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ABSTRACT OF THE DISSERTATION

Cross-lingual Representation Learning for Natural Language Processing

by

Wasi Uddin Ahmad

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2021

Professor Kai-Wei Chang, Chair

In the modern era of deep learning, developing natural language processing (NLP) systems

require large-scale annotated data. However, it is unfortunate that most large-scale labeled

datasets are only available in a handful of languages; for the vast majority of languages,

either a few or no annotations are available to empower automated NLP applications.

Hence, one of the focuses of cross-lingual NLP research is to develop computational

approaches by leveraging resource-rich language corpora and utilize them in low-resource

language applications via transferable representation learning. Cross-lingual representation

learning has emerged as an indispensable ingredient for cross-lingual natural language

understanding that learns to embed notions, such as meanings of words, how the words are

combined to form a concept, etc., in shared representation space. In recent years, cross-

lingual representation learning and transfer learning together have redefined low-resource

NLP and enabled us to build models for a broad spectrum of languages.

This dissertation discusses the fundamental challenges and proposes several approaches

for cross-lingual representation learning that (1) utilize universal syntactic dependencies

to bridge the typological differences across languages and (2) effectively use unlabeled

resources to learn robust and generalizable representations. The proposed approaches in

this dissertation effectively transfer across a wide range of languages across different NLP

applications, including dependency parsing, named entity recognition, text classification,

question answering, and more.

ii



The dissertation of Wasi Uddin Ahmad is approved.

Guy Van den Broeck

Yizhou Sun

Junghoo Cho

Kai-Wei Chang, Committee Chair

University of California, Los Angeles

2021

iii



Dedicated to my Ma and Baba

iv



TABLE OF CONTENTS

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Outline of This Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background: Word Representation Learning . . . . . . . . . . . . . . . 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Monolingual Word Representations . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Contextualized Word Representations . . . . . . . . . . . . . . . . 9

2.3 Cross-lingual Word Representations . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Resources for Learning Cross-lingual Representations . . . . . . . 11

2.3.2 Techniques for Cross-lingual Representations Learning . . . . . . 12

2.3.3 Multilingual Word Representations . . . . . . . . . . . . . . . . . 13

3 Cross-Lingual Transfer with Order Differences . . . . . . . . . . . . . . 14

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Quantifying Language Distance . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.1 Contextual Encoders . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.2 Structured Decoders . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Experiments and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

v



3.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Cross-lingual Representation Learning for Information Extraction . . 33

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.1 Transformer Encoder . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3.2 Graph Attention Transformer Encoder . . . . . . . . . . . . . . . 39

4.3.3 Relation Extractor . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.4 Event Argument Role Labeler . . . . . . . . . . . . . . . . . . . . 42

4.4 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4.2 Evaluation Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4.3 Baseline Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4.4 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.5.1 Single-source transfer . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.5.2 Multi-source transfer . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.5.3 Encoding dependency structure . . . . . . . . . . . . . . . . . . . 48

4.5.4 Sensitivity towards source language . . . . . . . . . . . . . . . . . 49

4.5.5 Ablation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5.6 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

vi



5 Syntax-augmented Pre-trained Encoders for Cross-lingual Transfer . 58

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2 Syntax-augmented Multilingual BERT . . . . . . . . . . . . . . . . . . . 61

5.2.1 Transformer Encoder . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2.2 Graph Attention Network . . . . . . . . . . . . . . . . . . . . . . 62

5.2.3 Syntax-augmented Transformer Encoder . . . . . . . . . . . . . . 64

5.2.4 Fine-tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3.1 Evaluation Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . 68

5.4 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4.1 Cross-lingual Transfer . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4.2 Generalized Cross-lingual Transfer . . . . . . . . . . . . . . . . . 71

5.4.3 Analysis & Discussion . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4.4 Limitations and Challenges . . . . . . . . . . . . . . . . . . . . . 73

5.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6 Representation Learning using Unlabeled Data . . . . . . . . . . . . . . 76

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.2 Language-agnostic Representation Learning . . . . . . . . . . . . . . . . 77

6.2.1 Training Language-agnostic Encoders . . . . . . . . . . . . . . . . 78

6.2.2 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2.3 Experiments and Analysis . . . . . . . . . . . . . . . . . . . . . . 82

6.2.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

vii



6.3 Representation Learning for Programming Languages . . . . . . . . . . . 89

6.3.1 Denoising Pre-training . . . . . . . . . . . . . . . . . . . . . . . . 92

6.3.2 Experiments Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.3.3 Results & Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.3.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

viii



LIST OF TABLES

3.1 The selected languages grouped by language families. “IE” is the abbreviation

of Indo-European. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Results (UAS%/LAS%, excluding punctuation) on the test sets. Languages

are sorted by the word-ordering distance to English, as shown in the second

column. ‘*’ refers to results of delexicalized models, ‘†’ means that the best

transfer model is statistically significantly better (by paired bootstrap test, p <

0.05) than all other transfer models. Models are marked with their encoder and

decoder order sensitivity, OF denotes order-free and OS denotes order-sensitive. 22

3.3 Comparisons of different encoders (averaged results over all languages on the

original training sets). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Relative frequencies (%) of dependency distances. English differs from the

Average at d=1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 Average sequential and syntactic (shortest path) distance between relation

mentions and event mentions and their candidate arguments in ACE05 dataset.

Distances are computed by ignoring the order of mentions. . . . . . . . . . 42

4.2 Statistics of the ACE 2005 dataset. . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Single-source transfer results (F-score % on the test set) using perfect event

triggers and entity mentions. The language on top and bottom of ⇓ denotes

the source and target languages, respectively. . . . . . . . . . . . . . . . . . 43

4.4 Multi-source transfer results (F-score % on the test set) using perfect event

triggers and entity mentions. The language on top and bottom of ⇓ denotes

the source and target languages, respectively. . . . . . . . . . . . . . . . . . 44

ix



4.5 GATE vs. Wang et al. (2019b) results (F-score %) on event argument role

labeling (EARL) and relation extraction (RE); using English as source and

Chinese, Arabic as the target languages, respectively. To limit the maximum

relative position, the clipping distance is set to 10 and 5 for EARL and RE

tasks, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.6 Event argument role labeling (EARL) and relation extraction (RE) results

(F-score %); using Chinese as the source and English as the target language.
∗ indicates the English examples are translated into Chinese using Google

Cloud Translate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.7 Contribution of multilingual word embeddings (Multi-WE) Joulin et al. (2018),

M-BERT Devlin et al. (2019), and XLM-R Conneau et al. (2019) as a source

of word features; using English as source and Chinese, Arabic as the target

languages, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.8 Ablation on the use of language-universal features (part-of-speech (POS) tag,

dependency relation label, and entity type) in GATE (F-score (%); using

English as source and Chinese, Arabic as the target languages, respectively. 51

4.9 Comparing GATE and Self-Attention on the EARL task using English and

Chinese as the source and target languages, respectively. The rates are

aggregated from confusion matrices shown in Figure 4.4 and 4.5. . . . . . . 52

5.1 Statistics of the evaluation datasets. |Train|, |Dev| and |Test| are the numbers

of examples in the training, dev and test sets, respectively. For train set, the

number is for the source language, English, while for dev and test set, the

number is for each target language. |Lang| is the number of target languages

we consider for each task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

x



5.2 Cross-lingual transfer results for all the evaluation tasks (on test set) across 17

languages. We report F1 score for the question answering (QA) datasets (for

other datasets, see Table 5.1). We train and evaluate mBERT on the same

pre-processed datasets and considers its performance as the baseline (denoted

by “mBERT” rows in the table) for syntax-augmented mBERT (denoted by “+

Syn.” rows in the table). Bold-faced values indicate that the syntax-augmented

mBERT is statistically significantly better (by paired bootstrap test, p < 0.05)

than the baseline. We include results from published works ([1]: Hu et al.

(2020), [2]: Liang et al. (2020), and [3]: Lewis et al. (2020b)) as a reference.

Except for the QA datasets, all our results are averaged over three different

seeds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 The performance difference between syntax-augmented mBERT and mBERT

in the generalized cross-lingual transfer setting. The rows and columns indicate

(a) language of the first and second sentences in the candidate pairs and (b)

context and question languages. The gray cells have a value greater than or

equal to the average performance difference, which is 3.9 and 3.1 for (a) and

(b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.1 The selected languages grouped by language families. “IE” is the abbreviation

of Indo-European. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.2 Cross-lingual transfer performances (UAS%/LAS%, excluding punctuation) of

the SelfAtt-Graph parser Ahmad et al. (2019c) on the test sets. In column

1, languages are sorted by the word-ordering distance to English. (en-fr) and

(en-ru) denotes the source-auxiliary language pairs. ‘†’ indicates that the

adversarially trained model results are statistically significantly better (by

permutation test, p < 0.05) than the model trained only on the source language

(en). Results show that the utilization of unlabeled auxiliary language corpora

improves cross-lingual transfer performance significantly. . . . . . . . . . . . 85

xi



6.3 Comparison between adversarial training (AT) and multi-task learning (MTL)

of the contextual encoders. Columns 2–5 demonstrate the parsing performances

(UAS%/LAS%, excluding punctuation) on the auxiliary languages and average

of the 29 languages. Columns 6–7 present accuracy (%) of the language label

prediction test. ‘†’ indicates that the performance is higher than the baseline

performance (shown in the 2nd column of Table 6.2). . . . . . . . . . . . . 86

6.4 Statistics of the data used to pre-train PLBART. “Nb of documents” refers to

the number of functions in Java and Python collected from Github and the

number of posts (questions and answers) in the natural language (English)

from StackOverflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.5 Example encoder inputs and decoder outputs during denoising pre-training of

PLBART. We use three noising strategies: token masking, token deletion, and

token infilling (shown in the three examples, respectively). . . . . . . . . . . 93

6.6 Example inputs to the encoder and decoder for fine-tuning PLBART on

sequence generation tasks: source code summarization (S), generation (G),

and translation (T). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.7 Statistics of the downstream benchmark datasets. . . . . . . . . . . . . . . . 96

6.8 Results on source code summarization, evaluated with smoothed BLEU-4 score.

The baseline results are reported from Feng et al. (2020). . . . . . . . . . . . 99

6.9 Results on text-to-code generation task using the CONCODE dataset (Iyer

et al., 2018). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.10 Results on source code translation using Java and C# language dataset

introduced in (Lu et al., 2021). PBSMT refers to phrase-based statistical

machine translation where the default settings of Moses decoder (Koehn et al.,

2007) is used. The training data is tokenized using the RoBERTa (Liu et al.,

2019c) tokenizer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.11 Results on program repair (in Java). . . . . . . . . . . . . . . . . . . . . . . 105

xii



6.12 Results on the vulnerable code detection (accuracy) and clone detection (F1

score) tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

xiii



LIST OF FIGURES

1.1 Overview of the chapters in this thesis. The single-headed arrows indicate

tasks involving transfer from high-resource languages to low-resource ones. . 4

3.1 Hierarchical clustering (with the Nearest Point Algorithm) dendrogram of the

languages by their word-ordering vectors. . . . . . . . . . . . . . . . . . . . . 17

3.2 Evaluation score differences between Order-Free (OF) and Order Sensitive

(OS) modules. We show results of both encoder (blue solid curve) and decoder

(dashed red curve). Languages are sorted by their word-ordering distances to

English from left to right. The position of English is marked with a green bar. 26

3.3 Analysis on specific dependency types. To save space, we merge the curves of

encoders and decoders into one figure. The blue and red curves and left y-axis

represent the differences in evaluation scores, the brown curve and right y-axis

represents the relative frequency of left-direction (modifier before head) on

this type. The languages (x-axis) are sorted by this relative frequency from

high to low. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Evaluation differences of models on d=1 dependencies. Annotations are the

same as in Figure 3.3, languages are sorted by percentages (represented by the

brown curve and right y-axis) of d=1 dependencies. . . . . . . . . . . . . . . 28

3.5 Transfer performance of all source-target language pairs. The blue and red

curves show the averages over columns and over rows of the source-target pair

performance matrix (see text for details). The brown curve and the right

y-axis legend represent the average language distance between one language

and all others. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 A relation (red dashed) between two entities and an event of type Attack

(triggered by “firing”) including two arguments and their role labels (blue) are

highlighted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

xiv



4.2 Distance matrix showing the shortest path distances between all pairs of words.

The dependency arc direction is ignored while computing pairwise distances.

The diagonal value is set to 1, indicating a self-loop. If we set the values in

white cells (with value > 1) to 0, the distance matrix becomes an adjacency

matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Models trained on the Chinese language perform on event argument role

labeling in English and their parallel Chinese sentences. The parallel sentences

have the same meaning but a different structure. To quantify the structural

difference between two parallel sentences, we compute the tree edit distances. 49

4.4 Event argument role labeling confusion matrix (on test set) based on our

proposed approach GATE using English and Chinese as the source and target

languages, respectively. The diagonal values indicate the number of correct

predictions, while the other values denote the incorrect prediction counts. . 54

4.5 Event argument role labeling confusion matrix (on test set) based on the

Self-Attention (Transformer Encoder) using English and Chinese as the

source and target languages, respectively. The diagonal values indicate the

number of correct predictions, while the other values denote the incorrect

prediction counts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.6 Relation extraction labeling confusion matrix (on test set) based on our

proposed approach GATE using English and Chinese as the source and target

languages, respectively. The diagonal values indicate the number of correct

predictions, while the other values denote the incorrect prediction counts. . 56

4.7 Relation extraction confusion matrix (on test set) based on the Self-Attention

(Transformer Encoder) using English and Chinese as the source and target

languages, respectively. The diagonal values indicate the number of correct

predictions, while the other values denote the incorrect prediction counts. . 57

xv



5.1 Two parallel sentences in English and Hindi from XNLI (Conneau et al., 2018)

dataset. The words highlighted with the same color have the same meaning.

Although the sentences have a different word order, their syntactic dependency

structure is similar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 A parallel QA example in English (en) and Spanish (es) from MLQA Lewis et al.

