lactone $\mathbf{6 1}$ with lithium aluminum hydride provided the diol in quantitative yield (Scheme 1.15). Poor yields with eliminating the tertiary alcohol with Burgess reagent prompted us to develop an alternative method to synthesize the desired disubstituted olefin 88. It was found that acetate pyrolysis in neat acetic anhydride at $150^{\circ} \mathrm{C}$ provided a mixture of the desired olefin $\mathbf{8 8}$, the tetrasubstituted olefin 87, and the diacetate 86. ${ }^{85,86}$ The ratio of these three products varied widely from reaction to reaction. It was realized that addition of activated crushed molecular sieves greatly improved the yield and consistency of this reaction, ultimately providing a 2:1 favorable
mixture of $\mathbf{8 8}$ and $\mathbf{8 7}$ in 91% yield on 40 gram scale. The two isomers were separated via silica gel column chromatography. Aldehyde $\mathbf{8 9}$ was synthesized after removal of the primary acetate and oxidation with Dess-Martin periodinane of the resulting alcohol.

Scheme 1.15. Synthesis of primary alcohol 92.
Low yields and poor scalability were still experienced for both the vinyl addition and progargylation reactions. To solve this problem, we developed a one-pot procedure for these two reactions. Vinyllithium was generated in situ from tetravinyltin and n butyllithium at $-78^{\circ} \mathrm{C}$ to which a solution of aldehyde $\mathbf{8 9}$ in tetrahydrofuran was added to generate intermediate alkoxide 90. Freshly distilled hexamethylphosphoramide was added followed by propargyl bromide and the reaction was warmed to ambient temperature. After workup and purification, the desired enyne was isolated in 81% yield on 23 gram scale. The alkyne was protected with a trimethylsilyl group to attenuate the reactivity of the α -methylene- γ-butyrolactone that was installed later. Remarkably, this modification more than doubled the yield of the enyne cyclization to 62%, which was run on 20 gram scale.

The structure and absolute stereochemistry of the enyne cyclization product 92 was confirmed unambiguously by X-ray diffraction, supporting the claim that vinyl addition into discrete aldehyde $\mathbf{8 9}$ followed Felkin-Ahn selectivity.

Scheme 1.16. Synthesis of carbocycle 94.
Primary alcohol 92 was oxidized under Swern conditions and the intermediate aldehyde underwent cyclization at $-78{ }^{\circ} \mathrm{C}$ with diethylaluminum chloride. These intermediates were more stable and allowed access to tricycle $\mathbf{9 3}$ in near quantitative yield on 12 gram scale. The tigloyl ester was appended using a Yamaguchi esterification with tiglic acid. ${ }^{87}$ This improved route enabled the synthesis over 55 grams of carbocycle 94.

Scheme 1.17. Oxidation of the guaianolide core.
Using conditions developed in the allylic oxidation of bicycle 61, carbocyle 94 underwent a double allylic oxidation when treated with chromium trioxide and 3,5dimethylpyrazole to furnish dione 95 in 30% yield on 3 gram scale (Scheme 1.17). Many other reagents and conditions were investigated for this reaction including selenium dioxide, manganese(III) acetate, and other chromium base reagents such as PDC and

Collins reagent. ${ }^{88-90}$ All of these provided little to no product. Reduction of the enone with sodium borohydride under Luche conditions afforded the allylic alcohol 96 as a single diastereomer in 92% yield. ${ }^{77}$ In the absence of the vinyl trimethylsilyl group, significant 1,4-reduction of the α-methylene- γ-butyrolactone was observed.

Due to the reactive nature of the α-methylene- γ-butyrolactone towards nucleophilic addition, we encounter problems with removing the vinyl trimethylsilyl group of $\mathbf{9 6}$. The use of fluoride based reagents such as tetrabutylammonium fluoride, pyridinium poly(hydrofluoride), cesium fluoride, and tetrabutylammonium difluorotriphenylsilicate resulted in significant side reactions. Attempts to use acids such as trilfuoroacetic acid or hydrochloric acid lead to decomposition.

Scheme 1.18. Bachi and coworkers' vinyl trimethylsilane removal strategy.
Bachi and coworkers experienced a similar phenomenon years earlier. ${ }^{28,91}$ Their solution was to add thiophenol into the α-methylene- γ-butyrolactone, thereby converting the $\mathrm{Si}-\mathrm{C}_{\mathrm{sp} 2}$ bond to a $\mathrm{Si}-\mathrm{C}_{\mathrm{sp} 3}$ bond (Scheme 1.18). Now a $\mathrm{Si}-\mathrm{C}_{\mathrm{sp} 3}$, the trimethylsilyl group was removed with tetrabutylammonium fluoride. Throughout their studies, Bachi and
coworkers observed the expected thioether from this reaction but also a small amount of the reformed α-methylene- γ-butyrolactone, suggesting that some thiophenol was being eliminate throughout the course of the reaction. To drive elimination of thiophenol and prevent it from adding back into the α-methylene γ-butyrolactone, excess methyl acrylate was added as a Michael acceptor to trap released thiophenol. After optimization, Bachi and coworkers achieved desilylation and removal of thiophenol in a single reaction using tetrabutylammonium fluoride and an excess of methyl acrylate to regenerate their desired α-methylene- γ-butyrolactone in 93\% yield.

Scheme 1.19. Desilylation of the protected α-methylene- γ-butyrolactone 96.
We attempted to adapt this procedure for the desilylation of vinyl trimethylsilane 96 (Scheme 1.19). The desired deprotected α-methylene- γ-butyrolactone $\mathbf{1 0 3}$ was isolated
in 53% yield; however, it could not be separated from residual thioether 104. Moreover, this impurity complicated the follow epoxidation reaction. In the end, a stepwise deprotection was developed. Addition of thiophenol using sodium hydride proceeded well to give thioether $\mathbf{1 0 4}$ after desilylation of $\mathbf{1 0 5}$ with tetrabutylammonium fluoride. The thioether was then oxidized to sulfone 106 with sodium periodate and eliminated with basic alumina to give the desired α-methylene- γ-butyrolactone 103 in 50% overall yield from
96.

Scheme 1.20. Problems encountered when reducing enone 107.
This four-step sequence was cumbersome and not scalable so we opted to desilylate prior to oxidation of the carbocyclic core 94 (Scheme 1.20). Protodesilylation proceeded well with trifluoroacetic acid in methylene chloride at ambient temperature and the resulting carbocycle underwent double allylic oxidation under the same conditions in the synthesis of $\mathbf{9 5}$ to form dione 107 in 36% yield on 1.6 gram scale. As previously mentioned, the bare α-methylene- γ-butyrolactone did not tolerate reduction of enone 107 with sodium borohydride under standard Luche conditions. An inseparable mixture of desired alcohol

103, 1,4-reduced α-methylene- γ-butyrolactone 108, and over reduced 109 was observed. Attempts to use less reactive borohydrides such as zinc borohydride and sodium tris(hexafluoroisopropoxy)borohydride returned only unreacted starting material. ${ }^{92,93}$ More bulky single hydride reducing agents such as lithium tri-sec-butylborohydride and diisobutylaluminium hydride were found to predominately give 108 and 109 even at -78 ${ }^{\circ} \mathrm{C}$. Interestingly, we observed that the standard Luche conditions of sodium borohydride and cerium(III) chloride hexahydrate in methanol did not reduce the substrate at $-78{ }^{\circ} \mathrm{C}$; however, over reduction was observed upon warming the reaction to ambient temperature. It was presumed that if the reaction could be run at $-78^{\circ} \mathrm{C}$ then selective 1,2 reduction of the enone could be achieved. A report by Ruano and coworkers utilized ytterbium(III) trifluoromethanesulfonate at $-78^{\circ} \mathrm{C}$ to promote 1,2 reduction of an enone. ${ }^{94}$ Thus, portion wise addition of sodium borohydride in the presence of stoichiometric ytterbium(III) trifluoromethanesulfonate to a solution of enone $\mathbf{1 0 7}$ at $-78^{\circ} \mathrm{C}$ provided the desired allylic alcohol $\mathbf{1 0 3}$ in 75% isolated yield. Importantly, residual hydride was quenched at $-78{ }^{\circ} \mathrm{C}$ by the addition of 10 equivalents of acetaldehyde prior to warming the reaction to ambient temperature. This minimized the amount of over reduced product that was observed.

Scheme 1.21. Selective epoxidation of allylic alcohol 103.
With allylic alcohol $\mathbf{1 0 3}$ in hand, attention was focused on forming the chlorohydrin and completing the synthesis of eupalinilide E (7). Initial attempts to selectively epoxidize the homoallylic disubstituted olefin in the presence of the allylic trisubstituted olefin produced a mixture of the desired epoxide 110, the undesired epoxide 111, and the over oxidized product 112 (Scheme 1.21). Peracids such as meta-chloroperbenzoic acid and peracetic acid gave almost exclusively $\mathbf{1 1 1}$ as a result of the directing effect of the allylic alcohol. Due to the concavity of the substrate, we sought to use a bulky oxidant in an attempt to selectively epoxidize the more accessible disubstituted olefin.

Scheme 1.22. Chlorohydrin formation completes the synthesis of eupalinilide E (7).

Using the catalyst derived from natural fructose developed by Shi and coworkers, a small amount of desired epoxide $\mathbf{1 1 0}$ was synthesized in 30% yield. ${ }^{95}$ Several other Shi catalysts were also attempted but gave similar results. Abandoning this idea, epoxidation conditions developed by Sharpless were attempted. ${ }^{96,97}$ Surprisingly, the use of tert-butyl hydroperoxide along with either vanadyl acetylacetonate, molybdenum hexacarbonyl, or titanium isopropoxide produced nearly a 50:50 mixture of $\mathbf{1 1 0}$ and the undesired epoxide 111 with very little over oxidized product 112. The addition of $(+)$ - or (-)-diethyl tartrate as ligands completely shut down the reaction, which supports the hypothesis that this observed selectivity is governed primary by the fixed conformation of the substrate. Decades earlier, Takai and coworkers investigated the use of aluminum based complexes in the epoxidation of several different olefins. ${ }^{98}$ Initially, tert-butyl hydroperoxide and trimethylaluminum in a solution of methylene chloride at ambient temperature afforded $\mathbf{1 1 0}$ and $\mathbf{1 1 1}$ in a favorable 80:20 ratio. Further optimization led to the use of tert-butyl hydroperoxide and aluminum tri-sec-butoxide, which increased the selectivity and ultimately led to the isolation of $\mathbf{1 1 0}$ in 86% yield (Scheme 1.22). It's thought that the bulkier sec-butyl groups around aluminum further improved the selectivity of this reaction for the less hindered disubstituted olefin. Opening of epoxide $\mathbf{1 1 0}$ with dry hydrochloric acid in lithium chloride saturated tetrahydrofuran provided eupalinilide E (7) as a white solid. Without lithium chloride, the epoxide was engaged by the neighboring homoallylic alcohol, which resulted in the formation of a 5 -memebred ring. Both ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of synthetic eupalinilide E (7) matched reported spectra from the initial isolation and also 2D-NMR experiments of our own supported the proposed structure.

With the above synthesis, we have been able to synthesize over a gram of eupalinilide E (7) for in vivo studies with our collaborator Prof. Tariq Rana at UC San Diego. Synthetic eupalinilide E (7) has been retested at 600 nM for its ability to promote the ex vivo expansion of HSCs as described by Schultz and coworkers. ${ }^{99}$ At 600 nM , synthetic eupalinilide E (7) increased the amount of total nucleated cells from an initial count of 45 thousand to 1.2 million after 7 days and 18 million after 14 days, a 406 -fold increase (Figure 1.6). Eupalinilide E (7) displayed cytotoxicity at concentrations higher than 600 nM .

Figure 1.6. Amount of total nucleated cells promoted by eupalinilide E (7) at different concentrations at 7 and 14 days.

The percentage of HSCs present in culture (determined by the CD34 ${ }^{+}$marker) was found to be 40.7% and 14.5% at 7 and 14 days, respectively (Figure 1.7). By multiplying the amount of total nucleated cells by the percentage of CD34 ${ }^{+}$cells, we determined that treatment with 600 nM eupalinilide E led to a 983 -fold increase in the amount of CD34 ${ }^{+}$ cells after 14 days relative to the DMSO control. Future work involves synthesizing several analogs in order to elucidate the protein target and mode of action of eupalinilide E (7)..$^{100-}$ 102

Figure 1.7. Percentage and total amount of CD34 ${ }^{+}$cells after treatment with 600 nM eupalinilide E (7) at 7 and 14 days.

Chapter 1, in full, is a reprint of the material as it appears in Synthesis of Eupalinilide E a Promoter of Human Hematopoietic Stem and Progenitor Cell Expansion, J. Am. Chem. Soc. 2016, 138, 6068-6073. Co-authors Matthew R. Chin, Tianxu Han, John Paul Shen, Tariq Rana, and Dionicio Siegel express their consent for inclusion of this published material in Chapter 1 of this dissertation. The dissertation author was an investigator and author on this paper.

Experimental Section

General Information

All reactions were performed in flame dried round bottom fitted with rubber septa under a positive pressure of argon or nitrogen, unless otherwise indicated. Air and moisture sensitive liquids and solutions were transferred via syringe or cannula. Organic solutions were concentrated by rotary evaporation at 20 torr in a water bath heated to $40^{\circ} \mathrm{C}$ unless otherwise noted. Diethyl ether ($\mathrm{Et}_{2} \mathrm{O}$), methylene chloride $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, tetrahydrofuran (THF) and toluene (PhMe) were purified using a Pure-Solv MD-5 Solvent Purification System (Innovative Technology). Acetonitrile (MeCN), N,N,-dimethylformamide (DMF), and methanol (MeOH) were purchased from Acros (99.8%, anhydrous) and ethanol (EtOH) was purchased from Pharmco-Aaper (200 proof, absolute). The molarity of n butyllithium was determined by titration against diphenylacetic acid. ${ }^{103}$ All other reagents were used directly from the supplier without further purification unless otherwise noted. Analytical thin-layer chromatography (TLC) was carried out using 0.2 mm commercial silica gel plates (silica gel 60, F254, EMD chemical) and visualized using a UV lamp and/or aqueous ceric ammonium molybdate (CAM) or aqueous potassium permanganate $\left(\mathrm{KMnO}_{4}\right)$ stain, or ethanolic vanillin. Infrared spectra were recorded on a Nicolet 380 FTIR using neat thin film technique. High-resolution mass spectra (HRMS) were recorded on a Karatos MS9 and are reported as m/z (relative intensity). Accurate masses are reported for the molecular ion $[\mathrm{M}+\mathrm{Na}]^{+},[\mathrm{M}+\mathrm{H}]^{+},[\mathrm{M}]$ or $[\mathrm{M}-\mathrm{H}]^{-}$. Nuclear magnetic resonance spectra $\left({ }^{1} \mathrm{H}-\mathrm{NMR}\right.$ and $\left.{ }^{13} \mathrm{C}-\mathrm{NMR}\right)$ were recorded with a Varian Gemini [($400 \mathrm{MHz},{ }^{1} \mathrm{H}$ at 400 MHz , ${ }^{13} \mathrm{C}$ at 100 MHz$),\left(500 \mathrm{MHz},{ }^{1} \mathrm{H}\right.$ at $500 \mathrm{MHz},{ }^{13} \mathrm{C}$ at 125 MHz$),\left(600 \mathrm{MHz},{ }^{1} \mathrm{H}\right.$ at 600 MHz , ${ }^{13} \mathrm{C}$ at 150 MHz$\left.)\right]$. For CDCl_{3} solutions the chemical shifts are reported as parts per million (ppm) referenced to residual protium or carbon of the solvent; $\mathrm{CHCl}_{3} \delta \mathrm{H}(7.26 \mathrm{ppm})$ and $\mathrm{CDCl}_{3} \delta \mathrm{D}(77.0 \mathrm{ppm})$. For $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ solutions the chemical shifts are reported as parts
per million (ppm) referenced to residual protium or carbon of the solvents; $\left(\mathrm{CD}_{3}\right)(-$ $\left.\mathrm{CHD}_{2}\right) \mathrm{SO} \delta \mathrm{H}(2.50 \mathrm{ppm})$ or $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO} \delta \mathrm{C}(39.5 \mathrm{ppm})$. For $\mathrm{CD}_{3} \mathrm{OD}$ solutions the chemical shifts are reported as parts per million (ppm) referenced to residual protium or carbon of the solvents; $\mathrm{CHD}_{2} \mathrm{OD} \delta \mathrm{H}(3.31 \mathrm{ppm})$ or $\mathrm{CD}_{3} \mathrm{OD} \delta \mathrm{C}(49.0 \mathrm{ppm})$. Coupling constants are reported in Hertz (Hz). Data for ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra are reported as follows: chemical shift $(\mathrm{ppm}$, referenced to protium; $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{td}=$ triplet of doublets, $\mathrm{ddd}=$ doublet of doublet of doublets, $\mathrm{ddq}=$ doublet of doublet of quartets, $\mathrm{bs}=$ broad singlet, $\mathrm{bd}=$ broad doublet, $\mathrm{m}=$ multiplet, coupling constant (Hz), and integration). Melting points were measured on a MEL-TEMP device without corrections.

To a stirred solution of 33% hydrobromic acid in acetic acid ($219 \mathrm{~mL}, 1.33 \mathrm{mmol}$, 2.0 equiv.) at $0^{\circ} \mathrm{C}$ was slowly added a solution of R-carvone ($\mathbf{3 6}$) $(104 \mathrm{~mL}, 666 \mathrm{mmol}, 1.0$ equiv.) in acetic acid (100 mL) dropwise over 15 minutes. After 45 minutes, the reaction mixture was poured over ice $\mathrm{H}_{2} \mathrm{O}(600 \mathrm{~mL})$ and extracted with EtOAc (3x800 mL). The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(800 \mathrm{~mL})$, sat. aq. $\mathrm{NaHCO}_{3}(800 \mathrm{~mL})$ and brine (800 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give crude monobromide as an amber oil.

To a stirred solution of crude monobromide ($154 \mathrm{~g}, 666 \mathrm{mmol}, 1.0$ equiv.) in AcOH $(440 \mathrm{~mL}, 1.5 \mathrm{M})$ at $23^{\circ} \mathrm{C}$ in a water bath was added a solution of bromine $(41 \mathrm{~mL}, 800$ mmol, 1.2 equiv.) in $\mathrm{AcOH}(70 \mathrm{~mL})$ dropwise over 1 hour. After 1.5 hours, the reaction mixture was poured over ice $\mathrm{H}_{2} \mathrm{O}(600 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 600 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(600 \mathrm{~mL})$, sat. aq. $\mathrm{NaHCO}_{3}(5 \times 600 \mathrm{~mL})$ and brine (600 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give crude tribromide 57 as an amber oil.

To a stirred solution of crude tribromide $57(260 \mathrm{~g}, 7.32 \mathrm{~mol}, 1.0$ equiv. $)$ in $\mathrm{Et}_{2} \mathrm{O}$ $(2.66 \mathrm{~L}, 0.25 \mathrm{M})$ at $0^{\circ} \mathrm{C}$ was slowly added isopropyl amine ($630 \mathrm{~mL}, 7.32 \mathrm{~mol}, 11.0$ equiv.) over 30 minutes. Upon complete addition, the reaction mixture was allowed to warm to 23 ${ }^{\circ} \mathrm{C}$. After 12 hours, the reaction mixture was cooled to $0^{\circ} \mathrm{C}$ before carefully adding 10% aq. $\mathrm{H}_{2} \mathrm{SO}_{4}(600 \mathrm{~mL})$. The aqueous layer was separated and the organic layer was extracted with 10% aq. $\mathrm{H}_{2} \mathrm{SO}_{4}(3 \times 600 \mathrm{~mL})$. The combined aqueous layers were cooled to $0^{\circ} \mathrm{C}$ with stirring before being brought to $\mathrm{pH}=8.0$ with $10 \mathrm{~N} \mathrm{NaOH}(600 \mathrm{~mL})$. The neutralized
solution was extracted with EtOAc ($4 \times 600 \mathrm{~mL}$), washed with brine $(600 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give crude imidate 62 as an amber oil.

A stirred solution of crude imidate $\mathbf{6 2}(138 \mathrm{~g}, 666 \mathrm{~mol}, 1.0$ equiv.) in a $3: 1$ solution of THF: 10% aq. $\mathrm{AcOH}(1.33 \mathrm{~L}, 0.5 \mathrm{M})$ was heated to $50^{\circ} \mathrm{C}$. After 3 hours, the reaction mixture was cooled to $23{ }^{\circ} \mathrm{C}$ before pouring over ice and sat. aq. $\mathrm{NaHCO}_{3}(1 \mathrm{~L})$. The reaction mixture was extracted with EtOAc ($4 \times 600 \mathrm{~mL}$), washed with brine (600 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give an amber oil. The crude material was purified via silica gel column chromatography ($5: 1$ hexanes:EtOAc) followed by recrystallization from hexanes to give pure bicycle $61(55.3 \mathrm{~g}, 333 \mathrm{mmol}, 50 \%$ over 4 steps) as a white solid (m.p. $33-35^{\circ} \mathrm{C}$). ${ }^{75}$
$\mathbf{R}_{\boldsymbol{f}}=0.41$ (silica gel, 5:1 hexanes:EtOAc); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.23$ (bd, $J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.81,(\mathrm{q}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{t}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H})$, $2.28(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}(100 \mathrm{MHz}$, CDCl_{3}): $\delta 175.2,135.5,126.1,85.2,56.1,47.9,33.1,30.2,23.4,14.1$; IR (film, cm^{-1}): 1758, 1270, 1119; HRMS (ESI) calc. for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 189.08860$, obs. 189.08940.

To a stirred solution of bicycle $\mathbf{6 1}\left(32 \mathrm{~g}, 193 \mathrm{mmol}, 1.0\right.$ equiv.) in $\mathrm{Et}_{2} \mathrm{O}(960 \mathrm{~mL}$, 0.2 M) at $0{ }^{\circ} \mathrm{C}$ was slowly added a 4.0 M solution of lithium aluminum hydride in $\mathrm{Et}_{2} \mathrm{O}$ ($48 \mathrm{~mL}, 193 \mathrm{mmol}, 1.0$ equiv.) over 20 minutes. After 40 minutes, the reaction mixture was carefully quenched with $\mathrm{H}_{2} \mathrm{O}(7.3 \mathrm{~mL}), 15 \%$ aq. $\mathrm{NaOH}(7.3 \mathrm{~mL})$, and $\mathrm{H}_{2} \mathrm{O}(21.9 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered through Celite, and concentrated in vacuo to give pure diol S1 ($32.4 \mathrm{~g}, 191 \mathrm{mmol}, 99 \%$) as a white solid (m.p. $73-75^{\circ} \mathrm{C}$).
$\mathbf{R}_{f}=0.23$ (silica gel, 2:1 hexanes:EtOAc); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.43$ (bs, 1H), $4.57(\mathrm{bs}, 1 \mathrm{H}), 4.36(\mathrm{bs}, 1 \mathrm{H}), 3.77(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{dd}, J=11,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.5(\mathrm{bd}$, $J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.23(\mathrm{~m}, 2 \mathrm{H}), 2.09(\mathrm{bd}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{~s}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 1 \mathrm{H})$, $1.20(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 139.9,125.8,71.1,60.1,53.6,51.4,32.2$, 29.8, 29.4, 15.1; IR (film, cm^{-1}): 3282, 1360, 1053, 1004; HRMS (ESI): calc. for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 193.11930$, obs. 193.11990.

A stirred solution of diol $\mathbf{S 1}$ ($40 \mathrm{~g}, 235 \mathrm{mmol}, 1.0$ equiv.), activated $4.0 \AA$ molecular sieves ($20 \mathrm{~g}, 50 \%$ by weight), and $\mathrm{Ac}_{2} \mathrm{O}\left(160 \mathrm{~mL}, 1.5 \mathrm{M}\right.$) was heated to $150{ }^{\circ} \mathrm{C}$. After 16 hours, the reaction mixture was cooled to $23^{\circ} \mathrm{C}$ and passed through a short silica gel plug (10:1 hexanes:EtOAc) to give an inseparable 2:1 mixture of acetates $\mathbf{8 8}$ and $\mathbf{8 7}(41.5 \mathrm{~g}$, $214 \mathrm{mmol}, 91 \%)$ as an amber oil.
$\mathbf{R}_{\boldsymbol{f}}=0.46$ (silica gel, 10:1 hexanes:EtOAc); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathbf{8 8}] 5.48$ (bs, $1 \mathrm{H}), 4.86(\mathrm{~s}, 1 \mathrm{H}), 4.80(\mathrm{~s}, 1 \mathrm{H}), 4.07(\mathrm{dd}, J=11,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{dd}, J=11,5.7 \mathrm{~Hz}, 1 \mathrm{H})$, 3.33 (bs, 1H), 2.88 (bs, 1H), $2.43(\mathrm{td}, J=11,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{dd}, J=15,7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.00(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}),[87] 5.49(\mathrm{bs}, 1 \mathrm{H}), 4.25(\mathrm{dd}, J=11,6.6 \mathrm{~Hz}, 1 \mathrm{H})$, , $3.97(\mathrm{dd}, J=11,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{q}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{bs}, 1 \mathrm{H}), 2.73(\mathrm{q}, J=6.2 \mathrm{~Hz}$, 1H), $2.03(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $171.0,170.9,144.5,140.4,133.4,126.2,125.4,124.9,110.9,110.9,66.2,63.6,63.6,50.2$, $49.6,48.5,36.3,33.8,23.1,21.0,20.9,20.5,16.0,15.9$; IR (film, cm^{-1}): 1741, 1379, 1252, 1038.
[86] $\mathbf{R}_{f}=0.30$ (silica gel, 10:1 hexanes:EtOAc); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 5.47$ (bs, $1 \mathrm{H}), 4.44(\mathrm{dd}, J=11,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{dd}, J=11,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, 2.40-2.30 (m, 2H), $2.15(\mathrm{dd}, J=11,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H})$, $1.65(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.0,170.2,141.9,125.8$, $125.8,82.1,64.6,55.0,47.7,31.2,25.5,22.4,21.1,16.6$; IR (film, cm^{-1}): 1732, 1367, 1228, 1023.

To a stirred solution of acetates $\mathbf{8 7}$ and $\mathbf{8 8}$ ($41.5 \mathrm{~g}, 214 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{Et}_{2} \mathrm{O}$ $(1.1 \mathrm{~L}, 0.2 \mathrm{M})$ at $0^{\circ} \mathrm{C}$ was slowly added a 4.0 M solution of lithium aluminum hydride in $\mathrm{Et}_{2} \mathrm{O}$ ($26.7 \mathrm{~mL}, 107 \mathrm{mmol}, 0.5$ equiv.) over 20 minutes. After 40 minutes, the reaction mixture was carefully quenched with $\mathrm{H}_{2} \mathrm{O}(4.1 \mathrm{~mL}), 15 \%$ aq. $\mathrm{NaOH}(4.1 \mathrm{~mL})$, and $\mathrm{H}_{2} \mathrm{O}$ $(12.3 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered through Celite, and concentrated in vacuo to give a clear oil. The crude material was purified via silica gel column chromatography ($50: 1$ to $20: 1$ hexanes:EtOAc) to give pure alcohol $\mathbf{S 2}(15.9 \mathrm{~g}$, $105 \mathrm{mmol}, 49 \%$ over 2 steps) as a clear oil.
$\mathbf{R}_{\boldsymbol{f}}=0.36$ (silica gel, 5:1 hexanes:EtOAc); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.51(\mathrm{~s}, 1 \mathrm{H})$, $4.94(\mathrm{~s}, 1 \mathrm{H}), 4.91(\mathrm{~s}, 1 \mathrm{H}), 3.56(\mathrm{dd}, J=9.4,4.7,2 \mathrm{H}), 2.96(\mathrm{q}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{bs}$, $1 \mathrm{H}), 2.45(\mathrm{dd}, J=12,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{dd}, J=12,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H})$, 1.59 (bs, 1H); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 146.4,139.5,126.2,110.8,61.3,52.6,49.3$, 34.3, 23.5, 15.5; IR (film, cm^{-1}): 3381, 1447, 1037, 888; HRMS (EC-CI): calc. for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}$ [M]: 152.1201, obs. 152.1196.

To a stirred solution of alcohol $\mathbf{S 2}$ ($26.2 \mathrm{~g}, 172 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (860 $\mathrm{mL}, 0.2 \mathrm{M}$) at $23{ }^{\circ} \mathrm{C}$ was added solid $\mathrm{NaHCO}_{3}(43.4 \mathrm{~g}, 517 \mathrm{mmol}, 3$ equiv.), freshly prepared Dess-Martin periodinane ($110 \mathrm{~g}, 258 \mathrm{mmol}$, 1.5 equiv.), and $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$. After 45 minutes, the reaction mixture was diluted with sat. aq. $\mathrm{NaHCO}_{3}(500 \mathrm{~mL})$ and sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$ and stirred for 10 minutes. The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x}$ 800 mL), washed with brine (800 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give an amber oil. The crude material was purified via silica gel column chromatography (10:1 hexanes:EtOAc) to give pure aldehyde $89(22.5 \mathrm{~g}, 150 \mathrm{mmol}, 87 \%)$ as a clear oil.
$\mathbf{R}_{\boldsymbol{f}}=0.56$ (silica gel, 5:1 hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.35(\mathrm{~d}, J=5.5$ $\mathrm{Hz}, 1 \mathrm{H}), 5.77(\mathrm{bs}, 1 \mathrm{H}), 4.90(\mathrm{~s}, 1 \mathrm{H}), 4.87(\mathrm{~s}, 1 \mathrm{H}), 3.22(\mathrm{q}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{t}, J=6.3$ $\mathrm{Hz}, 1 \mathrm{H}), 2.71(\mathrm{t}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{dd}, J=16,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H})$;
${ }^{13}$ C-NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 201.1,143.2,135.5,130.0,111.7,63.4,49.7,34.6,22.9$, 15.6; IR (film, cm^{-1}): 1720, 1446, 892. HRMS (APCI-TOFMS): calc. for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}$ $[\mathrm{M}+\mathrm{H}]^{+}: 151.1117$, obs. 151.1119.

To a stirred solution of tetravinyl tin ($11 \mathrm{~mL}, 59.9 \mathrm{mmol}, 0.4$ equiv.) in THF (600 mL) at $-78{ }^{\circ} \mathrm{C}$ was added a 2.14 M solution of n-butyllithium in hexanes $(91 \mathrm{~mL}, 195$ $\mathrm{mmol}, 1.3$ equiv.). The reaction mixture was warmed and stirred at $23^{\circ} \mathrm{C}$ for 15 minutes before being cooled back down to $-78{ }^{\circ} \mathrm{C}$ and adding a solution of aldehyde $89(22.5 \mathrm{~g}$, $150 \mathrm{mmol}, 1.0$ equiv.) in THF (150 mL). After 15 minutes, freshly distilled neat hexamethylphosphoramide ($52 \mathrm{~mL}, 299 \mathrm{mmol}, 2$ equiv.) was added. After an additional 10 minutes an 80% solution of propargyl bromide in toluene ($83 \mathrm{~mL}, 749 \mathrm{mmol}, 5$ equiv.) was added. Upon complete addition the reaction mixture was allowed to warm to $23{ }^{\circ} \mathrm{C}$. After 3 hours, the reaction mixture was diluted with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$, extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($3 \times 50 \mathrm{~mL}$), washed with $3.0 \mathrm{~N} \mathrm{LiCl} \mathrm{(} 3 \times 50 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give a yellow oil. The crude material was purified via silica gel column chromatography (straight hexanes to $50: 1$ to $20: 1$ hexanes:EtOAc) to give pure enyne $\mathbf{S 3}$ $(26.2 \mathrm{~g}, 121 \mathrm{mmol}, 81 \%)$ as a clear oil.
$\mathbf{R}_{f}=0.50$ (silica gel, 2:1 hexanes:EtOAc); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.86$ (ddd, $J=$ $17,11,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{bs}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.90$ (s, 2H), $4.10(\mathrm{dd}, J=13,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{dd}, J=13,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{dd}, J=8.6,2.7$ $\mathrm{Hz}, 1 \mathrm{H}), 2.88(\mathrm{q}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{bd}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{ddq}, J=20,9.4,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.32(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{dd}, J=11,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): ~ \delta 145.3,139.4,137.7,127.4,116.8,111.7,80.7,80.4,73.5,55.7$,
54.9, 51.1, 34.8, 23.5, 17.8; IR (film, cm^{-1}): 1384, 1074, 404; HRMS (EC-CI): calc. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}$ [M]: 216.1514, obs. 216.1515.

To a stirred solution of enyne $\mathbf{S 3}$ ($26.2 \mathrm{~g}, 121 \mathrm{mmol}, 1.0$ equiv.) in THF (1.2 L, 0.1 M) at $-78^{\circ} \mathrm{C}$ was added a 2.14 M solution of n-butyllithium in hexanes $(68 \mathrm{~mL}, 145 \mathrm{mmol}$, 1.2 equiv.). After 20 minutes, freshly distilled neat trimethylsilyl chloride ($31 \mathrm{~mL}, 242$ mmol, 2 equiv.) was added. Upon complete addition the reaction mixture was allowed to warm to $23^{\circ} \mathrm{C}$. After 30 minutes, the reaction mixture was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ $(400 \mathrm{~mL})$, extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 400 \mathrm{~mL})$, washed with brine (400 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give pure TMS enyne 91 ($35 \mathrm{~g}, 121 \mathrm{mmol}, 99 \%$) as a clear oil.
$\mathbf{R}_{\boldsymbol{f}}=0.44$ (silica gel, 20:1 hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.85$ (ddd, $J=$ $17,11,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{bs}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.88$ (s, 2H), $4.11(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{dd}, J=7.8,2.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.87(\mathrm{q}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{bd}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{ddq}, J=20,9.4,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.13(\mathrm{dd}, J=7.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 0.16(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 145.1,139.6,137.6,127.1,116.8,111.7,102.3,90.3,80.2,56.3,54.8$, 50.9, 34.8, 23.3, 17.7, -0.3; IR (film, cm^{-1}): 1384, 1251, 1076, 843, 403; HRMS (EC-CI): calc. for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{OSi}$ [M]: 288.1909, obs. 288.1901.

To a stirred solution of TMS enyne 91 ($20.8 \mathrm{~g}, 72.1 \mathrm{mmol}, 1.0$ equiv.) in PhMe $(720 \mathrm{~mL}, 0.1 \mathrm{M})$ at $23{ }^{\circ} \mathrm{C}$ was added solid bis(pinacolato)diboron (20.1 g, $79 \mathrm{mmol}, 1.1$ equiv.), palladium(II) acetate ($809 \mathrm{mg}, 3.60 \mathrm{mmol}, 0.05$ equiv.), and MeOH ($2.92 \mathrm{~mL}, 72.1$ $\mathrm{mmol}, 1.0$ equiv.). The reaction mixture was heated to and stirred at $50^{\circ} \mathrm{C}$. After 15 hours, the reaction mixture was cooled to $23^{\circ} \mathrm{C}$ and concentrated in vacuo to give the boronate ester as an amber oil.

To a stirred solution of crude boronate ester ($30 \mathrm{~g}, 72.0 \mathrm{mmol}, 1.0$ equiv.) in THF (1.4 L, 0.05 M) at $0^{\circ} \mathrm{C}$ was carefully added $3.33 \mathrm{~N} \mathrm{NaOH}(64.9 \mathrm{~mL}, 216 \mathrm{mmol}, 3$ equiv.) and 50% aq. $\mathrm{H}_{2} \mathrm{O}_{2}(130 \mathrm{~mL}, 2.16 \mathrm{~mol}, 30$ equiv.) over 1 hour. The reaction mixture was diluted with brine (700 mL), extracted with $\mathrm{EtOAc}\left(3 \times 500 \mathrm{~mL}\right.$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give a yellow oil. The crude material was purified via silica gel column chromatography (5:1 hexanes:EtOAc) to give pure alcohol $92(13.7 \mathrm{~g}, 44.7 \mathrm{mmol}$, 62% over 2 steps) as a white solid (m.p. $62-64^{\circ} \mathrm{C}$).
$\mathbf{R}_{\boldsymbol{f}}=0.41$ (silica gel, 5:1 hexanes:EtOAc); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.54(\mathrm{bs}, 1 \mathrm{H})$, $5.50(\mathrm{q}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~s}, 1 \mathrm{H}), 4.85(\mathrm{~s}, 1 \mathrm{H}), 4.38(\mathrm{dd}, J=14,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{dt}$, $J=14,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{dt}, J=11,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{dt}, J=11$, $6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{q}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.66(\mathrm{bm}, 2 \mathrm{H}), 2.45(\mathrm{ddq}, J=15,8.6,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.20(\mathrm{dd}, J=14,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.07$ (s, 9H); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 157.9,145.9,140.3,127.2,119.9,111.9,81.2$,
70.2, 64.0, 53.5, 51.8, 51.1, 34.7, 22.8, 17.8, -0.7; IR (film, cm^{-1}): 3404, 1384, 401; HRMS (ESI): calc. for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$: 329.19070, obs. 329.19090.

To a stirred solution of oxalyl chloride ($5.23 \mathrm{~mL}, 59.8 \mathrm{mmol}$, 1.5 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(250 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was slowly added a solution of dimethyl sulfoxide ($14.2 \mathrm{~mL}, 199$ mmol, 5 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (100 mL) over 10 minutes. After 30 minutes, a solution of alcohol 92 ($12.2 \mathrm{~g}, 39.9 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 mL) was added. After 2 hours, neat triethylamine ($28.0 \mathrm{~mL}, 199 \mathrm{mmol}, 5$ equiv.) was added in a single portion and the reaction mixture was allowed to warm to $23^{\circ} \mathrm{C}$. The reaction mixture was then diluted with $0.1 \mathrm{~N} \mathrm{HCl}(200 \mathrm{~mL})$. The organic layer was separated and washed with $0.1 \mathrm{~N} \mathrm{HCl}(2 \times 200$ $\mathrm{mL})$ and $3.0 \mathrm{~N} \mathrm{LiCl}(400 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give crude aldehyde $\mathbf{S 4}$ ($12.1 \mathrm{~g}, 39.9 \mathrm{mmol}$, yield taken over 2 steps) as a clear oil.
$\mathbf{R}_{\boldsymbol{f}}=0.69$ (silica gel, 5:1 hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.32(\mathrm{~d}, J=3.9$ $\mathrm{Hz}, 1 \mathrm{H}), 5.55(\mathrm{~s}, 1 \mathrm{H}), 5.53(\mathrm{bs}, 1 \mathrm{H}), 4.85(\mathrm{~s}, 2 \mathrm{H}), 4.41$ (dd, $J=14,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.33$ (t, J $=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{dd}, J=14,2.4 \mathrm{~Hz}, 1 \mathrm{H}) 3.40(\mathrm{bt}, J=2.4,1 \mathrm{H}), 2.93(\mathrm{q}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.71(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{dd}, J=15,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{dd}, J=15,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.82$ (s, 3H), 1.73 (s, 3H), 0.08 (s, 9H); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 196.6,151.9,144.9$, $139.8,127.4,124.0,112.4,78.7,70.2,63.7,51.7,50.6,34.7,22.9,17.4,-0.9$; IR (film, cm^{-} ${ }^{1}$): 1722, 1249, 840; HRMS (ESI): calc. for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}: 327.17510$, obs. 327.17530.

To a stirred solution of crude aldehyde $\mathbf{S} 4\left(12.1 \mathrm{~g}, 39.9 \mathrm{mmol}, 1.0\right.$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(400 \mathrm{~mL}, 0.1 \mathrm{M})$ at $-78{ }^{\circ} \mathrm{C}$ was added a 1.0 M solution of diethylaluminum chloride in hexanes ($19.9 \mathrm{~mL}, 19.9 \mathrm{mmol}, 0.5$ equiv.) in a single portion. After 10 minutes, the reaction mixture was quenched with $10 \% \mathrm{aq} . \mathrm{NaOH}(20 \mathrm{~mL})$. The reaction mixture was warmed to $23{ }^{\circ} \mathrm{C}$, further diluted with brine (200 mL), and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x} 200 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give a yellow oil. The crude material was purified via silica gel column chromatography (5:1 hexanes:EtOAc) to give pure 5,7,5-tricycle $93(12.1 \mathrm{~g}, 39.9$ $\mathrm{mmol}, 99 \%$ over 2 steps) as a white solid (m.p. $64-66^{\circ} \mathrm{C}$).
$\mathbf{R}_{f}=0.60$ (silica gel, 5:1 hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.47(\mathrm{~s}, 1 \mathrm{H})$, $5.45(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~s}, 1 \mathrm{H}), 4.88(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{dt}, J=$ 8.2, 4.7 Hz, 1H), $4.09(\mathrm{dt}, J=14,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{t}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{q}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.63(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.54-2.40(\mathrm{~m}, 5 \mathrm{H}), 1.96(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H})$, 0.10 (s, 9H); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 158.6,145.2,142.3,125.1,117.3,115.0$, 79.3, 71.1, 66.4, 57.0, 56.1, 49.1, 36.8, 17.3, -0.6; IR (film, cm^{-1}): 3413, 1065, 838; HRMS (ESI): calc. for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}: 327.17510$, obs. 327.17510 .

To a stirred solution of tiglic acid ($13.8 \mathrm{~g}, 138 \mathrm{mmol}, 2.0$ equiv.) in $\mathrm{PhMe}(345 \mathrm{~mL})$ at $23{ }^{\circ} \mathrm{C}$ was added neat triethylamine ($38.4 \mathrm{~mL}, 276 \mathrm{mmol}, 4.0$ equiv.) and neat 2,4,6trichlorobenzoyl chloride ($23.7 \mathrm{~mL}, 152 \mathrm{mmol}, 2.2$ equiv.). After 1 hour, a solution of 5,7,5-tricycle 93 ($21.0 \mathrm{~g}, 69.0 \mathrm{mmol}$, 1.0 equiv.) in $\mathrm{PhMe}(345 \mathrm{~mL}$) and solid dimethylaminopyridine ($21.9 \mathrm{~g}, 179 \mathrm{mmol}, 2.6$ equiv.) were added. The reaction mixture was then heated to $80^{\circ} \mathrm{C}$. After 45 minutes, the reaction mixture was cooled to $23{ }^{\circ} \mathrm{C}$, diluted with sat. aq. NaHCO_{3}, extracted with EtOAc (3 x 500 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give an amber oil. The crude material was purified via silica gel column chromatography ($20: 1$ hexanes:EtOAc) to give pure tigloyl ester $94(24.0 \mathrm{~g}, 62.1$ $\mathrm{mmol}, 90 \%$) as a clear oil.
$\mathbf{R}_{\boldsymbol{f}}=0.18$ (silica gel, 20:1 hexanes:EtOAc); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.75(\mathrm{q}, J=$ 6.7 Hz, 1H), $5.49(\mathrm{~s}, 1 \mathrm{H}), 5.41(\mathrm{q}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~s}, 1 \mathrm{H}), 4.91(\mathrm{~s}, 1 \mathrm{H}), 4.77(\mathrm{~s}, 1 \mathrm{H})$, $4.47(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{q}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.69(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{dd}, J=14,5.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.47(\mathrm{dd}, J=14,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{~s}$, $3 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.0(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $167.5,156.6,144.7,142.1,136.9,128.6,125.3,117.3,115.1,80.5,71.0,69.8,56.3,55.1$, 48.7, 39.4, 37.0, 17.3, 14.3, 12.0, -0.7; IR (film, cm^{-1}): 1713, 1250, 1066, 805; HRMS (ESI): calc. for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}: 409.21710$, obs. 409.21690 .

To a stirred solution of $\mathrm{CrO}_{3}(20.7 \mathrm{~g}, 207 \mathrm{mmol}$, 20 equiv. $)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL}$, 0.05 M) at $0{ }^{\circ} \mathrm{C}$ was added solid 3,5-dimethylpyrazole ($19.9 \mathrm{~g}, 207 \mathrm{mmol}$, 20 equiv.) in a single portion. A solution of carbocycle $94\left(4.0 \mathrm{~g}, 10.4 \mathrm{mmol}, 1.0\right.$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 mL) was then added. After 45 minutes, the reaction mixture was directly purified via florasil column chromatography ($2: 1$ hexanes:EtOAc) to give pure guaianolide $95(1.29 \mathrm{~g}$, $3.10 \mathrm{mmol}, 30 \%$) as a clear oil.
$\mathbf{R}_{\boldsymbol{f}}=0.22$ (silica gel, $2: 1$ hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.70(\mathrm{q}, J=7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.37(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~s}, 1 \mathrm{H}), 5.53(\mathrm{td}, J=4.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 1 \mathrm{H})$, $4.96(\mathrm{~s}, 1 \mathrm{H}), 4.54(\mathrm{dd}, J=11,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{t}, 9.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.18(\mathrm{dt}, J=8.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{bs}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.74(\mathrm{~s}$, 3H), 0.15 ($\mathrm{s}, 9 \mathrm{H}$); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 206.1,177.9,168.6,166.9,145.5,138.9$, $138.5,138.1,132.3,127.9,120.4,78.1,67.1,56.2,53.4,51.2,41.1,19.9,14.3,11.9,-1.0$; IR (film, cm^{-1}): 1765, 1707, 1249; HRMS (ESI): calc. for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$: 437.17550, obs. 437.17580 .

To a stirred solution of enone 95 ($755 \mathrm{mg}, 1.82 \mathrm{mmol}, 1.0$ equiv.) in MeOH (36 $\mathrm{mL}, 0.05 \mathrm{M})$ at $0{ }^{\circ} \mathrm{C}$ was added solid cerium(III) chloride heptahydrate $(1.36 \mathrm{~g}, 3.64 \mathrm{mmol}$, 2.0 equiv.). After 20 minutes, solid sodium borohydride ($138 \mathrm{mg}, 3.64 \mathrm{mmol}, 2.0$ equiv.) was added in three even portions. After 15 minutes, the reaction mixture was warmed to $23^{\circ} \mathrm{C}$ and diluted with 0.2 M aq. $\mathrm{pH}=7.0$ phosphate buffer. The organic layer was separated and the aqueous layer was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give pure allylic alcohol 96 ($700 \mathrm{mg}, 1.68 \mathrm{mmol}, 92 \%$) as a clear oil.
$\mathbf{R}_{\boldsymbol{f}}=0.24$ (silica gel, 3:1 hexanes:EtOAc); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.69(\mathrm{q}, J=5.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.24(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{bs}, 1 \mathrm{H}), 5.43(\mathrm{td}, J=7.8,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H})$, $4.71(\mathrm{bt}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{dd}, J=11,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{dt}, J=6.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.14$ $(\mathrm{d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{dd}, J=14,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{dd}, J=14,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{t}, J$ $=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.73(\mathrm{~s}, \mathrm{H}), 0.13(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}$ ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.4,167.2,147.8,144.5,142.0,139.9,137.9,128.9,128.0,119.0$, 80.8, 79.0, 68.5, 56.2, 52.6, 49.8, 38.7, 17.3, 14.3, 11.9, -1.0; IR (film, cm^{-1}): 3485, 1764, 1709, 1259, 1247; HRMS (ESI): calc. for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}: 439.19110$, obs. 439.19110.

To a stirred solution of vinyl silane 46 ($267 \mathrm{mg}, 0.641 \mathrm{mmol}, 1.0$ equiv.) in EtOH ($6.4 \mathrm{~mL}, 0.1 \mathrm{M}$) at $23{ }^{\circ} \mathrm{C}$ was added neat thiophenol ($2.88 \mathrm{~mL}, 28.2 \mathrm{mmol}, 44$ equiv.) and $60 \% \mathrm{NaH}$ in mineral oil ($103 \mathrm{mg}, 2.56 \mathrm{mmol}, 4.0$ equiv.). After 48 hours, the reaction mixture was concentrated in vacuo and purified directly via silica gel column chromatography (straight hexanes to $2: 1$ hexanes:EtOAc) to give pure thio silane 105 (238 $\mathrm{mg}, 0.452 \mathrm{mmol}, 71 \%$) as a white foam.

HRMS (ESI): calc. for $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{O}_{5} \mathrm{SSi}[\mathrm{M}+\mathrm{Na}]^{+}: 549.21010$, obs. 549.21030.

To a stirred solution of thio silane 105 ($238 \mathrm{mg}, 0.452 \mathrm{mmol}, 1.0$ equiv.) in THF $(4.5 \mathrm{~mL}, 0.1 \mathrm{M})$ at $23{ }^{\circ} \mathrm{C}$ was added a 1.0 M of tetrabutylammonium fluoride in THF ($0.90 \mathrm{~mL}, 1.38 \mathrm{mmol}, 1.5$ equiv.). After 30 minutes, the reaction mixture was passed through a plug of silica gel (2:1 hexanes:EtOAc) to give crude thio adduct $\mathbf{1 0 4}$ as an amber oil.

To a stirred solution of crude thio adduct 104 ($205 \mathrm{mg}, 0.452 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{MeOH}(4.5 \mathrm{~mL}, 0.1 \mathrm{M})$ at $0{ }^{\circ} \mathrm{C}$ was added a solution of sodium periodate $(145 \mathrm{mg}, 0.678$ mmol, 1.5 equiv.) in $\mathrm{H}_{2} \mathrm{O}(4.5 \mathrm{~mL})$. After 15 hours, the reaction mixture was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give crude sulfone 106 as a white solid.

A solution of crude sulfone 106 ($220 \mathrm{mg}, 0.452 \mathrm{mmol}, 1.0$ equiv.), basic alumina ($440 \mathrm{mg}, 200 \%$ by weight), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(4.5 \mathrm{~mL}, 0.1 \mathrm{M}\right.$) was stirred at $23^{\circ} \mathrm{C}$. After stirring for 12 hours, the reaction mixture was passed through a plug of Celite and concentrated to give a clear oil. The crude material was purified via silica gel column chromatography (2:1 hexanes:EtOAc) to give pure butyrolactone $103(109 \mathrm{mg}, 0.316 \mathrm{mmol}, 70 \%)$ as a clear oil.
$\mathbf{R}_{f}=0.54$ (silica gel, $1: 1$ hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.73(\mathrm{q}, J=5.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.29(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{bs}, 1 \mathrm{H}), 5.52(\mathrm{dd}, J=11,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{~d}, J=$ $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 4.73(\mathrm{bs}, 1 \mathrm{H}), 4.66(\mathrm{dd}, J=11,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.19$ (dd, $J=12,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dd}, J=14,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{dd}$,
$J=14,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.75(\mathrm{~s}$, $3 \mathrm{H}), 1.70(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 169.6,167.2,147.3,141.7$, $138.3,134.2,129.2,128.0,122.4,119.2,80.8,78.8,67.8,56.1,52.6,47.8,39.1,17.3,14.4$, 12.0; IR (film, cm^{-1}): 3413, 1384, 1137; HRMS (ESI): calc. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$: 367.15160, obs. 367.15200.

To a stirred solution of vinylsilane 94 ($2 \mathrm{~g}, 5.17 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (52 $\mathrm{mL}, 0.1 \mathrm{M}$) was added neat TFA ($3.96 \mathrm{~mL}, 51.7 \mathrm{mmol}, 10$ equiv.) in a single portion at 23 ${ }^{\circ} \mathrm{C}$. After 2 hours, the reaction mixture was poured into sat. aq. $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic layers were washed with sat. aq. $\mathrm{NaHCO}_{3}(3 \times 30 \mathrm{~mL})$, brine ($1 \times 30 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give $\mathbf{S 5}$ as an amber oil ($1.6 \mathrm{~g}, 5.09 \mathrm{mmol}, 98 \%$). The crude material was used directly in the next reaction without purification.
$\mathbf{R}_{f}=0.61$ (silica gel, 20:1 hexanes:EtOAc); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.79(\mathrm{q}, J=$ $6.14 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{~s}, 1 \mathrm{H}), 5.44(\mathrm{~m}, 1 \mathrm{H}), 4.94(\mathrm{~m}, 1 \mathrm{H}), 4.91(\mathrm{~s}, 1 \mathrm{H}), 4.85(\mathrm{~m}, 1 \mathrm{H}), 4.75(\mathrm{~s}$, $1 \mathrm{H}), 4.40(\mathrm{~d}, J=13.04 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{dt}, J=2.2,13.09 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{t}, J=9.71 \mathrm{~Hz}, 1 \mathrm{H})$, $3.15(\mathrm{t}, J=7.70 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~m}, 2 \mathrm{H}), 2.64(\mathrm{dd}, J=5.44,13.68 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~m}, 3 \mathrm{H})$, $1.86(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}-\mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 167.4,148.5$, $144.6,141.9,137.2,128.6,125.4,115.1,103.6,81.0,71.5,69.4,56.3,52.9,48.4,40.1$, 37.1, 17.2, 14.3, 12.0. IR (film, cm^{-1}): 2367, 2078, 1640, 1401, 1114. HRMS (ESI): calc. for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 315.1955$, obs. 315.1954.

To a stirred solution of $\mathrm{CrO}_{3}(10.18 \mathrm{~g}, 102 \mathrm{mmol}, 20$ equiv. $)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added solid 3,5-dimethylpyrazole ($9.78 \mathrm{~g}, 102 \mathrm{mmol}, 20$ equiv.) in a single portion. A solution of carbocycle $\mathbf{S 5}\left(1.6 \mathrm{~g}, 5.09 \mathrm{mmol}, 1.0\right.$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was then added in a single portion. After 45 minutes, the reaction mixture was directly purified via florasil column chromatography ($1: 1$ hexanes:EtOAc) to give a white solid. The white solid was dissolved in EtOAc (50 ml), washed with $1.0 \mathrm{M} \mathrm{HCl}(3 \times 20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to give pure guaianolide $107(630 \mathrm{mg}, 1.84 \mathrm{mmol}, 36 \%)$ as a white foam.
$\mathbf{R}_{\boldsymbol{f}}=0.38$ (silica gel, $1: 1$ hexanes:EtOAc); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.67(\mathrm{q}, J=7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 6.10(\mathrm{~s}, 1 \mathrm{H}), 5.56(\mathrm{bs}, 2 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{t}, J=9.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.27(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{~m}, 2 \mathrm{H}), 2.53(\mathrm{~m}, 1 \mathrm{H}), 2.46(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H})$, $1.70(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 205.9,177.6,168.7,166.7$, 138.5, 138.4, 133.6, 132.6, 127.8, 122.9, 120.4, 77.9, 66.3, 55.7, 53.3, 49.4, 41.8, 19.9, 14.4, 11.9. IR (film, cm^{-1}): 3438, 3154, 1769, 1704, 1650, 1619. HRMS (ESI): calc. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 343.1540$, obs. 343.1545 .

To a stirred solution of enone $107(630 \mathrm{mg}, 1.84 \mathrm{mmol}, 1.0$ equiv.) in $3: 1$ MeOH:THF $(18.4 \mathrm{~mL}, 0.1 \mathrm{M})$ at $-78^{\circ} \mathrm{C}$ was added solid $\mathrm{Yb}(\mathrm{OTf})_{3}(1.25 \mathrm{~g}, 2.02 \mathrm{mmol}$, 1.1 equiv.). After 15 minutes, solid sodium borohydride ($84 \mathrm{mg}, 2.21 \mathrm{mmol}, 1.2$ equiv.) was added in three even portions every 30 minutes for 1.5 hours. After stirring for an additional 10 minutes, neat acetaldehyde ($1.0 \mathrm{~mL}, 18.4 \mathrm{mmol}$, 10 equiv.) was added in a single portion and the reaction was stirred further for 15 minutes at $-78^{\circ} \mathrm{C} .1: 1 \mathrm{EtOAc}: \mathrm{H}_{2} \mathrm{O}$ $(40 \mathrm{~mL})$ was added and the reaction was warmed to $23^{\circ} \mathrm{C}$ over 30 minutes. The reaction mixture was further diluted with brine $(20 \mathrm{~mL})$ and the aqueous layer was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic extracts were washed with water ($3 \times 20 \mathrm{~mL}$), brine ($1 \times 20 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give a brown oil. The crude material was purified via silica gel column chromatography ($2: 1$ hexanes:EtOAc) to give pure allylic alcohol $103(472 \mathrm{mg}, 1.37 \mathrm{mmol}, 75 \%)$ as a white foam.
$\mathbf{R}_{\boldsymbol{f}}=0.54$ (silica gel, 2:1 hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.73$ (q, $J=5.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.29(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{bs}, 1 \mathrm{H}), 5.52(\mathrm{dd}, J=11,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{~d}, J=$ $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 4.73(\mathrm{bs}, 1 \mathrm{H}), 4.66(\mathrm{dd}, J=11,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.19$ (dd, $J=12,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dd}, J=14,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{dd}$, $J=14,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.75(\mathrm{~s}$, $3 \mathrm{H}), 1.70(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 169.6,167.2,147.3,141.7$, $138.3,134.2,129.2,128.0,122.4,119.2,80.8,78.8,67.8,56.1,52.6,47.8,39.1,17.3,14.4$, 12.0; IR (film, cm^{-1}): 3413, 1384, 1137; HRMS (ESI): calc. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$: 367.15160 , obs. 367.15200 .

To a stirred solution of allylic alcohol $103(472 \mathrm{mg}, 1.37 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(13.7 \mathrm{~mL}, 0.1 \mathrm{M})$ was added a 1.0 M solution of $\mathrm{Al}(\mathrm{Os}-\mathrm{Bu})_{3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.1 \mathrm{~mL}$, $2.1 \mathrm{mmol}, 1.5$ equiv.) dropwise at $0{ }^{\circ} \mathrm{C}$. The reaction was stirred for 10 minutes before a 5.5-6.0 M solution of TBHP in decane ($0.275 \mathrm{~mL}, 1.51 \mathrm{mmol}, 1.1$ equiv.) was added dropwise. The cooling bath was removed and the reaction was warmed to $23{ }^{\circ} \mathrm{C}$ over 30 minutes. Sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(10 \mathrm{~mL})$ was added and the mixture was stirred for 15 minutes. The crude reaction was further diluted with brine $(20 \mathrm{~mL})$ and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give epoxide $\mathbf{1 1 0}$ as a clear oil. The crude material was used immediately in the next reaction without purification.
$\mathbf{R}_{\boldsymbol{f}}=0.54$ (silica gel, $1: 1$ hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.70(\mathrm{q}, J=6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.33(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{bs}, 1 \mathrm{H}), 5.57(\mathrm{td}, J=8.6,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{~d}, J=$ $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{bs}, 1 \mathrm{H}), 4.67(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{dd}, J=8.6,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{q}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{dd}, J=14,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~d}, J=9.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.25$ (dd, $J=15,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.73$ (s, 3H); ${ }^{13}$ C-NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.6,167.1,148.9,138.3,133.9,128.9,127.9$, $122.9,81.0,76.75,66.7,56.3,55.7,55.4,52.3,47.8,36.5,17.4,14.3,12.0$; IR (film, cm^{-} ${ }^{1}$): 3477, 1768, 1339, 1140, 1037; HRMS (ESI): calc. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{6}[\mathrm{M}+\mathrm{Na}]^{+}$: 383.14650, obs. 383.14680

To a stirred solution of crude epoxide 110 ($490 \mathrm{mg}, 1.36 \mathrm{mmol}, 1.0$ equiv.) in THF $(13.6 \mathrm{~mL}, 0.1 \mathrm{M})$ at $23{ }^{\circ} \mathrm{C}$ was added solid lithium chloride $(576 \mathrm{mg}, 13.6 \mathrm{mmol}, 10.0$ equiv.) in a single portion. The mixture of sonicated for 5 minutes before addition of a 1.25 M solution of hydrochloric acid in MeOH ($3.26 \mathrm{~mL}, 4.08 \mathrm{mmol}, 3.0$ equiv.). After 5 minutes, the reaction mixture was diluted with brine (40 mL), extracted with EtOAc (3 x 30 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give a white solid. The crude material was purified via silica gel column chromatography ($2: 1$ hexanes:EtOAc) to give pure eupalinilide E (7) ($466 \mathrm{mg}, 1.17 \mathrm{mmol}, 86 \%$ over 2 steps) as a white solid (m.p. $72^{\circ} \mathrm{C}$, (decomp.)).
$\mathbf{R}_{\boldsymbol{f}}=0.63$ (silica gel, $1: 1$ hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.70(\mathrm{q}, J=5.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.27(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{bs}, 1 \mathrm{H}), 5.65(\mathrm{td}, J=8.6,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~d}, J=$ $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{bs}, 1 \mathrm{H}), 4.58(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{bs}, 1 \mathrm{H})$, $3.67(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 2.77$ (dd, $J=11,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-2.44(\mathrm{~m}, 4 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H})$, $1.74(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 169.7,167.2,150.6$, $138.1,134.4,128.6,128.1,122.1,82.0,75.1,73.6,66.4,55.2,55.0,52.2,47.4,36.4,18.0$, 14.4, 12.0; IR (film, cm^{-1}): $3409,1654,1384,1129$; HRMS (ESI): calc. for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{ClO}_{6}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 419.12320$, obs. 419.1229.

Chapter 2: Development of a Platform to Access Novel Thiopeptide Antibiotics

The rise in antibiotic resistant bacteria is one of the major threats to global health. Methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Staphylococcus aureus (VRSA) cause more than 19,000 deaths and 4 billion dollars of additional heath care costs per year in the United States alone, and these statistics are expected to rise. ${ }^{104-106}$ There have been increased reports of untreatable, multidrugresistant Gram-negative bacteria that are resistant to multiple types of antibiotics used today, including penicillins, cephalosporins, and tetracyclins. ${ }^{107}$

penicillins (113)

cephalosporins (114)

quinolones (115)

tetracyclines (117)

Figure 2.1. The most common antibiotic scaffolds.
The majority of all clinically approved antibiotics between 1981 and 2005 were derived from just four common scaffolds; penicillins (113), cephalosporins (114), quinolones (115), and macrolides (116, Figure 2.1). ${ }^{108-112}$ Aside from quinolones (115), most of these antibiotics are made semisynthetically starting from natural sources, limiting
modifications that can be achieved using medicinal chemistry. Recently, total synthetic routes for tetracyclins (117) and macrolides (116) have widened the range of accessible synthetic derivatives; however, these new antibiotics continue to be built off of existing scaffolds. ${ }^{113-115}$

Thiopeptides are a large family of natural products characterized in part by their sulfur-rich, highly modified, cyclic peptide structure (Figure 2.2). ${ }^{116,117}$ Over the past 50 years, they have garnered the attention of researchers due to their novel chemical structures and potent antibacterial properties. For example, nosiheptide (120) was recently found to exhibit extremely potent activity against several contemporary MRSA and Clostridium difficile strains in an in vivo murine model. ${ }^{118}$ Moreover, it was found to be non-cytotoxic against mammalian cell lines well above its minimum inhibitory concentration (MIC). Although thiopeptides are potent antibiotics, they have not reached the clinic due to their low solubility in water. Only nosiheptide (120) and related thiopeptide thiostrepton are currently used in industry today as additives in chicken feed and in veterinary medicine. ${ }^{119}$

micrococcin P1 (118)

nosiheptide (120)

lactocillin (119)

Figure 2.2. Thiopeptide antibiotics micrococcin P1 (118), lactocillin (119), nosiheptide (120), and GE2270 A (121).

Different thiopeptides share similar structural motifs. They can contain different heterocycles including thiazolines, thiazoles, oxazolines, oxazoles, indoles, dehydropiperidines, and pyridines. They are produced ribosomally from acyclic peptides rich in cysteine, threonine, and serine. Posttranslational modification of these peptides leads to 26 -, 29 -, or 35 -membered macrocylic rings, which can contain a variety of modified amino acid residues, such as dehydroalanines and dehydrobutyrines.

The size of the macrocyclic ring determines the biological target of the thiopeptide. Those containing a 26-membered ring, such as micrococcin P1 (118), lactocillin (119), nosiheptide (120), and thiostrepton, are known to selectively target the 50S ribosomal subunit and prevent interactions between the 23 S rRNA and ribosomal protein L11. ${ }^{120-123}$ It has been shown that mutations at position A1067 in H43 or A1095 in H44 leads to resistance against these thiopeptides in Escherichia coli. ${ }^{124}$ Adenines A1067 and A1095 are conserved amongst all prokaryotic 23 S rRNA sequences and primarily interact with the dehydrobutyrine residue found in the northern portion of these molecules (Figure 2.2). ${ }^{120}$ Thiopeptides containing 29 -membered macrocyclic rings, such as GE2270 A (121), GE37468, and thiomuracin, compete for the aminoacyl-tRNA binding site on the prokaryotic elongation factor EF-Tu. ${ }^{125,126}$ The biological target of thiopeptides containing 35-membered macrocyclic rings remains unknown. ${ }^{127}$

Thiopeptide biosynthesis continues to be an active and dynamic area of research. Since their initial discovery in the 1940 's, there has been a debate as to whether or not these natural products are synthesized ribosomally or nonribosomally. It wasn't until 2009 that there was sufficient evidence to support that thiopeptides are, in fact, produced ribosomally and the posttranscriptional machinery required to make each unique molecule is genetically encoded by the host organism. ${ }^{128}$ Since these findings, several research groups have reported the biosynthetic gene clusters (BGCs) of more than ten different thiopeptides including thiostrepton, thiocillin, GE2270 A (121) and nosiheptide (120). ${ }^{129-133}$ These gene clusters typically contain a N -terminal leader peptide followed by a sequence rich in cysteine, threonine, and serine, which makes up the basic backbone found in all thiopeptides. Conserved genes found in these BGCs encode for several cyclodehydratases
and dehydrogenase responsible for catalyzing the cyclization and subsequent oxidation of cysteine and serine residues to thiazoles and oxazoles. They also encode for other enzymes that aid in the synthesis of dehydro amino acids and the enzymes speculated to promote the $[4+2]$ heterocyclization reaction that forms the core nitrogen-containing 6 -membered ring of these natural products.

Thirteen posttranslational modifications that convert a 14 -residue peptide to the natural product micrococcin P1 (118), a member of the thiocillin subfamily, have been recently characterized by Fischbach and coworkers. ${ }^{130}$ Bioinformatic analysis of the Bacillus cereus genome afforded a sequence predicted to encode a 52 -residue peptide containing the $\mathrm{Cys} / \mathrm{Thr} /$ Ser rich sequence $\mathrm{H} 2 \mathrm{~N}-$ SCTTCVCTCSCCTT-CO2H. Upon further investigation, it was realized that this 14-residue peptide makes up the backbone of micrococcin P1 (118) and several other thiocillin antibiotics, which were later identified in extracts from cultured B. cereus by LC/MS and preparative HPLC. This sequence was followed by a cluster of genes (named $t c l$) whose gene products were implicated in the posttranslational modification of the initial 14-residue peptide. Of these, TclJ and TclN were found to be responsible for converting of all six cysteine residues to thiazoles (Scheme 2.1). The general sequence begins with condensation of the thiol of cysteine onto the carbonyl group of the preceding residue, followed by enzymatic dehydration and dehydrogenation to the corresponding thiazole. ${ }^{134,135}$ Studies suggested that Ser-1 and Ser10 provided the carbon framework of the core nitrogen-containing 6-membered ring. ${ }^{117}$ TclK and TclL were identified as dehydratases and are predicted to dehydrate Ser-1 and Ser-10.

Scheme 2.1. Biosynthesis of micrococcin P1 (118).
Once dehydrated, Ser-1 and Ser-10 undergo a [4+2] heterocyclization reaction to form the core nitrogen-containing 6-membered ring (Scheme 2.2). The enzyme TclM was recently identified to catalyze this transformation; however, it's unclear whether the reaction proceeds through a concerted hetero Diels-Alder reaction or via a stepwise mechanism. ${ }^{136-139}$ In the case of thiocillins, cleavage of the N -terminal leader is thought to assist in oxidation of the initial cyclo-adduct to the corresponding pyridine. In other thiopeptides, such as in thiostrepton, some of the N -terminal leader remains on the molecule, leading to a dehydropiperidine containing core. Following pyridine formation, TclK and TclL selectively dehydrate Thr-4 and Thr-13 to yield the dehydrobutyrine
residues found in micrococcin P 1 (118). It's unclear which $t c l$ gene is responsible for decarboxylation of Thr-14.

Scheme 2.2. A heterocyclization reaction completes the biosynthesis of micrococcin P1 (118).

The total syntheses of numerous thiopeptides have been accomplished over the past few decades. ${ }^{140-145}$ In general, the different peptide backbones of these natural products are readily synthesized using standard peptide chemistry and Hantzsch thiazole syntheses from natural amino acids. ${ }^{16,146-148}$ The challenge when synthesizing these molecules is in assembly of the heterocyclic cores. Strategies have involved either stepwise elaboration of
simple pyridine starting materials or pyridine synthesis from acyclic precursors using modified Chichibabin syntheses or hetero Diels-Alder reactions.

Bach and coworkers' concise synthesis of GE2270 A presents a strategy reliant on highly optimized, successive cross-coupling reactions of a trihalogenated pyridine (Scheme 2.3). ${ }^{142,149}$ Selective halogen-metal exchange led to organozinc adduct $\mathbf{1 2 4}$ followed by Negishi cross-coupling with iodide 123. ${ }^{150}$ Dibromide $\mathbf{1 2 5}$ then underwent another Negishi cross-coupling with organozinc 126, with selective coupling occurring at the most accessible bromide. Further elaboration of 127 led to stannane 128, which cyclized via an intramolecular Stille reaction. ${ }^{151}$ Deprotection and oxazoline formation furnished GE2270 A (121).

123

128

129
GE2270 A (121)

Scheme 2.3. Total synthesis of GE2270 A (121) by Bach and coworkers.
Ciufolini and coworkers took an alternative approach involving the use of a modified Chichibabin pyridine synthesis to access the core of micrococcin P1 (118, Scheme 2.4). ${ }^{143,152,153}$ Conjugate addition of enolate $\mathbf{1 3 0}$ into enone $\mathbf{1 3 1}$ proceeded smoothly with catalytic base to afford dione 132. Treatment with ammonium acetate induced cyclization to provide pyridine $\mathbf{1 3 3}$ after oxidation. Subsequent functional group
manipulation, coupling, and macrocyclization using an amide bond forming reaction completed the synthesis of micrococcin P1 (118).

32

136

134

Scheme 2.4. Ciufolini and coworkers' synthesis of micrococcin P1 (118).
Arndt and coworkers' sought to mimic nature and use a hetero Diels-Alder reaction to access the 3-hydroxypyridyl core of nosiheptide (120, Scheme 2.5). ${ }^{10,154,155}$ After much experimentation, alkyne $\mathbf{1 3 7}$ was selected for a hetero Diels-Alder reaction with diene $\mathbf{1 3 8}$ to afford 3-hydroxypyridne $\mathbf{1 4 0}$ in a single reaction. Hantzsch thiazole synthesis and several coupling reactions led to precyclized adduct 144. Formation of the large macrocyclic ring followed by macrothiolactonization was ultimately found to be the best cyclization strategy and led to a successful synthesis of nosiheptide (120).

Scheme 2.5. Arndt and coworkers' synthesis of nosiheptide (120).
Along with efforts directed toward the total synthesis of these natural products, others have focused on late-stage derivatization of thiopeptides isolated from robust fermentation processes. With the aim of improving the efficacy and aqueous solubility of GE2270 A (121), LaMarche and coworkers at Novartis synthesized hundreds of analogs bearing different functional groups (Scheme 2.6). ${ }^{156-158}$ The southern oxazoline residue of GE2270 A (121) was converted to an acyl azide that underwent Curtius rearrangement in
tert-butanol to afford a boc protected amine. ${ }^{159,160}$ Derivatives were synthesized using standard peptide coupling and with the aid of molecular modeling, lead compound 145 was found to have the best antibiotic profile. Further optimization led to diacid LFF571 (146), which retained potent activity against several cell lines, particularly Clostridium difficile, and remarkably increased aqueous solubility from <0.001 to $12 \mathrm{mg} / \mathrm{mL}$. LFF571 (146) remains the most soluble thiopeptide to date and has entered phase II clinical trials for the treatment of C. difficile infection. ${ }^{161,162}$

GE2270 A (121)
aq. pH 7.4 solubility:
$<0.001 \mathrm{mg} / \mathrm{mL}$

Lead Compound (145) aq. pH 7.4 solubility:
$0.3 \mathrm{mg} / \mathrm{mL}$

LFF571 (146) aq. pH 7.4 solubility:
$12 \mathrm{mg} / \mathrm{mL}$

Scheme 2.6. The GE2270 A analog LFF571 (146) entered phase II clinical trials for the treatment of C. difficile infection.