(2020b) with predictions from mBERT and our proposed syntax-augmented

mBERT. In “Q:x-C:y”, x and y indicates question and context languages,

respectively. Based on our analysis of the highlighted tokens’ attention weights,

we conjecture that mBERT answers 630 as the token is followed by “miembros”,

while 315 is followed by “senadores” in Spanish. . . . . . . . . . . . . . . . . 60

5.3 A simplified illustration of the multi-head self-attention in the graph attention

network wherein each head attention is allowed between words within δ distance

from each other in the dependency graph. For example, as shown, in one of

the attention heads, the word “likes” is only allowed to attend its adjacent

(δ=1) words “dog” and “play”. . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.4 Performance improvements for XNLI, Wikiann, MLQA, and mATIS++ across

languages.The languages in x-axis are grouped by language families: IE.Germanic

(nl, de), IE.Romance (pt, fr, es), IE.Slavic (ru, bg), IE.Greek (el), IE.Indic

(hi, ur), Afro-asiatic (ar, vi), Altaic (tr), Sino-tibetan (zh), Korean (ko), and

Japanese (ja). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.1 An overview of our experimental model consists of three basic components:

(1) Encoder, (2) (Parsing) Decoder, and (3) (Language) Classifier. We also

show how parsing and adversarial losses (Lp and Ld) are back propagated for

parameter updates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2 Example motivating the need to understand the association of program and

natural languages for code summarization, generation, and translation. . . . 90

6.3 An example of generated code by PLBART that is syntactically and semanti-

cally valid, but does not match the reference. . . . . . . . . . . . . . . . . . 101

xvi



6.4 Example C# code generated by PLBART that does not exactly match the

reference code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.1 Summary of contributions made in the dissertation. Different chapters demon-

strated the challenges in cross-lingual representation learning due to word

order differences across languages (Chapter 3), how universal dependencies

can be utilized to enhance representation learning (Chapter 4) and pre-trained

multilingual encoders (Chapter 5) for cross-lingual transfer, and how such

representations can be learned or improved by using unlabeled data (Chapter

6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

xvii



ACKNOWLEDGMENTS

I am fortunate that I got the opportunity to work with a great advisor like Kai-Wei Chang.

He is one of the kindest and most considerate person I know. Without his continuous

support, guidance, and insights, most of the work in this thesis would not have come into

existence. His advising style of giving freedom to work on a research problem and being

patient with my failures has shaped my thinking and approach towards research. I am

expressing my deepest gratitude to Kai-Wei for all that he has done for me. I am also

indebted to my thesis committee — Junghoo, Yizhou, and Guy.

I am extremely grateful to my mentors Nanyun Peng and Hongning Wang for guiding

me through different research works. The knowledge I acquired while working with them

is invaluable and will be an asset for the rest of my research life. I must also thank Zhisong

Zhang, Xuezhe Ma for their collaboration on my first research project in cross-lingual NLP,

which later became the foundation of my dissertation research. I very much appreciate

Yuan Tian and Baishakhi Ray for their support in my research works.

During my stay at UVA and UCLA, I developed connections with extraordinary fellow

students. I got the opportunity to collaborate with Md Masudur Rahman, Puxuan Yu,

Xueying Bai, Zhechao Huang, Chao Jiang, Jianfeng Chi, Dat Duong, Md Rizwan Parvez,

Kuan-Hao Huang, and Saikat Chakraborty. They are phenomenal in their work and were

immensely helpful and supportive while pursuing new ideas.

Many thanks to Greg Favinger, Colin Morse, Nikos Karampatziakis, Xiao Bai, Soomin

Lee, Haoran Li, and Yashar Mehdad, who were my mentors during my internships at

Walmart Labs, Microsoft Research, Yahoo Research, and Facebook AI. They have provided

me a comfortable environment to start with, helped me define the problem, guided me

towards a solution while keeping me aware of practical considerations. Now, when I

introspect, I realize how much I have learned from all of them over the years.

I want to thank the members of the UCLA NLP group, particularly for their support

in reviewing my research works and providing feedback when needed. Thanks should also

go to the support staff who ensure things run smoothly in our group at UVA and UCLA.

xviii



Lastly, I would like to thank my mother and everyone in my family whose efforts and

sacrifices brought me here. A special thanks to Nishat for becoming my lifelong companion

during the journey. Thanks for your unconditional love and support when things were not

going well and for uplifting my spirits when facing the despair that naturally accompanies

the research process. This is for you.

xix



VITA

2013 B.S. Computer Science & Engineering
Bangladesh University of Engineering & Technology, Dhaka, Bangladesh

2013 Software Development Engineer
REVE Systems, Dhaka, Bangladesh

2013–2015 Lecturer of Computer Science & Engineering
Ahsanullah University of Science & Technology, Dhaka, Bangladesh

2015–2016 Teaching Assistant, Computer Science Department
University of Virginia, Charlottesville, Virginia, USA

2016 Research Intern
Walmart Labs, Reston, Virginia, USA

2016–2017 Research Assistant, UVA Natural Language Processing Group
University of Virginia, Charlottesville, Virginia, USA

2017 M.S. Computer Science
University of Virginia, Charlottesville, Virginia, USA

2018, 2019 Teaching Assistant, Computer Science Department
University of California, Los Angeles, California, USA

2018 Research Intern
Microsoft AI and Research, Redmond, Washington, USA

2019 Research Intern
Yahoo Research, Sunnyvale, California, USA

2020 Research Intern
Facebook AI, Menlo Park, California, USA

2017–2021 Research Assistant, UCLA Natural Language Processing Group
University of California, Los Angeles, California, USA

PUBLICATIONS

Ahmad, W. U., Li, H., Chang, K. W., Mehdad, Y. (2021). “Syntax-augmented Multilingual
BERT for Cross-lingual Transfer.” In Proceedings of the 59th Annual Meeting of the Association
for Computational Linguistics.

Ahmad, W. U., Chi, J., Le, T., Norton, T., Tian, Y., Chang, K. W. (2021). “Intent Classification
and Slot Filling for Privacy Policies.” In Proceedings of the 59th Annual Meeting of the Association
for Computational Linguistics.

Ahmad, W. U., Bai, X., Lee, S., & Chang, K. W. (2021). “Select, Extract and Generate: Neural
Keyphrase Generation with Layer-wise Coverage Attention.” In Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics.

Ahmad, W. U., Chakraborty, S., Ray, B., Chang, K. W. (2021). “Unified Pre-training for Program
Understanding and Generation.” In Proceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies.

xx



Ahmad, W. U., Peng, N., Chang, K. W. (2021). “GATE: Graph Attention Transformer Encoder
for Cross-lingual Relation and Event Extraction.” In Proceedings of the 35th AAAI Conference
on Artificial Intelligence.

Chakraborty, S., Tafseer, M. T., Ahmad, W. U. (2021). “Simple or Complex? Learning to
Predict Readability of Bengali Texts.” In Proceedings of the 35th AAAI Conference on Artificial
Intelligence.

Ahmad, W. U., Chi, J., Tian, Y., Chang, K. W. (2020). “PolicyQA: A Reading Comprehension
Dataset for Privacy Policies.” In Findings of the Association for Computational Linguistics:
EMNLP.

Ahmad, W. U., Chakraborty, S., Ray, B., Chang, K. W. (2020). “A Transformer-based Approach
for Source Code Summarization.” In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics.

Ahmad, W. U., Zhang, Z., Ma, X., Chang, K. W., Peng, N. (2019). “Cross-lingual Depen-
dency Parsing with Unlabeled Auxiliary Languages.” In Proceedings of the 23rd Conference on
Computational Natural Language Learning.

Ahmad, W. U., Chang, K. W., Wang, H. (2019). “Context Attentive Document Ranking and
Query Suggestion.” In Proceedings of the 42nd International ACM SIGIR Conference on Research
and Development in Information Retrieval.

Ahmad, W. U., Zhang, Z., Ma, X., Hovy, E., Chang, K. W., Peng, N. (2019). “On Difficulties
of Cross-Lingual Transfer with Order Differences: A Case Study on Dependency Parsing.”
In Proceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies.

Duong, D., Ahmad, W. U., Eskin, E., Chang, K. W., Li, J. J. (2019). “Word and sentence
embedding tools to measure semantic similarity of Gene Ontology terms by their definitions.”
Journal of Computational Biology.

Ahmad, W. U., Chang, K. W., Wang, H. (2018). “Intent-aware query obfuscation for privacy
protection in personalized web search.” In Proceedings of the 41st International ACM SIGIR
Conference on Research and Development in Information Retrieval.

Yu, P., Ahmad, W. U., Wang, H. (2018). “Hide-n-Seek: An Intent-aware Privacy Protection
Plugin for Personalized Web Search.” In Proceedings of the 41st International ACM SIGIR
Conference on Research and Development in Information Retrieval.

Ahmad, W. U., Chang, K. W., Wang, H. (2018). “Multi-task learning for document rank-
ing and query suggestion.” In Proceedings of the 6th International Conference on Learning
Representations.

Ahmad, W. U., Chang, K. W. (2018). “A Corpus to Learn Refer-to-as Relations for Nominals.”
In Proceedings of the 11th International Conference on Language Resources and Evaluation.

Ahmad, W. U., Rahman, M. M., Wang, H. (2016). “Topic model based privacy protection in
personalized Web search.” In Proceedings of the 39th International ACM SIGIR conference on
Research and Development in Information Retrieval.

xxi



CHAPTER 1

Introduction

1.1 Overview

In today’s world, the number of speakers of some languages is in billions, while it is only

a few thousand for many languages. Due to this difference in the number of speakers,

the languages offer resources, such as a collection of training data on different scales.

Advancements of deep neural network models have facilitated a wide range of natural

language processing (NLP) applications in recent years. However, training these deep

neural models require large amounts of annotated data, and its advantage over traditional

statistical methods typically diminishes when such data is not available. Many successful

stories in NLP credited its’ success to the availability of large-scale training data. As

a result, we have witnessed an increasing attempts to annotate large-scale datasets to

facilitate NLP applications such as question answering, text summarization, conversational

AI etc. Majority of these datasets are annotated by trained human workers and collected

from various sources such as Wikipedia, news articles, online forums, general web, etc.

Unfortunately, these annotations only exists in a handful of high-resource languages such

as English. Annotating data for a wide range of languages is expensive and requires expert

annotators. As a result, we have access to no or very limited amount of data to train

models for languages such as Hindi, Arabic and we call them as low-resource languages.

Why should we care about low-resource languages? Although low-resource lan-

guages lack resources, a significant fraction of the world’s population uses them in their

day-to-day lives. For example, although Swahili is considered a low-resource language,
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about 16 million people speak Swahili as a native language, and 82 million uses it as a

second language1. Moreover, people from the same country often speak different languages;

e.g., 1.2 billion people of India speak 460 languages. For example, a user asking a question

to a digital assistant in Tamil, and the answer may be available in a document written in

English. Therefore, to allow people to access information about nation, culture, events and

communicate the consumed information with others, there is no alternative to enabling

NLP technology to operate multilingually. Understanding multiple languages enables an

NLP system to extract and process information available in many languages, facilitating

information dissemination around the globe. Faster dissemination of information is some-

times critical, such as a Facebook user getting informed about a Hurricane taking place

in a nearby area from a post written in his/her non-native language.

Cross-lingual Representation Learning Traditional supervised machine learning

approaches form the backbone of current NLP technology. However, they are inherently

ill-equipped to deal with the lack of labeled data, which poses a significant challenge in

scaling to low-resource languages. To battle the unavailability of sufficient labeled data

for low-resource NLP, researchers are delving into cross-lingual representation learning

techniques. Cross-lingual representation learning can be viewed as an instance of transfer

learning.

In transfer learning, the knowledge gained while solving one problem is applied to

a different but related problem. In the context of deep learning, we can define transfer

learning as reusing a model (or its components in part) that is trained on the source tasks

as the starting point of a model for the target tasks (mostly with fewer examples). The

model that is trained on the source tasks known as a pre-trained model and the process

of further utilizing it for the target tasks is known as fine-tuning.

In NLP, a common way of transferring knowledge is through representations learned

for words or sentences. Transferring lexical knowledge across languages is crucial as it

enables us to compare the meaning of words across languages. This leads to cross-lingual

1https://www.babbel.com/en/magazine/how-many-people-speak-swahili
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word representation models that aim to learn a joint embedding space. Such cross-lingual

representations facilitate natural language understanding in multilingual contexts and

benefits low-resource NLP.

One of the fundamental goals of cross-lingual representation learning is to learn

language-agnostic representations to be transferred across languages. Encoding language-

specific features may hinder cross-lingual transfer if the source and target languages differ

in linguistic typology and semantics. For example, in English, Verb precedes Object,

while in Hindi, Verb follows Object. Presumably, models capturing English word order

will not transfer effectively to Hindi. In contrary, for particular NLP applications, such

as dependency parsing, the knowledge of word order typology is important. Therefore,

depending on the target languages and the downstream NLP tasks, adapting cross-lingual

representations is a key for successful knowledge transfer.

1.2 Thesis Statement

Cross-lingual representation learning has emerged as an effective way to avail NLP

systems in low-resource languages, such as Hindi, Bengali. However, languages differ in

morphology, syntax, and semantics, which makes cross-lingual representation learning

difficult. This thesis argues that encoding universal structural (grammatical, lexical)

properties of languages into cross-lingual representations makes them language-agnostic.

Adapting such language-agnostic representations in multilingual NLP systems improves

the transferability of such systems to languages that lack annotated resources.

1.3 Outline of This Thesis

The rest of this document is organized as follows.

Chapter 2 presents a brief history of different approaches for learning word representa-

tions and their extensions to multilingual word representations learning. Then, we describe

the use of modern deep neural networks in learning natural language representations and
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Figure 1.1: Overview of the chapters in this thesis. The single-headed arrows indicate
tasks involving transfer from high-resource languages to low-resource ones.

what type of language resources are used to train them to capture cross-lingual semantics.

Chapter 3 introduces our work (Ahmad et al., 2019a) on studying the suitability of using

the two preeminent neural architectures, recurrent neural networks (RNNs) (Hochreiter

and Schmidhuber, 1997) and Transformers (Vaswani et al., 2017) for cross-lingual transfer

learning. We then describe the effects of positional encodings in Transformers and derive

a positional encoding scheme that improves Transformers’ cross-lingual transferability.

Chapter 4 shows how using the universal dependency structure in learning contextual

representations improves two cross-lingual information extraction (IE) tasks, (1) relation

extraction and (2) event argument role labeling. Based on our work (Ahmad et al., 2021c),

the chapter demonstrates that syntactic distances between entities and their arguments

can characterize their relations, facilitating cross-lingual IE tasks.

Chapter 5 introduces our work (Ahmad et al., 2021b) in augmenting multilingual

encoder, mBERT (Devlin et al., 2019) with universal language structure. In particular, we

show that encouraging mBERT to encode the dependency structure of the input sequences

while fine-tuning on downstream tasks improves cross-lingual transfer. Notably, generalized

cross-lingual transfer improves significantly due to the supervision from linguistic structure

knowledge.
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Chapter 6 describes how we can exploit unlabeled monolingual resources to learn and

improve the robustness of cross-lingual representations. Our work (Ahmad et al., 2019b)

uses an adversarial training framework to improve mBERT on cross-lingual dependency

parsing. In a recent work Ahmad et al. (2021a), we utilize monolingual resources of

natural language English and programming languages, Java and Python to jointly learn

multilingual representations that facilitates low-resource applications.

Finally, Chapter 7 summarizes the contributions of this thesis and provides an overview

of the future directions.
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CHAPTER 2

Background: Word Representation Learning

2.1 Introduction

An NLP model can be viewed as a function that takes the text data representation (or

features) and makes predictions. Thus, NLP models’ success largely depends on how

the text data is converted into feature representations. Such feature representations are

mathematical representations of the linguistic structures and are crucial for the NLP

models’ generalizability. Feature representations are typically learned for smaller linguistic

units such as words, and representations for larger linguistic structures such as sentences,

paragraphs, or documents are obtainable from word representations. Learning shared

feature representations across languages is the base of cross-lingual NLP.