Fischbach and coworkers recently analyzed the genomes of hundreds of humanassociated bacteria and discovered over 3,000 known BGCs, including the BGCs required for the synthesis of thiopeptides. ${ }^{163}$ Extracts from 50 L cultures of Lactobacillus gasseri, a
vaginal isolate, were analyzed by LC/MS and were found to contain several structurally different thiopeptides. After extensive purification via HPLC, lactocillin (119) was isolated and characterized using 1D/2D NMR and mass spectrometry (Scheme 2.7). Lactocillin (119) was found to contain a 26 -membered macrocycle with four heterocycles, two natural threonine residues, and a single dehydrobutyrine residue. It also contained an indolyl-Scysteine moiety, two additional thiazoles that branched from the pyridyl core, and an alanine residue that terminated in a free carboxylic acid. Lactocillin (119) was tested and found to have an antibiotic activity spectrum similar to that of other thiopeptides. ${ }^{163}$

lactocillin (119)
Scheme 2.7. Retrosynthetic analysis of lactocillin (119).
Inspired by the work on LFF571 (146), we set out to develop a synthesis of lactocillin (119) with the intention of ultimately synthesizing novel thiopeptides with improved aqueous solubility and pharmacokinetic properties (Scheme 2.7). Retrosynthetic analysis broke the molecule into essentially three core fragments that were predicted to be brought together using an amide bond coupling reaction, a cross-coupling reaction, and a nitrile-amino thiol condensation. We envisioned this approach enabling the synthesis of a
large library of novel thiopeptides by modifying each fragment and bringing them together in a systematic manner.

The northern fragment of lactocillin (119) is the predicted pharmacophore and can be found in related natural products including thiostrepton, micrococcin (118), and nosiheptide (120). ${ }^{120,126,143,164}$ Traditionally, this fragment was synthesized starting from (L)-threonine (147, Scheme 2.8). Protection of the amine with di-tert-butyldicarbonate and the secondary alcohol with tert-butyldimethylsilyl chloride yielded protected threonine derivative 148. The free carboxylic acid was activated with $\mathrm{N}, \mathrm{N}^{\prime}$ dicyclohexylcarbodiimide and N -hydroxysuccinimide followed by conversion to the primary amide with aqueous ammonia. Lawessons reagent thiolated the primary amide to the corresponding thioamide and a Hantzch thiazole synthesis with methyl bromopyruvate was used to afford amino alcohol $\mathbf{1 5 0}$ after deprotection with anhydrous hydrochloric acid. ${ }^{147,165,166}$

Scheme 2.8. Previous synthesis of $\mathbf{1 5 0}$ en route to the northern fragment of lactocillin (119).

While current routes to $\mathbf{1 5 0}$ are high yielding and relatively concise, they are cumbersome to run on scales exceeding 10 grams. This is mostly due to the physical state of each intermediate and the use of reagents that are difficult to remove during purification. With the ultimate goal of synthesizing a large library of novel thiopeptides, we wanted to develop a new route to $\mathbf{1 5 0}$ that could easily be run on large scale (Scheme 2.9). Protection of (L)-threonine (147) as a tert-butylcarbamate and dimethyl oxazolidine group improved the crystalline properties of all subsequent intermediates, which were purified simply by recrystallization or trituration. By instead forming the mixed anhydride of $\mathbf{1 5 1}$ with ethyl chloroformate, we overcame purification issues that involved the removal of large amounts of N, N '-dicyclohexylurea when synthesizing the primary amide of 151.

[7 steps, chromatography free]

Scheme 2.9. Improved synthesis of $\mathbf{1 5 0}$ using a nitrile-amino thiol condensation.
Although originally discovered in the 1950's, the mild reaction between nitriles and amino thiols remains an underutilized method for the synthesis of thiazolines and thiazoles in total synthesis. ${ }^{167,168}$ This method provides an attractive alternative to the Hantzch thiazole synthesis and does not require the use of reagents that complicate purification such
as Lawessons reagent and halogenated pyruvates. This was demonstrated in the synthesis of thiazole 154 (Scheme 2.9). The primary amide of $\mathbf{1 5 1}$ was readily dehydrated to nitrile 152 with cyanuric chloride, an inexpensive reagent used extensively as starting material in the synthesis of triazine-based pesticides. ${ }^{169}$ Nitrile 152 was treated with (L)-cysteine methyl ester hydrochloride (153) in a $1.5: 1$ solution of isopropanol and 0.1 M aqueous pH 7 phosphate buffer at $50^{\circ} \mathrm{C}$ to afford the corresponding thiazoline. The oxidation of thiazolines to thiazoles is well studied and many methods exist for this transformation. ${ }^{170-}$ ${ }^{174}$ The thiazoline of $\mathbf{1 5 4}$ was oxidized to the thiazole in a one-pot addition/elimination sequence with bromotrichloromethane and 1,8-diazabicycloundec-7-ene. Pure amino alcohol $\mathbf{1 5 0}$ was isolated after deprotection with aqueous hydrochloric acid. Although this new route involved an extra step, $\mathbf{1 5 0}$ was easily synthesized in 55% overall yield from (L)-threonine (147) on 30 gram scale without silica gel column chromatography.

The free amine of $\mathbf{1 5 0}$ was coupled to another molecule of acid $\mathbf{1 5 1}$ under standard conditions and the secondary alcohol was selectively eliminated with 1-ethyl-3-(3dimethylaminopropyl)carbodiimide hydrochloride ($\mathrm{EDC} \cdot \mathrm{HCl}$) activated with copper(I) chloride to give the desired (E)-alkene 156 (Scheme 2.10). ${ }^{175,176}$ This transformation worked well on several hundred milligram scale; however, any reaction larger than one gram would typically yield only a small amount of product. It's presumed that the copper salts generated throughout the course of the reaction chelate to either the starting material or product, which is then lost during workup. Although there are several other methods that exist for the synthesis of dehydro amino acids, none of them provided the desired (E)alkene in good yield on large scale. ${ }^{141,153,154,177}$ A simple solution was devised that involved conversion of the secondary alcohol to the tert-butylcarbonate followed by in situ
elimination with 1,8-diazabicycloundec-7-ene to provide $\mathbf{1 5 6}$ as a single olefin isomer on 20 gram scale. ${ }^{178}$ Saponification of methyl ester 156 and coupling to the amino nitrile of threonine 157 , derived from acid deprotection of nitrile 151 , provided the protected northern fragment 158.

Scheme 2.10. Synthesis of protected northern fragment 158.

Unfortunately, $\mathbf{1 5 8}$ was found to decompose upon treatment with either aqueous hydrochloric acid or trifluoroacetic acid (Scheme 2.11). Protecting group strategies of nitrile containing peptides have not been well studied, but it's believed that the nitrile may be ionizing during the reaction. The ketal was removed by treatment of $\mathbf{1 5 8}$ with catalytic para-toluenesulfonic acid; however, the amine was still unable to be deprotected under a variety of known conditions. ${ }^{179-182}$

160

reagents

$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$

159

Scheme 2.11. Failed deprotection of protected northern fragment 158.
It was predicted that a primary amide should survive deprotection and could later be dehydrated to the desired nitrile (Scheme 2.12). Therefore, saponification of 156 and coupling of threonine methyl ester (161) provided peptide 162, which was treated with
ammonia to afford the protected primary amide. The northern fragment was successfully deprotected with aqueous hydrochloric acid to give amino alcohol 164.

Scheme 2.12. Synthesis of the deprotected northern fragment 164.
Amino alcohol 164 was to be coupled to the free acid of the pyridyl core 165, synthesized via a condensation between nitrile 166 and amino thiol 167 (Scheme 2.13). A condensation between commercially available pyridine 168 and (L)-cysteine (169) afforded thiazole $\mathbf{1 7 0}$ after oxidation of the intermediate thiazoline. Protection of the free acid as a tert-butyl ester and oxidation to the pyridine N -oxide 171 proceeded smoothly. ${ }^{183}$ Pyridine N-oxide 171 was subjected to a modified Reissert reaction with trimethylsilyl cyanide and diethylcarbamoyl chloride to afford the nitrile 166 as a crystalline off-white solid. ${ }^{184}$ This sequence was robust with all intermediates being crystallized directly from the reaction mixture or purified via trituration.

Scheme 2.13. Synthesis of the nitrile 166.
With nitrile 166 in hand, work began on the synthesis of the alanine derived southern fragment of lactocillin (119, Scheme 2.14). This fragment was synthesized in a very similar manner to the northern fragment and began with protection of (L)-cysteine hydrochloride (172) as a dimethylthiazolidine. The amine was protected once again with di-tert-butyldicarbonate and the free acid $\mathbf{1 7 3}$ was dehydrated via the primary amide using cyanuric chloride to provide nitrile 174. Condensation with (L)-cysteine methyl ester hydrochloride (153) afforded the thiazole 175, following oxidation and saponification of
the methyl ester. (L)-Alanine methyl ester hydrochloride (176) was coupled to the free acid 175 under standard conditions to yield the protected southern fragment 177.

Scheme 2.14. Synthesis of protected southern fragment 177.
Both the tert-butylcarbamate and ketal were removed with trifluoroacetic acid followed by treatment with a $1: 1$ solution of ethanol and water (Scheme 2.15). The amino thiol 167 condensed onto nitrile 166 in the presence of triethylamine and tris(2carboxyethy1)phosphine hydrochloride in a mixed aqueous solvent system, which helped to solubilize 166. Tris(2-carboxyethy)phosphine hydrochloride is a stoichiometric reductant of disulfide bonds and was used to prevent the in situ oxidation of amino thiol 167 throughout the course of the reaction. ${ }^{185}$ Finally, oxidation of thiazoline 178 and cleavage of the tert-butyl ester afforded the pyridyl core $\mathbf{1 6 5}$ as a pale yellow solid after trituration with methyl tert-butyl ether.

Scheme 2.15. Synthesis of the pyridyl core of lactocillin (119).
The coupling of amino alcohol 164 and free acid 165 proceeded well under standard HATU conditions with amide $\mathbf{1 7 9}$ being precipitated directly from the reaction mixture (Scheme 2.16). ${ }^{186}$ Amide $\mathbf{1 7 9}$ was found to be incredibly difficult to work with as a result of only being slightly soluble in dimethylformamide and dimethylsulfoxide. Attempts to dehydrate the primary amide to the desired nitrile were thwarted by an inability to effectively monitor and workup these reactions. Global silylation of $\mathbf{1 7 9}$ provided a solution to the solubility problems that we were experiencing. With both alcohols now protected, the primary amide was selectively dehydrated to nitrile 181 using Burgess reagent. ${ }^{187}$

164

179

Scheme 2.16. Coupling of the northern fragment 164 and the pyridyl core $\mathbf{1 6 5}$.
Completing the heterocyclic core of lactocillin (119) involved synthesis of stannane
191 (Scheme 2.18). Thiazoles bearing bromine at the 4-position are difficult to synthesize.
They are typically accessed by selective bromination at the 5-position followed by a baseinduced 1,2-rearrangement of bromine to the 4-position, a process called a "halogen
dance. ${ }^{188}$ Alternatively, a Hunsdiecker reaction from a carboxylic acid or ester at the 4position can lead to 4 -halo thiazoles. ${ }^{189,190}$ In the synthesis of 191, we chose a different approach that involved a Grignard reaction between dibromide 187 and enantiopure N -tertbutanesulfinyl imine 185 (Scheme 2.17).

Scheme 2.17. Preparation of bromide 188.
Ellman's N -tert-butanesulfinyl imine chemistry is widely used in the synthesis of chiral amines. ${ }^{191} \mathrm{~N}$-tert-butanesulfinyl imines are synthesized starting from aldehydes using commercially available, enantiopure 2-methyl-2-propanesulfinamide. Monosilylation of ethylene glycol $\mathbf{1 8 2}$ afforded an alcohol, which was oxidized under Swern conditions to provide aldehyde $\mathbf{1 8 3}$ (Scheme 2.17). ${ }^{81}$ Imine formation occurred with (R)-(+)-2-methyl-2-propanesulfinamide (184) in the presence of copper (II) sulfate to provide N -tert-butanesulfinyl imine $185 .{ }^{192}$ Known dibromide 187 was accessed in a single
reaction using phosphorous pentoxide and tetrabutylammonium bromide from commercially available 2,4-thiazolidinedione 186.

Scheme 2.18. Preparation of stannane 191.
Selective magnesium-halogen exchange occurred at the 2-position using isopropylmagnesium chloride-lithium chloride complex and the resulting Grignard reagent was added to a solution of $\mathbf{1 8 5}$ in methylene chloride at $-50^{\circ} \mathrm{C}$ to afford the protected amine $\mathbf{1 8 8}$ as a $4: 1$ mixture of separable diastereomers. ${ }^{149,193}$ The new stereocenter was confirmed by X-ray crystallography of the free base of deprotected amine 192. Coupling of free amine $\mathbf{1 8 9}$ to acid $\mathbf{1 7 3}$ yielded the bromide 190 , which was transmetallated with hexamethyldistannane and tetrakis(triphenylphosphine) palladium(0) under standard conditions to afford stannane 191 (Scheme 2.18). ${ }^{142,149,194}$

Scheme 2.19. Cross coupling of chloride 181 and stannane 191 yields precyclized lactocillin (119).

Cross-coupling of chloride 181 and stannane 191 was achieved using tris(dibenzylideneacetone)dipalladium(0) (5 mol \%) and cyclohexyl-JohnPhos (20 $\mathrm{mol} \%$) in toluene at $110^{\circ} \mathrm{C}$ (Scheme 2.19). While other palladium/ligand combinations were tried, only tris(dibenzylideneacetone)dipalladium(0)/cyclohexyl-JohnPhos reliably provided 193. ${ }^{195-197}$ Interestingly, significantly destannylation of 191 was observed if the reaction was run in any solvent other than toluene. With 193 in hand, work is ongoing to selectively deprotect the tert-butylcarbamate and ketal to access the amino thiol 194. Issues regarding the nitrile's stability toward acidic conditions are currently being encountered, similar to when we attempted to deprotect the northern fragment in the presence of a nitrile earlier in
the synthesis. It may be necessary to protect nitrogen as a different functional group that can be removed under neutral or basic conditions, such as a 9fluorenylmethyloxycarbamate or a nosyl group. ${ }^{198,199}$ Once deprotected, amino thiol $\mathbf{1 9 4}$ is predicted to undergo an intramolecular condensation with the northern nitrile and close the macrocycle. ${ }^{200}$ Once formed, both silyl ethers need to be removed and the methyl ester needs to be hydrolyzed prior to forming the thioester via an anticipated Mitsunobu reaction with thioacetate 197 (Scheme 2.20). ${ }^{201}$

Scheme 2.20. Deprotection and thioester formation will complete the synthesis of lactocillin (119).

While working on the total synthesis of lactocillin (119), we were also working towards a simplified thiopeptide (198) that could be advanced as new edited thiopeptides
with improved physiochemical properties (Scheme 2.21). The simplified thiopeptide (198) retains the pharmacophore of this subfamily of thiopeptides, but has a free primary alcohol and ester, both of which can be used as handles for analog synthesis. The core thiazoline found in lactocillin (119) was also oxidized to a thiazole to increase stability. Retrosynthetic analysis revealed four main fragments, three of which were accessed using the chemistry developed earlier during the approach to the total synthesis of lactocillin (119).

lactocillin (119)
simplified thiopeptide (198)

150

from 188

Scheme 2.21. Retrosynthetic analysis of simplified thiopeptide (198).
The pyridyl core of simplified thiopeptide (198) was synthesized from a condensation between pyridine 166 and (L)-cysteine methyl ester hydrochloride (153) followed by oxidation with manganese(II) oxide (Scheme 2.22). Interestingly, significant incorporation of trichloromethane was observed when using bromotrichloromethane and 1,8-diazabicycloundec-7-ene to oxidize the intermediate thiazoline. Stille cross-coupling
with stannane 200, derived from transmetallation of Ellman adduct 188, proceeded smoothly with the same conditions used in the synthesis of 193.

Scheme 2.22. Synthesis of the core of simplified thiopeptide (198).
Selective deprotection of the tert-butyldimethylsilyl ether and tert-butylcarbamate in the presence of the tert-butyl ester was accomplished with anhydrous hydrochloric acid and the free amine was coupled to the free acid of peptide 202, readily synthesized from free amine 150 and saponified 156 (Scheme 2.23). Simultaneous deprotection of the tertbutyl ester, tert-butylcarbamate, and ketal was achieved using aqueous trifluoroacetic acid to afford amino acid 204. HATU mediated coupling in a 5 mM dimethylformamide solution furnished the simplified thiopeptide (198) as a white solid. Work has begun to synthesize an initial library of analogs with the goal of improving aqueous solubility. We
are also working closely with collaborators in molecular modeling to design new thiopeptides that may be more potent or have improved pharmacokinetic properties.

Scheme 2.23. Completing the synthesis of simplified thiopeptide (198).

Experimental Section

General Information

All reactions were performed in flame dried round bottom fitted with rubber septa under a positive pressure of argon or nitrogen, unless otherwise indicated. Air and moisture sensitive liquids and solutions were transferred via syringe or cannula. Organic solutions were concentrated by rotary evaporation at 20 torr in a water bath heated to $40^{\circ} \mathrm{C}$ unless otherwise noted. Diethyl ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$, methylene chloride $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, tetrahydrofuran (THF) and toluene (PhMe) were purified using a Pure-Solv MD-5 Solvent Purification System (Innovative Technology). Acetonitrile (MeCN), N,N,-dimethylformamide (DMF), and methanol (MeOH) were purchased from Acros (99.8%, anhydrous) and ethanol (EtOH) was purchased from Pharmco-Aaper (200 proof, absolute). The molarity of n butyllithium was determined by titration against diphenylacetic acid. ${ }^{103}$ All other reagents were used directly from the supplier without further purification unless otherwise noted. Analytical thin-layer chromatography (TLC) was carried out using 0.2 mm commercial silica gel plates (silica gel 60, F254, EMD chemical) and visualized using a UV lamp and/or aqueous ceric ammonium molybdate (CAM) or aqueous potassium permanganate $\left(\mathrm{KMnO}_{4}\right)$ stain, or ethanolic vanillin. Infrared spectra were recorded on a Nicolet 380 FTIR using neat thin film technique. High-resolution mass spectra (HRMS) were recorded on a Karatos MS9 and are reported as m/z (relative intensity). Accurate masses are reported for the molecular ion $[\mathrm{M}+\mathrm{Na}]^{+},[\mathrm{M}+\mathrm{H}]^{+},[\mathrm{M}]$ or $[\mathrm{M}-\mathrm{H}]^{-}$. Nuclear magnetic resonance spectra $\left({ }^{1} \mathrm{H}-\mathrm{NMR}\right.$ and $\left.{ }^{13} \mathrm{C}-\mathrm{NMR}\right)$ were recorded with a Varian Gemini [($400 \mathrm{MHz},{ }^{1} \mathrm{H}$ at 400 MHz , ${ }^{13} \mathrm{C}$ at 100 MHz$),\left(500 \mathrm{MHz},{ }^{1} \mathrm{H}\right.$ at $500 \mathrm{MHz},{ }^{13} \mathrm{C}$ at 125 MHz$),\left(600 \mathrm{MHz},{ }^{1} \mathrm{H}\right.$ at 600 MHz , ${ }^{13} \mathrm{C}$ at 150 MHz$\left.)\right]$. For CDCl_{3} solutions the chemical shifts are reported as parts per million (ppm) referenced to residual protium or carbon of the solvent; $\mathrm{CHCl}_{3} \delta \mathrm{H}(7.26 \mathrm{ppm})$ and $\mathrm{CDCl}_{3} \delta \mathrm{D}(77.0 \mathrm{ppm})$. For $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ solutions the chemical shifts are reported as parts
per million (ppm) referenced to residual protium or carbon of the solvents; $\left(\mathrm{CD}_{3}\right)(-$ $\left.\mathrm{CHD}_{2}\right) \mathrm{SO} \delta \mathrm{H}(2.50 \mathrm{ppm})$ or $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO} \delta \mathrm{C}(39.5 \mathrm{ppm})$. For $\mathrm{CD}_{3} \mathrm{OD}$ solutions the chemical shifts are reported as parts per million (ppm) referenced to residual protium or carbon of the solvents; $\mathrm{CHD}_{2} \mathrm{OD} \delta \mathrm{H}(3.31 \mathrm{ppm})$ or $\mathrm{CD}_{3} \mathrm{OD} \delta \mathrm{C}(49.0 \mathrm{ppm})$. Coupling constants are reported in Hertz (Hz). Data for ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra are reported as follows: chemical shift $(\mathrm{ppm}$, referenced to protium; $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{td}=$ triplet of doublets, $\mathrm{ddd}=$ doublet of doublet of doublets, $\mathrm{ddq}=$ doublet of doublet of quartets, $\mathrm{bs}=$ broad singlet, $\mathrm{bd}=$ broad doublet, $\mathrm{m}=$ multiplet, coupling constant (Hz), and integration). Melting points were measured on a MEL-TEMP device without corrections.

To a stirred solution of 2-chloro-3-cyanopyridine $\mathbf{1 6 8 (2 0 \mathrm { g } , 1 4 4 \mathrm { mmol } , 1 . 0 \text { equiv.) }}$ in 1.5:1 IPA:0.1 M pH 7 phosphate buffer ($289 \mathrm{~mL}, 0.5 \mathrm{M}$) was added solid L-cysteine (21 $\mathrm{g}, 173 \mathrm{mmol} 1.2$ equiv.). The reaction vessel was sparged with nitrogen for 10 minutes and sealed with a yellow cap. The heterogenous reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 12 hours. The crude reaction was concentrated in vacuo to remove IPA and the resulting aqueous mixture was acidified with conc. HCl and the solids were collect by filtration. The filter cake was washed with $1.0 \mathrm{M} \mathrm{HCl}(2 \times 100 \mathrm{~mL})$ and dried under vacuum at $50^{\circ} \mathrm{C}$ to yield the thiazoline $\mathbf{S 6}(31.5 \mathrm{~g}, 130 \mathrm{mmol}, 90 \%)$ as a white solid (m.p. $156-158^{\circ} \mathrm{C}$).
$\mathbf{R}_{\mathbf{f}}=0.13$ (silica gel, $\left.10: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}+2 \% \mathrm{AcOH}\right) ;{ }^{1} \mathbf{H}-\mathrm{NMR}\left(600 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right):$ $\delta 8.55(\mathrm{dd}, J=4.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{dd}, J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{dd}, J=7.6,4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.32(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-3.77(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{dd}, J=11.2,8.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-$ NMR (150 MHz, (CD $\left.\left.)_{2}\right)_{2} \mathrm{SO}\right): \delta 171.4,164.7,151.4,147.5,140.0,128.9,123.4,78.4,36.4$; IR (film, cm^{-1}): 3134, 1744; HRMS (ESI): calc. for $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S}$ [M-H]: 240.9844, obs. 240.9848.

To a stirred solution of $\mathbf{S 6}(31.5 \mathrm{~g}, 130 \mathrm{mmol} .1 .0$ equiv. $)$ in DMF ($130 \mathrm{~mL}, 1.0 \mathrm{M}$) was added neat bromotrichloromethane ($19.1 \mathrm{~mL}, 38.6 \mathrm{mmol}, 1.5$ equiv.) and neat DBU ($40.7 \mathrm{~mL}, 273 \mathrm{mmol}, 2.1$ equiv.). The dark homogeneous reaction was stirred at $50^{\circ} \mathrm{C}$ for 2 hours. Ice water $(500 \mathrm{~mL})$ was added and the aqueous mixture was acidified with 5.0 M HCl . The solids were collected by filtration, washed with $1.0 \mathrm{M} \mathrm{HCl}(2 \times 100 \mathrm{~mL})$, and dried under vacuum at $50^{\circ} \mathrm{C}$ to yield the thiazole $\mathbf{1 7 0}(27.5 \mathrm{~g}, 114 \mathrm{mmol}, 88 \%)$ as an off white solid (m.p. $>200^{\circ} \mathrm{C}$).
$\mathbf{R}_{\mathbf{f}}=0.27$ (silica gel, $\left.10: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}+2 \% \mathrm{AcOH}\right) ;{ }^{1} \mathbf{H}-\mathrm{NMR}\left(600 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right):$ $\delta 8.70(\mathrm{~s}, 1 \mathrm{H}), 8.62(\mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.57(\mathrm{dd}, J=4.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{dd}, J=$ 7.8, 4.6 Hz, 1H); ${ }^{13} \mathbf{C}-$ NMR (150 MHz, $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): 162.4,161.6,151.3,148.0,147.6$, 140.2, 131.1, 128.3, 124.3; IR (film, cm^{-1}): 3133, 1721; HRMS (ESI): calc. for $\mathrm{C}_{9} \mathrm{H}_{5} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}-\mathrm{H}]^{-}: 238.9687$, obs. 238.9689.

To a stirred solution of $\mathbf{1 7 0}(10 \mathrm{~g}, 41.6 \mathrm{mmol}, 1.0$ equiv.) in a $3: 1$ solution of t BuOH :pyridine ($138 \mathrm{~mL}, 0.3 \mathrm{M}$) was added solid p-toluenesulfonyl chloride ($15.84 \mathrm{~g}, 83$ mmol, 2.0 equiv.). The heterogeneous reaction mixture was stirred at $23^{\circ} \mathrm{C}$ for 15 hours. Ice water $(500 \mathrm{~mL})$ was added and the solids were collected by filtration. The filter cake was washed with water $(2 \times 100 \mathrm{~mL})$ and dried under vacuum at $50^{\circ} \mathrm{C}$ to yield the t-butyl ester $\mathbf{S} 7(10.36 \mathrm{~g}, 34.9 \mathrm{mmol}, 84 \%)$ as a brown powder (m.p. $\left.115-117^{\circ} \mathrm{C}\right)$.
$\mathbf{R}_{\mathbf{f}}=0.58$ (silica gel, $2: 1$ hexanes:EtOAc); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.81-8.79(\mathrm{~m}$, $1 \mathrm{H}), 8.47(\mathrm{dd}, J=4.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=7.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.63(\mathrm{~s}$, 9H); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 161.7,160.3,150.3,148.5,148.2,139.8,128.3$, 128.2, 122.8, 82.3, 28.2; IR (film, cm^{-1}): 1723; HRMS (ESI): calc. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 319.0278$, obs. 319.0274.

To a stirred solution of $\mathbf{S} 7(10.36 \mathrm{~g}, 34.9 \mathrm{mmol}, 1.0$ equiv. $)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(175 \mathrm{~mL}, 0.2$ M) was added powdered urea-hydrogen peroxide addition complex ($6.57 \mathrm{~g}, 69.8 \mathrm{mmol}$, 2.0 equiv.). The reaction vessel was cooled in an ice water bath followed by dropwise addition of neat trifluoroacetic anhydride ($9.71 \mathrm{~mL}, 69.8 \mathrm{mmol}, 2.0$ equiv.) over 30 minutes. The pale yellow heterogeneous reaction was allowed to warm to $23^{\circ} \mathrm{C}$ and stirred for 12 hours. The crude reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ and carefully quenched with 10% aq. $\mathrm{K}_{2} \mathrm{CO}_{3}(200 \mathrm{~mL})$. The organic layer was washed successively with water ($3 \times 100 \mathrm{~mL}$), sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(2 \times 100 \mathrm{~mL})$, and brine ($1 \times 50 \mathrm{~mL}$). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to yield pyridine N -oxide 171 (10.05 g, $32.1 \mathrm{mmol}, 92 \%$) as a yellow solid (m.p. $134-136^{\circ} \mathrm{C}$).
$\mathbf{R}_{\mathbf{f}}=0.80$ (silica gel, $\left.10: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}\right) ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.45-8.43$ (dd, $J=6.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.34-8.31(\mathrm{dd}, J=8.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.32(\mathrm{dd}, J$ $=8.2,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.62(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 160.0,159.9,148.8$, 140.4, 131.6, 128.8, 12f6.8, 122.9, 82.6, 28.1; IR (film, cm^{-1}): 1725; HRMS (ESI): calc. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 335.0228$, obs. 335.0221.

To a stirred solution of $\mathbf{1 7 1}$ ($6.3 \mathrm{~g}, 20.1 \mathrm{mmol}, 1.0$ equiv.) in MeCN ($134 \mathrm{~mL}, 0.15$ M) was added neat diethylcarbamoyl chloride ($7.66 \mathrm{~mL}, 60.4 \mathrm{mmol}, 3.0$ equiv.) and neat trimethylsilyl cyanide ($8.19 \mathrm{~mL}, 60.4 \mathrm{mmol}, 3.0$ equiv.). The dark homogeneous reaction was heated to reflux for 15 hours. The crude reaction was cooled to $23^{\circ} \mathrm{C}$ and 10% aq. $\mathrm{K}_{2} \mathrm{CO}_{3}(200 \mathrm{~mL})$ was added. The solids were collected by filtration, washed with water (2 x 100 mL$)$, and dried under vacuum at $50^{\circ} \mathrm{C}$ to yield the nitrile $166(4.92 \mathrm{~g}, 15.3 \mathrm{mmol}$, 76%) as brown solid (m.p. $151-154{ }^{\circ} \mathrm{C}$).
$\mathbf{R}_{\mathbf{f}}=0.69$ (silica gel, 2:1 hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.01(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 8.30(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.64(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 160.0,159.6,149.2,148.7,140.4,133.0,131.6,129.4,127.2,115.6,82.8,28.2$; IR (film, cm^{-1}): 2363, 1727; HRMS (ESI): calc. for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{ClN}_{3} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 344.0231$, obs. 344.0227.

To a stirred solution of $\mathbf{1 6 6}(1.0 \mathrm{~g}, 3.11 \mathrm{mmol}, 1.0$ equiv.) in 3:3:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}(31 \mathrm{~mL}, 0.1 \mathrm{M})$ was added $\mathbf{1 6 7}(1.44 \mathrm{~g}, 3.73 \mathrm{mmol}, 1.2$ equiv.), solid TCEP $\cdot \mathrm{HCl}(223 \mathrm{mg}, 0.78 \mathrm{mmol}, 0.25$ equiv.), and neat TEA ($2.18 \mathrm{~mL}, 15.5 \mathrm{mmol}, 5.0$ equiv.). The reaction vessel was sparged with nitrogen for 10 minutes and sealed with a yellow cap. The homogeneous amber reaction was stirred at $50^{\circ} \mathrm{C}$ for 12 hours. The reaction was diluted with EtOAc (100 mL) and washed with $1.0 \mathrm{M} \mathrm{HCl}(2 \times 50 \mathrm{~mL})$, water $(1 \times 50 \mathrm{~mL})$, brine $(1 \times 25 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give the thiazoline $\mathbf{1 7 8}(1.74 \mathrm{~g}, 2.93 \mathrm{mmol}, 94 \%)$ as an amber oil. The product was used without further purification. An analytical sample was obtained with silica gel column chromatography using 5:1 to $1: 1$ hexanes:EtOAc.
$\mathbf{R}_{\mathbf{f}}=0.52$ (silica gel, $1: 1$ hexanes:EtOAc); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) : $\delta 8.91(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{dt}, J=2.4,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.06(\mathrm{dd}, J=6.0,11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{ddd}, J=1.6,7.4,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.74$ (m, 4H), $1.60(\mathrm{~s}, 9 \mathrm{H}), 1.51(\mathrm{dd}, J=1.9,7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $173.1,172.1,172.0,160.8,160.3,160.1,150.6,149.5,148.7,147.1,140.2,128.7,124.0$, 120.6, 82.4, 78.2, 52.4, 47.9, 42.8, 37.8, 28.0, 18.4; IR (film, cm^{-1}): 3123, 2348, 1726, 1656; HRMS (ESI): calc. for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{ClN}_{5} \mathrm{O}_{5} \mathrm{~S}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 616.0520, obs. 616.0517.

To a stirred solution of $\mathbf{1 7 8}\left(1.74 \mathrm{~g}, 2.93 \mathrm{mmol}, 1.0\right.$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($30 \mathrm{~mL}, 0.1$ M) was added neat bromotrichloromethane ($0.346 \mathrm{~mL}, 3.5 \mathrm{mmol}, 1.2$ equiv.). The reaction vessel was cooled in an ice water bath before neat $\mathrm{DBU}(0.535 \mathrm{~mL}, 3.5 \mathrm{mmol}, 1.2$ equiv.) was added dropwise. The pale yellow reaction was warmed to $23{ }^{\circ} \mathrm{C}$ and stirred for 30 minutes. The reaction was diluted with $1.0 \mathrm{M} \mathrm{HCl}(100 \mathrm{~mL})$ and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$. The combined organic layers were washed with water (1 $\times 50 \mathrm{~mL}$), brine ($1 \times 50 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The crude solid was triturated with MTBE (100 mL) to give $\mathbf{S 8}(1.69 \mathrm{~g}, 2.87 \mathrm{mmol}, 98 \%)$ as a yellow solid. (m.p. $>200^{\circ} \mathrm{C}$ (decomp.))
$\mathbf{R}_{\mathbf{f}}=0.64$ (silica gel, $1: 1$ hexanes:EtOAc); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.96(\mathrm{dd}, J=$ $1.3,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{dd}, J=3.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=1.6 \mathrm{hz}, 1 \mathrm{H}), 8.17$ $(\mathrm{s}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{p}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~s}, 9 \mathrm{H}), 1.57$ $(\mathrm{d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 173.2,167.0,162.2,161.1,160.4$, $160.2,150.8,150.3,150.2,148.7,147.5,140.8,129.0,128.5,124.3,120.4,118.7,82.5$, 52.5, 48.0, 28.2, 18.5 ; IR (film, cm^{-1}): 3123, 2982, 1744, 1723, 1681; HRMS (ESI): calc. for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{ClN}_{5} \mathrm{O}_{5} \mathrm{~S}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 614.0360$, obs. 614.0364.

Solid $\mathbf{S 8}$ ($1.69 \mathrm{~g}, 2.85 \mathrm{mmol}, 1.0$ equiv.) was added to a stirred solution of $3: 1$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:TFA ($28.5 \mathrm{~mL}, 0.1 \mathrm{M}$). The pale yellow homogeneous reaction was stirred at 23 ${ }^{\circ} \mathrm{C}$ for 12 hours. The reaction was concentrated in vacuo to give a yellow solid. The crude solid was triturated with MTBE (100 mL) to give $\mathbf{1 6 5}(1.44 \mathrm{~g}, 2.68 \mathrm{mmol}, 94 \%)$ as a dark yellow solid. (m.p. $>200^{\circ} \mathrm{C}($ decomp.))
${ }^{\mathbf{1}} \mathbf{H}$-NMR ($\left.600 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta 8.86(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.74(\mathrm{~s}, 1 \mathrm{H}), 8.71(\mathrm{~d}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 8.59(\mathrm{~s}, 1 \mathrm{H}), 8.40(\mathrm{~s}, 1 \mathrm{H}), 8.36(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H})$, $1.46(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta 172.7,166.4,161.8,161.3$, $160.2,160.0,150.1,149.9,149.4,147.5,146.6,140.9,130.9,128.5,125.2,122.0,119.0$, 52.1, 47.8, 17.0; HRMS (ESI): calc. for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{ClN}_{5} \mathrm{O}_{5} \mathrm{~S}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 557.9738, obs. 557.9734.