In this chapter, we discuss techniques for learning monolingual and cross-lingual

word representations that serve as the basis for cross-lingual representation learning

approaches introduced in the rest of this thesis. The history of word representations

started from one-hot representation that represents a word as an independent categorical

feature. Due to the limitations of one-shot representation, the notion of distributed

word representations emerged. Distributed word representations (also known as word

embeddings) represent a low-dimensional real-valued vector space that captures syntactic

and semantic relationships between words. In this chapter, we limit our discussion to

distributed word representation learning approaches.

Distributed Word Representation The motivation of distributed word representa-

tion is to capture the relatedness among words. Naturally, humans infer the meaning
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of a word from the context in which the word appears. For example, the meaning of

the word “delicious” in the sentence “The noodle dish was so delicious that I ordered

it again.” can be guessed based on the neighboring words (defined as context). Based

on the context, humans may also guess words, such as “tasty” or “mouthwatering” since

they are similar to the word under consideration. These observations form the basis of

distributional hypothesis (Harris, 1954): words occurring in similar contexts share similar

meaning. Word co-occurrence statistics can be computed using unlabeled text data and

therefore are widely utilized to learn distributed word representations.

In literature, there are many successful approaches proposed to learn distributed word

representations (Bengio et al., 2003; Collobert and Weston, 2008; Turian et al., 2010;

Collobert et al., 2011; Mikolov et al., 2013a; Pennington et al., 2014; Bojanowski et al.,

2017a). In the following section, we discuss a few popular methods to learn monolingual

word representations that are widely used in modern NLP models.

2.2 Monolingual Word Representations

Monolingual word representations are learned from large unlabeled text corpora based on

their usage in a language. These word representations represent words of a language as

real-valued vectors, points in a n-dimensional vector space, and their geometric proximity

defines the semantic similarity among words. For example, related words king and queen

are closer than king and mother. Since these representations embed a word in a geometric

space, they are also called word embeddings. Modern word embedding learning methods

are based on neural language modeling.

Neural Language Modeling Language modeling task is defined as predicting the next

word given a sequence of preceding words. In neural language modeling, a neural network

takes word representations of a sequence of preceding words and outputs a probability

distribution over the vocabulary for the next word prediction. An embedding matrix

(where each row represents a word in a n-dimensional vector space) is used to convert
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the sequence of words into a sequence of vectors. The embedding matrix and the neural

network parameters are optimized using gradient descent and back-propagation.

Among the earlier approaches, Bengio et al. (2003) used a feed-forward layer to generate

contextual representation of a fixed number of preceding words to predict the probability

of the next word. Collobert and Weston (2008); Collobert et al. (2011) improved context

word representation learning using convolutional neural network (LeCun et al., 1998).

Later, a recurrent neural network (Elman, 1990) has shown to capture arbitrary long past

context improving language model (Mikolov et al., 2010).

In traditional language modeling, preceding words (i.e., context to the left) are used

to predict the next word. This is known as left-to-right language modeling. (Mikolov

et al., 2013a) proposed to utilize both left and right context around a word (preceding and

following words) for language modeling. The authors proposed the continuous bag-of-words

(CBOW) model where a classifier is trained to predict a central (or pivot) word based on

its left and right context and the word representations are learnt as a by-product. This

paradigm of language modeling is also known as bidirectional language modeling. As

an alternative, the authors also proposed the skip-gram model that follows the opposite

strategy, learnt to predict the left and right context (neighboring words) given the pivot

word. The skip-gram modeling became a popular choice to learn embeddings since it

works well even with a small amount of training data. The word embeddings learnt via

skip-gram modeling is popularly known as Word2vec.

While Word2vec leverages co-occurrence statistics of words within local context (neigh-

boring words), Pennington et al. (2014) proposed to learn Global Vector Representations

(GloVe) by leveraging word co-occurrence statistics across the entire corpus. GloVe

applies a matrix factorization technique on a pre-computed word-context matrix. The

word-context matrix records how frequently a “word” (the rows) is seen in some “context”

(the columns) in a large corpus. By applying a matrix factorization technique, GloVe

learns to find a low-dimensional word embeddings matrix that can explain most of the

variance in the word-context matrix. In literature, both Word2vec and GloVe are found

to be effective. However, there are two limitations of Word2vec and GloVe embeddings.
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First, the embeddings of rare words are comparatively poorer than frequent words (a rare

word has fewer neighbors), and second, those two techniques cannot learn an embedding

for words that do not appear in the training corpus.

Bojanowski et al. (2017a) extended the skip-gram model and proposed fastText that

solves the above two limitations by treating each word as a bag of character n-grams.

According to the proposed method, fastText learns vector representation for each character

n-gram, and the words are represented as the sum of their constitute character n-grams’

representations. In literature, fastText embeddings are found to be more effective than

Word2vec and GloVe embeddings.

The word embeddings learning approaches discussed so far provide a single vector

representation for each word. Therefore, the word representation for polysemous words,

such as bank requires capturing all relevant meaning representations (Arora et al., 2018).

Several works (Reisinger and Mooney, 2010; Huang et al., 2012) proposed to learn a

fixed number (more than one) of representations per word. However, all these approaches

overlooked the fact that the meaning of a word depends on in what context they appear.

Intuitively, contextual information (neighboring words) indicates the specific meaning

of a polysemous word appearing in a context. For example, the word bank appearing

in the sentences “The bank is not offering a good interest rate” and “He ran forward

to the river bank” means a financial institute and the bank of a river, respectively.

Most NLP applications deal with text inputs that are either sentences, paragraphs

or documents. Therefore, learning contextual word representations using monolingual

corpora and utilizing them in modern deep neural NLP models have become the de facto

standard in recent years.

2.2.1 Contextualized Word Representations

As noted earlier that NLP models can be viewed as functions that take the text data

representation (or features) and makes predictions. Modern neural NLP models are

typically composed of a representation learning component, also known as encoder, and
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a task-specific neural network component. While the encoder converts the input word

sequence into a sequence of fixed-size vectors, the task-specific component takes the

encoder’s output vector representations and predicts the task-specific output. The funda-

mental idea of learning contextual word representations is to train such a representation

learning encoder. Unlike word embedding learning approaches that learn single vector rep-

resentations for words, the encoder generates vector representations for words depending

on what context they appear in (e.g., sentences or paragraphs).

Contextualized word representation learning became very popular due to its effective-

ness in facilitating NLP with fewer amounts of labeled data. In general, the representation

learning encoder in deep neural NLP models is realized by a high complexity neural

network architecture and requires a large amount of data to train. In comparison, the

task-specific neural network component is simpler (e.g., a linear classifier for the text

classification task), requiring less data for training. When there are abundant training

examples available for an NLP task, the encoder, and the task-specific component can be

jointly trained from scratch in an end-to-end fashion. However, when data is insufficient,

this approach is unfeasible. Instead, we can pre-train the encoder on other tasks (a.k.a,

source tasks) and transfer the learned encoder to the target task. As a result, a low-

complexity task-specific component on top of the pre-trained encoder can be trained to

perform the target task with a few labeled examples. This paradigm in the NLP literature

is known as transfer learning.

In this line of work, McCann et al. (2017) first proposed to learn contextualize word

vectors by using an LSTM (Hochreiter and Schmidhuber, 1997) encoder that was a part of

a sequence-to-sequence model trained for machine translation task. The authors showed

leveraging the trained encoder in a wide variety of text classification and question answering

tasks. As a result, NLP researchers delved into learning contextual representations of

words by pre-training deep neural encoders on a humongous amount of unlabeled text

data using language modeling objectives and achieved notable success. The pre-trained

encoders are used as feature extractors that produce contextual word vectors and are

utilized in NLP models or directly fine-tuned in a downstream NLP task. ELMo (Peters

10



et al., 2018b), GPT (Radford et al., 2018), BERT (Devlin et al., 2018) are some of those

noteworthy pre-trained language models and many of their variants such as SciBERT

(Beltagy et al., 2019), ClinicalBERT (Alsentzer et al., 2019) has facilitated NLP for

low-resource domains and tasks.

2.3 Cross-lingual Word Representations

Monolingual word embeddings are trained using sizeable unlabeled text corpora in each

language independently. The vector spaces learned by the monolingual word embeddings

do not capture semantic relationships between words across languages since they are

trained solely using monolingual distributional information. Therefore, pre-trained word

representations as features in NLP models are confined to operate in only one language.

As a result, NLP models trained using task-specific supervision in one language cannot be

utilized in related languages. If trained to perform a task, e.g., question answering in one

language, human beings aware of multiple languages would ideally be able to perform the

task in other languages they know. Having such capabilities in NLP models minimizes the

need for task-specific supervision in every language, facilitating NLP in a broad spectrum

of human languages, including low-resource languages.

2.3.1 Resources for Learning Cross-lingual Representations

The fundamental idea of cross-lingual word embedding learning is to project word vector

representations from two or more languages into a single vector space. As a result, words

with similar meanings are represented as points in the shared vector space that are

geometrically closer to each other irrespective of their languages. Projection of word

vector representations of multiple languages into a shared space is generally learned

leveraging cross-lingual supervision from bilingual dictionaries (Klementiev et al., 2012;

Mikolov et al., 2013b) or parallel corpora (Zou et al., 2013; Gouws et al., 2015). Later, a

few proposed techniques alleviated the requirement of such cross-lingual supervision and

only required non-parallel document-aligned data (Vulić and Moens, 2015a).
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2.3.2 Techniques for Cross-lingual Representations Learning

Cluster-based Approaches The basic idea of cluster-based cross-lingual representa-

tion learning is to form clusters containing words in two or more languages that share

similar linguistic properties. Täckström et al. (2012a) proposed a two-stage approach

for learning such representations. In the first stage, words in one language (e.g., source

language) are clustered monolingually, and in the second stage, the monolingual word

clusters are projected to the target language. Each word in the source language clusters is

assigned according to how often the word is aligned to the target cluster words based on

word alignments from parallel corpora. To tackle words that do not appear in the align-

ment dictionary, Täckström et al. (2012a) proposed to jointly optimize the monolingual

clustering objective in each language, followed by the cluster projection step.

Vector-based Approaches The word embeddings-based approaches that learn a

shared representation space fall under this category. These approaches use different

forms of cross-lingual alignment supervision to align the monolingual vector spaces. Ma-

jority of the prior works utilize cross-lingual supervision from sentence and word-level

alignments (Klementiev et al., 2012; Zou et al., 2013; Kočiský et al., 2014; Luong et al.,

2015a) or bilingual dictionaries (Mikolov et al., 2013b; Faruqui and Dyer, 2014; Lu et al.,

2015; Smith et al., 2017; Artetxe et al., 2017). Word level alignments are primarily derived

from parallel sentence corpora using statistical aligner, e.g., IBM Model 1 aligner (Brown

et al., 1993), the fast-align (Dyer et al., 2013). Collecting parallel corpora for a wide

spectrum of languages is expensive. In contrast, bilingual word dictionaries with a few

thousand words are much easier to obtain and motivate a large pool of prior works. The

underlying notion is to learn a shared vector space such that equivalent word pairs in the

bilingual dictionary get similar representations.
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2.3.3 Multilingual Word Representations

Cross-lingual word representation learning approaches discussed above primarily learn

bilingual embeddings. In contrast, multilingual word embeddings are trained to jointly

encode words in multiple languages (more than two) in the same vector space such that

semantically similar words across the languages remain geometrically closer (Ammar et al.,

2016b; Smith et al., 2017; Duong et al., 2017). Ruder et al. (2019) surveyed the existing

research works on cross-lingual word embedding induction. Please refer to the survey for

more detailed coverage of the works.

Contextualized Word Representations The recent development of pre-trained lan-

guages models that work as contextual word representation encoders (Devlin et al., 2018;

Liu et al., 2019c; Yang et al., 2019b; Lewis et al., 2020a) has also opened up the op-

portunity for learning contextual representations by jointly pre-training on humongous

amount of unlabeled text corpora in many languages (Devlin et al., 2018; Lample and

Conneau, 2019; Conneau et al., 2019; Liu et al., 2020). These multilingual encoders

learn a shared multilingual contextual embedding space; they can represent word pairs

in parallel sentences with similar contextual representations. While these encoders have

significantly improved cross-lingual transfer learning, they still suffer from various issues,

e.g., ignore capturing universal language syntax information resulting in poor performance

as discussed in Chapter 5 of this thesis.
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CHAPTER 3

Cross-Lingual Transfer with Order Differences

3.1 Introduction

Cross-lingual transfer, which transfers models across languages, has tremendous practical

value. It reduces the requirement of annotated data for a target language and is especially

useful when the target language is lack of resources. Recently, this technique has been

applied to many NLP tasks such as text categorization (Zhou et al., 2016a), tagging

(Kim et al., 2017), dependency parsing (Guo et al., 2015, 2016) and machine translation

(Zoph et al., 2016). Despite the preliminary success, transferring across languages is

challenging as it requires understanding and handling differences between languages at

levels of morphology, syntax, and semantics. It is especially difficult to learn invariant

features that can robustly transfer to distant languages.

Prior work on cross-lingual transfer mainly focused on sharing word-level information

by leveraging multi-lingual word embeddings (Xiao and Guo, 2014; Guo et al., 2016;

Sil et al., 2018). However, words are not independent in sentences; their combinations

form larger linguistic units, known as context. Encoding context information is vital

for many NLP tasks, and a variety of approaches (e.g., convolutional neural networks

and recurrent neural networks) have been proposed to encode context as a high-level

feature for downstream tasks. In this paper, we study how to transfer generic contextual

information across languages.

For cross-language transfer, one of the key challenges is the variation in word order

among different languages. For example, the Verb-Object pattern in English can hardly

be found in Japanese. This challenge should be taken into consideration in model design.
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RNN is a prevalent family of models for many NLP tasks and has demonstrated compelling

performances (Mikolov et al., 2010; Sutskever et al., 2014; Peters et al., 2018a). However,

its sequential nature makes it heavily reliant on word order information, which exposes

to the risk of encoding language-specific order information that cannot generalize across

languages. We characterize this as the “order-sensitive” property. Another family of

models known as “Transformer” uses self-attention mechanisms to capture context and

was shown to be effective in various NLP tasks (Vaswani et al., 2017; Liu et al., 2018b;

Kitaev and Klein, 2018). With modification in position representations, the self-attention

mechanism can be more robust than RNNs to the change of word order. We refer to this

as the “order-free” property.

In this work, we posit that order-free models have better transferability than order-

sensitive models because they less suffer from overfitting language-specific word order

features. To test our hypothesis, we first quantify language distance in terms of word

order typology, and then systematically study the transferability of order-sensitive and

order-free neural architectures on cross-lingual dependency parsing.

We use dependency parsing as a test bed primarily because of the availability of unified

annotations across a broad spectrum of languages (Nivre et al., 2018). Besides, word order

typology is found to influence dependency parsing (Naseem et al., 2012; Täckström et al.,

2013; Zhang and Barzilay, 2015; Ammar et al., 2016a; Aufrant et al., 2016). Moreover,

parsing is a low-level NLP task (Hashimoto et al., 2017) that can benefit many downstream

applications (McClosky et al., 2011; Gamallo et al., 2012; Jie et al., 2017).

We conduct evaluations on 31 languages across a broad spectrum of language families,

as shown in Table 6.1. Our empirical results show that order-free encoding and decoding

models generally perform better than the order-sensitive ones for cross-lingual transfer,

especially when the source and target languages are distant.
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Language
Families

Languages

Afro-Asiatic Arabic (ar), Hebrew (he)
Austronesian Indonesian (id)
IE.Baltic Latvian (lv)

IE.Germanic Danish (da), Dutch (nl), English (en), German (de),
Norwegian (no), Swedish (sv)

IE.Indic Hindi (hi)
IE.Latin Latin (la)

IE.Romance Catalan (ca), French (fr), Italian (it), Portuguese (pt),
Romanian (ro), Spanish (es)

IE.Slavic Bulgarian (bg), Croatian (hr), Czech (cs), Polish (pl),
Russian (ru), Slovak (sk), Slovenian (sl), Ukrainian (uk)

Japanese Japanese (ja)
Korean Korean (ko)

Sino-Tibetan Chinese (zh)
Uralic Estonian (et), Finnish (fi)

Table 3.1: The selected languages grouped by language families. “IE” is the abbreviation
of Indo-European.

3.2 Quantifying Language Distance

We first verify that we can measure “language distance” base on word order since it is a

significant distinctive feature to differentiate languages (Dryer, 2007). The World Atlas of

Language Structures (WALS) (Dryer and Haspelmath, 2013a) provides a great reference

for word order typology and can be used to construct feature vectors for languages (Littell

et al., 2017). But since we already have the universal dependency annotations, we take

an empirical way and directly extract word order features using directed dependency

relations (Liu, 2010).

We conduct our study using the Universal Dependencies (UD) Treebanks (v2.2) (Nivre

et al., 2018). We select 31 languages for evaluation and analysis, with the selection

criterion being that the total token number in the treebanks of that language is over 100K.

We group these languages by their language families in Table 6.1. Detailed statistical

information of the selected languages and treebanks can be found in Appendix A1.

1Please refer to the supplementary materials for all the appendices of this paper.
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Figure 3.1: Hierarchical clustering (with the Nearest Point Algorithm) dendrogram of the
languages by their word-ordering vectors.

We look at finer-grained dependency types than the 37 universal dependency labels2 in

UD v2 by augmenting the dependency labels with the universal part-of-speech (POS) tags

of the head and modifier3 nodes. Specifically, we use triples “(ModifierPOS, HeadPOS,

DependencyLabel)” as the augmented dependency types. With this, we can investigate

language differences in a fine-grained way by defining directions on these triples (i.e.

modifier before head or modifier after head).

We conduct feature selection by filtering out rare types as they can be unstable. We

defer the results in 52 selected types and more details to Appendix C. For each dependency

type, we collect the statistics of directionality (Liu, 2010; Wang and Eisner, 2017). Since

there can be only two directions for an edge, for each dependency type, we use the

relative frequency of the left-direction (modifier before head) as the directional feature.

By concatenating the directional features of all selected triples, we obtain a word-ordering

feature vector for each language. We calculate the word-ordering distance using these

vectors. In this work, we simply use Manhattan distance, which works well as shown in

our analysis (Section 3.4.3).

We perform hierarchical clustering based on the word-ordering vectors for the selected

languages, following (Östling, 2015). As shown in Figure 3.1, the grouping of the ground

2http://universaldependencies.org/u/dep/index.html

3In this paper, we use the term of “modifier”, which can also be described as “dependent” or “child”
node.
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truth language families is almost recovered. The two outliers, German (de) and Dutch

(nl), are indeed different from English. For instance, German and Dutch adopt a larger

portion of Object-Verb order in embedded clauses. The above analysis shows that word

order is an important feature to characterize differences between languages. Therefore, it

should be taken into consideration in the model design.

3.3 Models

Our primary goal is to conduct cross-lingual transfer of syntactic dependencies without

providing any annotation in the target languages. The overall architecture of models that

are studied in this research is described as follows. The first layer is an input embedding

layer, for which we simply concatenate word and POS embeddings. The POS embeddings

are trained from scratch, while the word embeddings are fixed and initialized with the

multilingual embeddings by (Smith et al., 2017). These inputs are fed to the encoder to

get contextual representations, which is further used by the decoder for predicting parse

trees.

For the cross-lingual transfer, we hypothesize that the models capturing less language-

specific information of the source language will have better transferability. We focus

on the word order information, and explore different encoders and decoders that are

considered as order-sensitive and order-free, respectively.

3.3.1 Contextual Encoders

Considering the sequential nature of languages, RNN is a natural choice for the encoder.

However, modeling sentences word by word in the sequence inevitably encodes word order

information, which may be specific to the source language. To alleviate this problem, we

adopt the self-attention based encoder (Vaswani et al., 2017) for cross-lingual parsing. It

can be less sensitive to word order but not necessarily less potent at capturing contextual

information, which makes it suitable for our study.
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RNNs Encoder Following prior work (Kiperwasser and Goldberg, 2016; Dozat and

Manning, 2017), we employ k-layer bidirectional LSTMs (Hochreiter and Schmidhuber,

1997) on top of the input vectors to obtain contextual representations. Since it explicitly

depends on word order, we will refer it as an order-sensitive encoder.

Self-Attention Encoder The original self-attention encoder (Transformer) takes abso-

lute positional embeddings as inputs, which capture much order information. To mitigate

this, we utilize relative position representations (Shaw et al., 2018a), with further simple

modification to make it order-agnostic: the original relative position representations

discriminate left and right contexts by adding signs to distances, while we discard the

directional information.

We directly base our descriptions on those in (Shaw et al., 2018a). For the relative

positional self-attention encoder, each layer calculates multiple attention heads. In each

head, the input sequence of vectors x = (x1, . . . , xn) are transformed into the output

sequence of vectors z = (z1, . . . , zn), based on the self-attention mechanism:

zi =
n∑
j=1

αij(xjW
V + aVij)

αij =
exp eij∑n
k=1 exp eik

eij =
xiW

Q(xjW
K + aKij )

T

√
dz

Here, aVij and aKij are relative positional representations for the two position i and j.

Similarly, we clip the distance with a maximum threshold of k (which is empirically set

to 10), but we do not discriminate positive and negative values. Instead, since we do not

want the model to be aware of directional information, we use the absolute values of the

position differences:

aKij = wKclip(|j−i|,k) aVij = wVclip(|j−i|,k) clip(x, k) = min(|x|, k)

Therefore, the learnable relative postion representations have k + 1 types rather than
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2k + 1: we have wK = (wK0 , . . . , w
K
k ), and wV = (wV0 , . . . , w

V
k ).

With this, the model knows only what words are surrounding but cannot tell the

directions. Since self-attention encoder is less sensitive to word order, we refer to it as an

order-free encoder.

3.3.2 Structured Decoders

With the contextual representations from the encoder, the decoder predicts the output

tree structures. We also investigate two types of decoders with different sensitivity to

ordering information.

Stack-Pointer Decoder Recently, (Ma et al., 2018) proposed a top-down transition-

based decoder and obtained state-of-the-art results. Thus, we select it as our transition-

based decoder. To be noted, in this Stack-Pointer decoder, RNN is utilized to record the

decoding trajectory and also can be sensitive to word order. Therefore, we will refer to it

as an order-sensitive decoder.

Graph-based Decoder Graph-based decoders assume simple factorization and can

search globally for the best structure. Recently, with a deep biaffine attentional scorer,

(Dozat and Manning, 2017) obtained state-of-the-art results with simple first-order factor-

ization (Eisner, 1996; McDonald et al., 2005). This method resembles the self-attention

encoder and can be regarded as a self-attention output layer. Since it does not depend on

ordering information, we refer to it as an order-free decoder.

3.4 Experiments and Analysis

In this section, we compare four architectures for cross-lingual transfer dependency parsing

with a different combination of order-free and order-sensitive encoder and decoder. We

conduct several detailed analyses showing the pros and cons of both types of models.
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3.4.1 Setup

Settings In our main experiments4 (those except Section 3.4.3.5), we take English as

the source language and 30 other languages as target languages. We only use the source

language for both training and hyper-parameter tuning. During testing, we directly apply

the trained model to target languages with the inputs from target languages passed

through pretrained multilingual embeddings that are projected into a common space as

the source language. The projection is done by the offline transformation method (Smith

et al., 2017) with pre-trained 300d monolingual embeddings from FastText (Bojanowski

et al., 2017b). We freeze word embeddings since fine-tuning on them may disturb the

multi-lingual alignments. We also adopt gold UPOS tags for the inputs.

For other hyper-parameters, we adopted similar ones as in the Biaffine Graph Parser

(Dozat and Manning, 2017) and the Stack-Pointer Parser (Ma et al., 2018). Detailed

hyper-parameter settings can be found in Appendix B. Throughout our experiments, we

adopted the language-independent UD labels and a sentence length threshold of 140. The

evaluation metrics are Unlabeled attachment score (UAS) and labeled attachment score

(LAS) with punctuations excluded5. We trained our cross-lingual models five times with

different initialization and reported average scores.

Systems As described before, we have an order-free (Self-Attention) and an order-

sensitive (BiLSTM-RNN) encoder, as well as an order-free (Biaffine Attention Graph-

based) and an order-sensitive (Stack-Pointer) decoder. The combination gives us four

different models, named in the format of “Encoder” plus “Decoder”. For clarity, we also

mark each model with their encoder-decoder order sensitivity characteristics. For example,

“SelfAtt-Graph (OF-OF)” refers to the model with self-attention order-free encoder and

graph-based order-free decoder. We benchmark our models with a baseline shift-reduce

4Our implementation is publicly available at: https://github.com/uclanlp/CrossLingualDepParser

5In our evaluations, we exclude tokens whose POS tags are “PUNCT” or “SYM”. This setting is
different from the one adopted in the CoNLL shared task (Zeman et al., 2018). However, the patterns
are similar as shown in Appendix D where we report the punctuation-included test evaluations.
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Lang Dist. to SelfAtt-Graph RNN-Graph SelfAtt-Stack RNN-Stack Baseline Supervised
English (OF-OF) (OS-OF) (OF-OS) (OS-OS) (Guo et al., 2015) (RNN-Graph)

en 0.00 90.35/88.40 90.44/88.31 90.18/88.06 91.82†/89.89† 87.25/85.04 90.44/88.31
no 0.06 80.80/72.81 80.67/72.83 80.25/72.07 81.75†/73.30† 74.76/65.16 94.52/92.88
sv 0.07 80.98/73.17 81.23/73.49 80.56/72.77 82.57†/74.25† 71.84/63.52 89.79/86.60
fr 0.09 77.87/72.78 78.35†/73.46† 76.79/71.77 75.46/70.49 73.02/64.67 91.90/89.14
pt 0.09 76.61†/67.75 76.46/67.98 75.39/66.67 74.64/66.11 70.36/60.11 93.14/90.82
da 0.10 76.64/67.87 77.36/68.81 76.39/67.48 78.22†/68.83 71.34/61.45 87.16/84.23
es 0.12 74.49/66.44 74.92†/66.91† 73.15/65.14 73.11/64.81 68.75/59.59 93.17/90.80
it 0.12 80.80/75.82 81.10/76.23† 79.13/74.16 80.35/75.32 75.06/67.37 94.21/92.38
hr 0.13 61.91†/52.86† 60.09/50.67 60.58/51.07 60.80/51.12 52.92/42.19 89.66/83.81
ca 0.13 73.83/65.13 74.24†/65.57† 72.39/63.72 72.03/63.02 68.23/58.15 93.98/91.64
pl 0.13 74.56†/62.23† 71.89/58.59 73.46/60.49 72.09/59.75 66.74/53.40 94.96/90.68
uk 0.13 60.05/52.28† 58.49/51.14 57.43/49.66 59.67/51.85 54.10/45.26 85.98/82.21
sl 0.13 68.21†/56.54† 66.27/54.57 66.55/54.58 67.76/55.68 60.86/48.06 86.79/82.76
nl 0.14 68.55/60.26 67.88/60.11 67.88/59.46 69.55†/61.55† 63.31/53.79 90.59/87.52
bg 0.14 79.40†/68.21† 78.05/66.68 78.16/66.95 78.83/67.57 73.08/61.23 93.74/89.61
ru 0.14 60.63/51.63 59.99/50.81 59.36/50.25 60.87/51.96 55.03/45.09 94.11/92.56
de 0.14 71.34†/61.62† 69.49/59.31 69.94/60.09 69.58/59.64 65.14/54.13 88.58/83.68
he 0.14 55.29/48.00† 54.55/46.93 53.23/45.69 54.89/40.95 46.03/26.57 89.34/84.49
cs 0.14 63.10†/53.80† 61.88/52.80 61.26/51.86 62.26/52.32 56.15/44.77 94.03/91.87
ro 0.15 65.05†/54.10† 63.23/52.11 62.54/51.46 60.98/49.79 56.01/44.04 90.07/84.50
sk 0.17 66.65/58.15† 65.41/56.98 65.34/56.68 66.56/57.48 57.75/47.73 90.19/86.38
id 0.17 49.20†/43.52† 47.05/42.09 47.32/41.70 46.77/41.28 40.84/33.67 87.19/82.60
lv 0.18 70.78/49.30 71.43†/49.59 69.04/47.80 70.56/48.53 62.33/41.42 83.67/78.13
fi 0.20 66.27/48.69 66.36/48.74 64.82/47.50 66.25/48.28 58.51/38.65 88.04/85.04
et 0.20 65.72†/44.87† 65.25/44.40 64.12/43.26 64.30/43.50 56.13/34.86 86.76/83.28
zh* 0.23 42.48†/25.10† 41.53/24.32 40.56/23.32 40.92/23.45 40.03/20.97 73.62/67.67
ar 0.26 38.12†/28.04† 32.97/25.48 32.56/23.70 32.85/24.99 32.69/22.68 86.17/81.83
la 0.28 47.96†/35.21† 45.96/33.91 45.49/33.19 43.85/31.25 39.08/26.17 81.05/76.33
ko 0.33 34.48†/16.40† 33.66/15.40 32.75/15.04 33.11/14.25 31.39/12.70 85.05/80.76
hi 0.40 35.50†/26.52† 29.32/21.41 31.38/23.09 25.91/18.07 25.74/16.77 95.63/92.93
ja* 0.49 28.18†/20.91† 18.41/11.99 20.72/13.19 15.16/9.32 15.39/08.41 89.06/78.74

Average 0.17 64.06†/53.82† 62.71/52.63 62.22/52.00 62.37/51.89 57.09/45.41 89.44/85.62

Table 3.2: Results (UAS%/LAS%, excluding punctuation) on the test sets. Languages
are sorted by the word-ordering distance to English, as shown in the second column.
‘*’ refers to results of delexicalized models, ‘†’ means that the best transfer model is
statistically significantly better (by paired bootstrap test, p < 0.05) than all other transfer
models. Models are marked with their encoder and decoder order sensitivity, OF denotes
order-free and OS denotes order-sensitive.

transition-based parser, which gave previous state-of-the-art results for single-source

zero-resource cross-lingual parsing (Guo et al., 2015). Since they used older datasets,

we re-trained the model on our datasets with their implementation6. We also list the

supervised learning results using the “RNNGraph” model on each language as a reference

of the upper-line for cross-lingual parsing.