To a stirred solution of $\mathbf{S 9}^{202}(25 \mathrm{~g}, 96.0 \mathrm{mmol}, 1.0$ equiv.) in DMF ($96 \mathrm{~mL}, 1.0 \mathrm{M}$) was added solid cyanuric chloride ($8.85 \mathrm{~g}, 48.0 \mathrm{mmol}, 0.5$ equiv.). The pale brown homogeneous reaction was stirred at $23{ }^{\circ} \mathrm{C}$ for 30 minutes. Ice water (500 mL) was added and the solids were collect by filtration. The filter cake was washed with water ($2 \times 50 \mathrm{~mL}$) and dried in vacuo to yield the nitrile $174(20.7 \mathrm{~g}, 85.0 \mathrm{mmol}, 90 \%)$ as a white solid (m.p. $80-83{ }^{\circ} \mathrm{C}$). An analytical sample was obtained with silica gel column chromatography using 5:1 to 2:1 hexanes:EtOAc.
$\mathbf{R}_{\mathbf{f}}=0.69$ (silica gel, 2:1 hexanes:EtOAc); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.13(\mathrm{bs}, 1 \mathrm{H})$, $3.28(\mathrm{dd}, J=5.9,12.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{bs}, 3 \mathrm{H}), 1.73(\mathrm{bs}, 3 \mathrm{H}), 1.48$ (s, 9H); ${ }^{13} \mathbf{C - N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 150.7,118.1,82.3,54.3,31.2,30.0,29.0,28.2 ;$ IR (film, cm^{-1}): 3132, 2980, 2936, 2360, 1705; HRMS (ESI): calc. for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 265.0981$, obs. 265.0983.

To a stirred solution of $\mathbf{1 7 4}(10 \mathrm{~g}, 41.3 \mathrm{mmol}, 1.0$ equiv.) in 1.5:1 IPA:0.1 M pH 7 phosphate buffer ($200 \mathrm{~mL}, 0.2 \mathrm{M}$) was added solid L-cysteine methyl ester hydrochloride $(8.50 \mathrm{~g}, 49.5 \mathrm{mmol}, 1.2$ equiv.). The reaction vessel was sparged with nitrogen for 10 minutes and sealed with a yellow cap. The clear homogeneous reaction was stirred at 50 ${ }^{\circ} \mathrm{C}$ for 15 hours. The reaction was concentrated to remove IPA and the aqueous layer was extracted with EtOAc ($3 \times 200 \mathrm{~mL}$). The combined organic layers were washed with 1.0 M HCl (2 x 100 mL), water ($1 \times 100 \mathrm{~mL}$), brined ($1 \times 50 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give the thiazoline $\mathbf{S 1 0}$ ($13.4 \mathrm{~g}, 37.1 \mathrm{mmol}, 90 \%$) as a clear oil that solidified upon standing. The crude material was used without further purification. An analytical sample was obtained with silica gel column chromatography using 5:1 to $1: 1$ hexanes:EtOAc.
$\mathbf{R}_{\mathbf{f}}=0.50$ (silica gel, $1: 1$ hexanes:EtOAc); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.13(\mathrm{~m}, 2 \mathrm{H})$, $3.81(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{bs}, 1 \mathrm{H}), 3.09(\mathrm{bs}, 1 \mathrm{H})$, 1.94 (bs, 3H), 1.77 (s, 3H), 1.42 (bs, 9H); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 179.4,170.7$, $151.5,80.7,78.3,65.3,52.4,34.8,32.6,28.7,28.0,27.6$; IR (film, $\left.\mathrm{cm}^{-1}\right): 3134,2978,1745$, 1702; HRMS (ESI): calc. for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 383.1070$, obs. 383.1071 .

To a stirred solution of $\mathbf{S 1 1}$ ($13.4 \mathrm{~g}, 37.2 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($372 \mathrm{~mL}, 0.1$ M) was added neat bromotrichloromethane ($4.40 \mathrm{~mL}, 44.6 \mathrm{mmol}, 1.2$ equiv.). The reaction vessel was cooled in an ice water bath before neat DBU ($6.66 \mathrm{~mL}, 44.6 \mathrm{mmol}, 1.2$ equiv.) was added dropwise. The pale yellow reaction was warmed to $23{ }^{\circ} \mathrm{C}$ and stirred for 30 minutes. The reaction was diluted with $1.0 \mathrm{M} \mathrm{HCl}(200 \mathrm{~mL})$ and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 200 \mathrm{~mL})$. The combined organic layers were washed with water ($1 \times 100 \mathrm{~mL}$), brine ($1 \times 100 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give the thiazole $\mathbf{S 1 2}$ ($13.1 \mathrm{~g}, 36.5 \mathrm{mmol}, 98 \%$) as an off white solid (m.p. $122-126^{\circ} \mathrm{C}$) which was used without further purification. An analytical sample was obtained with silica gel column chromatography using $5: 1$ to $1: 1$ hexanes:EtOAc.
$\mathbf{R}_{\mathbf{f}}=0.61$ (silica gel, $1: 1$ hexanes:EtOAc); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.10(\mathrm{~s}, 1 \mathrm{H})$, $5.66(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{dd}, J=6.5,12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{~m}, 3 \mathrm{H})$, $1.78(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 175.9,161.8,151.6,146.3$, 127.4, 81.1, 72.1, 65.3, 52.4, 34.2, 28.6, 28.1, 27.9; IR (film, cm^{-1}): 3124, 2977, 1739, 1701; HRMS (ESI): calc. for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 381.0913$, obs. 381.0916 .

To a stirred solution of $\mathbf{S 1 2}$ ($13.1 \mathrm{~g}, 36.5 \mathrm{mmol}, 1.0$ equiv.) in a $3: 1$ solution of THF: MeOH ($180 \mathrm{~mL}, 0.2 \mathrm{M}$) was added 10% aq. $\mathrm{NaOH}(36.5 \mathrm{~mL}, 91.0 \mathrm{mmol}, 2.5$ equiv. $)$. The clear homogeneous reaction was stirred at $23^{\circ} \mathrm{C}$ for 1 hour. The reaction was diluted with $1.0 \mathrm{M} \mathrm{HCl}(200 \mathrm{~mL})$ and the aqueous layer was extracted with EtOAc (3 x 200 mL). The combined organic layers were washed with brine ($1 \times 50 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give the acid $\mathbf{1 7 5}(12.5 \mathrm{~g}, 36.2 \mathrm{mmol}, 99 \%)$ as a white solid (m.p. $>200^{\circ} \mathrm{C}$) which was used without purification.
$\mathbf{R}_{\mathbf{f}}=0.54$ (silica gel, $\left.20: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}+2 \% \mathrm{AcOH}\right) ;{ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(600 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$: $\delta 8.31(\mathrm{~s}, 1 \mathrm{H}), 5.58(\mathrm{bs}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=6.4,12.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H})$, $1.89(\mathrm{bs}, 3 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(150 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO},{ }^{*}\right.$ carbons were not observed): $\delta 174.5,162.1,151.1,146.6,128.5,80.1,71.4,64.9,33.4,28.5,27.8$;

HRMS (ESI): calc. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 367.0762$, obs. 367.0760.

To a stirred solution of $\mathbf{1 7 5}(3.0 \mathrm{~g}, 8.71 \mathrm{mmol}, 1.0$ equiv.) in DMF ($17.4 \mathrm{~mL}, 0.5$ M) was added neat DIPEA ($4.55 \mathrm{~mL}, 26.1 \mathrm{mmol}, 3.0$ equiv.), solid HOBt ($1.62 \mathrm{~g}, 9.58$ mmol, 1.1 equiv.), solid $\mathrm{EDC} \cdot \mathrm{HCl}(1.84 \mathrm{~g}, 9.58 \mathrm{mmol}, 1.1$ equiv.), and solid alanine methyl ester hydrochloride ($1.46 \mathrm{~g}, 10.5 \mathrm{mmol}, 1.2$ equiv.). The pale brown homogeneous reaction was stirred at $23{ }^{\circ} \mathrm{C}$ for 18 hours. The reaction was diluted with $1: 1 \mathrm{MTBE}:$ EtOAc (100 $\mathrm{mL})$ and the organic layer was washed with $1.0 \mathrm{M} \mathrm{HCl}(1 \times 50 \mathrm{~mL})$, sat. aq. $\mathrm{NaHCO}_{3}(1 \mathrm{x}$ 50 mL), water ($1 \times 50 \mathrm{~mL}$), brine ($1 \times 25 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give an amber oil. The crude material was purified via silica gel column chromatography using 5:1 to $1: 1$ hexanes:EtOAc to give the methyl ester $\mathbf{1 7 7}(3.22 \mathrm{~g}, 7.49$ mmol, 86%) as a white foam.
$\mathbf{R}_{\mathbf{f}}=0.61$ (silica gel, $1: 1$ hexanes;EtOAc); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.01(\mathrm{~s}, 1 \mathrm{H})$, $7.71(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{~m}, 1 \mathrm{H}), 4.76(\mathrm{p}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{dd}, J$ $=6.5,12.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{bs}, 1 \mathrm{H}), 1.93(\mathrm{~m}, 3 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, 1.27 (s, 9H); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 174.3,172.7,170.5,160.2,151.2,123.2$, 80.5, 71.6, 64.8, 52.0, 47.5, 33.5, 28.5, 27.8, 27.6, 17.9; IR (film, cm^{-1}): 3133, 1743, 1701, 1541; HRMS (ESI): calc. for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 452.1284$, obs. 452.1285 .

$177(2.0 \mathrm{~g}, 4.66 \mathrm{mmol}, 1.0$ equiv.) was added to a stirred solution of $3: 1$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: TFA ($23 \mathrm{~mL}, 0.2 \mathrm{M}$) and the pale yellow homogeneous reaction was stirred at 23 ${ }^{\circ} \mathrm{C}$ for 1 hour. The reaction was concentrated in vacuo to give a clear residue. The residue was dissolved in 1:1 EtOH: $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and concentrated in vacuo at $60^{\circ} \mathrm{C}$. This solvation and concentration process was repeated twice more to give the amino thiol $\mathbf{1 6 7}(1.78 \mathrm{~g}$, $4.61 \mathrm{mmol}, 99 \%$) as a clear oil.
${ }^{1} \mathbf{H}-$ NMR ($600 \mathrm{MHz}, \mathrm{MeOD}$): $\delta 8.39(\mathrm{~s}, 1 \mathrm{H}), 4.98(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{p}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{~m}, 1 \mathrm{H}), 1.53(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}(150$ $\mathrm{MHz}, \mathrm{MeOD}$, * carbon overlaps with solvent): $\delta 174.3,165.7,162.3,150.1,127.5,55.2$, 23.0, 49.6, 28.5, 17.7; IR (film, cm^{-1}): 3121, 1739, 1671, 1551; HRMS (ESI): calc. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2}[\mathrm{M}-\mathrm{TFA}+\mathrm{Na}]^{+}: 312.0447$, obs. 312.0448.

To a stirred solution of $\mathbf{S 1 3} \mathbf{~}^{203}$ ($51.4 \mathrm{~g}, 199 \mathrm{mmol}, 1.0$ equiv.) in DMF ($200 \mathrm{~mL}, 1.0$ M) was added solid cyanuric chloride ($18.35 \mathrm{~g}, 99 \mathrm{mmol}, 0.5$ equiv.). The pale brown homogeneous reaction was stirred at $23{ }^{\circ} \mathrm{C}$ for 30 minutes. Ice water (1 L) was added and the solids were collect by filtration. The filter cake was washed with water ($2 \times 100 \mathrm{~mL}$) and dried in vacuo to yield the nitrile $152(40 \mathrm{~g}, 166 \mathrm{mmol}, 84 \%)$ as a white solid (m.p. 41$\left.43{ }^{\circ} \mathrm{C}\right)$.
$\mathbf{R}_{\mathbf{f}}=0.70$ (silica gel, 3:1 hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.40(\mathrm{p}, J=6.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.99(\mathrm{~m}, 1 \mathrm{H}), 1.59(\mathrm{bs}, 3 \mathrm{H}), 1.52(\mathrm{bs}, 4 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}), 1.40(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathbf{C - N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 150.4,117.1,95.7,82.0,74.1,52.9,28.1,26.4,24.4,18.2 ;$ IR (film, cm^{-1}): 2358, 1715; HRMS (ESI): calc. for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 263.1366$, obs. 263.1366.

Solid 152 ($1.0 \mathrm{~g}, 4.16 \mathrm{mmol}, 1.0$ equiv.) was added to a stirred solution of 4.0 M HCl in dioxane ($5.2 \mathrm{~mL}, 20.8 \mathrm{mmol}, 5.0$ equiv.) and water ($0.38 \mathrm{~mL}, 20.8 \mathrm{mmol}, 5.0$ equiv.) and the clear homogeneous reaction was stirred $23^{\circ} \mathrm{C}$ for 2 hours. The reaction was diluted with PhMe (25 mL) and concentrated in vacuo. The residue was redissolved in PhMe (25 mL) and concentrated in vacuo. This solvation and concentration process was repeated two more times to give the free amine $157(560 \mathrm{mg}, 4.10 \mathrm{mmol}, 99 \%)$ as a clear wax which was used without further purification.
$\mathbf{R}_{\mathbf{f}}=0.38$ (silica gel, 20:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}+2 \%$ TEA); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(600 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta$ $9.37(\mathrm{bs}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{p}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.20(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13}$ C-NMR ($150 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$): δ 115.7, 64.8, 46.6, 19.2; HRMS (ESI): calc. for $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 101.0709$, obs. 101.0709.

To a stirred solution of $\mathbf{1 5 2}(20 \mathrm{~g}, 83 \mathrm{mmol}, 1.0$ equiv.) in $1.5: 1 \mathrm{IPA}: 0.1 \mathrm{M} \mathrm{pH} 7$ phosphate buffer ($413 \mathrm{~mL}, 0.2 \mathrm{M}$) was added solid L-cysteine methyl ester hydrochloride $(21.3 \mathrm{~g}, 124 \mathrm{mmol}, 1.5$ equiv.). The reaction vessel was sparged with nitrogen for 10 minutes and sealed with a yellow cap. The clear homogeneous reaction was stirred at 50 ${ }^{\circ} \mathrm{C}$ for 15 hours. The reaction was concentrated to remove IPA and the aqueous layer was extracted with EtOAc ($3 \times 200 \mathrm{~mL}$). The combined organic layers were washed with 1.0 M HCl (2 x 100 mL), water ($1 \times 100 \mathrm{~mL}$), brined ($1 \times 100 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give the thiazoline $\mathbf{S 1 4}(27.4 \mathrm{~g}, 76 \mathrm{mmol}, 92 \%)$ as a clear oil that solidifies upon standing. The crude material was used without further purification. An analytical sample was obtained with silica gel column chromatography using 5:1 to $1: 1$ hexanes:EtOAc.
$\mathbf{R}_{\mathbf{f}}=0.53$ (silica gel, $1: 1$ hexanes:EtOAc); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.01(\mathrm{t}, J=9.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.04-3.96(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{t}, J=10.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.42(\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H}), 1.27(\mathrm{~d}, J=6.0 \mathrm{~Hz}$, 3H); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 175.9,170.4,151.1,94.9,80.4,78.4,74.1,65.8$, 52.5, 33.8, 27.9, 26.2, 25.1, 17.8; IR (film, cm^{-1}): 1745, 1707; HRMS (ESI): calc. for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 381.1455$, obs. 381.1452.

To a stirred solution of $\mathbf{S 1 4}$ (27.4 g, $76 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($255 \mathrm{~mL}, 0.3$ M) was added neat bromotrichloromethane ($11.3 \mathrm{~mL}, 115 \mathrm{mmol}, 1.5$ equiv.). The reaction vessel was cooled in an ice water bath before neat DBU ($17.1 \mathrm{~mL}, 115 \mathrm{mmol}, 1.2$ equiv.) was added dropwise. The pale yellow reaction was warmed to $23{ }^{\circ} \mathrm{C}$ and stirred for 30 minutes. The reaction was diluted with $1.0 \mathrm{M} \mathrm{HCl}(200 \mathrm{~mL})$ and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 150 \mathrm{~mL})$. The combined organic layers were washed with water ($1 \times 100 \mathrm{~mL}$), brine $(1 \times 100 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give the thiazole 154 ($26.4 \mathrm{~g}, 74.1 \mathrm{mmol}, 97 \%$) as an off white solid (m.p. $120-123^{\circ} \mathrm{C}$) which was used without further purification. An analytical sample was obtained with silica gel column chromatography using 5:1 to $1: 1$ hexanes:EtOAc.
$\mathbf{R}_{\mathbf{f}}=0.63$ (silica gel, 1:1 hexanes:EtOAc); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.17(\mathrm{bs}, 1 \mathrm{H})$, $4.78(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{~m}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{bs}, 6 \mathrm{H}), 1.42(\mathrm{bs}, 9 \mathrm{H}), 1.18(\mathrm{bs}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 173.3,161.3,151.0,146.1,127.3,95.0,80.4,77.6,65.7,52.1$, 27.8, 26.2, 25.6, 17.6; IR (film, cm^{-1}): 1705; HRMS (ESI): calc. for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 379.1298$, obs. 379.1295.

Solid 154 ($26.4 \mathrm{~g}, 74.1 \mathrm{mmol}, 1.0$ equiv.) was added to a stirred solution of 4.0 M HCl in dioxane ($93 \mathrm{~mL}, 370 \mathrm{mmol}, 5.0$ equiv.) and water ($5.9 \mathrm{~mL}, 370 \mathrm{mmol}, 5.0$ equiv.) and the pale yellow homogeneous reaction was stirred at $23{ }^{\circ} \mathrm{C}$ for 2 hours. The reaction was diluted with $\mathrm{PhMe}(100 \mathrm{~mL})$ and concentrated in vacuo. The residue was redissolved in PhMe (100 mL) and concentrated in vacuo. The residue was azeotroped with PhMe two more times to give the free amine $150(18.5 \mathrm{~g}, 73.3 \mathrm{mmol}, 99 \%)$ as a white solid which was used without further purification.
$\mathbf{R}_{\mathbf{f}}=0.34$ (silica gel, $20: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}+2 \%$ TEA); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}(600 \mathrm{MHz}, \mathrm{MeOD}): \delta$ $8.54(\mathrm{~s}, 1 \mathrm{H}), 4.88(\mathrm{~s}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.32-4.26(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 1.23$ (d, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}(150 \mathrm{MHz}, \mathrm{MeOD}): \delta 165.2,162.9,147.3,131.7,68.5,58.8$, 53.0, 19.9; IR (film, cm^{-1}): $3408,3124,1724$; HRMS (ESI): calc. for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{~S}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 239.0461$, obs. 239.0463.

To a stirred solution of $\mathbf{1 5 0}(18.5 \mathrm{~g}, 73.2 \mathrm{mmol}, 1.0$ equiv.) in DMF ($146 \mathrm{~mL}, 0.5$ M) was added neat DIPEA (38.3 mL , $220 \mathrm{mmol}, 3.0$ equiv.) solid HOBt $(13.6 \mathrm{~g}, 81 \mathrm{mmol}$, 1.1 equiv.), solid $\mathrm{EDC} \cdot \mathrm{HCl}(15.4 \mathrm{~g}, 8 \mathrm{mmol}, 1.1$ equiv. $)$, and the solid acid $\mathbf{1 5 1}^{203}(19.9 \mathrm{~g}$, $77 \mathrm{mmol}, 1.05$ equiv.). The pale brown homogeneous reaction was stirred at $23^{\circ} \mathrm{C}$ for 18 hours. The reaction was diluted with 1:1 MTBE:EtOAc $(300 \mathrm{~mL})$ and the organic layer was washed with $1.0 \mathrm{M} \mathrm{HCl}(1 \times 150 \mathrm{~mL})$, sat. aq. $\mathrm{NaHCO}_{3}(1 \times 150 \mathrm{~mL})$, water (1×150 mL), brine ($1 \times 50 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give an amber oil. The crude material was purified via silica gel column chromatography using 1:1 to 1:2 hexanes:EtOAc to give the methyl ester $155(29.5 \mathrm{~g}, 64.4 \mathrm{mmol}, 88 \%)$ as a white foam.
$\mathbf{R}_{\mathbf{f}}=0.30$ (silica gel, $1: 2$ hexanes:EtOAc); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.98(\mathrm{~s}, 1 \mathrm{H})$, $5.15(\mathrm{bs}, 1 \mathrm{H}), 4.44(\mathrm{~m}, 1 \mathrm{H}), 4.13(\mathrm{bs}, 1 \mathrm{H}), 3.82(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}$, $3 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{bs}, 9 \mathrm{H}), 1.15(\mathrm{~d}, J=6.5,3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $171.1,170.1,161.2,151.9,145.9,127.6,94.5,80.7,73.7,68.7,67.1,55.8,52.0,28.0,27.4$, 25.1, 19.3, 18.7; IR (film, cm^{-1}): 3125, 1691; HRMS (ESI): calc. for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{~S}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 480.1775$, obs. 480.1778 .

To a stirred solution of $\mathbf{1 5 5}$ ($20.6 \mathrm{~g}, 45.0 \mathrm{mmol}, 1.0$ equiv.) in MeCN ($150 \mathrm{~mL}, 0.3$ M) was added solid DMAP ($0.55 \mathrm{~g}, 4.5 \mathrm{mmol}, 0.1$ equiv.) and solid di-tertbutyldicarbonate ($11.8 \mathrm{~g}, 54 \mathrm{mmol}, 1.2$ equiv.). The clear homogeneous reaction was stirred at $23{ }^{\circ} \mathrm{C}$ for 1 hour. Neat DBU ($33.9 \mathrm{~mL}, 225 \mathrm{mmol}, 5.0$ equiv.) was added in a single portion and the clear homogeneous reaction was stirred at $23^{\circ} \mathrm{C}$ for 12 hours. The reaction was diluted with EtOAc $(250 \mathrm{~mL})$ and the organic layer was washed with 1.0 M $\mathrm{HCl}(2 \times 100 \mathrm{~mL})$, water ($1 \times 100 \mathrm{~mL}$), brine ($1 \times 50 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give a white foam. The crude material was purified via silica gel column chromatography using 1:1 to 1:2 hexanes:EtOAc to give the olefin $156(17.8 \mathrm{~g}$, $40.5 \mathrm{mmol}, 90 \%$) as a white foam.
$\mathbf{R}_{\mathbf{f}}=0.31$ (silica gel, $1: 1$ hexanes:EtOAc); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.99(\mathrm{~s}, 1 \mathrm{H})$, $7.96(\mathrm{bs}, 1 \mathrm{H}), 6.54(\mathrm{bs}, 1 \mathrm{H}), 4.32(\mathrm{bs}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{~d}$, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.61(\mathrm{bs}, 6 \mathrm{H}), 1.44(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}(150$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 168.4,167.3,161.7,152.3,146.7,127.9,127.1,95.1,81.1,74.2,67.8$, 52.3, 28.3, 27.7, 25.5, 19.0, 14.4; IR (film, cm^{-1}): 3125, 2982, 2250, 1693; HRMS (ESI): calc. for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 462.1669$, obs. 462.1665 .

To a stirred solution of $\mathbf{1 5 6}(10 \mathrm{~g}, 22.8 \mathrm{mmol}, 1.0$ equiv.) in 3:1 THF:MeOH (114 $\mathrm{mL}, 0.2 \mathrm{M}$) was added $10 \% \mathrm{NaOH}(22.8 \mathrm{~mL}, 57.0 \mathrm{mmol}, 2.5$ equiv.). The clear homogeneous reaction was stirred at $23{ }^{\circ} \mathrm{C}$ for 30 minutes. The reaction was diluted with 1.0 $\mathrm{M} \mathrm{HCl}(100 \mathrm{~mL})$ and the aqueous layer was extracted with EtOAc (3 x 100 mL). The combined organic layers were washed with brine ($1 \times 50 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give the acid $\mathbf{S 1 5}(9.58 \mathrm{~g}, 22.5 \mathrm{mmol}, 99 \%)$ as a clear oil which was used without further purification.
$\mathbf{R}_{\mathbf{f}}=0.31$ (silica gel, 20:1 $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}+2 \% \mathrm{AcOH}\right) ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(600 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right.$, $323 \mathrm{~K}): \delta 9.71(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~s}, 1 \mathrm{H}), 6.63-6.49(\mathrm{~m}, 1 \mathrm{H}), 4.15-4.04(\mathrm{~m}, 2 \mathrm{H}), 1.78(\mathrm{~d}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.49-1.36(\mathrm{~m}, 15 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(150 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, 323 \mathrm{~K}\right.$, asterisked carbons were not observed): $\delta 168.7,167.7,162.3,148.9,129.2,128.0,126.1$, 94.1, $74.2,66.7,28.3,27.5,25.0,19.5,13.7$; IR (film, cm^{-1}): 3132, 1696; HRMS (ESI): calc. for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 448.1513$, obs. 448.1511 .

To a stirred solution of $\mathbf{S 1 5}$ ($9.58 \mathrm{~g}, 22.5 \mathrm{mmol}, 1.0$ equiv.) in DMF ($45.0 \mathrm{~mL}, 0.5$ M) was added neat DIPEA ($11.8 \mathrm{~mL}, 67.5 \mathrm{mmol}, 3.0$ equiv.) solid HOBt ($4.18 \mathrm{~g}, 24.8$ mmol, 1.1 equiv.), solid $\mathrm{EDC} \cdot \mathrm{HCl}(4.75 \mathrm{~g}, 24.8 \mathrm{mmol}, 1.1$ equiv.), and neat threonine methyl ester hydrochloride ($4.20 \mathrm{~g}, 24.8 \mathrm{mmol}, 1.1$ equiv.). The pale brown homogeneous reaction was stirred at $23^{\circ} \mathrm{C}$ for 18 hours. The reaction was diluted with 1:1 MTBE:EtOAc $(200 \mathrm{~mL})$ and the organic layer was washed with $1.0 \mathrm{M} \mathrm{HCl}(1 \times 00 \mathrm{~mL})$, sat. aq. NaHCO_{3} $(1 \times 100 \mathrm{~mL})$, water $(1 \times 50 \mathrm{~mL})$, brine $(1 \times 50 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give an amber oil. The crude material was purified via silica gel column chromatography using 2:1 to $1: 2$ hexanes:EtOAc to give the methyl ester $162(10.35 \mathrm{~g}$, $19.1 \mathrm{mmol}, 85 \%$) as a white solid (m.p. $>200^{\circ} \mathrm{C}$ (decomp.)).
$\mathbf{R}_{\mathbf{f}}=0.23$ (silica gel, 1:2 hexanes:EtOAc); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.94(\mathrm{~s}, 1 \mathrm{H})$, 6.49 (bs, 1H), $4.60(\mathrm{dd}, J=2.7,8.9 \mathrm{~Hz}, 1 \mathrm{H}) 4.36(\mathrm{bs}, 1 \mathrm{H}), 4.29(\mathrm{p}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.99$ (d, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{bs}, 1 \mathrm{H}), 1.78(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.56(\mathrm{bs}, 6 \mathrm{H})$, $1.41(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.38(\mathrm{bs}, 9 \mathrm{H}), 1.18(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}(150 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 170.9,168.4,166.7,161.3,152.1,149.0,128.1,127.5,123.5,94.7,81.1,74.0$, $67.6,67.4,57.7,52.3,28.1,27.5,25.4,20.0,19.1,14.0$; IR (film, $\left.\mathrm{cm}^{-1}\right): 3400,3175,2982$,

2250, 1747, 1678, 1542; HRMS (ESI): calc. for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 563.2146$, obs. 563.2144.

Solid 162 ($5.0 \mathrm{~g}, 9.25 \mathrm{mmol}, 1.0$ equiv.) was added to a stirred solution of 7 N ammonia in MeOH ($66.1 \mathrm{~mL}, 462 \mathrm{mmol}, 50.0$ equiv.). The clear homogeneous reaction was stirred at $23{ }^{\circ} \mathrm{C}$ for 18 hours. The reaction was concentrated in vacuo to give the amide 163 ($4.81 \mathrm{~g}, 9.16 \mathrm{mmol}, 99 \%$) as a white solid (m.p. $140^{\circ} \mathrm{C}$ (decomp.)) which was used without further purification.
$\mathbf{R}_{\mathbf{f}}=0.41$ (silica gel, $10: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}$); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}(600 \mathrm{MHz}, \mathrm{MeOD}): \delta 8.13(\mathrm{~s}, 1 \mathrm{H})$, 6.86-6.60 (m, 1H), $4.47(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{bs}, 1 \mathrm{H}), 4.26(\mathrm{bs}, 1 \mathrm{H}), 4.06(\mathrm{bs}, 1 \mathrm{H})$, $4.05(\mathrm{bs}, 1 \mathrm{H}), 1.89(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.60(\mathrm{bs}, 3 \mathrm{H}), 1.57-1.47(\mathrm{~m}, 12 \mathrm{H}), 1.20(\mathrm{~d}, J=$ $6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}(150 \mathrm{MHz}, \mathrm{MeOD}): \delta 174.9,168.9,168.3,163.2,153.5,150.6$, 129.7, 128.0, 124.7, 95.7, 81.9, 75.4, 68.5, 68.3, 59.5, 28.6, 28.2, 25.4, 19.7, 19.2, 13.9; IR (film, cm^{-1}): 3173, 2981, 2936, 1671; HRMS (ESI): calc. for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{~N}_{5} \mathrm{O}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$: 548.2149, obs. 548.2146.

$\mathbf{1 6 3}$ ($4.81 \mathrm{~g}, 9.15 \mathrm{mmol}, 1.0$ equiv.) was added to a stirred solution of 4.0 M HCl in dioxane ($11.4 \mathrm{~mL}, 45.8 \mathrm{mmol}, 5.0$ equiv.) and water ($0.73 \mathrm{~mL}, 45.8 \mathrm{mmol}, 5.0$ equiv.) and the pale yellow homogeneous reaction was stirred at $23{ }^{\circ} \mathrm{C}$ for 2 hours. The reaction was diluted with $\mathrm{PhMe}(10 \mathrm{~mL})$ and concentrated in vacuo. The residue was redissolved in PhMe (10 mL) and concentrated in vacuo. The residue was azeotroped with PhMe two more times to give the free amine $164(3.82 \mathrm{~g}, 9.06 \mathrm{mmol}, 99 \%)$ as a white solid which was used without further purification.
$\mathbf{R}_{\mathbf{f}}=0.11$ (silica gel, $10: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}+2 \%$ TEA); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}(600 \mathrm{MHz}, \mathrm{MeOD}): ~ \delta$ $8.14(\mathrm{~s}, 1 \mathrm{H}), 6.72(\mathrm{~m}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~m}, 2 \mathrm{H}), 3.94(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H})$, $1.89(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.48(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$-NMR (150 MHz, MeOD): $\delta 175.0,168.1,167.9,163.1,150.2,130.0,129.7,124.9,68.6,67.5$, 60.0, 59.4, 20.8, 20.4, 14.2; IR (film, cm^{-1}): 3155, 1658, 1545; HRMS (ESI): calc. for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{ClN}_{5} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 408.1312$, obs. 408.1309.

To a stirred solution of $\mathbf{1 8 7} \mathbf{7}^{204}(28.9 \mathrm{~g}, 119 \mathrm{mmol}, 1.5$ equiv.) in THF $(50 \mathrm{~mL})$ at 0 ${ }^{\circ} \mathrm{C}$ was added a 1.3 M solution of $i-\mathrm{PrMgCl} \cdot \mathrm{LiCl}$ in THF ($98 \mathrm{~mL}, 127 \mathrm{mmol}, 1.6$ equiv.) dropwise over 10 minutes. The pale brown homogeneous reaction was warmed to $23{ }^{\circ} \mathrm{C}$ over 30 minutes. The resulting solution was added dropwise over 2 hours to a separate reaction vessel cooled to approximately $-50{ }^{\circ} \mathrm{C}$ containing a solution of $\mathbf{1 8 5}^{192}(22 \mathrm{~g}, 79$ mmol, 1.0 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(793 \mathrm{~mL}, 0.1 \mathrm{M})$. The pale brown homogeneous reaction was allowed to warm to $23^{\circ} \mathrm{C}$ over 12 hours. The reaction was poured into brine $(800 \mathrm{~mL})$ and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 300 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give an amber oil. The crude material was purified via silica gel column chromatography using 10:1 to $3: 1$ hexanes:EtOAc to give the sulfinamide $188(23.1 \mathrm{~g}, 52.3 \mathrm{mmol}, 66 \%)$ as an amber oil.
$\mathbf{R}_{\mathbf{f}}=0.72$ (silica gel, $1: 1$ hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.16(\mathrm{~s}, 1 \mathrm{H})$, $4.83-4.77(\mathrm{~m}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{dd}, J=9.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{dd}, J=$ 9.9, $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}), 0.81(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}),-0.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}(150$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.7,125.0,117.3,66.0,59.0,56.3,25.6,22.5,18.0,-5.5 ;$ IR (film, cm^{-}
${ }^{1}$): 3129, 2956, 2929, 2857, 1630; HRMS (ESI): calc. for $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$: 463.0515, obs. 463.0512 .

To a stirred solution of $\mathbf{1 8 8}(2.0 \mathrm{~g}, 4.53 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{MeOH}(6.47 \mathrm{~mL}, 0.7$ M) was added a 4.0 M solution of HCl in dioxane ($5.66 \mathrm{~mL}, 22.7 \mathrm{mmol}, 5.0$ equiv.). The pale yellow homogeneous reaction was stirred at $23{ }^{\circ} \mathrm{C}$ for 2 hours. The reaction was concentrated in vacuo to give a yellow oil. The crude material was triturated with ether (10 mL) to give $\mathbf{1 8 9}(1.14 \mathrm{~g}, 4.39 \mathrm{mmol}, 97 \%)$ as a clear wax which was used without purification.
$\mathbf{R}_{\mathbf{f}}=0.39\left(20: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}+2 \% \mathrm{TEA}\right) ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}(600 \mathrm{MHz}, \mathrm{MeOD}): \delta 7.66(\mathrm{~s}, 1 \mathrm{H})$, 4.80 (under water peak, $\mathrm{m}, 1 \mathrm{H}), 4.00(\mathrm{dd}, J=4.90,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{dd}, J=6.2,11.6$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}(150 \mathrm{MHz}, \mathrm{MeOD}): \delta 165.5,125.8,121.1,63.2,54.9$; IR (film, cm^{-1}): 3123; HRMS (ESI): calc. for $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{BrClN}_{2} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+}: 222.9535$, obs. 222.9537.

173

189

To a stirred solution of $\mathbf{1 8 9}(1.14 \mathrm{~g}, 4.40 \mathrm{mmol}, 1.0$ equiv.) in DMF ($8.78 \mathrm{~mL}, 0.5$ M) was added neat DIPEA ($2.29 \mathrm{~mL}, 13.2 \mathrm{mmol}, 3.0$ equiv. $)$, solid $\operatorname{HOBt}(0.816 \mathrm{~g}, 4.83$ mmol, 1.1 equiv.), solid $\mathrm{EDC} \cdot \mathrm{HCl}(0.926 \mathrm{~g}, 4.83 \mathrm{mmol}, 1.1$ equiv.), and the solid acid $\mathbf{1 7 3}^{205}$ ($1.38 \mathrm{~g}, 5.27 \mathrm{mmol}, 1.2$ equiv.). The pale brown homogeneous reaction was stirred at $23{ }^{\circ} \mathrm{C}$ for 18 hours. The reaction was diluted with $1: 1$ MTBE:EtOAc $(100 \mathrm{~mL})$ and the organic layer was washed with $1.0 \mathrm{M} \mathrm{HCl}(1 \times 50 \mathrm{~mL})$, sat. aq. $\mathrm{NaHCO}_{3}(1 \times 50 \mathrm{~mL})$, water ($1 \times 50 \mathrm{~mL}$), brine ($1 \times 25 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give an amber oil. The crude material was purified via silica gel column chromatography using 5:1 to $1: 1$ hexanes:EtOAc to give bromide $\mathbf{1 9 0}(1.49 \mathrm{~g}, 3.19 \mathrm{mmol}, 73 \%)$ as a clear foam.
$\mathbf{R}_{\mathbf{f}}=0.52$ (silica gel, $1: 1$ hexanes:EtOAc); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.13(\mathrm{~s}, 1 \mathrm{H})$, $5.21(\mathrm{dt}, J=3.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{bs}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{dd}, J=4.3$, $11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{dd}, J=6.9,11.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{bs}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}-$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 171.1,170.1,151.7,124.2,117.4,81.5,71.0,67.1,63.9,52.6$, 30.0, 29.2, 28.4, 28.2; IR (film, cm^{-1}): 3413, 3124, 2976, 2933, 2249, 1681; HRMS (ESI): calc. for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{BrN}_{3} \mathrm{O}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 488.0284$, obs. 488.0280

To a stirred solution of bromide 190 ($1.0 \mathrm{~g}, 2.1 \mathrm{mmol}, 1.0$ equiv.) in PhMe (10.7 $\mathrm{mL}, 0.2 \mathrm{M})$ was added solid $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(248 \mathrm{mg}, 0.214 \mathrm{mmol}, 0.1$ equiv.) and neat hexamethyldistannane ($0.889 \mathrm{~mL}, 4.29 \mathrm{mmol}, 2.0$ equiv.). The reaction vessel was sparged with nitrogen for 10 minutes and then sealed with a yellow cap. The pale yellow homogeneous reaction was stirred at $110{ }^{\circ} \mathrm{C}$ for 15 hours. The reaction was cooled to 23 ${ }^{\circ} \mathrm{C}$ and concentrated in vacuo to give a black oil. The crude material was purified directly with silica gel column chromatography using 100:1 hexanes:TEA to 5:1:0.1 hexanes:EtOAc:TEA to $1: 1$ hexanes:EtOAc to give the stannane $191(979 \mathrm{mg}, 1.78 \mathrm{mmol}$, 83%) as a clear foam.
$\mathbf{R}_{\mathbf{f}}=0.50$ (silica gel, 1:1 hexanes:EtOAc); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.51(\mathrm{bs}, 1 \mathrm{H})$, $7.33(\mathrm{~s}, 1 \mathrm{H}), 5.38(\mathrm{bs}, 1 \mathrm{H}), 4.74(\mathrm{bs}, 1 \mathrm{H}), 4.23(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=3.6,11.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.27$ (bs, 2H), 1.95 (bs, 3H), 1.79 (s, 3H), 1.22 (bs, 9H), 0.34 ($\mathrm{s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}$ ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$, asterisked carbons were not observed): $\delta 170.8,168.4,159.0,151.7$, 126.0, 81.1, 72.0, 67.2, 65.4, 51.4, 30.8, 28.7, 28.4, 28.2; IR (film, cm^{-1}): 3135,1676 ; HRMS (ESI): calc. for $\mathrm{C}_{19} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Sn}[\mathrm{M}+\mathrm{H}]^{+}: 552.1004$, obs. 552.1008.