6https://github.com/jiangfeng1124/acl15-clnndep. We also evaluated our models on the older dataset
and compared with their results, as shown in Appendix F.
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3.4.2 Results

The results on the test sets are shown in Table 6.2. The languages are ordered by their

order typology distance to English. In preliminary experiments, we found our lexicalized

models performed poorly on Chinese (zh) and Japanese (ja). We found the main reason

was that their embeddings were not well aligned to English. Therefore, we use delexicalized

models, where only POS tags are used as inputs. The delexicalized results7 for Chinese

and Japanese are listed in the rows marked with “*”.

Overall, the “SelfAtt-Graph” model performs the best in over half of the languages

and beats the runner-up “RNN-Graph” by around 1.3 in UAS and 1.2 in LAS on average.

When compared with “RNN-Stack” and “SelfAtt-Stack”, the average difference is larger

than 1.5 points. This shows that models capture less word order information generally

perform better at cross-lingual parsing. Compared with the baseline, our superior results

show the importance of the contextual encoder. Compared with the supervised models,

the cross-lingual results are still lower by a large gap, indicating space for improvements.

After taking a closer look, we find an interesting pattern in the results: while the model

performances on the source language (English) are similar, RNN-based models perform

better on languages that are closer to English (upper rows in the table), whereas for

languages that are “distant” from English, the “SelfAtt-Graph” performs much better. Such

patterns correspond well with our hypothesis, that is, the design of models considering

word order information is crucial in cross-lingual transfer. We conduct more thorough

analysis in the next subsection.

3.4.3 Analysis

We further analyze how different modeling choices influence cross-lingual transfer. Since

we have not touched the training sets for languages other than English, in this subsection,

7We found delexicalized models to be better only at zh and ja, for about 5 and 10 points respectively.
For other languages, they performed worse for about 2 to 5 points. We also tried models without POS, and
found them worse for about 10 points on average. We leave further investigation of input representations
to future work.
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we evaluate and analyze the performance of target languages using training splits in UD.

Performance of English is evaluated on the test set. We verify that the trends observed in

test set are similar to those on the training sets. As mentioned in the previous section, the

bilingual embeddings for Chinese and Japanese do not align well with English. Therefore,

we report the results with delexicalizing. In the following, we discuss our observations,

and detailed results are listed in Appendix E.

3.4.3.1 Encoder Architecture

We assume models that are less sensitive to word order perform better when transfer to

distant languages. To empirically verify this point, we conduct controlled comparisons

on various encoders with the same graph-based decoder. Table 3.3 shows the average

performances in all languages.

Model UAS% LAS%
SelfAtt-Relative (Ours) 64.57 54.14
SelfAtt-Relative+Dir 63.93 53.62

RNN 63.25 52.94
SelfAtt-Absolute 61.76 51.71
SelfAtt-NoPosi 28.18 21.45

Table 3.3: Comparisons of different encoders (averaged results over all languages on the
original training sets).

To compare models with various degrees of sensitivity to word order, we include

several variations of self-attention models. The “SelfAtt-NoPosi” is the self-attention

model without any positional information. Although it is most insensitive to word order,

it performs poorly possibly because of the lack of access to the locality of contexts. The

self-attention model with absolute positional embeddings (“SelfAtt-Absolute”) also does

not perform well. In the case of parsing, relative positional representations may be more

useful as indicated by the improvements brought by the directional relative position

representations (“SelfAtt-Relative+Dir”) (Shaw et al., 2018a). Interestingly, the RNN

encoder ranks between “SelfAtt-Relative+Dir” and “SelfAtt-Absolute”; all these three

encoders explicitly capture word order information in some way. Finally, by discarding
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the information of directions, our relative position representation (“SelfAtt-Relative”)

performs the best (significantly better at p < 0.05).

One crucial observation we have is that the patterns of breakdown performances for

“SelfAtt-Relative+Dir” are similar to those of RNN: on closer languages, the direction-

aware model performs better, while on distant languages the non-directional one generally

obtains better results. Since the only difference between our proposed “SelfAtt-Relative”

model and the “SelfAtt-Relative+Dir” model is the directional encoding, we believe

the better performances should credit to its effectiveness in capturing useful context

information without depending too much on the language-specific order information.

These results suggest that a model’s sensitivity to word order indeed affects its cross-

lingual transfer performances. In later sections, we stick to our “SelfAtt-Relative” variation

of the self-attentive encoder and focus on the comparisons among the four main models.

3.4.3.2 Performance v.s. Language Distance

We posit that order-free models can do better than order-sensitive ones on cross-lingual

transfer parsing when the target languages have different word orders to the source

language. Now we can analyze this with the word-ordering distance.

For each target language, we collect two types of distances when comparing it to

English: one is the word-ordering distance as described in Section 3.2, the other is the

performance distance, which is the gap of evaluation scores8 between the target language

and English. The performance distance can represent the general transferability from

English to this language. We calculate the correlation of these two distances on all the

concerned languages, and the results turn to be quite high: the Pearson and Spearman

correlations are around 0.90 and 0.87 respectively, using the evaluations of any of our

four cross-lingual transfer models. This suggests that word order can be an important

factor of cross-lingual transferability.

8In the rest of this paper, we simply average UAS and LAS for evaluation scores unless otherwise
noted.
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Figure 3.2: Evaluation score differences between Order-Free (OF) and Order Sensitive
(OS) modules. We show results of both encoder (blue solid curve) and decoder (dashed
red curve). Languages are sorted by their word-ordering distances to English from left to
right. The position of English is marked with a green bar.

Furthermore, we individually analyze the encoders and decoders of the dependency

parsers. Since we have two architectures for each of the modules, when examining one,

we take the highest scores obtained by any of the other modules. For example, when

comparing RNN and Self-Attention encoders, we take the best evaluation scores of “RNN-

Graph” and “RNN-Stack” for RNN and the best of “SelfAtt-Graph” and “SelfAtt-Stack”

for Self-Attention. Figure 3.2 shows the score differences of encoding and decoding

architectures against the languages’ distances to English. For both the encoding and

decoding module, we observe a similar overall pattern: the order-free models, in general,

perform better than order-sensitive ones in the languages that are distant from the source

language English. On the other hand, for some languages that are closer to English, order-

sensitive models perform better, possibly benefiting from being able to capture similar

word ordering information. The performance gap between order-free and order-sensitive

models are positively correlated with language distance.

3.4.3.3 Performance Breakdown by Types

Moreover, we compare the results on specific dependency types using concrete examples.

For each type, we sort the languages by their relative frequencies of left-direction (modifier
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(d) Object & Verb (NOUN, VERB, obj)

Figure 3.3: Analysis on specific dependency types. To save space, we merge the curves of
encoders and decoders into one figure. The blue and red curves and left y-axis represent
the differences in evaluation scores, the brown curve and right y-axis represents the relative
frequency of left-direction (modifier before head) on this type. The languages (x-axis) are
sorted by this relative frequency from high to low.

before head) and plot the performance differences for encoders and decoders. We highlight

the source language English in green. Figure 3.3 shows four typical example types:

Adposition and Noun, Adjective and Noun, Auxiliary and Verb, and Object and Verb. In

Figure 3.3a, we examine the “case” dependency type between adpositions and nouns. The

pattern is similar to the overall pattern. For languages that mainly use prepositions as in

English, different models perform similarly, while for languages that use postpositions,

order-free models get better results. The patterns of adjective modifier (Figure 3.3b) and

auxiliary (Figure 3.3c) are also similar.

On dependencies between verbs and object nouns, although in general order-free

models perform better, the pattern diverges from what we expect. There can be several

possible explanations for this. Firstly, the tokens which are noun objects of verbs only

take about 3.1% on average over all tokens. Considering just this specific dependency

type, the correlation between frequency distances and performance differences is 0.64,

which is far less than 0.9 when considering all types. Therefore, although Verb-Object

ordering is a typical example, we cannot take it as the whole story of word order. Secondly,
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Verb-Object dependencies can often be difficult to decide. They sometimes are long-ranged

and have complex interactions with other words. Therefore, merely reducing modeling

order information can have complicated effects. Moreover, although our relative-position

self-attention encoder does not explicitly encode word positions, it may still capture some

positional information with relative distances. For example, the words in the middle of a

sentence will have different distance patterns from those at the beginning or the end. With

this knowledge, the model can still prefer the pattern where a verb is in the middle as in

English’s Subject-Verb-Object ordering and may find sentences in Subject-Object-Verb

languages strange. It will be interesting to explore more ways to weaken or remove this

bias.
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Figure 3.4: Evaluation differences of models on d=1 dependencies. Annotations are the
same as in Figure 3.3, languages are sorted by percentages (represented by the brown
curve and right y-axis) of d=1 dependencies.

3.4.3.4 Analysis on Dependency Distances

We now look into dependency lengths and directions. Here, we combine dependency

length and direction into dependency distance d, by using negative signs for dependencies

with left-direction (modifier before head) and positive for right-direction (head before

modifier). We find a seemingly strange pattern at dependency distances |d|=1: for all

transfer models, evaluation scores on d=-1 can reach about 80, but on d=1, the scores

are only around 40. This may be explained by the relative frequencies of dependency

distances as shown in Table 3.4, where there is a discrepancy between English and the

average of other languages at d=1. About 80% of the dependencies with |d|=1 in English
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is the left direction (modifier before head), while overall other languages have more right

directions at |d|=1. This suggests an interesting future direction of training on more

source languages with different dependency distance distributions.

d English Average
<-2 14.36 12.93
-2 15.45 11.83
-1 31.55 30.42
1 7.51 14.22
2 9.84 10.49
>2 21.29 20.11

Table 3.4: Relative frequencies (%) of dependency distances. English differs from the
Average at d=1.

We further compare the four models on the d=1 dependencies and as shown in Figure

3.4, the familiar pattern appears again. The order-free models perform better at the

languages which have more d=1 dependencies. Such finding indicates that our model

design of reducing the ability to capture word order information can help on short-ranged

dependencies of different directions to the source language. However, the improvements

are still limited. One of the most challenging parts of unsupervised cross-lingual parsing

is modeling cross-lingually shareable and language-unspecific information. In other words,

we want flexible yet powerful models. Our exploration of the order-free self-attentive

models is the first step.

3.4.3.5 Transfer between All Language Pairs

Finally, we investigate the transfer performance of all source-target language pairs.9

We first generate a performance matrix A, where each entry (i, j) records the transfer

performance from a source language i to a target language j. We then report the following

two aggregate performance measures on A in Figure 3.5: 1) As-source reports the average

over columns of A for each row of the source language and 2) As-target reports the average

9Because the size of training corpus for each language is different in UD, to compare among languages,
we train a parser on the first 4,000 sentences for each language and evaluate its transfer performance on
all other languages.
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Figure 3.5: Transfer performance of all source-target language pairs. The blue and red
curves show the averages over columns and over rows of the source-target pair performance
matrix (see text for details). The brown curve and the right y-axis legend represent the
average language distance between one language and all others.

over rows of A for each column of the target language. As a reference, we also plot the

average word-order distance between one language to other languages. Results show that

both As-source (blue line) and As-target (red line) highly are anti-correlated (Pearson

correlation coefficients are −0.90 and −0.87, respectively) with average language distance

(brown line).

3.5 Related Work

Cross-language transfer learning employing deep neural networks has widely been studied

in the areas of natural language processing (Ma and Xia, 2014a; Guo et al., 2015; Kim

et al., 2017; Kann et al., 2017; Cotterell and Duh, 2017), speech recognition (Xu et al.,

2014; Huang et al., 2013), and information retrieval (Vulić and Moens, 2015b; Sasaki

et al., 2018; Litschko et al., 2018). Learning the language structure (e.g., morphology,

syntax) and transferring knowledge from the source language to the target language is the

main underneath challenge, and has been thoroughly investigated for a wide variety of

NLP applications, including sequence tagging (Yang et al., 2016; Buys and Botha, 2016),

name entity recognition (Xie et al., 2018), dependency parsing (Tiedemann, 2015; Agić

et al., 2014), entity coreference resolution and linking (Kundu et al., 2018; Sil et al., 2018),
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sentiment classification (Zhou et al., 2015, 2016b), and question answering (Joty et al.,

2017).

Existing work on unsupervised cross-lingual dependency parsing, in general, trains a

dependency parser on the source language and then directly run on the target languages.

Training of the monolingual parsers are often delexicalized, i.e., removing all lexical

features from the source treebank (Zeman and Resnik, 2008; McDonald et al., 2013), and

the underlying feature model is selected from a shared part-of-speech (POS) representation

utilizing the Universal POS Tagset (Petrov et al., 2012). Another pool of prior work

improves the delexicalized approaches by adapting the model to fit the target languages

better. Cross-lingual approaches that facilitate the usage of lexical features includes

choosing the source language data points suitable for the target language (Søgaard, 2011;

Täckström et al., 2013), transferring from multiple sources (McDonald et al., 2011; Guo

et al., 2016; Täckström et al., 2013), using cross-lingual word clusters (Täckström et al.,

2012b) and lexicon mapping (Xiao and Guo, 2014; Guo et al., 2015). In this paper, we

consider single-source transfer–train a parser on a single source language, and evaluate it

on the target languages to test the transferability of neural architectures.

Multilingual transfer (Ammar et al., 2016a; Naseem et al., 2012; Zhang and Barzilay,

2015) is another broad category of techniques applied to parsing where knowledge from

many languages having a common linguistic typology is utilized. Recent works (Aufrant

et al., 2016; Wang and Eisner, 2018a,b) demonstrated the significance of explicitly extract-

ing and modeling linguistic properties of the target languages to improve cross-lingual

dependency parsing. Our work is different in that we focus on the neural architectures

and explore their influences on cross-lingual transfer.

3.6 Summary

In this work, we conduct a comprehensive study on how the design of neural architectures

affects cross-lingual transfer learning. We examine two notable families of neural architec-

tures (sequential RNN v.s. self-attention) using dependency parsing as the evaluation
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task. We show that order-free models perform better than order-sensitive ones when

there is a significant difference in the word order typology between the target and source

language. In the future, we plan to explore multi-source transfer and incorporating prior

linguistic knowledge into the models for better cross-lingual transfer.
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CHAPTER 4

Cross-lingual Representation Learning for Information

Extraction

4.1 Introduction

Relation and event extraction are two challenging information extraction (IE) tasks;

wherein a model learns to identify semantic relationships between entities and events in

narratives. They provide useful information for many natural language processing (NLP)

applications such as knowledge graph completion (Lin et al., 2015) and question answering

(Chen et al., 2019b). Figure 5.1 gives an example of relation and event extraction tasks.

Recent advances in cross-lingual transfer learning approaches for relation and event

extraction learns a universal encoder that produces language-agnostic contextualized

representations so the model learned on one language can easily transfer to others. Recent

works (Huang et al., 2018; Subburathinam et al., 2019a) suggested embedding universal

dependency structure into contextual representations improves cross-lingual transfer for

information extraction.

There are a couple of advantages of leveraging dependency structures. First, the

syntactic distance between two words1 in a sentence is typically smaller than the sequential

distance. For example, in the sentence A fire in a Bangladeshi garment factory has left at

least 37 people dead and 100 hospitalized, the sequential and syntactic distance between

“fire” and “hospitalized” is 15 and 4, respectively. Therefore, encoding syntax structure

helps capture long-range dependencies (Liu et al., 2018c). Second, languages have different

1The shortest path in the dependency graph structure.
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Figure 4.1: A relation (red dashed) between two entities and an event of type Attack
(triggered by “firing”) including two arguments and their role labels (blue) are highlighted.

word order, e.g., adjectives precede or follow nouns as (“red apple”) in English or (“pomme

rouge”) in French. Thus, processing sentences sequentially suffers from the word order

difference issue (Ahmad et al., 2019a), while modeling dependency structures can mitigate

the problem in cross-lingual transfer (Liu et al., 2019a).

A common way to leverage dependency structures for cross-lingual NLP tasks is using

universal dependency parses.2 A large pool of recent works in IE (Liu et al., 2018c; Zhang

et al., 2018b; Subburathinam et al., 2019a; Fu et al., 2019; Sun et al., 2019a; Liu et al.,

2019a) employed Graph Convolutional Networks (GCNs) (Kipf and Welling, 2017) to learn

sentence representations based on their universal dependency parses, where a k-layers

GCN aggregates information of words that are k hop away. Such a way of embedding

structure may hinder cross-lingual transfer when the source and target languages have

different path length distributions among words (see Table 4.1). Presumably, a two-layer

GCN would work well on English but may not transfer well to Arabic.

Moreover, GCNs have shown to perform poorly in modeling long-distance dependencies

or disconnected words in the dependency tree (Zhang et al., 2019a; Tang et al., 2020).

In contrast, the self-attention mechanism (Vaswani et al., 2017) is capable of capturing

long-range dependencies. Consequently, a few recent studies proposed dependency-aware

self-attention and found effective for machine translation (Deguchi et al., 2019; Bugliarello

and Okazaki, 2020). The key idea is to allow attention between connected words in the

dependency tree and gradually aggregate information across layers. However, IE tasks

are relatively low-resource (the number of annotated documents available for training is

2https://universaldependencies.org/
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small), and thus stacking more layers is not feasible. Besides, our preliminary analysis

indicates that syntactic distance between entities could characterize certain relation and

event types.3 Hence, we propose to allow attention between all words but use the pairwise

syntactic distances to weigh the attention.

We introduce a Graph Attention Transformer Encoder (GATE) that utilizes self-

attention (Vaswani et al., 2017) to learn structured contextual representations. On one

hand, GATE enjoys the capability of capturing long-range dependencies, which is crucial

for languages with longer sentences, e.g., Arabic.4 On the other hand, GATE is agnostic to

language word order as it uses syntactic distance to model pairwise relationship between

words. This characteristic makes GATE suitable to transfer across typologically diverse

languages, e.g., English to Arabic. One crucial property of GATE is that it allows

information propagation among different heads in the multi-head attention structure

based on syntactic distances, which allows to learn the correlation between different

mention types and target labels.

We conduct experiments on cross-lingual transfer among English, Chinese, and Arabic

languages using the ACE 2005 benchmark (Walker et al., 2006). The experimental results

demonstrate that GATE outperforms three recently proposed relation and event extraction

methods by a significant margin.5 We perform a thorough ablation study and analysis,

which shows that GATE is less sensitive to source language’s characteristics (e.g., word

order, sentence structure) and thus excels in the cross-lingual transfer.

3In ACE 2005 dataset, the relation type PHYS:Located exists among {PER, ORG, LOC, FAC, GPE}
entities. The average syntactic distance in English and Arabic sentences among PER and any of the
{LOC, FAC, GPE} entities are approx. 2.8 and 4.2, while the distance between PER and ORG is 3.3
and 1.5.

4After tokenization, on average, ACE 2005 English and Arabic sentences have approximately 30 and
210 words, respectively.

5Code available at https://github.com/wasiahmad/GATE
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4.2 Background

In this paper, we focus on sentence-level relation extraction (Subburathinam et al., 2019a;

Ni and Florian, 2019) and event extraction (Subburathinam et al., 2019a; Liu et al.,

2019a) tasks. Below, we first introduce the basic concepts, the notations, as well as define

the problem and the scope of the work.

Relation Extraction is the task of identifying the relation type of an ordered pair of

entity mentions. Formally, given a pair of entity mentions from a sentence s - (es, eo; s)

where es and eo denoted as the subject and object entities respectively, the relation

extraction (RE) task is defined as predicting the relation r ∈ R ∪ {None} between the

entity mentions, where R is a pre-defined set of relation types. In the example provided

in Figure 5.1, there is a PHYS:Located relation between the entity mentions “Terrorists”

and “hotel”.

Event Extraction can be decomposed into two sub-tasks, Event Detection and Event

Argument Role Labeling. Event detection refers to the task of identifying event triggers

(the words or phrases that express event occurrences) and their types. In the example

shown in Figure 5.1, the word “firing” triggers the Attack event.

Event argument role labeling (EARL) is defined as predicting whether words or phrases

(arguments) participate in events and their roles. Formally, given an event trigger et and

a mention ea (an entity, time expression, or value) from a sentence s, the argument role

labeling refers to predicting the mention’s role r ∈ R ∪ {None}, where R is a pre-defined

set of role labels. In Figure 5.1, the “Terrorists” and “hotel” entities are the arguments of

the Attack event and they have the Attacker and Place role labels, respectively.

In this work, we focus on the EARL task; we assume event mentions (triggers) of the

input sentence are provided.

Zero-Short Cross-Lingual Transfer refers to the setting, where there is no labeled

examples available for the target language. We train neural relation extraction and event

argument role labeling models on one (single-source) or multiple (multi-source) source
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languages and then deploy the models in target languages. The overall cross-lingual

transfer approach consists of four steps:

1. Convert the input sentence into a language-universal tree structure using an off-the-

shelf universal dependency parser, e.g., UDPipe6 (Straka and Straková, 2017).

2. Embed the words in the sentence into a shared semantic space across languages.

We use off-the-shelf multilingual contextual encoders (Devlin et al., 2019; Conneau

et al., 2019) to form the word representations. To enrich the word representations,

we concatenate them with universal part-of-speech (POS) tag, dependency relation,

and entity type embeddings (Subburathinam et al., 2019a). We collectively refer

them as language-universal features.

3. Based on the word representations, we encode the input sentence using the proposed

GATE architecture that leverages the syntactic depth and distance information.

Note that this step is the main focus of this work.

4. A pair of classifier predicts the target relation and argument role labels based on

the encoded representations.

4.3 Approach

Our proposed approach GATE revises the multi-head attention architecture in Transformer

Encoder (Vaswani et al., 2017) to model syntactic information while encoding a sequence

of input vectors (represent the words in a sentence) into contextualized representations.

We first review the standard multi-head attention mechanism (§5.2.1). Then, we introduce

our proposed method GATE (§4.3.2). Finally, we describe how we perform relation

extraction (§4.3.3) and event argument role labeling (§4.3.4) tasks.

6http://ufal.mff.cuni.cz/udpipe
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4.3.1 Transformer Encoder

Unlike recent works (Zhang et al., 2018b; Subburathinam et al., 2019a) that use GCNs

(Kipf and Welling, 2017) to encode the input sequences into contextualized representa-

tions, we propose to employ Transformer encoder as it excels in capturing long-range

dependencies. First, the sequence of input word vectors, x = [x1, . . . , x|x|] where xi ∈ Rd

are packed into a matrix H0 = [x1, . . . , x|x|]. Then an L-layer Transformer Encoder

H l = Transformerl(H
l−1), l ∈ [1, L] takes H0 as input and generates different levels of

latent representations H l = [hl1, . . . , h
l
|x|], recursively. Typically the latent representations

generated by the last layer (L-th layer) are used as the contextual representations of

the input words. To aggregate the output vectors of the previous layer, multiple (nh)

self-attention heads are employed in each Transformer layer. For the l-th Transformer

layer, the output of the previous layer H l−1 ∈ R|x|×dmodel is first linearly projected to

queries Q, keys K, and values V using parameter matrices WQ
l ,W

K
l ∈ Rdmodel×dk and

W V
l ∈ Rdmodel×dv , respectively.

Ql = H l−1WQ
l , Kl = H l−1WK

l , Vl = H l−1W V
l .

The output of a self-attention head Al is computed as:

Al = softmax

(
QKT

√
dk

+M

)
Vl, (4.1)

where the matrix M ∈ R|x|×|x| determines whether a pair of tokens can attend each other.

Mij =


0, allow to attend

−∞, prevent from attending
(4.2)

The matrix M is deduced as a mask. By default, the matrix M is a zero-matrix. In the

next section, we discuss how we manipulate the mask matrix M to incorporate syntactic

depth and distance information in sentence representations.

38



Figure 4.2: Distance matrix showing the shortest path distances between all pairs of
words. The dependency arc direction is ignored while computing pairwise distances. The
diagonal value is set to 1, indicating a self-loop. If we set the values in white cells (with
value > 1) to 0, the distance matrix becomes an adjacency matrix.

4.3.2 Graph Attention Transformer Encoder

The self-attention as described in §5.2.1 learns how much attention to put on words

in a text sequence when encoding a word at a given position. In this work, we revise

the self-attention mechanism such that it takes into account the syntactic structure and

distances when a token attends to all the other tokens. The key idea is to manipulate

the mask matrix to impose the graph structure and retrofit the attention weights based

on pairwise syntactic distances. We use the universal dependency parse of a sentence

and compute the syntactic (shortest path) distances between every pair of words. We

illustrate an example in Figure 4.2.

We denote distance matrix D ∈ R|x|×|x| where Dij represents the syntactic distance

between words at position i and j in the input sequence. If we want to allow tokens to

attend their adjacent tokens (that are 1 hop away) at each layer, then we can set the
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mask matrix as follows.

Mij =


0, Dij = 1

−∞, otherwise

We generalize this notion to model a distance based attention; allowing tokens to attend

tokens that are within distance δ (hyper-parameter).

Mij =


0, Dij ≤ δ

−∞, otherwise
(4.3)

During our preliminary analysis, we observed that syntactic distances between entity

mentions or event mentions often correlate with the target label. For example, if an ORG

entity mention appears closer to a PER entity than a LOC entity, then the {PER, ORG} entity

pair is more likely to have the PHYS:Located relation. We hypothesize that modeling

syntactic distance between words can help to identify complex semantic structure such as

events and entity relations. Hence we revise the attention head Al (defined in Eq. (5.1))

computation as follows.

Al = F

(
softmax

(
QKT

√
dk

+M

))
Vl. (4.4)

Here, softmax produces an attention matrix P ∈ R|x|×|x| where Pi denotes the attentions

that i-th token pays to the all the tokens in the sentence, and F is a function that modifies

those attention weights. We can treat F as a parameterized function that can be learned

based on distances. However, we adopt a simple formulation of F such that GATE pays

more attention to tokens that are closer and less attention to tokens that are faraway in

the parse tree. We define the (i, j)-th element of the attention matrix produced by F as:

F (P )ij =
Pij
ZiDij

, (4.5)
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where Zi =
∑

j
Pij

Dij
is the normalization factor and Dij is the distance between i-th and

j-th token. We found this formulation of F effective for the IE tasks.

4.3.3 Relation Extractor

Relation Extractor predicts the relationship label (or None) for each mention pair in a

sentence. For an input sentence s, GATE produces contextualized word representations

hl1, . . . , h
l
|x| where h

l
i ∈ Rdmodel . As different sentences and entity mentions may have

different lengths, we perform max-pooling over their contextual representations to obtain

fixed-length vectors. Suppose for a pair of entity mentions es = [hlbs, . . . , h
l
es] and eo =

[hlbo, . . . , h
l
eo], we obtain single vector representations ês and êo by performing max-

pooling. Following Zhang et al. (2018b); Subburathinam et al. (2019a), we also obtain a

vector representation for the sentence, ŝ by applying max-pooling over [hl1, . . . , hl|x|] and

concatenate the three vectors. Then the concatenation of the three vectors [ês; êo; ŝ] are

fed to a linear classifier followed by a Softmax layer to predict the relation type between

entity mentions es and eo as follows.

Or = softmax(W T
r [ês; êo; ŝ] + br),

where Wr ∈ R3dmodel×r and br ∈ Rr are parameters, and r is the total number of relation

types. The probability of t-th relation type is denoted as P (rt|s, es, eo), which corresponds

to the t-th element of Or. To train the relation extractor, we adopt the cross-entropy loss.

Lr = −
N∑
s=1

N∑
o=1

log(P (yrso|s, es, eo)),

where N is the number of entity mentions in the input sentence s and yrso denotes the

ground truth relation type between entity mentions es and eo.
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Sequential Syntactic
En Zh Ar En Zh Ar

Relation Mention 4.8 3.9 25.8 2.2 2.6 5.1
Event Mention & Argument 9.8 21.7 58.1 3.1 4.6 12.3

Table 4.1: Average sequential and syntactic (shortest path) distance between relation
mentions and event mentions and their candidate arguments in ACE05 dataset. Distances
are computed by ignoring the order of mentions.

4.3.4 Event Argument Role Labeler

Event argument role labeler predicts the argument mentions (or None for non-argument

mentions) of an event mention and assigns a role label to each argument from a pre-defined

set of labels. To label an argument candidate ea = [hlba, . . . , h
l
ea] for an event trigger

et = [hlbt, . . . , h
l
et] in sentence s = [hl1, . . . , h

l
|x|], we apply max-pooling to form vectors êa,

êt, and ŝ respectively, which is same as that for relation extraction. Then we concatenate

the vectors ([êt; êa; ŝ]) and pass it through a linear classifier and Softmax layer to predict

the role label as follows.

Oa = softmax(W T
a [êt; êa; ŝ] + ba),

where Wa ∈ R3dmodel×r and ba ∈ Rr are parameters, and r is the total number of argument

role label types. We optimize the role labeler by minimizing the cross-entropy loss.

4.4 Experiment Setup

English Chinese Arabic
Relations Mentions 8,738 9,317 4,731
Event Mentions 5,349 3,333 2,270
Event Arguments 9,793 8,032 4,975

Table 4.2: Statistics of the ACE 2005 dataset.