To a stirred solution of acid $165(1.0 \mathrm{~g}, 1.87 \mathrm{mmol}, 1.0$ equiv.) in DMF (9.3 mL , 0.2 M) was added the amine $\mathbf{1 6 4}(945 \mathrm{mg}, 2.24 \mathrm{mmol}, 1.2$ equiv.), neat DIPEA (1.3 mL , $7.46 \mathrm{mmol}, 4.0$ equiv.), and solid HATU ($780 \mathrm{mg}, 2.05 \mathrm{mmol}, 1.1$ equiv.). The pale brown homogeneous reaction was stirred at $23{ }^{\circ} \mathrm{C}$ for 12 hours. Cold $1.0 \mathrm{M} \mathrm{HCl}(50 \mathrm{~mL})$ was added and the solids were collected by filtration. The filter cake was washed with water (1 x 20 mL), MTBE ($1 \times 20 \mathrm{~mL}$), and dried at $50^{\circ} \mathrm{C}$ under vacuum to give $\mathbf{1 7 9}(1.26 \mathrm{~g}, 1.4$ $\mathrm{mmol}, 75 \%$) as a brown powder which was used without further purification. This compound was found to be soluble only in DMSO and DMF, so R_{f}, IR, and HRMS were not collected.
${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(600 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta 9.83(\mathrm{~s}, 1 \mathrm{H}), 8.94(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.73(\mathrm{~d}, J=4.1$ $\mathrm{Hz}, 1 \mathrm{H}), 8.67(\mathrm{~s}, 1 \mathrm{H}), 8.61(\mathrm{~s}, 1 \mathrm{H}), 8.40(\mathrm{~m}, 2 \mathrm{H}), 8.29(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~s}, 1 \mathrm{H})$, $7.47(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 6.69(\mathrm{~m}, 1 \mathrm{H}), 4.57(\mathrm{~m}, 2 \mathrm{H}), 4.31(\mathrm{~m}, 2 \mathrm{H}), 4.13(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{~s}$, $1 \mathrm{H}), 1.78(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.46(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~d}$, $J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(150 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta 173.1,172.1,170.0,167.9,166.6$, $161.5,160.8,160.6,160.5,160.4,150.4,150.1,149.9,149.8,149.7,147.0,140.7,129.0$, 128.7, 127.1, 126.3, 125.1, 123.5, 121.8, 118.7, 66.8, 66.6, 58.6, 57.7, 51.9, 47.7, 20.8, 20.3, 16.9, 13.3.

To a stirred solution of the diol 179 ($495 \mathrm{mg}, 0.548 \mathrm{mmol}, 1.0$ equiv.) in DMF (5 $\mathrm{mL}, 0.1 \mathrm{M}$) was added solid imidazole ($112 \mathrm{mg}, 1.64 \mathrm{mmol}, 3.0$ equiv.) and solid TBSCl ($248 \mathrm{mg}, 1.64 \mathrm{mmol}, 3.0$ equiv.) and the thick orange homogeneous reaction was stirred at $23{ }^{\circ} \mathrm{C}$ for 48 hours. The reaction was diluted with EtOAc $(100 \mathrm{ml})$ and the organic layer was washed with water ($3 \times 50 \mathrm{~mL}$), brine (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give a yellow oil. The crude material was purified via silica gel column chromatography using 1:1 hexanes:EtOAc to $50: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}$ to $20: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}$ to give the protected diol $180(325 \mathrm{mg}, 0.287 \mathrm{mmol}, 52 \%)$ as a pale yellow glass.
$\mathbf{R}_{\mathbf{f}}=0.67$ (silica gel, 20:1 $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}\right) ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.86(\mathrm{~d}, J=4.4$ $\mathrm{Hz}, 1 \mathrm{H}), 8.45(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{~s}, 1 \mathrm{H}), 8.27(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 8.21(\mathrm{~s}, 1 \mathrm{H}), 8.17(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{q}, J=7.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.81(\mathrm{~m}, 2 \mathrm{H}), 4.71(\mathrm{~m}, 1 \mathrm{H}), 4.53(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $1.57(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.38(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.16(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H})$, $0.93(\mathrm{~s}, 9 \mathrm{H}), 0.28(\mathrm{~s}, 3 \mathrm{H}), 0.22(\mathrm{~s}, 3 \mathrm{H}), 0.18(\mathrm{~s}, 3 \mathrm{H}), 0.14(\mathrm{~s}, 3 \mathrm{H})$; HRMS (ESI): calc. for $\mathrm{C}_{47} \mathrm{H}_{63} \mathrm{ClN}_{10} \mathrm{O}_{9} \mathrm{~S}_{4} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 1153.2782$, obs. 1153.2774.

To a stirred solution of amide $\mathbf{1 8 0}\left(75 \mathrm{mg}, 0.066 \mathrm{mmol}, 1.0\right.$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1 $\mathrm{mL}, 0.07 \mathrm{M})$ was added Burgess reagent $(4.7 \mathrm{mg}, 0.199 \mathrm{mmol}, 3.0$ equiv.) and the pale yellow reaction was stirred at $23{ }^{\circ} \mathrm{C}$ for 12 hours. The reaction was concentrated in vacuo and the crude material was purified via silica gel column chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to 20:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}$ to give the nitrile $181(70 \mathrm{mg}, 0.063 \mathrm{mmol}, 95 \%)$ as a clear oil.
$\mathbf{R f}_{\mathbf{f}}=033$ (silica gel, 30:1 $\left.\mathrm{CH}_{2} \mathrm{C}_{12}: \mathrm{MeOH}\right)$; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(600 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta 9.91(\mathrm{~s}, 1 \mathrm{H})$, $8.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.73(\mathrm{~m}, 1 \mathrm{H}), 8.70(\mathrm{~s}, 1 \mathrm{H}), 8.63(\mathrm{~s}, 1 \mathrm{H}), 8.42(\mathrm{~s}, 1 \mathrm{H}), 8.33(\mathrm{~m}$, $1 \mathrm{H}), 8.24(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{q}, J=7 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{dd}, J=4.2,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.67$ (dd, $J=3.5,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~m}, 1 \mathrm{H}), 4.26(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~s}$, $3 \mathrm{H}), 1.78(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.47(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.30(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{~d}$, $J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}$, 3H); ${ }^{13} \mathbf{C - N M R}\left(150 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): ~ \delta 173.0,169.3,167.7,166.7,160.84,160.80$, $160.48,160.46,160.45,150.8,150.5,150.4,149.8,149.7,148.6,141.3,127.98,127.96$, 127.7, 126.2, 125.8, 125.4, 122.7, 119.2, 118.3, 68.8, 68.0, 58.8, 52.3, 48.1, 47.0, 25.9, $25.8, \quad 21.7,20.4,17.2,13.9,-4.0,-4.5,-4.7,-4.8 ;$ HRMS (ESI): calc. for $\mathrm{C}_{47} \mathrm{H}_{61} \mathrm{ClN}_{10} \mathrm{O}_{8} \mathrm{~S}_{4} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 1135.2669$, obs. 1135.2676.

To a stirred solution of chloride $\mathbf{1 8 1}(70 \mathrm{mg}, 0.063 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{PhMe}(1.5$ $\mathrm{mL}, 0.04 \mathrm{M}$) was added the stannane $191(38 \mathrm{mg}, 0.069 \mathrm{mmol}$, 1.1 equiv.), solid Cy JohnPhos ($4.4 \mathrm{mg}, 0.013 \mathrm{mmol}, 0.2$ equiv.), and solid $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(1.8 \mathrm{mg}, 3.14 \mu \mathrm{~mol}, 0.05$ equiv.). The reaction vessel was sparged with nitrogen for 10 minutes and then sealed with a yellow cap. The dark purple homogeneous reaction was stirred at $110^{\circ} \mathrm{C}$ for 18 hours. The reaction was cooled to $23^{\circ} \mathrm{C}$ and concentrated in vacuo to give a brown oil. The crude material was purified via silica gel column chromatography using $50: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}$ to 20:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: MeOH to give 193 as a pale yellow glass ($82 \mathrm{mg}, 0.056 \mathrm{mmol}, 89 \%$).
$\mathbf{R}_{\mathbf{f}}=0.51$ (silica gel, $20: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}$); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, * protons were not observed): $\delta 8.56(\mathrm{bs}, 1 \mathrm{H}), 8.36(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.25(\mathrm{~s}$, $1 \mathrm{H}), 8.22(\mathrm{~m}, 2 \mathrm{H}), 8.19(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{~m}, 2 \mathrm{H}), 8.00(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.80(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~m}, 1 \mathrm{H}), 4.93(\mathrm{dd}, J=2.6,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{p}, J$ $=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~m}, 2 \mathrm{H}), 4.31(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 4 \mathrm{H}), 3.61(\mathrm{bs}, 1 \mathrm{H}), 1.86(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}), 1.83(\mathrm{bs}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~m}, 3 \mathrm{H}), 1.28(\mathrm{~m}, 15 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H})$, $0.19(\mathrm{~s}, 3 \mathrm{H}), 0.18(\mathrm{~s}, 3 \mathrm{H}), 0.17(\mathrm{~s}, 3 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, * carbons were not observed): $\delta 173.2,170.7,169.1,168.4,167.1,165.3,162.1,161.0,160.5$, $160.4,151.5,150.8,150.5,150.2,150.1,149.7,148.8,140.1,128.6,127.9,127.5,125.6$,
$124.3,123.9,122.0,120.1,118.7,117.5,68.3,67.4,64.4,58.6,52.6,48.0,46.8,25.8,25.7$, 20.2, 19.5, 18.4, 14.0, -4.5, -4.6, -4.7, -4.8; HRMS (ESI): calc. for $\mathrm{C}_{63} \mathrm{H}_{85} \mathrm{~N}_{13} \mathrm{O}_{12} \mathrm{~S}_{6} \mathrm{Si}_{2}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 1486.4196$, obs. 1486.4189.

To a stirred solution of $\mathbf{1 6 6}(600 \mathrm{mg}, 1.87 \mathrm{mmol}, 1.0$ equiv. $)$ in $1.5: 1 \mathrm{IPA}: 0.1 \mathrm{M} \mathrm{pH}$ 7 phosphate buffer ($9.3 \mathrm{~mL}, 0.2 \mathrm{M}$) was added solid L-cysteine methyl ester hydrochloride ($416 \mathrm{mg}, 2.42 \mathrm{mmol}, 1.3$ equiv.). The reaction vessel was sparged with nitrogen for 10 minutes and sealed with a yellow cap. The clear homogeneous reaction was stirred at 50 ${ }^{\circ} \mathrm{C}$ for 15 hours. The reaction was concentrated to remove IPA and the aqueous layer was extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). The combined organic layers were washed with 1.0 M $\mathrm{HCl}\left(2 \mathrm{x} 20 \mathrm{~mL}\right.$), water (1 x 20 mL), brined ($1 \times 10 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give the intermediate thiazoline $\mathbf{S 1 6}$ (779 mg, $1.77 \mathrm{mmol}, 95 \%$) as a white solid.

To a stirred solution of thiazoline $\mathbf{S 1 6}\left(779 \mathrm{mg}, 1.77 \mathrm{mmol}, 1.0\right.$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(8.8 \mathrm{~mL}, 0.2 \mathrm{M})$ was added activated $\mathrm{MnO}_{2}(<5$ microns, Aldrich, $3.0 \mathrm{~g}, 35.4 \mathrm{mmol}, 20$ equiv.) and the dark heterogeneous reaction mixture was stirred at 1000 RPM at $23^{\circ} \mathrm{C}$ for 12 hours. The crude reaction was filtered through Celite with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and concentrated to give 199 as a brown solid. The crude material was triturated with MTBE (100 mL) to give pure thiazole $199(651 \mathrm{mg}, 1.49 \mathrm{mmol}, 84 \%)$ as a white solid (m.p. $\left.>200^{\circ} \mathrm{C}\right)$.
$\mathbf{R}_{\mathbf{f}}=0.65$ (silica gel, $1: 1$ hexanes:EtOAc); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.93(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 8.35(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.32(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}-$

NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 167.1,161.6,161.0,160.2,150.7,148.7,148.3,147.4,140.8$, 130.7, 129.1, 128.5, 119.1, 82.4, 52.6, 28.1; IR (film, cm^{-1}): 1725, 1402, 1369, 1353;

HRMS (ESI): calc. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{ClN}_{3} \mathrm{O}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 438.0344$, obs. 438.0346 .

To a stirred solution of chloride 199 ($432 \mathrm{mg}, 0.99 \mathrm{mmol}, 1.0$ equiv.) in PhMe (4.9 $\mathrm{mL}, 0.2 \mathrm{M}$) was added the stannane $200(518 \mathrm{mg}, 0.99 \mathrm{mmol}, 1.0$ equiv.), solid CyJohnPhos ($69.1 \mathrm{mg}, 0.2 \mathrm{mmol}, 0.2$ equiv.), and solid $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(28.4 \mathrm{mg}, 0.049 \mathrm{mmol}, 0.05$ equiv.). The reaction vessel was sparged with nitrogen for 10 minutes and then sealed with a yellow cap. The dark purple homogeneous reaction was stirred at $110^{\circ} \mathrm{C}$ for 18 hours. The reaction was cooled to $23^{\circ} \mathrm{C}$ and concentrated in vacuo to give a brown oil. The crude material was purified via silica gel column chromatography using $2: 1$ hexanes:EtOAc to 1:1 hexanes:EtOAc to give $201(716 \mathrm{mg}, 0.937 \mathrm{mmol}, 95 \%)$ as a pale yellow foam.
$\mathbf{R}_{\mathbf{f}}=0.42$ (silica gel, $1: 1$ hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.38(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 8.35(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H}), 4.70(\mathrm{dd}, J=5.0$, $9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.92(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{~s}, 9 \mathrm{H}), 1.27(\mathrm{~s}, 9 \mathrm{H})$, $0.83(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.6,168.9,164.8$, 161.7, 160.1, 153.0, 150.8, 150.4, 148.3, 148.0, 140.2, 130.3, 129.4, 128.2, 121.5, 119.0, 82.1, 66.0, 56.2, 52.5, 28.1, 25.7, 22.5, 18.0; IR (film, cm^{-1}): 3124, 1726, 1401, 1343; HRMS (ESI): calc. for $\mathrm{C}_{33} \mathrm{H}_{45} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{~S}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 764.2095$, obs. 764.2094.

To a stirred solution of 201 ($300 \mathrm{mg}, 0.393 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{MeOH}(3.93 \mathrm{~mL}$, 0.1 M) was added a solution of 4.0 M HCl in dioxane ($0.491 \mathrm{~mL}, 1.96 \mathrm{mmol}, 5$ equiv.) and the pale yellow homogeneous reaction was stirred at $23^{\circ} \mathrm{C}$ for 2 hours. The crude reaction was diluted with $\mathrm{PhMe}(50 \mathrm{~mL})$ and concentrated in vacuo to give a pale yellow solid (240 $\mathrm{mg}, 0.388 \mathrm{mmol}, 99 \%)$.

To a stirred solution of this crude pale yellow solid ($240 \mathrm{mg}, 0.388 \mathrm{mmol}, 1.0$ equiv.) in DMF ($3.9 \mathrm{~mL}, 0.1 \mathrm{M}$) was added acid 202 ($237 \mathrm{mg}, 0.388 \mathrm{mmol}, 1.0$ equiv.), neat DIPEA ($0.203 \mathrm{~mL}, 1.16 \mathrm{mmol}, 3.0$ equiv.), and solid HATU ($162 \mathrm{mg}, 0.427 \mathrm{mmol}$. 1.1 equiv.). The pale yellow homogeneous reaction a stirred at $23^{\circ} \mathrm{C}$ for 15 hours. Cold $1.0 \mathrm{M} \mathrm{HCl}(50 \mathrm{~mL})$ was added and the solids were collected by filtration. The filter cake was washed with water ($1 \times 20 \mathrm{~mL}$), MTBE ($1 \times 20 \mathrm{~mL}$), and dried at $50^{\circ} \mathrm{C}$ under vacuum to give $203(287 \mathrm{mg}, 0.252 \mathrm{mmol}, 65 \%)$ as a brown powder (m.p. $>200^{\circ} \mathrm{C}($ decomp. $)$) which was used without further purification. An analytical sample was obtained with silica gel column chromatography using $20: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}$.
$\mathbf{R}_{\mathbf{f}}=0.37$ (silica gel, $\left.20: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}\right) ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.39(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 8.32(\mathrm{~s}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~s}, 1 \mathrm{H}), 8.08$ $(\mathrm{s}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{bs}, 1 \mathrm{H}), 6.57(\mathrm{bs}, 1 \mathrm{H}), 5.39(\mathrm{~m}, 1 \mathrm{H}), 5.33(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{bs}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H})$, $3.86(\mathrm{dd}, J=3.7,11.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.72(\mathrm{bs}, 6 \mathrm{H}), 1.60(\mathrm{bs}, 18 \mathrm{H})$, $1.44(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.33(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3} ; *\right.$ carbons were not observed): $\delta 171.8,168.9,168.8,168.3,167.0,165.1,161.8,161.3,160.7,160.6$, $152.5,150.7,150.6,149.1,149.0,148.6,148.2,140.3,130.5,129.2,128.5,127.7,124.5$, $124.0,122.2,119.1,95.0,82.6,81.5,68.3,64.2,56.3,52.6,51.6,28.3,28.2,26.0,20.1$, 19.4 IR (film, cm^{-1}): $3122,1666,1480,1401$; HRMS (ESI): calc. for $\mathrm{C}_{49} \mathrm{H}_{56} \mathrm{~N}_{10} \mathrm{O}_{12} \mathrm{~S}_{5}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 1159.2575$, obs. 1159.2572.

Solid 203 ($10 \mathrm{mg}, 8.76 \mu \mathrm{~mol}, 1.0$ equiv.) was dissolved in $10: 1 \mathrm{TFA}: \mathrm{H}_{2} \mathrm{O}(1.1 \mathrm{~mL}$, $8.0 \mathrm{mM})$ and the clear homogeneous reaction was stirred at $23^{\circ} \mathrm{C}$ for 2 hours. $\mathrm{PhMe}(20$ mL) was added and the crude reaction was concentrated in vacuo to give a clear residue (9 $\mathrm{mg}, 8.70 \mu \mathrm{~mol}, 99 \%)$.

To a stirred solution of this crude residue ($9.0 \mathrm{mg}, 8.70 \mu \mathrm{~mol}, 99 \%$) in DMF (1.7 $\mathrm{mL}, 5 \mathrm{mM})$ was added neat DIPEA ($7.6 \mu \mathrm{~L}, 0.043 \mathrm{mmol}, 5$ equiv.) and solid HATU (6.6 $\mathrm{mg}, 0.017 \mathrm{mmol}, 2$ equiv.). The clear homoegeneous reaction was stirred at $23^{\circ} \mathrm{C}$ for 15 hours. The crude reaction was diluted with EtOAc $(50 \mathrm{~mL})$ and the organic layer was washed with $1.0 \mathrm{M} \mathrm{HCl}(1 \times 10 \mathrm{~mL})$, sat. aq. $\mathrm{NaHCO}_{3}(1 \times 10 \mathrm{~mL})$, water ($1 \times 10 \mathrm{~mL}$), brine ($1 \times 5 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give an amber oil. The crude material was purified via preparative TLC using $10: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}$ to give 198 ($3.0 \mathrm{mg}, 3.9 \mu \mathrm{~mol}, 38 \%$) as a white solid (m.p. $>200^{\circ} \mathrm{C}$).
$\mathbf{R}_{\mathbf{f}}=0.21$ (silica gel, $\left.10: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}\right) ;{ }^{1} \mathbf{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.65(\mathrm{bs}, 2 \mathrm{H})$, $8.38(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{~s}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{bs}, 1 \mathrm{H})$, $8.03(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=7 . \mathrm{Hz}, 1 \mathrm{H}), 6.42(\mathrm{q}, J=7.0$
$\mathrm{Hz}, 1 \mathrm{H}), 5.42(\mathrm{~m}, 2 \mathrm{H}), 4.88(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~m}, 1 \mathrm{H}), 4.38(\mathrm{dd}, J=2.1,6.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{dd}, J=2.8,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{dd}, J=4.6,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.83(\mathrm{~d}$, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.47(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.35(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}(150 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 169.8,168.9,168.8,168.7,166.2,165.8,161.8,161.2,161.0,160.4,153.7,150.8$, $150.6,149.8,149.5,148.5,148.2,140.3,130.5,128.9,128.6,128.3,125.1,124.9,123.7$, $121.5,118.9,69.0,67.9,63.7,57.5,54.6,52.6,51.4,20.1,19.0,14.5$; IR (film, cm^{-1}): 3128, 1656, 1401; HRMS (ESI): calc. for $\mathrm{C}_{37} \mathrm{H}_{34} \mathrm{~N}_{10} \mathrm{O}_{9} \mathrm{~S}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$: 945.1006, obs. 945.1011.

APPENDIX A: CRYSTALLOGRAPHIC DATA FOR 85

Table 1. Crystal data and structure refinement for $\mathbf{8 5}$.

Empirical formula	C30 H30 N2 O9
Formula weight	562.56
Temperature	140(2) K
Wavelength	$0.71073 \AA$
Crystal system	monoclinic
Space group	P 21
Unit cell dimensions	$a=25.044(3) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=5.4847(12) \AA$ 退 $\quad \beta=97.558(6)^{\circ}$.
	$\mathrm{c}=29.751(4) \AA \quad \gamma=90^{\circ}$.
Volume	4051.1(11) \AA^{3}
Z	6
Density (calculated)	$1.384 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.103 \mathrm{~mm}^{-1}$
$F(000)$	1776
Crystal size	$0.300 \times 0.050 \times 0.040 \mathrm{~mm}$
Theta range for data collection	1.640 to 24.999°.
Index ranges	$-29<=\mathrm{h}<=29,-6<=\mathrm{k}<=6,-35<=\mathrm{l}<=35$
Reflections collected	53001
Independent reflections	$14309[\mathrm{R}($ int $)=0.1855]$
Completeness to theta $=25.242^{\circ}$	97.3 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00 and 0.854
Refinement method	Full-matrix least-squares on F^{2}

Data / restraints / parameters	$14309 / 1 / 1114$
Goodness-of-fit on F^{2}	0.980
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0737, \mathrm{wR} 2=0.1139$
R indices (all data)	$\mathrm{R} 1=0.1907, \mathrm{wR} 2=0.1502$
Absolute structure parameter	$-0.6(10)$
Extinction coefficient	n / a
Largest diff. peak and hole	0.278 and $-0.315 \mathrm{e} . \AA^{-3}$

Table 2. Atomic coordinates ($\mathrm{x} 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{8 5}$. $U(e q)$ is defined as one third of the trace of the orthogonalized $U^{i j}$ tensor.

	x	y	Z	U(eq)
C1	-1326(3)	7658(16)	3274(3)	25(2)
C2	-1166(3)	5296(17)	3086(3)	21(2)
C3	-675(3)	4387(15)	3391(2)	16(2)
C4	-271(3)	2970(16)	3167(2)	18(2)
C5	253(3)	2409(15)	3482(2)	16(2)
C6	566(3)	4643(16)	3649(3)	20(2)
C7	455(3)	5860(16)	4078(3)	21(2)
C8	597(3)	4116(17)	4496(3)	24(2)
C9	58(3)	3235(18)	4593(2)	25(2)
C10	-342(3)	4545(16)	4401(3)	19(2)
C11	-151(3)	6487(15)	4098(2)	16(2)
C12	-472(3)	6753(15)	3629(3)	20(2)
C13	-89(3)	3234(19)	2404(3)	21(2)
C14	183(3)	4770(16)	2087(2)	15(2)
C15	475(3)	6817(16)	2247(3)	19(2)
C16	759(3)	8050(16)	1950(3)	20(2)
C17	771(3)	7365(16)	1505(3)	21(2)
C18	481(3)	5271(16)	1365(2)	16(2)
C19	198(3)	3955(17)	1643(2)	21(2)

C20	1505(3)	2930(18)	4481(3)	30(2)
C21	1844(3)	1005(17)	4317(3)	23(2)
C22	1865(3)	692(19)	3853(3)	34(3)
C23	2172(3)	-1109(17)	3691(3)	28(2)
C24	2476(3)	-2622(18)	3982(3)	28(2)
C25	2480(3)	-2298(19)	4446(3)	35(3)
C26	2171(3)	-532(19)	4607(3)	35(3)
C27	2717(3)	-5080(20)	3382(3)	43(3)
C28	-1403(3)	4243(18)	2711(3)	35(3)
C29	942(3)	5548(17)	3419(3)	29(2)
C30	-923(3)	4409(18)	4487(3)	31(2)
C31	4504(3)	3555(18)	86(3)	34(3)
C32	4255(3)	1330(17)	274(3)	21(2)
C33	3797(3)	542(16)	-77(3)	17(2)
C34	3287(3)	-302(16)	88(2)	21(2)
C35	2845(3)	-904(16)	-291(2)	18(2)
C36	2642(3)	1288(16)	-572(3)	18(2)
C37	2898(3)	1955(15)	-990(2)	18(2)
C38	2809(3)	-126(16)	-1351(3)	22(2)
C39	3352(3)	-1248(16)	-1348(2)	22(2)
C40	3743(3)	31(17)	-1115(3)	22(2)
C41	3523(3)	2245(16)	-898(3)	22(2)
C42	3736(3)	2725(17)	-403(2)	23(2)
C43	3016(3)	1034(19)	796(3)	23(2)

C44	2701(3)	3002(17)	999(3)	18(2)
C45	2407(3)	4736(17)	734(3)	26(2)
C46	2103(3)	6420(17)	939(3)	20(2)
C47	2088(3)	6444(18)	1398(3)	26(2)
C48	2371(3)	4653(19)	1651(3)	25(2)
C49	2674(3)	2921(17)	1463(3)	21(2)
C50	1879(3)	-1067(17)	-1433(3)	26(2)
C51	1481(3)	-2766(16)	-1262(3)	20(2)
C52	1261(3)	-4718(17)	-1517(3)	23(2)
C53	928(3)	-6382(17)	-1345(3)	26(2)
C54	814(3)	-6088(17)	-903(3)	22(2)
C55	1007(3)	-4097(16)	-649(3)	20(2)
C56	1337(3)	-2458(17)	-829(3)	26(2)
C57	490(3)	-7994(18)	-269(2)	35(3)
C58	4399(3)	381(18)	678(3)	35(3)
C59	2235(3)	2639(17)	-465(3)	26(2)
C60	4333(3)	-427(19)	-1103(3)	35(3)
C61	7746(3)	12627(16)	3645(3)	27(2)
C62	7581(3)	10201(16)	3812(3)	20(2)
C63	7113(3)	9303(15)	3475(2)	17(2)
C64	6696(3)	7723(16)	3660(2)	19(2)
C65	6198(3)	7229(15)	3320(2)	19(2)
C66	5876(3)	9458(17)	3158(3)	25(2)
C67	6011(3)	10825(16)	2748(2)	21(2)

C68	5921(3)	9217(17)	2304(3)	24(2)
C69	6476(3)	8578(16)	2220(2)	21(2)
C70	6849(3)	9898(16)	2455(3)	18(2)
C71	6612(3)	11576(16)	2773(2)	17(2)
C72	6902(3)	11710(15)	3254(3)	20(2)
C73	6576(3)	7755(18)	4445(3)	23(2)
C74	6348(3)	9158(16)	4800(3)	18(2)
C75	6041(3)	11239(16)	4699(3)	19(2)
C76	5816(3)	12390(17)	5039(3)	23(2)
C77	5850(3)	11479(18)	5471(3)	27(2)
C78	6153(3)	9408(19)	5562(3)	27(2)
C79	6401(3)	8217(17)	5237(3)	22(2)
C80	5021(3)	7825(18)	2222(3)	33(3)
C81	4668(3)	5639(18)	2232(3)	26(2)
C82	4450(3)	4500(19)	1830(3)	30(2)
C83	4096(3)	2596(19)	1836(3)	33(3)
C84	3965(3)	1759(18)	2248(3)	30(3)
C85	4172(3)	2846(19)	2645(3)	33(3)
C86	4526(3)	4767(19)	2633(3)	33(3)
C87	3461(4)	-1130(20)	2623(3)	49(3)
C88	7806(3)	9080(17)	4187(3)	27(2)
C89	5472(3)	10191(17)	3367(3)	31(2)
C90	7436(3)	9986(17)	2389(3)	29(2)
N1	1091(3)	10165(14)	2121(2)	24(2)

N2	515(3)	4361(17)	905(2)	29(2)
N3	1797(3)	8310(16)	660(3)	30(2)
N4	2324(3)	4562(19)	2142(2)	41(2)
N5	5473(3)	14554(15)	4927(3)	30(2)
N6	6164(3)	8291(19)	6016(3)	41(2)
O1	-949(2)	8131(11)	3668(2)	24(2)
O2	-118(2)	4395(10)	2794(2)	18(1)
O3	-251(2)	1186(12)	2308(2)	28(2)
O4	1085(2)	10769(11)	2514(2)	32(2)
O5	1348(2)	11211(12)	1859(2)	30(2)
O6	761(2)	5621(12)	657(2)	36(2)
O7	303(2)	2387(12)	794(2)	30(2)
O8	951(2)	2162(10)	4420(2)	24(2)
O9	2778(2)	-4511(12)	3857(2)	35(2)
O10	4271(2)	3728(11)	-378(2)	28(2)
011	3088(2)	1622(10)	368(2)	20(1)
O12	3171(2)	-776(12)	998(2)	28(2)
O13	1765(2)	8084(12)	247(2)	36(2)
O14	1600(2)	9974(12)	857(2)	37(2)
O15	2061(3)	6174(14)	2295(2)	46(2)
O16	2564(3)	2921(16)	2358(2)	59(2)
O17	2414(2)	-1907(10)	-1273(2)	20(1)
O18	498(2)	-7897(11)	-752(2)	25(2)
O19	7376(2)	13203(11)	3249(2)	24(2)

O20	$6518(2)$	$8977(10)$	$4050(2)$	$19(1)$
O21	$6778(2)$	$5764(11)$	$4508(2)$	$26(2)$
O22	$5401(2)$	$15205(11)$	$4529(2)$	$31(2)$
O 23	$5297(2)$	$15604(12)$	$5239(2)$	$37(2)$
O 24	$5981(3)$	$9452(15)$	$6307(2)$	$56(2)$
O 25	$6367(3)$	$6249(15)$	$6073(2)$	$48(2)$
O 26	$5584(2)$	$7163(10)$	$2320(2)$	$25(2)$
O 27	$3607(2)$	$-186(13)$	$2208(2)$	$39(2)$

Table 3. Bond lengths $[\AA]$ and angles [${ }^{\circ}$] for $\mathbf{8 5}$.

C1-O1	$1.428(8)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.504(11)$
C1-C2	$1.487(11)$	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	0.99
C1-H1A	0.99	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	
C1-H1B	0.99	$\mathrm{C} 6-\mathrm{C} 29$	0.99
C2-C28	$1.325(10)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.332(10)$
C2-C3	$1.513(10)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.498(11)$
C3-C4	$1.500(10)$	$\mathrm{C} 7-\mathrm{H} 7$	$1.565(10)$
C3-C12	$1.532(11)$	$\mathrm{C} 8-\mathrm{O} 8$	$1.571(10)$
C3-H3	1.00	$\mathrm{C} 8-\mathrm{C} 9$	1.00
C4-O2	$1.450(8)$	$\mathrm{C} 8-\mathrm{H} 8$	$1.427(9)$
C4-C5	$1.539(10)$	$\mathrm{C} 9-\mathrm{C} 10$	1.00
C4-H4	1.00	$1.302(10)$	

C9-H9	0.95	C20-H20B	0.99
C10-C30	1.512(10)	C21-C26	1.393(11)
C10-C11	1.512(11)	C21-C22	1.400(11)
C11-C12	1.523(9)	C22-C23	1.377(12)
C11-H11	1.00	C22-H22	0.95
C12-O1	1.432(9)	C23-C24	$1.359(11)$
C12-H12	1.00	C23-H23	0.95
C13-O3	1.215(10)	C24-O9	1.362(10)
C13-O2	1.333(9)	C24-C25	1.391(11)
C13-C14	1.494(11)	C25-C26	$1.365(12)$
C14-C15	$1.389(11)$	C25-H25	0.95
C14-C19	1.400 (10)	C26-H26	0.95
C15-C16	1.383(10)	C27-O9	1.435(9)
C15-H15	0.95	C27-H27A	0.98
C16-C17	1.378(10)	C27-H27B	0.98
C16-N1	$1.478(10)$	C27-H27C	0.98
C17-C18	1.393(11)	C28-H28A	0.95
C17-H17	0.95	C28-H28B	0.95
C18-C19	$1.366(10)$	C29-H29A	0.95
C18-N2	1.470 (10)	C29-H29B	0.95
C19-H19	0.95	C30-H30A	0.98
C20-O8	$1.439(9)$	C30-H30B	0.98
C20-C21	1.477(11)	C30-H30C	0.98
C20-H20A	0.99	C31-O10	1.429(8)

C31-C32	1.510 (11)	C40-C60	$1.495(10)$
C31-H31A	0.99	C40-C41	1.513(11)
C31-H31B	0.99	C41-C42	1.521(10)
C32-C58	$1.314(10)$	C41-H41	1.00
C32-C33	$1.509(10)$	C42-O10	1.443(9)
C33-C34	$1.502(10)$	C42-H42	1.00
C33-C42	1.537(11)	C43-O12	1.199(10)
C33-H33	1.00	C43-O11	1.346 (9)
C34-O11	1.472(9)	C43-C44	$1.509(12)$
C34-C35	1.510 (9)	C44-C45	1.385(11)
C34-H34	1.00	C44-C49	1.391(10)
C35-C36	1.513(11)	C45-C46	$1.389(11)$
C35-H35A	0.99	C45-H45	0.95
C35-H35B	0.99	C46-C47	$1.372(10)$
C36-C59	$1.332(11)$	C46-N3	1.477(11)
C36-C37	$1.517(10)$	C47-C48	1.377(11)
C37-C41	1.561(10)	C47-H47	0.95
C37-C38	1.563(10)	C48-C49	1.379(11)
C37-H37	1.00	C48-N4	1.482(10)
C38-O17	1.429(9)	C49-H49	0.95
C38-C39	$1.492(11)$	C50-O17	1.439(8)
C38-H38	1.00	C50-C51	1.500(11)
C39-C40	1.324(10)	C50-H50A	0.99
C39-H39	0.95	C50-H50B	0.99

C51-C52	$1.385(11)$	C61-H61A	0.99
C51-C56	$1.392(11)$	C61-H61B	0.99
C52-C53	$1.379(11)$	C62-C88	$1.333(10)$
C52-H52	0.95	C62-C63	1.520(10)
C53-C54	$1.392(10)$	C63-C64	1.516(10)
C53-H53	0.95	C63-C72	1.536(11)
C54-C55	$1.378(11)$	C63-H63	1.00
C54-O18	1.381(10)	C64-O20	1.466(8)
C55-C56	$1.376(11)$	C64-C65	1.524(9)
C55-H55	0.95	C64-H64	1.00
C56-H56	0.95	C65-C66	$1.509(11)$
C57-O18	1.438(8)	C65-H65A	0.99
C57-H57A	0.98	C65-H65B	0.99
C57-H57B	0.98	C66-C89	1.316(10)
C57-H57C	0.98	C66-C67	1.510(11)
C58-H58A	0.95	C67-C71	$1.555(10)$
C58-H58B	0.95	C67-C68	1.579(10)
C59-H59A	0.95	C67-H67	1.00
C59-H59B	0.95	C68-O26	1.413(9)
C60-H60A	0.98	C68-C69	1.484(10)
C60-H60B	0.98	C68-H68	1.00
C60-H60C	0.98	C69-C70	$1.309(10)$
C61-O19	1.435(8)	C69-H69	0.95
C61-C62	1.497(11)	C70-C71	1.496(10)

C70-C90	1.510(10)	C81-C82	$1.395(11)$
C71-C72	1.520 (9)	C82-C83	$1.373(12)$
C71-H71	1.00	C82-H82	0.95
C72-O19	1.444(9)	C83-C84	1.388(11)
C72-H72	1.00	C83-H83	0.95
C73-O21	1.207(10)	C84-C85	1.363(11)
C73-O20	$1.345(9)$	C84-O27	1.388(10)
C73-C74	1.480 (11)	C85-C86	1.381(12)
C74-C75	1.387(10)	C85-H85	0.95
C74-C79	$1.389(10)$	C86-H86	0.95
C75-C76	$1.375(11)$	C87-O27	1.431(10)
C75-H75	0.95	C87-H87A	0.98
C76-C77	1.370 (11)	C87-H87B	0.98
C76-N5	$1.478(11)$	C87-H87C	0.98
C77-C78	$1.372(12)$	C88-H88A	0.95
C77-H77	0.95	C88-H88B	0.95
C78-C79	1.381(11)	C89-H89A	0.95
C78-N6	$1.479(11)$	C89-H89B	0.95
C79-H79	0.95	C90-H90A	0.98
C80-O26	1.448(9)	C90-H90B	0.98
C80-C81	1.492(12)	C90-H90C	0.98
C80-H80A	0.99	N1-O5	1.217(8)
C80-H80B	0.99	N1-O4	1.219(8)
C81-C86	$1.376(11)$	N2-O6	1.232(9)

$\mathrm{N} 2-\mathrm{O} 7$	$1.233(9)$	$\mathrm{N} 5-\mathrm{O} 23$	$1.225(8)$
$\mathrm{N} 3-\mathrm{O} 14$	$1.223(9)$	$\mathrm{N} 5-\mathrm{O} 22$	$1.227(8)$
$\mathrm{N} 3-\mathrm{O} 13$	$1.227(8)$	$\mathrm{N} 6-\mathrm{O} 24$	$1.213(9)$
$\mathrm{N} 4-\mathrm{O} 16$	$1.217(10)$	$\mathrm{N} 6-\mathrm{O} 25$	$1.232(10)$
$\mathrm{N} 4-\mathrm{O} 15$	$1.225(10)$		

O1-C1-C2	106.6(7)	O2-C4-H4	109.2
O1-C1-H1A	110.4	C3-C4-H4	109.2
C2-C1-H1A	110.4	C5-C4-H4	109.2
O1-C1-H1B	110.4	C6-C5-C4	113.8(7)
C2-C1-H1B	110.4	C6-C5-H5A	108.8
H1A-C1-H1B	108.6	C4-C5-H5A	108.8
C28-C2-C1	125.6(8)	C6-C5-H5B	108.8
C28-C2-C3	126.9(8)	C4-C5-H5B	108.8
C1-C2-C3	107.4(7)	H5A-C5-H5B	107.7
C4-C3-C2	116.5(6)	C29-C6-C7	119.8(8)
C4-C3-C12	116.2(7)	C29-C6-C5	120.4(8)
C2-C3-C12	101.0(7)	C7-C6-C5	119.8(7)
C4-C3-H3	107.5	C6-C7-C11	114.9(6)
C2-C3-H3	107.5	C6-C7-C8	110.7(7)
C12-C3-H3	107.5	C11-C7-C8	102.9(6)
O2-C4-C3	108.8(7)	C6-C7-H7	109.4
O2-C4-C5	106.6(6)	C11-C7-H7	109.4
C3-C4-C5	113.8(6)	C8-C7-H7	109.4

O8-C8-C9	112.5(8)	O3-C13-O2	126.2(8)
O8-C8-C7	114.4(7)	O3-C13-C14	122.6(8)
C9-C8-C7	103.4(6)	O2-C13-C14	111.2(8)
O8-C8-H8	108.8	C15-C14-C19	120.2(8)
C9-C8-H8	108.8	C15-C14-C13	120.2(7)
C7-C8-H8	108.8	C19-C14-C13	119.1(8)
C10-C9-C8	113.5(8)	C16-C15-C14	117.9(7)
C10-C9-H9	123.2	C16-C15-H15	121.0
C8-C9-H9	123.2	C14-C15-H15	121.0
C9-C10-C30	126.9(8)	C17-C16-C15	123.9(8)
C9-C10-C11	111.3(8)	C17-C16-N1	117.5(8)
C30-C10-C11	121.5(7)	C15-C16-N1	118.5(7)
C10-C11-C12	116.3(7)	C16-C17-C18	115.9(8)
C10-C11-C7	104.6(6)	C16-C17-H17	122.1
C12-C11-C7	112.5(6)	C18-C17-H17	122.1
C10-C11-H11	107.7	C19-C18-C17	123.1(8)
C12-C11-H11	107.7	C19-C18-N2	118.9(8)
C7-C11-H11	107.7	C17-C18-N2	117.9(8)
O1-C12-C11	108.7(6)	C18-C19-C14	118.9(8)
O1-C12-C3	104.8(6)	C18-C19-H19	120.5
C11-C12-C3	116.4(7)	C14-C19-H19	120.5
O1-C12-H12	108.9	O8-C20-C21	109.6(7)
C11-C12-H12	108.9	O8-C20-H20A	109.7
C3-C12-H12	108.9	C21-C20-H20A	109.7

O8-C20-H20B	109.7	O9-C27-H27C	109.5
C21-C20-H20B	109.7	H27A-C27-H27C	109.5
H20A-C20-H20B	108.2	H27B-C27-H27C	109.5
C26-C21-C22	116.2(8)	C2-C28-H28A	120.0
C26-C21-C20	123.0(8)	C2-C28-H28B	120.0
C22-C21-C20	120.7(8)	H28A-C28-H28B	120.0
C23-C22-C21	121.9(8)	C6-C29-H29A	120.0
C23-C22-H22	119.1	C6-C29-H29B	120.0
C21-C22-H22	119.1	H29A-C29-H29B	120.0
C24-C23-C22	120.5(8)	C10-C30-H30A	109.5
C24-C23-H23	119.7	C10-C30-H30B	109.5
C22-C23-H23	119.7	H30A-C30-H30B	109.5
C23-C24-O9	125.2(8)	C10-C30-H30C	109.5
C23-C24-C25	118.9(9)	H30A-C30-H30C	109.5
O9-C24-C25	115.9(8)	H30B-C30-H30C	109.5
C26-C25-C24	120.7(9)	O10-C31-C32	106.0(7)
C26-C25-H25	119.7	O10-C31-H31A	110.5
C24-C25-H25	119.7	C32-C31-H31A	110.5
C25-C26-C21	121.7(8)	O10-C31-H31B	110.5
C25-C26-H26	119.1	C32-C31-H31B	110.5
C21-C26-H26	119.1	H31A-C31-H31B	108.7
O9-C27-H27A	109.5	C58-C32-C33	127.6(8)
O9-C27-H27B	109.5	C58-C32-C31	125.5(8)
H27A-C27-H27B	109.5	C33-C32-C31	106.8(7)

C34-C33-C32	117.6(6)	C36-C37-H37	109.5
C34-C33-C42	115.3(7)	C41-C37-H37	109.5
C32-C33-C42	102.6(7)	C38-C37-H37	109.5
C34-C33-H33	106.9	O17-C38-C39	111.5(7)
C32-C33-H33	106.9	O17-C38-C37	115.4(6)
C42-C33-H33	106.9	C39-C38-C37	104.5(6)
O11-C34-C33	109.3(7)	O17-C38-H38	108.4
O11-C34-C35	108.0(6)	C39-C38-H38	108.4
C33-C34-C35	113.2(6)	C37-C38-H38	108.4
O11-C34-H34	108.7	C40-C39-C38	113.3(8)
C33-C34-H34	108.7	C40-C39-H39	123.4
C35-C34-H34	108.7	C38-C39-H39	123.4
C34-C35-C36	113.5(7)	C39-C40-C60	125.7(8)
C34-C35-H35A	108.9	C39-C40-C41	111.3(7)
C36-C35-H35A	108.9	C60-C40-C41	122.6(8)
C34-C35-H35B	108.9	C40-C41-C42	116.8(7)
C36-C35-H35B	108.9	C40-C41-C37	104.8(7)
H35A-C35-H35B	107.7	C42-C41-C37	113.8(6)
C59-C36-C35	121.5(8)	C40-C41-H41	106.9
C59-C36-C37	118.7(8)	C42-C41-H41	106.9
C35-C36-C37	119.8(7)	C37-C41-H41	106.9
C36-C37-C41	113.7(6)	O10-C42-C41	108.8(6)
C36-C37-C38	110.4(7)	O10-C42-C33	104.3(6)
C41-C37-C38	104.2(6)	C41-C42-C33	118.0(7)

O10-C42-H42	108.4	O17-C50-C51	108.7(7)
C41-C42-H42	108.4	O17-C50-H50A	109.9
C33-C42-H42	108.4	C51-C50-H50A	109.9
O12-C43-O11	126.8(9)	O17-C50-H50B	110.0
O12-C43-C44	122.8(8)	C51-C50-H50B	110.0
O11-C43-C44	110.4(8)	H50A-C50-H50B	108.3
C45-C44-C49	119.7(8)	C52-C51-C56	117.9(8)
C45-C44-C43	122.0(7)	C52-C51-C50	121.9(8)
C49-C44-C43	118.1(8)	C56-C51-C50	120.2(8)
C44-C45-C46	119.2(8)	C53-C52-C51	121.6(8)
C44-C45-H45	120.4	C53-C52-H52	119.2
C46-C45-H45	120.4	C51-C52-H52	119.2
C47-C46-C45	122.1(8)	C52-C53-C54	119.0(8)
C47-C46-N3	118.2(8)	C52-C53-H53	120.5
C45-C46-N3	119.6(7)	C54-C53-H53	120.5
C46-C47-C48	117.3(8)	C55-C54-O18	124.4(8)
C46-C47-H47	121.3	C55-C54-C53	120.5(9)
C48-C47-H47	121.3	O18-C54-C53	115.0(8)
C47-C48-C49	122.7(8)	C56-C55-C54	119.3(8)
C47-C48-N4	117.5(8)	C56-C55-H55	120.3
C49-C48-N4	119.8(8)	C54-C55-H55	120.3
C48-C49-C44	118.9(8)	C55-C56-C51	121.5(8)
C48-C49-H49	120.6	C55-C56-H56	119.2
C44-C49-H49	120.6	C51-C56-H56	119.2

O18-C57-H57A	109.5	C88-C62-C61	125.6(8)
O18-C57-H57B	109.5	C88-C62-C63	127.4(8)
H57A-C57-H57B	109.5	C61-C62-C63	107.0(7)
O18-C57-H57C	109.5	C64-C63-C62	116.9(6)
H57A-C57-H57C	109.5	C64-C63-C72	115.6(7)
H57B-C57-H57C	109.5	C62-C63-C72	101.2(7)
C32-C58-H58A	120.0	C64-C63-H63	107.5
C32-C58-H58B	120.0	C62-C63-H63	107.5
H58A-C58-H58B	120.0	C72-C63-H63	107.5
C36-C59-H59A	120.0	O20-C64-C63	108.4(6)
C36-C59-H59B	120.0	O20-C64-C65	107.5(6)
H59A-C59-H59B	120.0	C63-C64-C65	113.7(6)
C40-C60-H60A	109.5	O20-C64-H64	109.0
C40-C60-H60B	109.5	C63-C64-H64	109.0
H60A-C60-H60B	109.5	C65-C64-H64	109.0
C40-C60-H60C	109.5	C66-C65-C64	115.1(7)
H60A-C60-H60C	109.5	C66-C65-H65A	108.5
H60B-C60-H60C	109.5	C64-C65-H65A	108.5
O19-C61-C62	106.9(7)	C66-C65-H65B	108.5
O19-C61-H61A	110.3	C64-C65-H65B	108.5
C62-C61-H61A	110.3	H65A-C65-H65B	107.5
O19-C61-H61B	110.3	C89-C66-C65	120.6(8)
C62-C61-H61B	110.3	C89-C66-C67	119.8(9)
H61A-C61-H61B	108.6	C65-C66-C67	119.5(7)

C66-C67-C71	114.3(6)	O19-C72-C71	108.0(6)
C66-C67-C68	112.2(7)	O19-C72-C63	104.7(6)
C71-C67-C68	102.6(6)	C71-C72-C63	117.1(7)
C66-C67-H67	109.2	O19-C72-H72	108.9
C71-C67-H67	109.2	C71-C72-H72	108.9
C68-C67-H67	109.2	C63-C72-H72	108.9
O26-C68-C69	113.2(7)	O21-C73-O20	125.6(8)
O26-C68-C67	115.8(7)	O21-C73-C74	123.5(8)
C69-C68-C67	103.9(6)	O20-C73-C74	110.9(8)
O26-C68-H68	107.9	C75-C74-C79	119.4(8)
C69-C68-H68	107.9	C75-C74-C73	121.9(7)
C67-C68-H68	107.9	C79-C74-C73	118.4(8)
C70-C69-C68	113.4(8)	C76-C75-C74	119.1(8)
C70-C69-H69	123.3	C76-C75-H75	120.4
C68-C69-H69	123.3	C74-C75-H75	120.4
C69-C70-C71	111.4(7)	C77-C76-C75	122.8(9)
C69-C70-C90	125.9(8)	C77-C76-N5	117.9(8)
C71-C70-C90	122.4(7)	C75-C76-N5	119.0(8)
C70-C71-C72	116.4(7)	C76-C77-C78	116.9(8)
C70-C71-C67	105.5(6)	C76-C77-H77	121.6
C72-C71-C67	113.5(6)	C78-C77-H77	121.6
C70-C71-H71	107.0	C77-C78-C79	122.7(8)
C72-C71-H71	107.0	C77-C78-N6	117.9(9)
C67-C71-H71	107.0	C79-C78-N6	119.1(9)

C78-C79-C74	118.9(9)	C81-C86-C85	121.8(9)
C78-C79-H79	120.5	C81-C86-H86	119.1
C74-C79-H79	120.5	C85-C86-H86	119.1
O26-C80-C81	110.9(7)	O27-C87-H87A	109.5
O26-C80-H80A	109.4	O27-C87-H87B	109.5
C81-C80-H80A	109.5	H87A-C87-H87B	109.5
O26-C80-H80B	109.4	O27-C87-H87C	109.5
C81-C80-H80B	109.4	H87A-C87-H87C	109.5
H80A-C80-H80B	108.0	H87B-C87-H87C	109.5
C86-C81-C82	118.2(9)	C62-C88-H88A	120.0
C86-C81-C80	121.2(8)	C62-C88-H88B	120.0
C82-C81-C80	120.6(9)	H88A-C88-H88B	120.0
C83-C82-C81	120.6(9)	C66-C89-H89A	120.0
C83-C82-H82	119.7	C66-C89-H89B	120.0
C81-C82-H82	119.7	H89A-C89-H89B	120.0
C82-C83-C84	119.5(9)	C70-C90-H90A	109.5
C82-C83-H83	120.3	C70-C90-H90B	109.5
C84-C83-H83	120.3	H90A-C90-H90B	109.5
C85-C84-C83	120.9(9)	C70-C90-H90C	109.5
C85-C84-O27	125.4(9)	H90A-C90-H90C	109.5
C83-C84-O27	113.7(8)	H90B-C90-H90C	109.5
C84-C85-C86	119.0(9)	O5-N1-O4	124.1(8)
C84-C85-H85	120.5	O5-N1-C16	118.0(7)
C86-C85-H85	120.5	O4-N1-C16	117.9(7)

O6-N2-O7	124.4(8)	O25-N6-C78	117.5(9)
O6-N2-C18	117.4(8)	C1-O1-C12	107.8(6)
O7-N2-C18	118.2(8)	C13-O2-C4	117.3(7)
O14-N3-O13	125.2(8)	C8-O8-C20	111.6(6)
O14-N3-C46	117.9(7)	C24-O9-C27	116.2(7)
O13-N3-C46	116.9(8)	C31-O10-C42	106.5(6)
O16-N4-O15	126.2(8)	C43-O11-C34	117.4(7)
O16-N4-C48	116.5(8)	C38-O17-C50	111.2(6)
O15-N4-C48	117.3(9)	C54-O18-C57	115.8(6)
O23-N5-O22	125.0(8)	C61-O19-C72	108.0(6)
O23-N5-C76	117.6(8)	C73-O20-C64	116.6(6)
O22-N5-C76	117.4(8)	C68-O26-C80	111.3(6)
O24-N6-O25	124.5(9)	C84-O27-C87	116.1(7)
O24-N6-C78	118.0(9)		

Table 4. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{8 5}$. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$C 1$	$17(5)$	$28(6)$	$28(5)$	$1(5)$	$-9(4)$	$-1(5)$
$C 2$	$20(5)$	$24(6)$	$20(5)$	$3(5)$	$3(4)$	$-3(5)$
$C 3$	$19(5)$	$17(5)$	$15(5)$	$2(4)$	$10(4)$	$2(4)$

C4	35(6)	16(5)	6 (4)	3(4)	8(4)	-8(5)
C5	18(5)	18(5)	12(4)	-3(4)	3(4)	$0(4)$
C6	19(5)	19(6)	22(5)	-1(5)	-2(4)	-4(5)
C7	20(5)	18(6)	23(5)	2(4)	-5(4)	-6(5)
C8	24(5)	22(6)	24(5)	-6(5)	-4(4)	0 (5)
C9	32(6)	28(6)	14(5)	-4(5)	-1(4)	-2(5)
C10	22(5)	20(6)	15(5)	-1(4)	-3(4)	2(5)
C11	20(5)	13(5)	15(5)	-8(4)	-6(4)	3(4)
C12	15(5)	16(6)	28(5)	2(4)	3(4)	$0(4)$
C13	20(5)	28(6)	15(5)	4(5)	-1(4)	8(5)
C14	21(5)	18(5)	7(5)	7(4)	0(4)	3(4)
C15	14(5)	29(6)	14(5)	$0(4)$	4(4)	0 (5)
C16	28(5)	11(5)	19(5)	-3(4)	$0(4)$	6(5)
C17	19(5)	25(6)	18(5)	5(5)	1(4)	-1(5)
C18	17(5)	23(6)	7(5)	-4(4)	-2(4)	3(4)
C19	19(5)	27(6)	18(5)	$3(5)$	3(4)	4(5)
C20	25(6)	34(7)	28(5)	-5(5)	-8(4)	-3(5)
C21	9(5)	22(6)	37(6)	-11(5)	-3(4)	0 (5)
C22	36(6)	36(7)	28(6)	9(5)	-5(5)	-1(6)
C23	31(6)	27(6)	25(5)	7(5)	4(5)	1(5)
C24	23(6)	34(7)	29(6)	$0(5)$	5(4)	1(5)
C25	30(6)	45(8)	28(6)	-5(5)	$-9(5)$	13(6)
C26	26(6)	52(8)	23(5)	-3(6)	-10(5)	1(6)
C27	47(6)	60(8)	24(6)	-8(5)	7(5)	13(6)

C28	37(6)	40(7)	27(6)	-5(5)	-1(5)	7(6)
C29	24(5)	29(6)	33(6)	$6(5)$	4(4)	-2(5)
C30	29(5)	40(7)	22(5)	$6(5)$	5(4)	-2(5)
C31	28(6)	44(8)	28(6)	-6(5)	-5(5)	-5(5)
C32	15(5)	30(6)	17(5)	$-9(5)$	3(4)	-6(5)
C33	9(5)	22(6)	20(5)	1(4)	$0(4)$	1(4)
C34	23(5)	22(6)	18(5)	-1(4)	-3(4)	-8(5)
C35	12(5)	25(6)	18(5)	3(4)	4(4)	-1(4)
C36	15(5)	19(5)	19(5)	-6(4)	$0(4)$	-1(4)
C37	15(5)	15(5)	22(5)	-2(4)	-6(4)	-1(4)
C38	22(5)	24(6)	19(5)	$8(4)$	1(4)	-6(5)
C39	30(6)	18(6)	22(5)	2(4)	11(4)	2(5)
C40	21(5)	30(6)	14(5)	5(4)	3(4)	4(5)
C41	19(5)	19(6)	27(5)	$6(5)$	5(4)	-1(4)
C42	18(5)	29(6)	19(5)	-2(5)	-5(4)	-6(5)
C43	21(5)	33(7)	15(6)	-12(5)	-1(4)	-15(5)
C44	16(5)	22(6)	15(5)	2(5)	1(4)	-4(5)
C45	31(5)	29(6)	19(5)	-10(5)	9(4)	-17(5)
C46	18(5)	28(6)	15(5)	-1(5)	5(4)	2(5)
C47	10(5)	40(7)	28(6)	-11(5)	1(4)	1(5)
C48	20(5)	39(7)	15(5)	-6(5)	$0(4)$	$1(5)$
C49	17(5)	31(6)	15(5)	$0(5)$	$0(4)$	2(5)
C50	22(5)	32(6)	20(5)	$3(5)$	-10(4)	1(5)
C51	17(5)	16(5)	22(5)	$3(5)$	-10(4)	-6(4)

C52	15(5)	35(7)	18(5)	0(5)	-3(4)	3(5)
C53	23(6)	25(6)	29(6)	-13(5)	-1(4)	-4(5)
C54	20(5)	27(6)	21(5)	1(5)	5(4)	4(5)
C55	19(5)	22(6)	18(5)	4(5)	3(4)	4(5)
C56	21(5)	21(6)	34(6)	-9(5)	2(4)	3(5)
C 57	40(6)	45(7)	22(5)	12(5)	13(4)	-7(5)
C58	29(6)	42(7)	32(6)	-2(5)	-2(5)	-10(5)
C59	28(6)	31(6)	18(5)	$-2(5)$	-1(4)	-7(5)
C60	33(6)	48(7)	25(5)	-5(5)	12(4)	5(6)
C61	31(6)	21(6)	29(5)	-3(5)	2(5)	-1(5)
C62	20(5)	22(6)	18(5)	-6(4)	0(4)	-1(5)
C63	22(5)	12(5)	17(5)	-5(4)	2(4)	-2(4)
C64	35(6)	10(5)	12(5)	-9(4)	4(4)	3(5)
C65	19(5)	20(5)	18(5)	0(4)	-3(4)	-6(4)
C66	24(5)	25(6)	26(5)	-8(5)	1(4)	-2(5)
C67	23(5)	16(5)	22(5)	-4(4)	-6(4)	3(4)
C68	31(6)	22(6)	18(5)	-4(5)	-5(4)	1(5)
C69	29(6)	22(6)	13(5)	-3(4)	4(4)	8(5)
C70	23(5)	21(6)	$9(5)$	2(4)	-3(4)	-3(5)
C71	27(5)	11(5)	13(5)	-2(4)	-4(4)	-1(4)
C72	21(5)	17(6)	21(5)	-4(4)	2(4)	-9(4)
C73	22(5)	15(6)	31(6)	-7(5)	0(4)	-12(5)
C74	21(5)	20(6)	12(5)	5(4)	-2(4)	-6(5)
C75	20(5)	16(5)	18(5)	0(4)	-2(4)	1(5)

C76	22(5)	21(6)	25(5)	-3(5)	4(4)	-2(5)
C77	19(6)	31(7)	30(6)	-14(5)	6(4)	-5(5)
C78	27(6)	39(7)	14(5)	9(5)	-2(4)	-13(5)
C79	19(5)	27(6)	17(5)	-6(5)	-1(4)	-2(4)
C80	24(6)	31(7)	40(6)	-8(5)	-12(5)	4(5)
C81	13(5)	36(7)	28(6)	-12(5)	-1(4)	5(5)
C82	17(5)	47(7)	27(5)	-2(5)	5(4)	3(5)
C83	18(5)	50(7)	30(6)	-8(5)	2(4)	-6(5)
C84	19(6)	41(7)	30(6)	-2(5)	$6(5)$	0 (5)
C85	34(6)	50(8)	14(5)	3(5)	4(4)	11(6)
C86	25(6)	44(8)	28(6)	-10(5)	-7(5)	10(6)
C87	40(7)	50(8)	62(7)	10(6)	20(6)	1(6)
C88	20(5)	29(6)	31(6)	-1(5)	-2(4)	-4(5)
C89	29(6)	29(6)	35(6)	7(5)	$2(5)$	7(5)
C90	38(6)	29(6)	21(5)	-4(5)	12(4)	-1(5)
N1	30(5)	22(5)	19(5)	4(4)	3(4)	-3(4)
N2	20(4)	47(6)	20(5)	5(5)	4(4)	12(5)
N3	27(5)	32(6)	29(5)	5(5)	-1(4)	-13(4)
N4	32(5)	66(8)	25(5)	-21(5)	3(4)	2(5)
N5	26(5)	25(5)	37(5)	-7(5)	-1(4)	-6(4)
N6	42(6)	52(7)	27(5)	-1(5)	2(4)	-9(5)
O1	26(3)	23(4)	22(3)	-6(3)	-2(3)	8(3)
O2	23(3)	20(4)	13(3)	2(3)	6 (3)	1(3)
O3	36(4)	28(4)	19(3)	-7(3)	4(3)	-5(3)

O4	41(4)	30(4)	27(4)	-8(3)	10(3)	-13(3)
O5	31(4)	28(4)	33(4)	-4(3)	14(3)	-10(3)
O6	44(4)	45(5)	21(4)	-5(3)	13(3)	-14(4)
O7	38(4)	23(4)	29(4)	-8(3)	6(3)	-5(4)
O8	28(4)	23(4)	19(3)	-1(3)	-5(3)	3(3)
O9	39(4)	47(5)	20(4)	-5(3)	4(3)	12(4)
O 10	28(4)	35(4)	21(3)	1(3)	-1(3)	-15(3)
O11	28(3)	21(4)	14(3)	-5(3)	9(3)	$0(3)$
O 12	41(4)	26(4)	20(3)	5(3)	10(3)	2(4)
O13	45(4)	45(5)	20(4)	7(4)	12(3)	10(4)
O14	48(4)	24(4)	41(4)	-6(4)	14(3)	$0(4)$
O15	56(5)	63(6)	21(4)	-5(4)	14(3)	18(5)
O16	64(5)	88(7)	23(4)	6(4)	-4(4)	45(5)
O17	16(3)	21(4)	23(3)	4(3)	-1(3)	3(3)
O18	22(3)	32(4)	22(3)	-1(3)	3(3)	-7(3)
O19	32(4)	18(4)	21(3)	-4(3)	-4(3)	-3(3)
O20	28(3)	13(4)	16(3)	7(3)	3(3)	3(3)
O21	40(4)	18(4)	22(3)	2(3)	8(3)	4(3)
O22	28(4)	23(4)	42(4)	2(3)	3(3)	$5(3)$
O23	26(4)	34(5)	52(4)	-17(4)	7(3)	6 (3)
O24	78(5)	71(6)	25(4)	1(4)	22(4)	$9(5)$
O25	67(5)	48(5)	30(4)	8(4)	8(4)	-15(5)
O26	23(4)	18(4)	30(3)	-2(3)	-8(3)	1(3)
O27	34(4)	47(5)	37(4)	3(4)	7(3)	$0(4)$

Table 5. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 85 .

	x	y	z	U(eq)
H1A	-1314	8977	3048	30
H1B	-1696	7555	3355	30
H3	-804	3304	3625	19
H4	-437	1405	3047	22
H5A	163	1474	3747	19
H5B	485	1364	3317	19
H7	675	7380	4126	25
H8	766	5099	4760	29
H9	12	1853	4776	30
H11	-165	8087	4257	20
H12	-249	7659	3429	24
H15	479	7354	2551	23
H17	964	8266	1307	25
H19	14	2509	1537	26
H20A	1624	3256	4806	36
H20B	1542	4456	4310	36
H22	1661	1752	3643	41
H23	2170	-1296	3373	33

H25	2699	-3315	4652	42
H26	2180	-346	4925	42
H27A	2860	-3734	3217	65
H27B	2335	-5311	3271	65
H27C	2915	-6576	3335	65
H28A	-1703	5006	2538	42
H28B	-1273	2726	2616	42
H29A	1138	6961	3526	35
H29B	1014	4781	3147	35
H30A	-979	5521	4735	46
H30B	-1007	2738	4572	46
H30C	-1160	4880	4212	46
H31A	4422	5033	256	41
H31B	4900	3372	109	41
H33	3933	-853	-246	21
H34	3368	-1789	280	26
H35A	2540	-1645	-160	22
H35B	2981	-2130	-492	22
H37	2734	3500	-1123	21
H38	2699	629	-1655	26
H39	3411	-2731	-1499	27
H41	3618	3699	-1074	26
H42	3498	3961	-282	28
H45	2414	4774	415	31

H47	1891	7648	1536	32
H49	2861	1695	1647	26
H50A	1823	-1033	-1768	31
H50B	1828	606	-1321	31
H52	1342	-4917	-1818	27
H53	780	-7708	-1525	31
H55	913	-3858	-353	23
H56	1469	-1084	-655	31
H57A	237	-6772	-182	53
H57B	851	-7654	-113	53
H57C	375	-9620	-185	53
H58A	4205	-961	776	42
H58B	4697	1038	870	42
H59A	2065	2234	-208	31
H59B	2115	4008	-646	31
H60A	4492	870	-1269	52
H60B	4388	-2003	-1245	52
H60C	4505	-447	-788	52
H61A	7731	13887	3882	33
H61B	8119	12550	3569	33
H63	7268	8332	3238	20
H64	6866	6133	3764	23
H65A	6313	6397	3053	23
H65B	5961	6094	3460	23

H67	5780	12316	2702	25
H68	5759	10282	2049	29
H69	6552	7334	2016	25
H71	6619	13253	2642	21
H72	6660	12503	3452	24
H75	5986	11861	4398	22
H77	5673	12245	5696	32
H79	6605	6779	5311	26
H80A	4955	8596	1919	40
H80B	4931	9028	2448	40
H82	4548	5048	1549	36
H83	3941	1857	1561	39
H85	4075	2291	2925	39
H86	4676	5508	2910	40
H87A	3292	157	2783	74
H87B	3785	-1722	2813	74
H87C	3207	-2484	2557	74
H88A	8098	9824	4374	33
H88B	7675	7536	4267	33
H89A	5381	9313	3621	38
H89B	5271	11596	3262	38
H90A	7518	11577	2265	43
H90B	7512	8697	2179	43
H90C	7660	9743	2682	43

Table 6. Torsion angles [${ }^{\circ}$] for $\mathbf{8 5}$.