42



Model

Event Argument Role Labeling Relation Extraction
En En Zh Zh Ar Ar En En Zh Zh Ar Ar
⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
Zh Ar En Ar En Zh Zh Ar En Ar En Zh

CL_Trans_GCN 41.8 55.6 41.2 52.9 39.6 40.8 56.7 65.3 65.9 59.7 59.6 46.3
CL_GCN 51.9 50.4 53.7 51.5 50.3 51.9 49.4 58.3 65.0 55.0 56.7 42.4
CL_RNN 60.4 53.9 55.7 52.5 50.7 50.9 53.7 63.9 70.9 57.6 67.1 55.7
Transformer 61.5 55.0 58.0 57.7 54.3 57.0 57.1 63.4 69.6 60.6 67.0 52.6
Transformer_RPR 62.3 60.8 57.3 66.3 57.5 59.8 58.0 59.9 70.0 55.6 66.5 56.5
GATE (this work) 63.2 68.5 59.3 69.2 53.9 57.8 55.1 66.8 71.5 61.2 69.0 54.3

Table 4.3: Single-source transfer results (F-score % on the test set) using perfect event
triggers and entity mentions. The language on top and bottom of ⇓ denotes the source
and target languages, respectively.

4.4.1 Dataset

We conduct experiments based on the Automatic Content Extraction (ACE) 2005 corpus

(Walker et al., 2006) that includes manual annotation of relation and event mentions (with

their arguments) in three languages: English (En), Chinese (Zh), and Arabic (Ar). We

present the data statistics in Table 4.2. ACE defines an ontology that includes 7 entity

types, 18 relation subtypes, and 33 event subtypes. We add a class label None to denote

that two entity mentions or a pair of an event mention and an argument candidate under

consideration do not have a relationship belong to the target ontology. We use the same

dataset split as Subburathinam et al. (2019a) and follow their preprocessing steps. We

refer the readers to Subburathinam et al. (2019a) for the dataset preprocessing details.

4.4.2 Evaluation Criteria

Following the previous works (Ji and Grishman, 2008; Li et al., 2013; Li and Ji, 2014;

Subburathinam et al., 2019a), we set the evaluation criteria as, (1) a relation mention is

correct if its predicted type and the head offsets of the two associated entity mentions

are correct, and (2) an event argument role label is correct if the event type, offsets, and

argument role label match any of the reference argument mentions.
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Model
{En, Zh} {En, Ar} {Zh, Ar}
⇓ ⇓ ⇓
Ar Zh En

Event Argument Role Labeling
CL_Trans_GCN 57.0 44.5 44.8
CL_GCN 58.9 56.2 57.9
CL_RNN 53.5 62.5 60.8
Transformer 59.5 62.0 60.7
Transformer_RPR 71.1 68.4 62.2
GATE (this work) 73.9 65.3 61.3
Relation Extraction
CL_Trans_GCN 66.8 54.4 69.5
CL_GCN 64.0 46.6 65.8
CL_RNN 66.5 60.5 73.0
Transformer 68.3 59.3 73.7
Transformer_RPR 65.0 62.3 73.8
GATE (this work) 67.0 57.9 74.1

Table 4.4: Multi-source transfer results (F-score % on the test set) using perfect event
triggers and entity mentions. The language on top and bottom of ⇓ denotes the source
and target languages, respectively.

4.4.3 Baseline Models

To compare GATE on relation and event argument role labeling tasks, we chose three

recently proposed approaches as baselines. The source code of the baselines are not

publicly available at the time this research is conducted. Therefore, we reimplemented

them.

• CL_Trans_GCN (Liu et al., 2019a) is a context-dependent lexical mapping approach

where each word in a source language sentence is mapped to its best-suited translation

in the target language. We use multilingual word embeddings (Joulin et al., 2018)

as the continuous representations of tokens along with the language-universal features

embeddings including part-of-speech (POS) tag embedding, dependency relation label

embedding, and entity type embedding.7 Since this model focuses on the target language,

we train this baseline for each combination of source and target languages.

7Due to the design principle of Liu et al. (2019a), we cannot use multilingual contextual encoders in
CL_Trans_GCN.
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• CL_GCN (Subburathinam et al., 2019a) uses GCN (Kipf and Welling, 2017) to learn

structured common space representation. To embed the tokens in an input sentence, we

use multilingual contextual representations (Devlin et al., 2019; Conneau et al., 2019)

and the language-universal feature embeddings. We train this baseline on the source

languages and directly evaluate on the target languages.

• CL_RNN (Ni and Florian, 2019) uses a bidirectional Long Short-Term Memory (LSTM)

type recurrnet neural networks (Hochreiter and Schmidhuber, 1997) to learn contextual

representation. We feed language-universal features for words in a sentence, constructed

in the same way as Subburathinam et al. (2019a). We train and evaluate this baseline in

the same way as CL_GCN.

In addition to the above three baseline methods, we compare GATE with the following

two encoding methods.

• Transformer (Vaswani et al., 2017) uses multi-head self-attention mechanism and is the

base structure of our proposed model, GATE. Note that GATE has the same number

of parameters as Transformer since GATE does not introduce any new parameter while

modeling the pairwise syntactic distance into the self-attention mechanism. Therefore, we

credit the GATE’s improvements over the Transformer to its distance-based attention

modeling strategy.

• Transformer_RPR (Shaw et al., 2018b) uses relative position representations to encode

the structure of the input sequences. This method uses the pairwise sequential distances

while GATE uses pairwise syntactic distances to model attentions between tokens.

4.4.4 Implementation Details

To embed words into vector representations, we use multilingual BERT (M-BERT) (Devlin

et al., 2019). Note that we do not fine-tune M-BERT, but only use it as a feature extractor.

We use the universal part-of-speech (POS) tags, dependency relation labels, and seven

entity types defined by ACE: person, organization, geo-political entity, location, facility,

weapon, and vehicle. We embed these language-universal features into fixed-length vectors
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and concatenate them with M-BERT vectors to form the input word representations. We

set the model size (dmodel), number of encoder layers (L), and attention heads (nh) in

multi-head to 512, 1, and 8 respectively. We tune the distance threshold δ (as shown in

Eq. (4.3)) in [1, 2, 4, 8,∞] for each attention head on each source language (more details

are provided in the supplementary).

We implement all the baselines and our approach based on the implementation of

Zhang et al. (2018b) and OpenNMT (Klein et al., 2017). We used transformers8 to

extract M-BERT and XLM-R features. We provide a detailed description of the dataset,

hyper-parameters, and training of the baselines and our approach in the supplementary.

4.5 Results and Analysis

We compare GATE with five baseline approaches on event argument role labeling (EARL)

and relation extraction (RE) tasks, and the results are presented in Table 4.3 and 4.4.

4.5.1 Single-source transfer

In the single-source transfer setting, all the models are individually trained on one source

language, e.g., English and directly evaluated on the other two languages (target), e.g.,

Chinese and Arabic. Table 4.3 shows that GATE outperforms all the baselines in four

out of six transfer directions on both tasks. CL_RNN surprisingly outperforms CL_GCN

in most settings, although CL_RNN uses a BiLSTM that is not suitable to transfer across

syntactically different languages (Ahmad et al., 2019a). We hypothesize the reason being

GCNs cannot capture long-range dependencies, which is crucial for the two tasks. In

comparison, by modeling distance-based pairwise relationships among words, GATE excels

in cross-lingual transfer.

A comparison between Transformer and GATE demonstrates the effectiveness of syn-

tactic distance-based self-attention over the standard mechanism. From Table 4.3, we see

8https://github.com/huggingface/transformers
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Model EARL RE
Chinese Arabic Chinese Arabic

Wang et al. (2019b)
Absolute 61.2 53.5 57.8 65.2
Relative 55.3 47.1 58.1 66.4
GATE 63.2 68.5 55.1 66.8

Table 4.5: GATE vs. Wang et al. (2019b) results (F-score %) on event argument role
labeling (EARL) and relation extraction (RE); using English as source and Chinese,
Arabic as the target languages, respectively. To limit the maximum relative position, the
clipping distance is set to 10 and 5 for EARL and RE tasks, respectively.

GATE outperforms Transformer with an average improvement of 4.7% and 1.3% in EARL

and RE tasks, respectively. Due to implicitly modeling graph structure, Transformer_RPR

performs effectively. However, GATE achieves an average improvement of 1.3% and

1.9% in EARL and RE tasks over Transformer_RPR. Overall, the significant performance

improvements achieved by GATE corroborate our hypothesis that syntactic distance-based

attention helps in the cross-lingual transfer.

4.5.2 Multi-source transfer

In the multi-source cross-lingual transfer, the models are trained on a pair of languages:

{English, Chinese}, {English, Arabic}, and {Chinese, Arabic}. Hence, the models observe

more examples during training, and as a result, the cross-lingual transfer performance

improves compared to the single-source transfer setting. In Table 4.4, we see GATE

outperforms the previous three IE approaches in multi-source transfer settings, except on

RE for the source:{English, Arabic} and target: Chinese language setting. On the other

hand, GATE performs competitively to Transformer and Transformer_RPR baselines. Due

to observing more training examples, Transformer and Transformer_RPR perform more

effectively in this setting. The overall result indicates that GATE more efficiently learns

transferable representations for the IE tasks.
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4.5.3 Encoding dependency structure

GATE encodes the dependency structure of sentences by guiding the attention mechanism

in self-attention networks (SANs). However, an alternative way to encode the sentence

structure is through positional encoding for SANs. Conceptually, the key difference is the

modeling of syntactic distances to capture fine-grained relations among tokens. Hence,

we compare these two notions of encoding the dependency structure to emphasize the

promise of modeling syntactic distances.

To this end, we compare the GATE with Wang et al. (2019b) that proposed structural

position encoding using the dependency structure of sentences. Results are presented in

Table 4.5. We see that Wang et al. (2019b) performs well on RE but poorly on EARL,

especially on the Arabic language. While GATE directly uses syntactic distances between

tokens to guide the self-attention mechanism, Wang et al. (2019b) learns parameters

to encode structural positions that can become sensitive to the source language. For

example, the average shortest path distance between event mentions and their candidate

arguments in English and Arabic is 3.1 and 12.3, respectively (see Table 4.1). As a result,

a model trained in English may learn only to attend closer tokens, thus fails to generalize

on Arabic.

Moreover, we anticipate that different order of subject and verb in English and Arabic9

causes Wang et al. (2019b) to transfer poorly on the EARL task (as event triggers are

mostly verbs). To verify our anticipation, we modify the relative structural position

encoding (Wang et al., 2019b) by dropping the directional information (Ahmad et al.,

2019a), and observed a performance increase from 47.1 to 52.2 for English to Arabic

language transfer. In comparison, GATE is order-agnostic as it models syntactic distance;

hence, it has a better transferability across typologically diverse languages.

9According to WALS (Dryer and Haspelmath, 2013b), the order of subject (S), object (O), and verb
(V) for English, Chinese and Arabic is SVO, SVO, and VSO.
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Model EARL RE
English Chinese∗ English Chinese∗

CL_GCN 51.5 56.3 46.9 50.7
CL_RNN 55.6 59.3 56.8 62.0
GATE 63.8 64.2 58.8 57.0

Table 4.6: Event argument role labeling (EARL) and relation extraction (RE) results
(F-score %); using Chinese as the source and English as the target language. ∗ indicates
the English examples are translated into Chinese using Google Cloud Translate.

Figure 4.3: Models trained on the Chinese language perform on event argument role
labeling in English and their parallel Chinese sentences. The parallel sentences have the
same meaning but a different structure. To quantify the structural difference between
two parallel sentences, we compute the tree edit distances.

4.5.4 Sensitivity towards source language

Intuitively, an RE or EARL model would transfer well on target languages if the model

is less sensitive towards the source language characteristics (e.g., word order, grammar

structure). To measure sensitivity towards the source language, we evaluate the model

performance on the target language and their parallel (translated) source language

sentences. We hypothesize that if a model performs significantly well on the translated

source language sentences, then the model is more sensitive towards the source language

and may not be ideal for cross-lingual transfer. To test the models on this hypothesis,

we translate all the ACE05 English test set examples into Chinese using Google Cloud
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Word features EARL RE
Chinese Arabic Chinese Arabic

Multi-WE 35.9 43.7 41.0 54.9
M-BERT 57.1 54.8 55.1 66.8
XLM-R 51.8 61.7 51.4 68.1

Table 4.7: Contribution of multilingual word embeddings (Multi-WE) Joulin et al. (2018),
M-BERT Devlin et al. (2019), and XLM-R Conneau et al. (2019) as a source of word
features; using English as source and Chinese, Arabic as the target languages, respectively.

Translate.10 We train GATE and two baselines on the Chinese and evaluate them on

both English (test set) examples and their Chinese translations. To quantify the difference

between the dependency structure of an English and its Chinese translation sentences, we

compute edit distance between two tree structures using the APTED11 algorithm (Pawlik

and Augsten, 2015, 2016).

The results are presented in Table 4.6. We see that CL_GCN and CL_RNN have

much higher accuracy on the translated (Chinese) sentences than the target language

(English) sentences. On the other hand, GATE makes a roughly similar number of correct

predictions when the target and translated sentences are given as input. Figure 4.3

illustrates how the models perform when the structural distance between target sentences

and their translation increases. The results suggest that GATE performs substantially

better than the baselines when the target language sentences are structurally different

from the source language. The overall findings signal that GATE is less sensitive to

source language features, and we credit this to the modeling of distance-based syntactic

relationships between words. We acknowledge that there might be other factors associated

with a model’s language sensitivity. However, we leave the detailed analysis for measuring

a model’s sensitivity towards languages as future work.

10Details are provided in the supplementary.

11https://pypi.org/project/apted/
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Input features EARL RE
Chinese Arabic Chinese Arabic

M-BERT 52.5 47.4 44.0 49.7
+ POS tag 49.3 47.5 44.1 47.0
+ Dep. label 49.7 51.0 48.6 47.0
+ Entity type 57.8 60.2 56.3 63.0

Table 4.8: Ablation on the use of language-universal features (part-of-speech (POS) tag,
dependency relation label, and entity type) in GATE (F-score (%); using English as
source and Chinese, Arabic as the target languages, respectively.

4.5.5 Ablation study

We perform a detailed ablation study on language-universal features and sources of word

features to examine their individual impact on cross-lingual transfer. The results are

presented in Table 4.7 and 4.8. We observed that M-BERT and XLM-R produced word

features performed better in Chinese and Arabic, respectively, while they are comparable

in English. On average M-BERT performs better, and thus we chose it as the word feature

extractor in all our experiments. Table 4.8 shows that part-of-speech and dependency

relation embedding has a limited contribution. This is perhaps due to the tokenization

errors, as pointed out by Subburathinam et al. (2019a). However, the use of language-

universal features is useful, particularly when we have minimal training data. We provide

more analysis and results in the supplementary.