O1-C1-C2-C28	-177.8(8)	C11-C7-C8-C9	19.8(8)
O1-C1-C2-C3	0.2(8)	O8-C8-C9-C10	-140.1(7)
C28-C2-C3-C4	30.9(12)	C7-C8-C9-C10	-16.2(9)
C1-C2-C3-C4	-147.0(7)	C8-C9-C10-C30	-169.5(8)
C28-C2-C3-C12	157.9(9)	C8-C9-C10-C11	4.8(10)
C1-C2-C3-C12	-20.0(8)	C9-C10-C11-C12	133.6(8)
C2-C3-C4-O2	53.3(9)	C30-C10-C11-C12	-51.7(10)
C12-C3-C4-O2	-65.7(8)	C9-C10-C11-C7	8.8(9)
C2-C3-C4-C5	172.0(7)	C30-C10-C11-C7	-176.5(7)
C12-C3-C4-C5	53.0(9)	C6-C7-C11-C10	102.9(8)
O2-C4-C5-C6	56.9(8)	C8-C7-C11-C10	-17.6(8)
C3-C4-C5-C6	-63.0(9)	C6-C7-C11-C12	-24.3(10)
C4-C5-C6-C29	-90.8(9)	C8-C7-C11-C12	-144.7(7)
C4-C5-C6-C7	89.2(8)	C10-C11-C12-O1	79.7(8)
C29-C6-C7-C11	127.9(8)	C7-C11-C12-O1	-159.7(7)
C5-C6-C7-C11	-52.1(10)	C10-C11-C12-C3	-38.3(10)
C29-C6-C7-C8	-116.1(8)	C7-C11-C12-C3	82.4(9)
C5-C6-C7-C8	64.0(9)	C4-C3-C12-O1	160.2(6)
C6-C7-C8-O8	19.2(9)	C2-C3-C12-O1	33.1(7)
C11-C7-C8-O8	142.5(7)	C4-C3-C12-C11	-79.7(9)
C6-C7-C8-C9	-103.5(8)	C2-C3-C12-C11	153.2(7)

O3-C13-C14-C15	-164.2(8)	O9-C24-C25-C26	-176.9(8)
$\mathrm{O} 2-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$	15.0(10)	C24-C25-C26-C21	-0.1(14)
O3-C13-C14-C19	7.7(12)	C22-C21-C26-C25	-2.2(13)
O2-C13-C14-C19	-173.1(7)	C20-C21-C26-C25	179.9(9)
C19-C14-C15-C16	2.4(12)	O10-C31-C32-C58	172.9(8)
C13-C14-C15-C16	174.2(7)	O10-C31-C32-C33	-10.5(9)
C14-C15-C16-C17	-0.1(12)	C58-C32-C33-C34	36.8(13)
C14-C15-C16-N1	-177.3(7)	C31-C32-C33-C34	-139.7(8)
C15-C16-C17-C18	-1.2(12)	C58-C32-C33-C42	164.5(9)
N1-C16-C17-C18	176.0(7)	C31-C32-C33-C42	-11.9(8)
C16-C17-C18-C19	0.3(12)	C32-C33-C34-O11	56.0(9)
C16-C17-C18-N2	-175.3(7)	C42-C33-C34-O11	-65.3(8)
C17-C18-C19-C14	1.9(12)	C32-C33-C34-C35	176.6(7)
N2-C18-C19-C14	177.5(7)	C42-C33-C34-C35	55.2(10)
C15-C14-C19-C18	-3.2(12)	O11-C34-C35-C36	55.4(8)
C13-C14-C19-C18	-175.1(7)	C33-C34-C35-C36	-65.8(10)
O8-C20-C21-C26	-104.4(9)	C34-C35-C36-C59	-90.1(9)
O8-C20-C21-C22	77.8(10)	C34-C35-C36-C37	91.1(8)
C26-C21-C22-C23	3.0(13)	C59-C36-C37-C41	127.6(8)
C20-C21-C22-C23	-179.1(8)	C35-C36-C37-C41	-53.6(10)
C21-C22-C23-C24	$-1.4(14)$	C59-C36-C37-C38	-115.8(8)
C22-C23-C24-O9	177.5(8)	C35-C36-C37-C38	63.1(9)
C22-C23-C24-C25	-1.0(13)	C36-C37-C38-O17	13.9(9)
C23-C24-C25-C26	1.7(14)	C41-C37-C38-O17	136.4(7)

C36-C37-C38-C39	-108.8(7)	O12-C43-C44-C49	11.9(12)
C41-C37-C38-C39	13.7(8)	O11-C43-C44-C49	-168.5(7)
O17-C38-C39-C40	-135.7(7)	C49-C44-C45-C46	2.0(12)
C37-C38-C39-C40	-10.5(9)	C43-C44-C45-C46	176.6(8)
C38-C39-C40-C60	-171.0(8)	C44-C45-C46-C47	0.8(13)
C38-C39-C40-C41	2.3(10)	C44-C45-C46-N3	178.7(7)
C39-C40-C41-C42	133.8(8)	C45-C46-C47-C48	-2.7(13)
C60-C40-C41-C42	-52.6(11)	N3-C46-C47-C48	179.4(7)
C39-C40-C41-C37	6.9(9)	C46-C47-C48-C49	1.9(13)
C60-C40-C41-C37	-179.6(7)	C46-C47-C48-N4	-175.6(7)
C36-C37-C41-C40	107.8(7)	C47-C48-C49-C44	$0.9(13)$
C38-C37-C41-C40	-12.5(8)	N4-C48-C49-C44	178.3(7)
C36-C37-C41-C42	-21.1(10)	C45-C44-C49-C48	-2.9(12)
C38-C37-C41-C42	-141.3(7)	C43-C44-C49-C48	-177.6(8)
C40-C41-C42-O10	76.0(9)	O17-C50-C51-C52	-93.6(9)
C37-C41-C42-O10	-161.6(7)	O17-C50-C51-C56	84.2(9)
C40-C41-C42-C33	-42.6(10)	C56-C51-C52-C53	-2.9(12)
C37-C41-C42-C33	79.9(9)	C50-C51-C52-C53	174.9(7)
C34-C33-C42-O10	159.4(6)	C51-C52-C53-C54	-0.3(12)
C32-C33-C42-O10	30.2(8)	C52-C53-C54-C55	3.3(12)
C34-C33-C42-C41	-79.7(9)	C52-C53-C54-O18	-177.1(7)
C32-C33-C42-C41	151.1(7)	O18-C54-C55-C56	177.4(7)
O12-C43-C44-C45	-162.7(8)	C53-C54-C55-C56	-3.2(12)
O11-C43-C44-C45	16.9(11)	C54-C55-C56-C51	-0.1(12)

C52-C51-C56-C55	3.1(12)	O26-C68-C69-C70	-140.8(7)
C50-C51-C56-C55	-174.8(7)	C67-C68-C69-C70	-14.3(10)
O19-C61-C62-C88	-176.3(8)	C68-C69-C70-C71	4.3(10)
O19-C61-C62-C63	3.4(8)	C68-C69-C70-C90	-169.1(8)
C88-C62-C63-C64	$30.9(12)$	C69-C70-C71-C72	134.8(8)
C61-C62-C63-C64	-148.9(7)	C90-C70-C71-C72	-51.6(11)
C88-C62-C63-C72	157.4(8)	C69-C70-C71-C67	7.9(9)
C61-C62-C63-C72	-22.4(8)	C90-C70-C71-C67	-178.5(7)
C62-C63-C64-O20	51.4(9)	C66-C67-C71-C70	106.2(7)
C72-C63-C64-O20	-67.6(8)	C68-C67-C71-C70	-15.5(8)
C62-C63-C64-C65	170.9(7)	C66-C67-C71-C72	-22.5(10)
C72-C63-C64-C65	51.9(9)	C68-C67-C71-C72	-144.1(7)
O20-C64-C65-C66	57.7(9)	C70-C71-C72-O19	77.1(9)
C63-C64-C65-C66	-62.3(9)	C67-C71-C72-O19	-160.0(7)
C64-C65-C66-C89	-92.1(10)	C70-C71-C72-C63	-40.7(10)
C64-C65-C66-C67	89.2(9)	C67-C71-C72-C63	82.1(9)
C89-C66-C67-C71	128.4(8)	C64-C63-C72-O19	161.0(6)
C65-C66-C67-C71	-52.9(10)	C62-C63-C72-O19	33.6(8)
C89-C66-C67-C68	-115.3(9)	C64-C63-C72-C71	-79.4(9)
C65-C66-C67-C68	63.3(9)	C62-C63-C72-C71	153.2(7)
C66-C67-C68-O26	19.2(10)	O21-C73-C74-C75	-169.0(8)
C71-C67-C68-O26	142.3(7)	O20-C73-C74-C75	9.9(11)
C66-C67-C68-C69	-105.6(8)	O21-C73-C74-C79	4.7(12)
C71-C67-C68-C69	17.5(8)	O20-C73-C74-C79	-176.4(7)

C79-C74-C75-C76	3.0(12)	C17-C16-N1-O5	1.3(11)
C73-C74-C75-C76	176.6(8)	C15-C16-N1-O5	178.6(7)
C74-C75-C76-C77	-4.7(13)	C17-C16-N1-O4	-179.5(7)
C74-C75-C76-N5	-177.8(7)	C15-C16-N1-O4	-2.1(11)
C75-C76-C77-C78	4.1(13)	C19-C18-N2-O6	178.1(7)
N5-C76-C77-C78	177.3(7)	C17-C18-N2-O6	-6.1(11)
C76-C77-C78-C79	-2.0(13)	C19-C18-N2-O7	-2.6(11)
C76-C77-C78-N6	-175.7(7)	C17-C18-N2-O7	173.2(7)
C77-C78-C79-C74	0.6(13)	C47-C46-N3-O14	8.6(11)
N6-C78-C79-C74	174.2(7)	C45-C46-N3-O14	-169.3(8)
C75-C74-C79-C78	-1.0(12)	C47-C46-N3-O13	-171.7(8)
C73-C74-C79-C78	-174.9(7)	C45-C46-N3-O13	10.4(11)
O26-C80-C81-C86	83.4(10)	C47-C48-N4-O16	177.8(8)
O26-C80-C81-C82	-100.1(9)	C49-C48-N4-O16	0.3(12)
C86-C81-C82-C83	1.3(13)	C47-C48-N4-O15	-4.2(12)
C80-C81-C82-C83	-175.4(8)	C49-C48-N4-O15	178.3(8)
C81-C82-C83-C84	-1.7(13)	C77-C76-N5-O23	9.5(11)
C82-C83-C84-C85	1.9(14)	C75-C76-N5-O23	-177.0(8)
C82-C83-C84-O27	-179.4(8)	C77-C76-N5-O22	-172.7(7)
C83-C84-C85-C86	-1.5(13)	C75-C76-N5-O22	0.8(11)
O27-C84-C85-C86	179.8(8)	C77-C78-N6-O24	-11.6(12)
C82-C81-C86-C85	-1.0(13)	C79-C78-N6-O24	174.4(8)
C80-C81-C86-C85	175.7(8)	C77-C78-N6-O25	169.2(8)
C84-C85-C86-C81	1.1(14)	C79-C78-N6-O25	-4.7(12)

C2-C1-O1-C12	21.9(8)	C35-C34-O11-C43	113.5(7)
C11-C12-O1-C1	-160.2(7)	C39-C38-O17-C50	-159.2(6)
C3-C12-O1-C1	-35.1(8)	C37-C38-O17-C50	81.9(8)
O3-C13-O2-C4	11.4(12)	C51-C50-O17-C38	-168.9(6)
C14-C13-O2-C4	-167.8(6)	C55-C54-O18-C57	-16.1(11)
C3-C4-O2-C13	-135.9(7)	C53-C54-O18-C57	164.4(7)
C5-C4-O2-C13	101.0(7)	C62-C61-O19-C72	18.9(8)
C9-C8-O8-C20	-160.3(6)	C71-C72-O19-C61	-159.0(6)
C7-C8-O8-C20	82.1(8)	C63-C72-O19-C61	-33.5(8)
C21-C20-O8-C8	-169.5(7)	O21-C73-O20-C64	2.6(12)
C23-C24-O9-C27	-7.1(12)	C74-C73-O20-C64	-176.2(6)
C25-C24-O9-C27	171.4(8)	C63-C64-O20-C73	-123.0(7)
C32-C31-O10-C42	$30.7(9)$	C65-C64-O20-C73	113.7(7)
C41-C42-O10-C31	-165.3(7)	C69-C68-O26-C80	-157.2(6)
C33-C42-O10-C31	-38.5(8)	C67-C68-O26-C80	83.0(8)
O12-C43-O11-C34	11.9(12)	C81-C80-O26-C68	179.0(7)
C44-C43-O11-C34	-167.7(6)	C85-C84-O27-C87	-1.7(12)
C33-C34-O11-C43	-122.9(7)	C83-C84-O27-C87	179.6(8)

APPENDIX B: CRYSTALLOGRAPHIC DATA FOR 92

Table 1. Crystal data and structure refinement for 92.

Empirical formula	C18 H30 O2 Si
Formula weight	306.51
Temperature	133(2) K
Wavelength	0.71073 £
Crystal system	monoclinic
Space group	P 21
Unit cell dimensions	$a=10.9429(18) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=6.4395(12) \AA \quad \beta=102.480(6)^{\circ}$.
	$\mathrm{c}=13.070(3) \AA \quad \gamma=90^{\circ}$.
Volume	899.2(3) \AA^{3}
Z	2
Density (calculated)	$1.132 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.134 \mathrm{~mm}^{-1}$
$F(000)$	336
Crystal size	$0.39 \times 0.15 \times 0.10 \mathrm{~mm}$
Theta range for data collection	3.544 to 25.464°.
Index ranges	$-13<=\mathrm{h}<=9,-7<=\mathrm{k}<=7,-15<=\mathrm{l}<=15$
Reflections collected	5362
Independent reflections	$3151[\mathrm{R}(\mathrm{int})=0.0478]$
Completeness to theta $=25.242^{\circ}$	98.6 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00 and 0.923
Refinement method	Full-matrix least-squares on F^{2}

Data / restraints / parameters	$3151 / 1 / 199$
Goodness-of-fit on F^{2}	1.062
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0606, \mathrm{wR} 2=0.1078$
R indices (all data)	$\mathrm{R} 1=0.0926, \mathrm{wR} 2=0.1184$
Absolute structure parameter	$0.02(16)$
Extinction coefficient	n / a
Largest diff. peak and hole	0.395 and $-0.235 \mathrm{e} . \AA^{-3}$

Table 2. Atomic coordinates ($\mathrm{x} 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $92 . \mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	Z	U(eq)
C1	5035(5)	6449(7)	2871(4)	16(1)
C2	5046(4)	8692(8)	2499(4)	13(1)
C3	4088(5)	9811(8)	2976(4)	14(1)
C4	3341(4)	8073(7)	3380(4)	12(1)
C5	1921(4)	8183(8)	2992(4)	15(1)
C6	1135(5)	6748(7)	3579(4)	17(1)
C7	917(5)	4763(8)	2903(4)	24(1)
C8	939(5)	5602(9)	1831(5)	24(1)
C9	1482(5)	7454(8)	1866(4)	21(1)
C10	5753(4)	9550(8)	1899(4)	18(1)
C11	7376(6)	5758(8)	1539(5)	35(2)
C12	6430(5)	8968(9)	-189(5)	34(2)
C13	8431(5)	10151(9)	1705(5)	28(2)
C14	4774(5)	11226(8)	3853(4)	18(1)
C15	1615(5)	6523(8)	4739(4)	20(1)
C16	1716(5)	8541(10)	5356(4)	29(1)
C17	1880(5)	4720(9)	5225(5)	28(2)
C18	1693(5)	8661(10)	934(4)	30(1)
O1	3809(3)	6122(5)	3058(3)	20(1)

O2	$3913(4)$	$12361(6)$	$4328(3)$	$26(1)$
Si1	$6991(1)$	$8566(2)$	$1248(1)$	$18(1)$

Table 3. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for 92.

C1-O1	$1.430(5)$	C7-C8	1.507(8)
C1-C2	1.525(7)	C7-H7A	0.99
C1-H1A	0.99	C7-H7B	0.99
C1-H1B	0.99	C8-C9	1.329 (7)
C2-C10	1.335(6)	C8-H8	0.95
C2-C3	1.513(7)	C9-C18	$1.505(7)$
C3-C14	1.528(7)	C10-Sil	$1.860(5)$
C3-C4	1.544(6)	C10-H10	0.95
C3-H3	1.00	C11-Si1	1.877(6)
C4-O1	1.453(6)	C11-H11A	0.98
C4-C5	$1.528(6)$	C11-H11B	0.98
C4-H4	1.00	C11-H11C	0.98
C5-C9	1.521(7)	C12-Sil	1.864(6)
C5-C6	1.571(7)	C12-H12A	0.98
C5-H5	1.00	C12-H12B	0.98
C6-C15	$1.500(7)$	C12-H12C	0.98
C6-C7	1.543(7)	C13-Si1	1.864(6)
C6-H6	1.00	C13-H13A	0.98

C13-H13B	0.98	C16-H16B	0.98
C13-H13C	0.98	C16-H16C	0.98
C14-O2	$1.435(6)$	C17-H17A	0.95
C14-H14A	0.99	C17-H17B	0.95
C14-H14B	0.99	C18-H18A	0.98
C15-C17	$1.325(7)$	C18-H18B	0.98
C15-C16	1.521(8)	C18-H18C	0.98
C16-H16A	0.98	O2-H2O	0.83(6)
O1-C1-C2	105.5(4)	O1-C4-C3	106.4(4)
O1-C1-H1A	110.6	C5-C4-C3	115.4(4)
C2-C1-H1A	110.6	O1-C4-H4	108.3
O1-C1-H1B	110.6	C5-C4-H4	108.3
C2-C1-H1B	110.6	C3-C4-H4	108.3
H1A-C1-H1B	108.8	C9-C5-C4	113.1(4)
C10-C2-C3	125.9(5)	C9-C5-C6	101.5(4)
C10-C2-C1	128.7(4)	C4-C5-C6	115.8(4)
C3-C2-C1	105.4(4)	C9-C5-H5	108.7
C2-C3-C14	108.7(4)	C4-C5-H5	108.7
C2-C3-C4	105.1(4)	C6-C5-H5	108.7
C14-C3-C4	112.7(4)	C15-C6-C7	118.4(4)
C2-C3-H3	110.0	C15-C6-C5	116.2(4)
C14-C3-H3	110.0	C7-C6-C5	103.9(4)
C4-C3-H3	110.0	C15-C6-H6	105.8
O1-C4-C5	109.9(4)	C7-C6-H6	105.8

C5-C6-H6	105.8	H12A-C12-H12B	109.5
C8-C7-C6	101.8(4)	Si1-C12-H12C	109.5
C8-C7-H7A	111.4	H12A-C12-H12C	109.5
C6-C7-H7A	111.4	H12B-C12-H12C	109.5
C8-C7-H7B	111.4	Sil-C13-H13A	109.5
C6-C7-H7B	111.4	Si1-C13-H13B	109.5
H7A-C7-H7B	109.3	H13A-C13-H13B	109.5
C9-C8-C7	112.7(5)	Si1-C13-H13C	109.5
C9-C8-H8	123.6	H13A-C13-H13C	109.5
C7-C8-H8	123.6	H13B-C13-H13C	109.5
C8-C9-C18	125.5(6)	O2-C14-C3	111.4(4)
C8-C9-C5	110.9(5)	O2-C14-H14A	109.3
C18-C9-C5	123.5(5)	C3-C14-H14A	109.3
C2-C10-Si1	134.4(4)	O2-C14-H14B	109.3
C2-C10-H10	112.8	C3-C14-H14B	109.3
Si1-C10-H10	112.8	H14A-C14-H14B	108.0
Sil-C11-H11A	109.5	C17-C15-C6	124.2(5)
Sil-C11-H11B	109.5	C17-C15-C16	120.7(5)
H11A-C11-H11B	109.5	C6-C15-C16	115.0(5)
Sil-C11-H11C	109.5	C15-C16-H16A	109.5
H11A-C11-H11C	109.5	C15-C16-H16B	109.5
H11B-C11-H11C	109.5	H16A-C16-H16B	109.5
Sil-C12-H12A	109.5	C15-C16-H16C	109.5
Si1-C12-H12B	109.5	H16A-C16-H16C	109.5

H16B-C16-H16C	H18B-C18-H18C	109.5	
C15-C17-H17A	120.0	C1-O1-C4	$109.0(3)$
C15-C17-H17B	C14-O2-H2O	$102(4)$	
H17A-C17-H17B	C10-Si1-C13	$108.4(2)$	
C9-C18-H18A	C10-Si1-C12	$107.4(3)$	
C9-C18-H18B	120.0	C13-Si1-C12	$108.6(3)$
H18A-C18-H18B	109.5	C10-Si1-C11	$112.9(2)$
C9-C18-H18C	109.5	C13-Si1-C11	$109.0(3)$
H18A-C18-H18C	109.5	C12-Si1-C11	$110.4(3)$

Table 4. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 92. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
C1	$17(3)$	$12(3)$	$18(3)$	$0(2)$	$5(2)$	$3(2)$
C2	$14(2)$	$10(3)$	$15(3)$	$5(3)$	$2(2)$	$-1(3)$
C3	$18(3)$	$12(3)$	$13(3)$	$3(2)$	$3(3)$	$1(2)$
C4	$14(2)$	$10(3)$	$14(3)$	$1(2)$	$6(2)$	$3(2)$
C5	$16(3)$	$14(3)$	$16(3)$	$1(2)$	$4(2)$	$3(2)$
C6	$12(3)$	$18(3)$	$21(4)$	$3(2)$	$4(3)$	$2(2)$
C7	$22(3)$	$23(3)$	$24(4)$	$-2(3)$	$0(3)$	$-6(3)$
C8	$21(3)$	$32(4)$	$17(4)$	$-6(3)$	$-3(3)$	$-4(3)$
C9	$13(3)$	$25(3)$	$21(4)$	$2(3)$	$-1(3)$	$2(2)$

C 10	$21(3)$	$9(3)$	$21(4)$	$2(2)$	$0(3)$	$3(2)$
C 11	$44(4)$	$17(3)$	$49(5)$	$-1(3)$	$24(4)$	$5(3)$
C 12	$35(3)$	$32(4)$	$37(4)$	$-1(3)$	$17(3)$	$-5(3)$
C 13	$27(3)$	$26(3)$	$31(4)$	$5(3)$	$7(3)$	$6(3)$
C 14	$17(3)$	$13(3)$	$27(4)$	$1(3)$	$7(3)$	$2(2)$
C 15	$17(3)$	$26(3)$	$20(4)$	$-1(3)$	$10(3)$	$0(3)$
C 16	$33(3)$	$30(3)$	$25(3)$	$-6(3)$	$12(3)$	$3(3)$
C 17	$27(3)$	$34(4)$	$24(4)$	$8(3)$	$9(3)$	$-2(3)$
C 18	$30(3)$	$34(3)$	$22(3)$	$2(3)$	$0(3)$	$3(3)$
O 18	$13(2)$	$12(2)$	$36(3)$	$2(2)$	$11(2)$	$3(2)$
O 2	$37(3)$	$15(2)$	$31(3)$	$0(2)$	$15(2)$	$3(2)$
Si 1	$21(1)$	$16(1)$	$20(1)$	$2(1)$	$9(1)$	$2(1)$

Table 5. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 92.

	x	y	z	U(eq)
H1A	5199	5481	2327	19
H1B	5679	6234	3521	19
H3	3519	10652	2429	17
H4	3536	8124	4163	14
H5	1647	9654	3043	18
H6	296	7427	3491	21
H7A	1593	3735	3136	28

H7B	100	4116	2918	28
H8	600	4884	1198	29
H10	5586	10987	1776	21
H11A	8083	5356	1232	52
H11B	6647	4901	1238	52
H11C	7599	5549	2300	52
H12A	6193	10426	-326	50
H12B	5702	8080	-448	50
H12C	7099	8611	-549	50
H13A	8245	11613	1529	41
H13B	9090	9667	1361	41
H13C	8714	10007	2466	41
H14A	5328	10376	4394	22
H14B	5305	12215	3565	22
H16A	2006	8244	6105	43
H16B	893	9211	5237	43
H16C	2313	9469	5125	43
H17A	1767	3463	4835	33
H17B	2182	4684	5963	33
H18A	2587	8660	929	44
H18B	1406	10094	976	44
H18C	1223	8015	289	44
H 2 O	3720(50)	13360(100)	3920(50)	40(20)

Table 6. Torsion angles [${ }^{\circ}$] for 92.

O1-C1-C2-C10	-154.5(5)	C7-C8-C9-C18	177.5(5)
O1-C1-C2-C3	26.7(5)	C7-C8-C9-C5	-0.2(6)
C10-C2-C3-C14	-71.2(6)	C4-C5-C9-C8	106.6(5)
C1-C2-C3-C14	107.7(5)	C6-C5-C9-C8	-18.2(5)
C10-C2-C3-C4	167.9(5)	C4-C5-C9-C18	-71.1(6)
C1-C2-C3-C4	-13.3(5)	C6-C5-C9-C18	164.1(5)
C2-C3-C4-O1	-4.3(5)	C3-C2-C10-Si1	178.7(4)
C14-C3-C4-O1	-122.6(4)	C1-C2-C10-Si1	0.1(9)
C2-C3-C4-C5	-126.5(4)	C2-C3-C14-O2	179.0(4)
C14-C3-C4-C5	115.2(5)	C4-C3-C14-O2	-64.8(5)
O1-C4-C5-C9	-43.9(5)	C7-C6-C15-C17	0.7(8)
C3-C4-C5-C9	76.4(6)	C5-C6-C15-C17	-124.1(6)
O1-C4-C5-C6	72.7(5)	C7-C6-C15-C16	-175.8(5)
C3-C4-C5-C6	-167.0(4)	C5-C6-C15-C16	59.4(6)
C9-C5-C6-C15	160.4(4)	C2-C1-O1-C4	-30.4(5)
C4-C5-C6-C15	37.5(6)	C5-C4-O1-C1	147.5(4)
C9-C5-C6-C7	28.6(5)	C3-C4-O1-C1	21.9(5)
C4-C5-C6-C7	-94.4(5)	C2-C10-Si1-C13	-123.5(5)
C15-C6-C7-C8	-159.1(4)	C2-C10-Si1-C12	119.3(5)
C5-C6-C7-C8	-28.6(5)	C2-C10-Si1-C11	-2.6
C6-C7-C8-C9	18.8(6)		

Table 7. Hydrogen bonds for 92 [\AA and ${ }^{\circ}$].

D-H...A	d(D-H)	d(H...A)	d(D....A)	$<$ (DHA)
O2-H2O...O1\#1	$0.83(6)$	$2.12(6)$	$2.924(6)$	$163(5)$

Symmetry transformations used to generate equivalent atoms:
\#1 x,y+1,z

APPENDIX C: CRYSTALLOGRAPHIC DATA FOR 192

Identification code	192
Empirical formula	$\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{BrN}_{2} \mathrm{OS}$
Formula weight	223.10
Temperature/K	100.0
Crystal system	monoclinic
Space group	P 21
a / \AA	4.9945(3)
b/Å	9.0674(5)
c / \AA A	8.2336(5)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	93.053(2)
$\gamma{ }^{\circ}$	90
Volume/ \AA^{3}	372.35(4)
Z	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.990
μ / mm^{-1}	5.729
F(000)	220.0
Crystal size/mm ${ }^{3}$	$0.15 \times 0.15 \times 0.12$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ} 4.954$ to 56.592	
Index ranges	$-5 \leq \mathrm{h} \leq 6,-12 \leq \mathrm{k} \leq 12,-10 \leq 1 \leq 10$
Reflections collected	6750
Independent reflections	$1770\left[\mathrm{R}_{\text {int }}=0.0462, \mathrm{R}_{\text {sigma }}=0.0433\right]$
Data/restraints/parameters	1770/4/100
Goodness-of-fit on F^{2}	1.010
Final R indexes [$\mathrm{I}>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.0191, \mathrm{wR}_{2}=0.0432$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0196, \mathrm{wR}_{2}=0.0433$
Largest diff. peak/hole / e $\AA^{-3} 0.28 /-0.42$	
Flack parameter	0.085(8)

Table 2 Fractional Atomic Coordinates $\left(\times 10^{4}\right)$ and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for $192 . \mathrm{U}_{\mathrm{eq}}$ is defined as $1 / 3$ of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	y	z	U(eq)
$\operatorname{Br}(1)$	9597.6(5)	-2584.6(4)	9809.1(3)	16.39(9)
S(1)	5017.7(14)	1009.3(7)	7548.7(8)	11.81(14)
$\mathrm{O}(1)$	4627(5)	-344(2)	3185(3)	16.7(5)
N(1)	8887(5)	-774(2)	7086(3)	11.1(5)
N(2)	6629(5)	2362(3)	4516(3)	13.2(4)
C(1)	7432(7)	-166(3)	3437(4)	14.7(6)
C(2)	8112(5)	973(3)	4783(3)	10.9(5)
C(3)	7548(5)	340(3)	6421(3)	10.2(5)
C(4)	5781(6)	-286(3)	9023(4)	12.6(6)
C(5)	7879(6)	-1093(3)	8556(3)	11.9(5)

Table 3 Anisotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for 192. The Anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} \mathrm{U}_{11}+2 h k a^{*} \mathrm{~b}^{*} \mathrm{U}_{12}+\ldots\right]$.

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
$\mathrm{Br}(1)$	$17.81(15)$	$17.38(13)$	$14.26(15)$	$6.59(12)$	$3.44(10)$	$5.15(13)$
$\mathrm{S}(1)$	$11.0(3)$	$12.8(3)$	$11.9(3)$	$0.5(2)$	$2.7(2)$	$2.6(2)$
$\mathrm{O}(1)$	$19.4(13)$	$14.9(10)$	$15.5(13)$	$2.7(8)$	$-2.4(9)$	$-3.8(8)$
$\mathrm{N}(1)$	$10.6(12)$	$13(1)$	$9.8(12)$	$1.2(9)$	$0.8(9)$	$-0.5(8)$
$\mathrm{N}(2)$	$14.0(11)$	$11.1(9)$	$14.6(11)$	$1.5(12)$	$1.9(9)$	$0.4(12)$
$\mathrm{C}(1)$	$19.8(18)$	$12.6(12)$	$11.5(16)$	$0.7(9)$	$0.7(12)$	$-0.5(10)$
$\mathrm{C}(2)$	$9.6(13)$	$12.9(10)$	$10.4(13)$	$-0.3(10)$	$2.8(10)$	$-0.5(10)$
$\mathrm{C}(3)$	$9.9(14)$	$11.5(11)$	$9.2(13)$	$-1.7(9)$	$0.6(10)$	$-1.9(10)$
$\mathrm{C}(4)$	$12.7(15)$	$13.4(12)$	$11.7(15)$	$0.7(9)$	$0.3(11)$	$-0.8(10)$
$\mathrm{C}(5)$	$14.4(15)$	$11.0(11)$	$10.0(14)$	$0.5(10)$	$-2.1(11)$	$-0.8(11)$

Table 4 Bond Lengths for 192.

Atom Atom	Length $/ \AA$	Atom Atom	Length $/ \AA$
$\operatorname{Br}(1) \mathrm{C}(5)$	$1.881(3)$	$\mathrm{N}(1) \mathrm{C}(5)$	$1.366(4)$
$\mathrm{S}(1) \mathrm{C}(3)$	$1.718(3)$	$\mathrm{N}(2) \mathrm{C}(2)$	$1.471(4)$
$\mathrm{S}(1) \mathrm{C}(4)$	$1.717(3)$	$\mathrm{C}(1) \mathrm{C}(2)$	$1.540(4)$
$\mathrm{O}(1) \mathrm{C}(1)$	$1.414(4)$	$\mathrm{C}(2) \mathrm{C}(3)$	$1.506(4)$
$\mathrm{N}(1) \mathrm{C}(3)$	$1.315(4)$	$\mathrm{C}(4) \mathrm{C}(5)$	$1.351(4)$

Table 5 Bond Angles for 192.

Atom Atom Atom	Angle/ ${ }^{\circ}$	Atom Atom Atom	Angle/ ${ }^{\circ}$
$\mathrm{C}(4) \mathrm{S}(1) \mathrm{C}(3)$	89.92(14)	$\mathrm{N}(1) \mathrm{C}(3) \mathrm{C}(2)$	123.4(2)
$\mathrm{C}(3) \mathrm{N}(1) \mathrm{C}(5)$	109.2(2)	$\mathrm{C}(2) \mathrm{C}(3) \mathrm{S}(1)$	121.8(2)
$\mathrm{O}(1) \mathrm{C}(1) \mathrm{C}(2)$	111.2(2)	$\mathrm{C}(5) \mathrm{C}(4) \mathrm{S}(1)$	108.4(2)
$\mathrm{N}(2) \mathrm{C}(2) \mathrm{C}(1)$	112.1(2)	$\mathrm{N}(1) \mathrm{C}(5) \quad \mathrm{Br}(1)$	117.3(2)
$\mathrm{N}(2) \mathrm{C}(2) \mathrm{C}(3)$	110.0(2)	$\mathrm{C}(4) \mathrm{C}(5) \mathrm{Br}(1)$	124.9(2)
C (3) $\mathrm{C}(2) \mathrm{C}(1)$	110.1(2)	$\mathrm{C}(4) \mathrm{C}(5) \mathrm{N}(1)$	117.7(3)
$\mathrm{N}(1) \mathrm{C}(3) \mathrm{S}(1)$	114.8(2)		

Table 6 Torsion Angles for 192.

| A B C D | Angle/ ${ }^{\circ}$ | A B C D | Angle ${ }^{\circ}$ |
| :---: | ---: | ---: | ---: | ---: |
| $\mathrm{S}(1) \mathrm{C}(4) \mathrm{C}(5) \mathrm{Br}(1)$ | $176.39(16)$ | $\mathrm{C}(3) \mathrm{S}(1) \mathrm{C}(4) \mathrm{C}(5)$ | $0.8(2)$ |
| $\mathrm{S}(1) \mathrm{C}(4) \mathrm{C}(5) \mathrm{N}(1)$ | $-1.4(3)$ | $\mathrm{C}(3) \mathrm{N}(1) \mathrm{C}(5) \mathrm{Br}(1)$ | $-176.55(18)$ |
| $\mathrm{O}(1) \mathrm{C}(1) \mathrm{C}(2) \mathrm{N}(2)$ | $-50.7(3)$ | $\mathrm{C}(3) \mathrm{N}(1) \mathrm{C}(5) \mathrm{C}(4)$ | $1.4(3)$ |
| $\mathrm{O}(1) \mathrm{C}(1) \mathrm{C}(2) \mathrm{C}(3)$ | $72.2(3)$ | $\mathrm{C}(4) \mathrm{S}(1) \mathrm{C}(3) \mathrm{N}(1)$ | $0.0(2)$ |
| $\mathrm{N}(2) \mathrm{C}(2) \mathrm{C}(3) \mathrm{S}(1)$ | $11.7(3)$ | $\mathrm{C}(4) \mathrm{S}(1) \mathrm{C}(3) \mathrm{C}(2)$ | $178.6(2)$ |
| $\mathrm{N}(2) \mathrm{C}(2) \mathrm{C}(3) \mathrm{N}(1)$ | $-169.8(2)$ | $\mathrm{C}(5) \mathrm{N}(1) \mathrm{C}(3) \mathrm{S}(1)$ | $-0.7(3)$ |

$\mathrm{C}(1) \mathrm{C}(2) \mathrm{C}(3) \mathrm{S}(1)$	$-112.4(2)$	$\mathrm{C}(5) \mathrm{N}(1) \mathrm{C}(3) \mathrm{C}(2)$	$-179.3(2)$
$\mathrm{C}(1) \mathrm{C}(2) \mathrm{C}(3) \mathrm{N}(1)$	$66.1(3)$		

| Table 7 Hydrogen Atom Coordinates $\left(\AA \times 10^{4}\right)$ and Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for 192. | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Atom | x | y | z | $\mathrm{U}(\mathrm{eq})$ |
| $\mathrm{H}(1)$ | $4150(90)$ | $-870(40)$ | $3770(50)$ | 25 |
| H(2A) | $7450(60)$ | $2970(30)$ | $3910(40)$ | 20 |
| H(2B) | $5130(40)$ | $2130(30)$ | $4010(40)$ | 20 |
| H(1A) | 8194 | 161 | 2412 | 18 |
| H(1B) | 8256 | -1126 | 3746 | 18 |
| H(2) | 10073 | 1197 | 4777 | 13 |
| H(4) | 4881 | -413 | 10001 | 15 |

APPENDIX D: CATALOG OF SPECTRA

-135.53
-126.12
-85.20
-56.08
-47.88
-33.10
-30.21
-23.44
-14.12

-139.88
-125.82
-71.07
-60.08
-53.56
-5136
-32.15
$<_{29.83}^{29.44}$
-15.11

-188.08

$\mathcal{C}_{19.155}^{19.56}$

-145.25
$=_{-137.71}^{139}$

-127.38
-116.83
-111.69

-34.78
-23.46
-17.81

-157.89
-145.87
-140.32
-127.23
-119.85
-111.90
$\mathcal{S}^{81.18}$
$\mathcal{C}^{77.32}$
$\mathcal{C}_{76.60}^{7}$
-70.17
-63.97
-53.54
$\begin{aligned} & -51.81 \\ & -51.11\end{aligned}$
-34.73
-22.79
-17.83

- -0.64

-151.89
-144.85
-139.78
-127.41
-123.97
- 112.39
$\begin{array}{r}\int^{78.63} \\ \int_{-76.28}^{76.96} \\ -76.65 \\ -70.20 \\ -63.68 \\ \\ \hline\end{array}$
-34.68
-22.88
-17.38

- 145.22
-142.26
-125.08
-117.27
-114.98
教
-79.26
$K_{77.32}^{77.00}$
-76.68
-71.07
-66.39
$\mathcal{C}_{56.08}^{57.05}$
-49.07
-40.95
-36.83
-17.30

$\begin{aligned} & 148.47 \\ & 144.64 \\ & -141.91 \\ & -137.17\end{aligned}$
\int^{1}
-128.63
-125.37
-115.13
-103.59

$乙_{56.28}$
-52.92
$\int^{-48.42}$

-40.11
-37.06
17.17
-14.33
-12.00

-177.58
-168.74 -166.69
-138.49
138.42
133.61
132.60
-127.81
-122.97
-120.39
$\underbrace{77.21}_{-77.86} \begin{aligned} & 77.79 \\ & -76.79\end{aligned}$
-66.31
~ 55.72
~ 53.29
-49.35
-41.77
-19.87
-14.37
-11.93

䔤

-148.61
-138.19

- 133.89
$\mathcal{C}_{-127.92}^{128.86}$
-122.94

-56.30
-55.70
-55.37
52.27
-47.76
-36.54
-17.42
-14.34
-11.98

- 151.40
-147.47
-139.97
-128.87
-123.38
-78.42
-36.39

$\mathcal{C}_{161.58}^{162.42}$
-151.32
$\mathcal{K}_{147.56}^{147.96}$
-140.21

-161.74
$\underbrace{}_{-160.34}$
$\begin{array}{r}150.27 \\ \sim \\ \sim \\ \hline 148.53 \\ \hline\end{array}$
-139.82
$\ll 128.24$
-122.83

$<_{7.77}^{7.78}$

002

$\mathcal{C}_{159.59}^{159.98}$
$\mathcal{C}_{148.71}^{149.21}$
-140.40
-133.01
-131.58
-129.41
-127.22
-115.62
-82.77
-28.15

(1)

$\widetilde{\Upsilon}^{129.0}$
-128.5
-124.3
-120.4
-118.7
-82.4
-52.5
-48.0
-28.2
-18.5

-3.68
$\xlongequal[A]{4}$

-5.61
$\left[\begin{array}{r}3.66 \\ -3.65 \\ -3.64 \\ 3.63\end{array}\right.$
-3.10
-1.87
-1.76
-1.44
-1.23
 coses)
-162.07
-151.14
-146.62
-128.47
-80.11
-71.39
-64.90
-33.39
-28.48
-27.77

-5.72
-5.57
$\left[\begin{array}{r}4.77 \\ -4.76 \\ -4.75\end{array}\right.$
3.77
$\int_{3}^{3.54}$
-3.53
-3.52
-3.51
-1.96
1.51
$\begin{array}{r}1.50 \\ -1.29\end{array}$
-

-11574
-64.81
-46.58

- 19.20

-4.79
-4.17
-3.95
-1.70
1.44
-1.43
-1.19

-151.00
-146.13
-127.29
-95.00
-80.40
-77.58
- 65.72
-52.12
27.81
$<_{25.63}^{26.23}$

-165.22
-162.89
-147.34
$\prec_{131.64}^{131.66}$
-68.54
-58.77
-53.04
-19.86

-7.98
-7.41
-5.15

$$
-9.71
$$

$$
-8.30
$$

$$
\begin{gathered}
-6.63 \\
-_{6.49}^{-6}
\end{gathered}
$$

$$
\begin{aligned}
& -4.15 \\
& \widehat{<}_{4.08}^{4.08} \\
& \hline
\end{aligned}
$$

-124.99
-117.33
-66.04
-59.00
-56.30
\curlyvee
-25.58
-22.53
-
-17.97
--5.52

-165.49
-125.76
-121.09
-63.22
-54.92

-7.13
$\begin{array}{r}5.22 \\ -5.21 \\ 5.21\end{array}$
-4.73

-1.82
-1.71
${\underset{-}{1.34}}_{-1.41}$

-126.0
-81.1
-72.0
-67.2
-65.4
-51.4
-30.8
-28.0

$\left[\begin{array}{r}4.71 \\ -4.70 \\ -4.69 \\ -4.68 \\ -4.57 \\ -4.56 \\ 3.97 \\ -3.94 \\ -3.93 \\ -3.92 \\ -3.92 \\ -3.91 \\ -3.90 \\ -3.89 \\ -3.88 \\ 3.87\end{array}\right.$
-1.59
-1.27

(1)

REFERENCES

(1) Längle, D.; Halver, J.; Rathmer, B.; Willems, E.; Schade, D. ACS Chem. Biol. 2014, 9, 57-71.
(2) Lyssiotis, C. A.; Lairson, L. L.; Boitano, A. E.; Wurdak, H.; Zhu, S.; Schultz, P. G. Angew. Chem. Int. Ed. 2011, 50, 200-242.
(3) Lairson, L. L.; Lyssiotis, C. A.; Zhu, S.; Schultz, P. G. Annu. Rev. Pharmacol. Toxicol. 2013, 53, 107-125.
(4) Murry, C. E.; Keller, G. Cell 2008, 132, 661-680.
(5) Keller, G. Genes Dev. 2005, 1129-1155.
(6) West, M. D.; Sargent, R. G.; Long, J.; Brown, C.; Chu, J. S.; Kessler, S.; Derugin, N.; Sampathkumar, J.; Burrows, C.; Vaziri, H.; Williams, R.; Chapman, K. B.; Larocca, D.; Loring, J. F.; Murai, J. Regen. Med. 2008, 3, 287-308.
(7) Weissman, I. L. Science 2000, 287, 1442-1446.
(8) Weissman, I. L. Cell 2000, 100, 157-168.
(9) Morrison, S. J.; Kimble, J. Nature 2006, 441, 1068-1074.
(10) Maitra, A.; Arking, D. E.; Shivapurkar, N.; Ikeda, M.; Stastny, V.; Kassauei, K.; Sui, G.; Cutler, D. J.; Liu, Y.; Brimble, S. N.; Noaksson, K.; Hyllner, J.; Schulz, T. C.; Zeng, X.; Freed, W. J.; Crook, J.; Abraham, S.; Colman, A.; Sartipy, P.; Matsui, S.; Carpenter, M.; Gazdar, A. F.; Rao, M.; Chakravarti, A. Nat Genet 2005, 37, 1099-1103.
(11) James, D.; Levine, A. J.; Besser, D.; Hemmati-Brivanlou, A. Development 2005, 132, 1273-1282.
(12) Vallier, L.; Alexander, M.; Pedersen, R. a. J. Cell Sci. 2005, 118, 4495-4509.
(13) Zacharias, D. G.; Nelson, T. J.; Mueller, P. S.; Hook, C. C. Mayo Clin. Proc. 2011, 86, 634-640.
(14) Zhao, C.; Deng, W.; Gage, F. H. Cell 2008, 132, 645-660.
(15) Pittenger, M. F.; Mackay, A. M.; Beck, S.; Jaiswal, R. K.; Douglas, R.; Mosca, J. D.; Moorman, M. a.; Simonetti, D. W.; Craig, S.; Marshak, D. Science 1999, 284, 143-147.
(16) Wagers, A. J.; Conboy, I. M. Cell 2005, 122, 659-667.
(17) Nowak, J. A.; Polak, L.; Pasolli, H. A.; Fuchs, E. Cell Stem Cell 2008, 3, 33-43.
(18) Barker, N.; van Es, J. H.; Kuipers, J.; Kujala, P.; van den Born, M.; Cozijnsen, M.; Haegebarth, A.; Korving, J.; Begthel, H.; Peters, P. J.; Clevers, H. Nature 2007, 449, 1003-1007.
(19) Spangrude, G. J.; Heimfeld, S.; Weissman, I. L. Science 1988, 241, 58-62.
(20) Shizuru, J. a; Negrin, R. S.; Weissman, I. L. Annu. Rev. Med. 2005, 56, 509-538.
(21) Locasciulli, A.; Oneto, R.; Bacigalupo, A.; Socié, G.; Korthof, E.; Bekassy, A.; Schrezenmeier, H.; Passweg, J.; Führer, M. Haematologica 2007, 92, 11-18.
(22) Pavletic, S. Z.; Khouri, I. F.; Haagenson, M.; King, R. J.; Bierman, P. J.; Bishop, M. R.; Carston, M.; Giralt, S.; Molina, A.; Copelan, E. A.; Ringdén, O.; Roy, V.; Ballen, K.; Adkins, D. R.; McCarthy, P.; Weisdorf, D.; Montserrat, E.; Anasetti, C. J. Clin. Oncol. 2005, 23, 5788-5794.
(23) Bladé, J.; Samson, D.; Reece, D.; Apperley, J.; Björkstrand, B.; Gahrton, G.; Gertz, M.; Giralt, S.; Jagannath, S.; Vesole, D. Br. J. Haematol. 1998, 102, 1115-1123.
(24) Rupp, M. E. Assoc. Prof. Infect. Control Epidemiol. 2005, 2, 153-169.
(25) Park, B.; Yoo, K. H.; Kim, C. Blood Res. 2015, 50, 194-203.
(26) Hofmeister, C. C.; Zhang, J.; Knight, K. L.; Le, P.; Stiff, P. J. Bone Marrow Transpl. 2007, 39, 11-23.
(27) Wagner, J. E. Best Pract. Res. Clin. Haematol. 2009, 22, 551-555.
(28) Bachi, M. D.; Bosch, E. Tetrahedron 1988, 29, 2581-2584.
(29) Rocha, V.; Locatelli, F. Bone Marrow Transplant. 2008, 41, 207-214.
(30) Wang, Y.; Kellner, J.; Liu, L.; Zhou, D. Stem Cells Dev. 2011, 20, 1143-1152.
(31) Young, J. C.; Hansteen, G.; Du, C.; Sambucetti, L.; Remiszewski, S.; O’Farrel, A. M.; Hill, B.; Lavau, C.; Murray, L. J. Cytotherapy 2004, 6, 328-336.
(32) Bouchez, L. C.; Boitano, A. E.; de Lichtervelde, L.; Romeo, R.; Cooke, M. P.; Schultz, P. G. ChemBioChem 2011, 12, 854-857.
(33) Boitano, A. E.; Wang, J.; Romeo, R.; Bouchez, L. C.; Parker, A. E.; Sutton, S. E.; Walker, J. R.; Flaveny, C. A.; Perdew, G. H.; Denison, M. S.; Schutlz, P. G.; Cooke, M. P. Science 2010, 329, 1345-1348.
(34) Fares, I.; Chagraoui, J.; Gareau, Y.; Gingras, S.; Ruel, R.; Mayotte, N.; Csaszar, E.; Knapp, D. J. H. F.; Miller, P.; Ngom, M.; Imren, S.; Roy, D.-C.; Watts, K. L.; Kiem, H.-P.; Herrington, R.; Iscove, N. N.; Humphries, R. K.; Eaves, C. J.; Cohen, S.; Marinier, A.; Zandstra, P. W.; Sauvageau, G. Science 2014, 345.
(35) De Lichtervelde, L.; Antal, C. E.; Boitano, A. E.; Wang, Y.; Krastel, P.; Petersen, F.; Newton, A. C.; Cooke, M. P.; Schultz, P. G. Chem. Biol. 2012, 19, 994-1000.
(36) Blumberg, P. M. Cancer Res. 1988, 48, 1-8.
(37) Nishino, T.; Wang, C.; Mochizuki-Kashio, M.; Osawa, M.; Nakauchi, H.; Iwama, A. PLoS One 2011, 6, 4-12.
(38) De Lichtervelde, L.; Boitano, A. E.; Wang, Y.; Krastel, P.; Petersen, F.; Cooke, M. P.; Schultz, P. G. ACS Chem. Biol. 2013, 8, 866-870.
(39) Siedle, B.; Garcia-Pineres, a J.; Murillo, R.; Schulte-Monting, J.; Castro, V.; Rungeler, P.; Klaas, C. a; Da Costa, F. B.; Kisiel, W.; Merfort, I. J. Med. Chem. 2004, 47, 6042-6054.
(40) private communication with Prof. Schultz (2014).
(41) Huo, J.; Yang, S.-P.; Ding, J.; Yue, J.-M. J. Nat. Prod. 2004, 67, 1470-1475.
(42) Devreesela, A. A., De Clercqlb, P. J., Vandewalle, M. Tetrahedron Lett. 1980, 21, 4767-4770.
(43) Hoffmann, H. M. R.; Rabe, J. Angew. Chem. 1985, 97, 96-112.
(44) Horbach, S.; Sahm, H.; Welle, R. Fems Microbiol. Lett. 1993, 111, 135-140.
(45) Qureshi, N.; Porter, J. W. Biosynthesis of Isoprenoid Compounds; Porter, J. W.; Spurgeon, S. L., Ed.; John Wiley and Sons: New York, 1981.
(46) Spurgeon, S. R.; Porter, J. W. Biosynthesis of Isoprenoid Compounds; Porter, J. W.; Spurgeon, S. L., Ed.; John Wiley and Sons: New York, 1981.
(47) Bloch, K. Steroids 1992, 57, 378-383.
(48) Bouwmeester, H. J.; Kodde, J.; Verstappen, F. W. a; Altug, I. G.; de Kraker, J.-W.; Wallaart, T. E. Plant Physiol. 2002, 129, 134-144.
(49) De Kraker, J.-W.; Franssen, M. C. R.; Joerink, M.; De Groot, A.; Bouwmeester, H. J. Plant Physiol. 2002, 129, 257-268.
(50) de Kraker, J. W.; Franssen, M. C.; Dalm, M. C.; de Groot, a; Bouwmeester, H. J. Plant Physiol. 2001, 125, 1930-1940.
(51) de Kraker JW; Franssen, M.; de Groot, A.; Konig, W.; Bouwmeester, H. Plant Physiol. 1998, 117, 1381-1392.
(52) Qi Song; Gomez-Barrios, M. L.; Hopper, E. L.; Hjortso, M. A.; Fischer, N. H. Phytochemistry 1995, 40, 1659-1665.
(53) Melorose, J.; Perroy, R.; Careas, S. J. Chem. Soc., Chem. Commun. 1994, 479-481.
(54) Lee, E.; Lim, J. W.; Yoon, C. H.; Sung, Y.; Kim, Y. K. J. Am. Chem. Soc. 1997, 119, 8391-8392.
(55) Rubottom, G. M.; Vazquez, M. A.; Pelegrina, D. R. Tetrahedron Lett. 1974, 15, 4319-4322.
(56) Shapiro, R. H.; Lipton, M. F.; Kolonko, K. J.; Buswell, R. L.; Capuano, L. A. Tet. Lett. 1975, 22, 1811-1814.
(57) Bowden, K.; Heilbron, I. M.; Jones, E. R. H.; Weedon, B. C. L. J. Chem. Soc. 1946,

39-45.
(58) Hutchins, R. O.; Hutchins, M. G.; Milewski, C. A. J. Org. Chem. 1972, 37, 41904192.
(59) Schreiber, J.; Maag, H.; Hashimoto, N.; Eschenmoser, A. Angew. Chemie Int. Ed. English 1971, 10, 330-331.
(60) Yang, H.; Qiao, X.; Li, F.; Ma, H.; Xie, L.; Xu, X. Tetrahedron Lett. 2009, 50, 11101112.
(61) Yang, H.; Gao, Y.; Qiao, X.; Xie, L.; Xu, X. Org. Lett. 2011, 13, 3670-3673.
(62) Roth, H. D. Angew. Chem. Int. Ed. 1989, 28, 1193-1207.
(63) Barton, D. H. R. Helv. Chim. Acta 1959, 42, 2604-2616.
(64) Zhang, W.; Luo, S.; Fang, F.; Chen, Q.; Hu, H.; Jia, X.; Zhai, H. J. Am. Chem. Soc. 2005, 127, 18-19.
(65) Li, C.; Yu, X.; Lei, X. Org. Lett. 2010, 12, 4284-4287.
(66) Kalidindi, S.; Jeong, W. B.; Schall, A.; Bandichhor, R.; Nosse, B.; Reiser, O. Angew. Chem. Int. Ed. 2007, 46, 6361-6363.
(67) Andrews, S. P.; Ball, M.; Wierschem, F.; Cleator, E.; Oliver, S.; Högenauer, K.; Simic, O.; Antonello, A.; Hünger, U.; Smith, M. D.; Ley, S. V. Chem. Eur. J. 2007, 13, 5688-5712.
(68) Ball, M.; Andrews, S. P.; Wierschem, F.; Cleator, E.; Smith, M. D.; Ley, S. V. Org. Lett. 2007, 9, 663-666.
(69) Andrews, S. P.; Tait, M. M.; Ball, M.; Ley, S. V. Org. Biomol. Chem. 2007, 5, 14271436.
(70) Oliver, S. F.; Högenauer, K.; Simic, O.; Antonello, A.; Smith, M. D.; Ley, S. V. Angew. Chem. Int. Ed. 2003, 42, 5996-6000.
(71) Wallach, O. Liebigs Ann. Chem. 1899, 305, 245-259.
(72) Wallach, O. Liebigs Ann. Chem. 1911, 381, 51-95.
(73) Wallach, O. Liebigs Ann. Chem. 1913, 392, 49-75.
(74) Wolinsky, J.; Wolf, H.; Gibson, T. J. J. Org. Chem. 1963, 28, 274-275.
(75) Wolinsky, J.; Gibson, W. J. Org. Chem. 1968, 33, 407-411.
(76) Mori, K. Tetrahedron Lett. 2007, 48, 5609-5611.
(77) Gemal, A. L.; Luche, J. L. J. Am. Chem. Soc. 1981, 103, 5454-5459.
(78) Jr, G. M. A.; Burgess, E. M. J. Am. Chem. Soc. 1968, 90, 4744-4745.
(79) Camelio, A. M.; Barton, T.; Guo, F.; Shaw, T.; Siegel, D. Org. Lett. 2011, 13, 15171519.
(80) Marco-Martínez, J.; López-Carrillo, V.; Buñuel, E.; Simancas, R.; Cárdenas, D. J. J. Am. Chem. Soc. 2007, 129, 1874-1875.
(81) Omura, K.; Swern, D. Tetrahedron 1978, 34, 1651-1660.
(82) Reetz, M. T. Acc. Chem. Res. 1993, 26, 462-468.
(83) Chérest, M.; Felkin, H.; Prudent, N. Tetrahedron Lett. 1968, 9, 2199-2204.
(84) Huet, J.; Maroni-Barnaud, Y.; Anh, N. T. . S.-F. J. Tetrahedron Lett. 1976, 159162.
(85) Huntsman, W. D.; Solomon, V. C.; Eros, D. J. Am. Chem. Soc. 1958, 80, 54555458.
(86) Dantanarayana, A. P.; Kumar, N. S.; Muthukuda, P. M.; I, M.; Wazeer, M. Phytochemistry 1982, 21, 2065-2068.
(87) Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. Bull. Chem. Soc. Jpn. 1979, 52, 1989-1993.
(88) Stephenson, L. M.; Speth, D. R. J. Org. Chem. 1979, 44, 4683-4689.
(89) Shing, T. K. M.; Yeung, Y.-Y.; Su, P. L. Org. Lett. 2006, 8, 3149-3151.
(90) Collins, J. C.; Hess, W. W.; Frank, F. J. Tetrahedron Lett. 1968, 9, 3363-3366.
(91) Bachi, M. D.; Bosch, E. J. Org. Chem. 1992, 57, 4696-4705.
(92) Kuroiwa, Y.; Matsumura, S.; Toshima, K. Synlett 2008, No. 16, 2523-2525.
(93) Sarkar, D. C.; Das, A. R.; Ranu, B. C. J. Org. Chem. 1990, 55, 5799-5801.
(94) Ruano, J. L. G.; Fernández-Ibáñez, M. Á.; Fernández-Salas, J. A.; Maestro, M. C.; Márquez-López, P.; Rodríguez-Fernández, M. M. J. Org. Chem. 2009, 74, 12001204.
(95) Tu, Y.; Wang, Z.; Shi, Y. J. Am. Chem. Soc. 1996, 118, 9806-9807.
(96) Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 5974-5976.
(97) Sharpless, K. B.; Michaelson, R. C. J. Am. Chem. Soc. 1973, 95, 6136-6137.
(98) Takai, K.; Oshima, K.; Nozaki, H. Tetrahedron Lett. 1980, 21, 1657-1660.
(99) Johnson, T. C.; Chin, M. R.; Han, T.; Shen, J. P.; Rana, T. M.; Siegel, D. J. Am. Chem. Soc. 2016, jacs.6b03055.
(100) Sato, S. I.; Murata, A.; Orihara, T.; Shirakawa, T.; Suenaga, K.; Kigoshi, H.; Uesugi, M. Chem. Biol. 2011, 18, 131-139.
(101) Wulff, J. E.; Siegrist, R.; Myers, A. G. 2007, No. 4, 14444-14451.
(102) Rizvi, S. A.; Courson, D. S.; Keller, V. a; Rock, R. S.; Kozmin, S. a. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 4088-4092.
(103) Kofron, W. G.; Baclawski, L. M. J. Org. Chem. 1976, 41, 1879-1880.
(104) Fischbach, M. A.; Walsh, C. T. Science 2009, 325, 1089-1093.
(105) Klevens, R. M.; Morrison, M. A.; Nadle, J.; Petit, S.; Gershman, K.; Ray, S.; Harrison, L. H.; Eld, R. L.; Dumyati, G.; Townes, J. M.; Lynfield, R.; Dumyati, G.; Townes, J. M.; Craig, A. S.; Zell, E. R.; Fosheim, G. E.; McDougal, L. K.; Carey, R. B.; Fridkin, S. K. JAMA 2007, 298, 1763-1771.
(106) Weigel, L. M. Science 2003, 302, 1569-1571.
(107) Falagas, M. E.; Bliziotis, I. A.; Kasiakou, S. K.; Samonis, G.; Athanassopoulou, P.; Michalopoulos, A. BMC Infect. Dis. 2005, 5, 24.
(108) Lode, H.; Stahlmann, R.; Koeppe, P. Antimicrob. Agents Chemother. 1979, 16, 16.
(109) Garau, J.; Wilson, W.; Wood, M.; Carlet, J. Clin. Microbiol. Infect. 1997, 3, Supplem, S87-S101.
(110) Miller, E. L. J. Midwifery Women's Heal. 2002, 47, 426-434.
(111) Kanoh, S.; Rubin, B. K. Clin. Microbiol. Rev. 2010, 23, 590-615.
(112) Heeb, S.; Fletcher, M. P.; Chhabra, S. R.; Diggle, S. P.; Williams, P.; Cámara, M. FEMS Microbiol. Rev. 2011, 35, 247-274.
(113) Charest, M. G.; Siegel, D. R.; Myers, A. G. J. Am. Chem. Soc. 2005, 127, 82928293.
(114) Sun, C.; Wang, Q.; Brubaker, J. D.; Wright, P. M.; Lerner, C. D.; Noson, K.; Charest, M.; Siegel, D. R.; Wang, Y.; Myers, A. G. J. Am. Chem. Soc. 2008, 130, 17913-17927.
(115) Seiple, I. B.; Zhang, Z.; Jakubec, P.; Langlois-Mercier, A.; Wright, P. M.; Hog, D. T.; Yabu, K.; Allu, S. R.; Fukuzaki, T.; Carlsen, P. N.; Kitamura, Y.; Zhou, X.; Condakes, M. L.; Szczypiński, F. T.; Green, W. D.; Myers, A. G. Nature 2016, 533, 338-345.
(116) Hughes, R. A.; Moody, C. J. Angew. Chem. Int. Ed. 2007, 46, 7930-7954.
(117) Bagley, M. C.; Dale, J. W.; Merritt, E. A.; Xiong, X. Chem. Rev. 2005, 105, 685714.
(118) Haste, N. M.; Thienphrapa, W.; Tran, D. N.; Loesgen, S.; Sun, P.; Nam, S.-J.; Jensen, P. R.; Fenical, W.; Sakoulas, G.; Nizet, V.; Hensler, M. E. J. Antibiot. (Tokyo). 2012, 65, 593-598.
(119) Benazet, F.; Cartier, J. R. Poult. Sci. 1980, 59, 1405-1415.
(120) Harms, J. M.; Wilson, D. N.; Schluenzen, F.; Connell, S. R.; Stachelhaus, T.; Zaborowska, Z.; Spahn, C. M. T.; Fucini, P. Mol. Cell 2008, 30, 26-38.
(121) Rosendahl, G.; Douthwaite, S. Nucleic Acids Res. 1994, 22, 357-363.
(122) Rosendahl, G.; Douthwaite, S. J Mol Biol. 1993, pp 1013-1020.
(123) Thompson, J.; Cundliffe, E.; Stark, M. Eur. J. Biochem. 1979, 98, 261-265.
(124) Thompson, J.; Schmidt, F. .; Cundliffell, E. J. Biol. Chem. 1982, 257, 7915-7917.
(125) Parmeggiani, A.; Krab, I. M.; Okamura, S.; Nielsen, R. C.; Nyborg, J.; Nissen, P. Biochemistry 2006, 45, 6846-6857.
(126) Heffron, S. E.; Jurnak, F. Biochemistry 2000, 39, 37-45.
(127) Thompson, J.; Cundliffe, E.; Stark, M. J. J. Gen. Microbiol. 1982, 128, 875-884.
(128) Zhang, Q.; Liu, W. Nat. Prod. Rep. 2013, 30, 218-226.
(129) Mocek, U.; Zeng, Z.; O’Hagan, D.; Zhou, P.; Fan, L. D. G.; Beale, J. M.; Floss, H. G. J. Am. Chem. Soc. 1993, 115, 7992-8001.
(130) Wieland Brown, L. C.; Acker, M. G.; Clardy, J.; Walsh, C. T.; Fischbach, M. a. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 2549-2553.
(131) Liao, R.; Duan, L.; Lei, C.; Pan, H.; Ding, Y.; Zhang, Q.; Chen, D.; Shen, B.; Yu, Y.; Liu, W. Chem. Biol. 2009, 16, 141-147.
(132) Morris, R. P.; Leeds, J. A.; Naegeli, H. U.; Oberer, L.; Memmert, K.; Weber, E.; LaMarche, M. J.; Parker, C. N.; Burrer, N.; Esterow, S.; Hein, A. E.; Schmitt, E. K.; Krastel, P. J. Am. Chem. Soc. 2009, 131, 5946-5955.
(133) Mocek, U.; Knaggs, A. R.; Tsuchiya, R.; Nguyen, T.; Beale, J. M.; Floss, H. G. J. Am. Chem. Soc. 1993, 115, 7557-7568.
(134) Dunbar, K. L.; Melby, J. O.; Mitchell, D. a. Nat. Chem. Biol. 2012, 8, 569-575.
(135) Li, Y. M.; Milne, J. C.; Madison, L. L; Kolter, R.; Walsh, C. T. Science 1996, 274, 1188-1193.
(136) Kelly, W. L.; Pan, L.; Li, C. J. Am. Chem. Soc. 2009, 131, 4327-4334.
(137) Li, C.; Kelly, W. L. Nat. Prod. Rep. 2010, 27, 153-164.
(138) Wever, W. J.; Bogart, J. W.; Baccile, J. A.; Chan, A. N.; Schroeder, F. C.; Bowers, A. A. J. Am. Chem. Soc. 2015, 137, 3494-3497.
(139) Wever, W. J.; Bogart, J. W.; Bowers, A. A. J. Am. Chem. Soc. 2016, In Press.
(140) Wojtas, K. P.; Riedrich, M.; Lu, J.-Y.; Winter, P.; Winkler, T.; Walter, S.; Arndt, H.-D. Angew. Chem. Int. Ed. 2016, 55, 9772-9776.
(141) Nicolaou, K. C.; Safina, B. S.; Zak, M.; Lee, S. H.; Nevalainen, M.; Bella, M.; Estrada, A. A.; Funke, C.; Zécri, F. J.; Bulat, S. J. Am. Chem. Soc. 2005, 127, 1115911175.
(142) Delgado, O.; Martin Müller, H.; Bach, T. Chem. Eur. J. 2008, 14, 2322-2339.
(143) Ciufolini, M. a; Lefranc, D. Nat. Prod. Rep. 2010, 27, 330-342.
(144) Hughes, R. A.; Thompson, S. P.; Alcaraz, L.; Moody, C. J. J. Am. Chem. Soc. 2005, 127, 15644-15651.
(145) Bagley, M. C.; Bashford, K. E.; Hesketh, C. L.; Moody, C. J. J. Am. Chem. Soc. 2000, 122, 3301-3313.
(146) Dunetz, J. R.; Magano, J.; Weisenburger, G. A. Org. Process Res. Dev. 2015, 40, 120-177.
(147) Hantzsch, A.; Weber, J. E. Chem. Ber. 1887, 20, 3118-3132.
(148) Aguilar, E.; Meyers, A. I. Tetrahedron Lett. 1994, 35, 2473-2476.
(149) Müller, H. M.; Delgado, O.; Bach, T. Angew. Chem. Int. Ed. 2007, 46, 4771-4774.
(150) King, A. O.; Okukado, N.; Negishi, E. J. Chem. Soc., Chem. Commun. 1977, 683684.
(151) Stille, J. K.; Simpson, J. H. J. Am. Chem. Soc. 1987, 109, 2138-2152.
(152) Ciufolini, M. A.; Shen, Y. C. J. Org. Chem. 1997, 62, 3804-3805.
(153) Ciufolini, M. A.; Shen, Y.; Lyon, C. B. Nature 1999, No. 8, 1-4.
(154) Lu, J. Y.; Riedrich, M.; Wojtas, K. P.; Arndt, H. D. Synth. 2013, 45, 1300-1311.
(155) Lu, J. Y.; Arndt, H. D. J. Org. Chem. 2007, 72, 4205-4212.
(156) Lamarche, M. J.; Leeds, J. A.; Amaral, K.; Brewer, J. T.; Bushell, S. M.; Dewhurst, J. M.; Dzink-Fox, J.; Gangl, E.; Goldovitz, J.; Jain, A.; Mullin, S.; Neckermann, G.; Osborne, C.; Palestrant, D.; Patane, M. A.; Rann, E. M.; Sachdeva, M.; Shao, J.; Tiamfook, S.; Whitehead, L.; Yu, D. J. Med. Chem. 2011, 54, 8099-8109.
(157) LaMarche, M. J.; Leeds, J. A.; Brewer, J.; Dean, K.; Ding, J.; Dzink-Fox, J.; Gamber, G.; Jain, A.; Kerrigan, R.; Krastel, P.; Lee, K.; Lombardo, F.; McKenney, D.; Neckermann, G.; Osborne, C.; Palestrant, D.; Patane, M. A.; Rann, E. M.; Robinson, Z.; Schmitt, E.; Stams, T.; Tiamfook, S.; Yu, D.; Whitehead, L. J. Med. Chem. 2016, 59, 6920-6928.
(158) Lamarche, M. J.; Leeds, J. A.; Amaral, A.; Brewer, J. T.; Bushell, S. M.; Deng, G.; Dewhurst, J. M.; Ding, J.; Dzink-Fox, J.; Gamber, G.; Jain, A.; Lee, K.; Lee, L.; Lister, T.; McKenney, D.; Mullin, S.; Osborne, C.; Palestrant, D.; Patane, M. A.; Rann, E. M.; Sachdeva, M.; Shao, J.; Tiamfook, S.; Trzasko, A.; Whitehead, L.; Yifru, A.; Yu, D.; Yan, W.; Zhu, Q. J. Med. Chem. 2012, 55, 2376-2387.
(159) Curtius, T. Chem. Ber. 1890, 23, 3023-3033.
(160) Clough, J.; Chen, S.; Gordon, E. M.; Hackbarth, C.; Lam, S.; Trias, J.; White, R. J.; Candiani, G.; Donadio, S.; Romanò, G.; Ciabatti, R.; Jacobs, J. W. Bioorganic Med. Chem. Lett. 2003, 13, 3409-3414.
(161) Mullane, K.; Lee, C.; Bressler, A.; Buitrago, M.; Weiss, K.; Dabovic, K.; Praestgaard, J.; Leeds, J. A.; Blais, J.; Pertel, P. Antimicrob. Agents Chemother. 2015, 59, 1435-1440.
(162) Safety and Efficacy of Multiple Daily Dosing of Oral LFF571 in Patients With Moderate Clostridium Difficile Infections https://clinicaltrials.gov/ct2/show/NCT01232595 (accessed Jan 1, 2016).
(163) Donia, M. S.; Cimermancic, P.; Schulze, C. J.; Wieland Brown, L. C.; Martin, J.; Mitreva, M.; Clardy, J.; Linington, R. G.; Fischbach, M. A. Cell 2014, 158, 14021414.
(164) Baumann, S.; Schoof, S.; Harkal, S. D.; Arndt, H. D. J. Am. Chem. Soc. 2008, 130, 5664-5666.
(165) Scheibye, S.; Kristensen, J.; Lawesson, S.-O. Tetrahedron 1979, 35, 1339-1343.
(166) Lecher, H. Z.; Greenwood, R. A.; Whitehouse, K. C.; Chao, T. H. J. Am. Chem. Soc. 1956, 78, 5018-5022.
(167) Kuhn, V. R.; Drawert, F. Liebigs Ann. 1954, 590, 55-61.
(168) Maltsev, O. V.; Walter, V.; Brandl, M. J.; Hintermann, L. Synth. 2013, 45, 27632767.
(169) Ashford's Dictionary of Industrial Chemicals; 2011.
(170) Wang, Y.; Li, Z.; Huang, Y.; Tang, C.; Wu, X.; Xu, J.; Yao, H. Tetrahedron 2011, 67, 7406-7411.
(171) Merino, P.; Tejero, T.; Unzurrunzaga, F. J.; Franco, S.; Chiacchio, U.; Saita, M. G.; Iannazzo, D.; Piperno, A.; Romeo, G. Tetrahedron Asymmetry 2005, 16, 38653876.
(172) Bergeron, R. J.; Wiegand, J.; Weimar, W. R.; Vinson, J. R. T.; Bussenius, J.; Yao, G. W.; McManis, J. S. J. Med. Chem. 1999, 42, 95-108.
(173) Williams, D. R.; Lowder, P. D.; Gu, Y. G.; Brooks, D. A. Tetrahedron Lett. 1997, 38, 331-334.
(174) Huang, Y.; Gan, H.; Li, S.; Xu, J.; Wu, X.; Yao, H. Tetrahedron Lett. 2010, 51, 1751-1753.
(175) Mathias, L. J. Synthesis 1979, 561-576.
(176) Dabritz, E. Angew .Chem. Int. Ed. 1966, 5, 470-477.
(177) Bonauer, C.; Walenzyk, T.; König, B. Synthesis 2006, No. 1, 1-20.
(178) Ferreira, P. M. T.; Maia, H. L. S.; Monteiro, L. S.; Sacramento, J. J. Chem. Soc. Perkin Trans. 1 1999, No. 24, 3697-3703.
(179) Lott, R. S.; Chauhan, V. S.; Stammer, C. H. J. Chem. Soc. Chem. Commun. 1979, No. 11, 495.
(180) Tsuji, T.; Kataoka, T.; Yoshioka, M.; Sendo, Y.; Nishitani, Y.; Hirai, S.; Maeda, T.; Nagata, W. Tetrahedron Lett. 1979, 20, 2793-2796.
(181) Kaiser, E.; Tam, J. P.; Kubiak, T. M.; Merrifield, R. B. Tetrahedron Lett. 1988, 29, 303-306.
(182) Evans, E. F.; Lewis, N. J.; Kapfer, I.; Macdonald, G.; Taylor, R. J. K. Synth. Соттии. 1997, 27, 1819-1825.
(183) Caron, S.; Do, N. M.; Sieser, J. E. Tetrahedron Lett. 2000, 41, 2299-2302.
(184) Fife, W. K. J. Org. Chem. 1983, 48, 1375-1377.
(185) Burns, J. a; Butler, J. C.; Moran, J.; Whitesides, G. M. J. Org. Chem. 1991, 56, 2648-2650.
(186) Carpino, L. J. Am. Chem. Soc. 1993, 115, 4397-4398.
(187) Claremon, D. A.; Phillips, B. T. Tetrahedron Lett. 1988, 29, 2155-2158.
(188) Frohlich, H.; Kalt, W. J. Org. Chem 1990, 55, 2993-2995.
(189) Hunsdiecker, H.; Hunsdiecker, C. Chem. Ber. 1942, 75, 291-297.
(190) Borodine, A. Liebigs Ann. 1861, 119, 121-123.
(191) Ellman, J. A.; Owens, T. D.; Tang, T. P. Acc. Chem. Res. 2002, 35, 984-995.
(192) Rech, J. C.; Rech, J. C.; Yato, M.; Yato, M.; Duckett, D.; Duckett, D.; Ember, B.; Ember, B.; Lograsso, P. V; Lograsso, P. V; Bergman, R. G.; Bergman, R. G.; Ellman, J. a; Ellman, J. a. 2007, 490-491.
(193) Krasovskiy, A.; Knochel, P. Angew. Chem. Int. Ed. 2004, 43, 3333-3336.
(194) Kelly, T. R.; Lang, F. J. Org. Chem. 1996, 61, 4623-4633.
(195) Surry, D. S.; Buchwald, S. L. Angew. Chem. Int. Ed. 2008, 47, 6338-6361.
(196) Wolfe, J. P.; Wagaw, S.; Marcoux, J.-F.; Buchwald, S. L. Acc. Chem. Res. 1998, 31, 805-818.
(197) Martin, T.; Laguerre, C.; Hoarau, C.; Marsais, F. Org. Lett. 2009, 11, 3690-3693.
(198) Carpino, L. A.; Han, G. Y. J. Org. Chem. 1972, 37, 3404-3409.
(199) Kan, T.; Fukuyama, T. Chem. Commun. (Camb). 2004, No. October 2003, 353-359.
(200) Ye, D.; Liang, G.; Ma, M. L.; Rao, J. Angew. Chem. Int. Ed. 2011, 50, 2275-2279.
(201) Mitsunobu, O.; Yamada, M. Bull. Chem. Soc. Jpn. 1967, 40, 2380-2382.
(202) Okumura, K.; Nakamura, Y.; Shin, C. Bull. Chem. Soc. Jpn. 1999, 72, 1561-1569.
(203) Sharma, A.; Blair, P. M.; Mitchell, D. A. Org. Lett. 2013, 15, 5076-5079.
(204) Grubb, A. M.; Schmidt, M. J.; Seed, A. J.; Sampson, P. Synthesis 2012, 44, 10261029.
(205) Duthaler, R. O.; Wyss, B. European J. Org. Chem. 2011, No. 24, 4667-4680.