4.5.6 Error Analysis

We compare our proposed approach GATE and the self-attention mechanism (Vaswani

et al., 2017) on the event argument role labeling (EARL) and relation extraction (RE)

tasks. We consider the models trained on English language and evaluate them on Chinese

language. We do not use the event trigger type as features while training models for the

EARL task. We present the confusion matrices of these two models in Figure 4.4, 4.5, 4.6,

and 4.7. In general, GATE makes more correct predictions. We noticed that in transferring

from English to Chinese on the EARL task, GATE improves notably on Destination,

Entity, Person, Place relation types. The syntactic distance between event triggers and
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Model True Positive True Negative False Positive False Negative
Self-Attention 386 563 179 300
GATE 585 493 249 157

Table 4.9: Comparing GATE and Self-Attention on the EARL task using English and
Chinese as the source and target languages, respectively. The rates are aggregated from
confusion matrices shown in Figure 4.4 and 4.5.

their argument mentions that share those types corroborates with our hypothesis that

distance-based dependency relations help in cross-lingual transfer.

However, we observed that GATE makes more false positive and less false negative

predictions than the self-attention mechanism. We summarize the prediction rates on

EARL in Table 4.9. There are several factors that may be associated with these wrong

predictions. To shed light on those factors, we manually inspect 50 examples and our

findings suggests that wrong predictions are due to three primary reasons. First, there

are errors in the ground truth annotations in the ACE dataset. Second, the knowledge

required for prediction is not available in the input sentence. Third, there are entity

mentions, event triggers, and contextual phrases in the test data that rarely appear in

the training data.

4.6 Related Work

Relation and event extraction has drawn significant attention from the natural language

processing (NLP) community. Most of the approaches developed in past several years are

based on supervised machine learning, using either symbolic features (Ahn, 2006; Ji and

Grishman, 2008; Liao and Grishman, 2010; Hong et al., 2011; Li et al., 2013; Li and Ji,

2014) or distributional features (Liao and Grishman, 2011; Nguyen et al., 2016; Miwa

and Bansal, 2016; Liu et al., 2018a; Zhang et al., 2018a; Lu and Nguyen, 2018; Chen

et al., 2015; Nguyen and Grishman, 2015; Zeng et al., 2014; Peng et al., 2017; Nguyen

and Grishman, 2018; Zhang et al., 2018b; Subburathinam et al., 2019a; Liu et al., 2019a;

Huang et al., 2020) from a large number of annotations. Joint learning or inference

(Bekoulis et al., 2018; Li et al., 2014; Zhang et al., 2019b; Liu et al., 2018c; Nguyen et al.,
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2016; Yang and Mitchell, 2016; Han et al., 2019, 2020) are also among the noteworthy

techniques.

Most previous works on cross-lingual transfer for relation and event extraction are based

on annotation projection (Kim et al., 2010a; Kim and Lee, 2012), bilingual dictionaries

(Hsi et al., 2016; Ni and Florian, 2019), parallel data (Chen and Ji, 2009; Kim et al., 2010b;

Qian et al., 2014) or machine translation (Zhu et al., 2014; Faruqui and Kumar, 2015; Zou

et al., 2018a). Learning common patterns across languages is also explored (Lin et al., 2017;

Wang et al., 2018; Liu et al., 2018a). In contrast to these approaches, Subburathinam et al.

(2019a); Liu et al. (2019a) proposed to use graph convolutional networks (GCNs) (Kipf

and Welling, 2017) to learn multi-lingual structured representations. However, GCNs

struggle to model long-range dependencies or disconnected words in the dependency tree.

To overcome the limitation, we use the syntactic distances to weigh the attentions while

learning contextualized representations via the multi-head attention mechanism (Vaswani

et al., 2017).

Moreover, our proposed syntax driven distance-based attention modeling helps to

mitigate the word order difference issue (Ahmad et al., 2019a) that hinders cross-lingual

transfer. Prior works studied dependency structure modeling (Liu et al., 2019a), source

reordering (Rasooli and Collins, 2019a), adversarial training (Ahmad et al., 2019b), con-

strained inference (Meng et al., 2019) to tackle word order differences across typologically

different languages.

4.7 Summary

In this chapter, we showed that modeling fine-grained syntactic structural information

based on the dependency parse of a sentence improves cross-lingual transfer. We developed

a Graph Attention Transformer Encoder (GATE) to generate structured contextual

representations. Extensive experiments on three languages demonstrates the effectiveness

of GATE in cross-lingual relation and event extraction. In the future, we want to explore

other sources of language-universal information to improve representation learning.
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Figure 4.4: Event argument role labeling confusion matrix (on test set) based on our
proposed approach GATE using English and Chinese as the source and target languages,
respectively. The diagonal values indicate the number of correct predictions, while the
other values denote the incorrect prediction counts.
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Figure 4.5: Event argument role labeling confusion matrix (on test set) based on the Self-
Attention (Transformer Encoder) using English and Chinese as the source and target
languages, respectively. The diagonal values indicate the number of correct predictions,
while the other values denote the incorrect prediction counts.
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Figure 4.6: Relation extraction labeling confusion matrix (on test set) based on our
proposed approach GATE using English and Chinese as the source and target languages,
respectively. The diagonal values indicate the number of correct predictions, while the
other values denote the incorrect prediction counts.
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Figure 4.7: Relation extraction confusion matrix (on test set) based on the Self-Attention
(Transformer Encoder) using English and Chinese as the source and target languages,
respectively. The diagonal values indicate the number of correct predictions, while the
other values denote the incorrect prediction counts.
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CHAPTER 5

Syntax-augmented Pre-trained Encoders for

Cross-lingual Transfer

5.1 Introduction

Cross-lingual transfer reduces the requirement of labeled data to perform natural language

processing (NLP) in a target language, and thus has the ability to avail NLP applications

in low-resource languages. However, transferring across languages is challenging because

of linguistic differences at levels of morphology, syntax, and semantics. For example, word

order difference is one of the crucial factors that impact cross-lingual transfer (Ahmad et al.,

2019a). The two sentences in English and Hindi, as shown in Figure 5.1 have the same

meaning but a different word order (while English has an SVO (Subject-Verb-Object)

order, Hindi follows SOV). However, the sentences have a similar dependency structure,

and the constituent words have similar part-of-speech tags. Presumably, language syntax

can help to bridge the typological differences across languages.

In recent years, we have seen a colossal effort to pre-train Transformer encoder (Vaswani

et al., 2017) on large-scale unlabeled text data in one or many languages. Multilingual

encoders, such as mBERT (Devlin et al., 2019) or XLM-R (Conneau et al., 2020) map

text sequences into a shared multilingual space by jointly pre-training in many languages.

This allows us to transfer the multilingual encoders across languages and have found

effective for many NLP applications, including text classification (Bowman et al., 2015;

Conneau et al., 2018), question answering (Rajpurkar et al., 2016; Lewis et al., 2020b),

named entity recognition (Pires et al., 2019; Wu and Dredze, 2019a), and more. Since the

introduction of mBERT, several works (Wu and Dredze, 2019a; Pires et al., 2019; K et al.,
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Figure 5.1: Two parallel sentences in English and Hindi from XNLI (Conneau et al., 2018)
dataset. The words highlighted with the same color have the same meaning. Although
the sentences have a different word order, their syntactic dependency structure is similar.

2020) attempted to reason their success in cross-lingual transfer. In particular, Wu and

Dredze (2019a) showed that mBERT captures language syntax that makes it effective for

cross-lingual transfer. A few recent works (Hewitt and Manning, 2019; Jawahar et al.,

2019; Chi et al., 2020) suggest that BERT learns compositional features; mimicking a

tree-like structure that agrees with the Universal Dependencies taxonomy.

However, fine-tuning for the downstream task in a source language may not require

mBERT to retain structural features or learn to encode syntax. We argue that encouraging

mBERT to learn the correlation between syntax structure and target labels can benefit

cross-lingual transfer. To support our argument, we show an example of question answering

(QA) in Figure 5.2. In the example, mBERT predicts incorrect answers given the Spanish

language context that can be corrected by exploiting syntactic clues. Utilizing syntax

structure can also benefit generalized cross-lingual transfer (Lewis et al., 2020b) where the

input text sequences belong to different languages. For example, answering an English

question based on a Spanish passage or predicting text similarity given the two sentences

as shown in Figure 5.1. In such a setting, syntactic clues may help to align sentences.

In this work, we propose to augment mBERT with universal language syntax while fine-
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Q
English How many members of the Senate are elected?
Spanish Cuántos miembros del Senado son elegidos?

C
English

The Chamber of Deputies has 630 elected members, while the
Senate has 315 elected members. . . .

Spanish
La cámara de los diputados está formada por 630 miembros, mien-
tras que hay 315 senadores más los senadores vitalicios. . . .

A
mBERT

[Q:English-C:English] 315 (3); [Q:Spanish-C:Spanish] 630 (7)
[Q:Spanish-C:English] 315 (3); [Q:English-C:Spanish] 630 (7)

mBERT + Syn.
[Q:English-C:English] 315 (3); [Q:Spanish-C:Spanish] 315 (3)
[Q:Spanish-C:English] 315 (3); [Q:English-C:Spanish] 315 (3)

Figure 5.2: A parallel QA example in English (en) and Spanish (es) from MLQA Lewis
et al. (2020b) with predictions from mBERT and our proposed syntax-augmented mBERT.
In “Q:x-C:y”, x and y indicates question and context languages, respectively. Based on
our analysis of the highlighted tokens’ attention weights, we conjecture that mBERT
answers 630 as the token is followed by “miembros”, while 315 is followed by “senadores”
in Spanish.

tuning on downstream tasks. We use a graph attention network (GAT) (Veličković et al.,

2018) to learn structured representations of the input sequences that are incorporated

into the self-attention mechanism. We adopt an auxiliary objective to train GAT such

that it embeds the dependency structure of the input sequence accurately. We perform an

evaluation on zero-shot cross-lingual transfer for text classification, question answering,

named entity recognition, and task-oriented semantic parsing. Experiment results show

that augmenting mBERT with syntax improves cross-lingual transfer, such as in PAWS-X

and MLQA, by 1.4 and 1.6 points on average across all the target languages. Syntax-

augmented mBERT achieves remarkable gain in the generalized cross-lingual transfer; in

PAWS-X and MLQA, performance is boosted by 3.9 and 3.1 points on average across all

language pairs. Furthermore, we discuss challenges and limitations in modeling universal

language syntax. We release the code to help future works.1

1https://github.com/wasiahmad/Syntax-MBERT
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5.2 Syntax-augmented Multilingual BERT

Multilingual BERT (mBERT) (Devlin et al., 2019) enables cross-lingual learning as

it embeds text sequences into a shared multilingual space. mBERT is fine-tuned on

downstream tasks, e.g., text classification using monolingual data and then directly

employed to perform on the target languages. This refers to zero-shot cross-lingual

transfer. Our main idea is to augment mBERT with language syntax for zero-shot cross-

lingual transfer. We employ graph attention network (GAT) (Veličković et al., 2018) to

learn syntax representations and fuse them into the self-attention mechanism of mBERT.

In this section, we first briefly review the transformer encoder that bases mBERT

(§ 5.2.1), and then describe the graph attention network (GAT) that learns syntax

representations from dependency structure of text sequences (§ 5.2.2). Finally, we describe

how language syntax is explicitly incorporated into the transformer encoder (§ 5.2.3).

5.2.1 Transformer Encoder

Transformer encoder (Vaswani et al., 2017) is composed of an embedding layer and stacked

encoder layers. Each encoder layer consists of two sublayers, a multi-head attention layer

followed by a fully connected feed-forward layer. We detail the process of encoding an input

token sequence (w1, . . . , wn) into a sequence of vector representations H = [h1, . . . , hn] as

follows.

Embedding Layer is parameterized by two embedding matrices — the token embed-

ding matrix We ∈ RU×dmodel and the position embedding matrix Wp ∈ RU×dmodel (where

U is the vocabulary size and dmodel is the encoder output dimension). An input text

sequence enters into the model as two sequences: the token sequence (w1, . . . , wn) and

the corresponding absolute position sequence (p1, . . . , pn). The output of the embedding

layer is a sequence of vectors {xi}ni=1 where xi = wiWe + piWp. The vectors are packed

into matrix H0 = [x1, . . . , xn] ∈ Rn×dmodel and fed to an L-layer encoder.
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Multi-head Attention allows to jointly attend to information from different repre-

sentation subspaces, known as attention heads. Multi-head attention layer composed of

h attention heads with the same parameterization structure. At each attention head,

the output from the previous layer H l−1 is first linearly projected into queries, keys, and

values as follows.

Q = H l−1WQ
l , K = H l−1WK

l , V = H l−1W V
l ,

where the parametersWQ
l ,W

K
l ∈ Rdmodel×dk andW V

l ∈ Rdmodel×dv are unique per attention

head. Then scaled dot-product attention is performed to compute the output vectors

{oi}ni=1 ∈ Rn×dv .

Attention(Q,K, V,M, dk)

= softmax

(
QKT +M√

dk

)
V,

(5.1)

where M ∈ Rn×n is the masking matrix that determines whether a pair of input positions

can attend each other. In classic multi-head attention, M is a zero matrix (all positions

can attend each other).

The output vectors from all the attention heads are concatenated and projected into

dmodel dimension using the parameter matrix Wo ∈ Rhdv×dmodel . Finally the vectors are

passed through a feed-forward network to output H l ∈ Rn×dmodel .

5.2.2 Graph Attention Network

We embed the syntax structure of the input token sequences using their universal depen-

dency parse. A dependency parse is a directed graph where the nodes represent words,

and the edges represent dependencies (the dependency relation between the head and

dependent words). We use a graph attention network (GAT) (Veličković et al., 2018) to

embed the dependency tree structure of the input sequence. We illustrate GAT in Figure

5.3.
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Figure 5.3: A simplified illustration of the multi-head self-attention in the graph attention
network wherein each head attention is allowed between words within δ distance from
each other in the dependency graph. For example, as shown, in one of the attention heads,
the word “likes” is only allowed to attend its adjacent (δ=1) words “dog” and “play”.

Given the input sequence, the words (wi) and their part-of-speech tags (posi) are

embedded into vectors using two parameter matrices: the token embedding matrixWe and

the part-of-tag embedding Wpos. The input sequence is then encoded into an input matrix

G0 = [g1, . . . , gn], where gi = wiWe + posiWpos ∈ Rdmodel . Note that token embedding

matrix We is shared between GAT and the Transformer encoder. Then G0 is fed into an

LG-layer GAT where each layer generates word representations by attending their adjacent

words. GAT uses the multi-head attention mechanism and perform a dependency-aware

self-attention as

O = Attention(T , T , V,M, dg) (5.2)

namely setting the query and key matrices to be the same T ∈ Rn×dg respectively and
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the mask M by

Mij =


0, Dij ≤ δ

−∞, otherwise
(5.3)

where D is the distance matrix and Dij indicates the shortest path distance between word

i and j in the dependency graph structure.

Typically in GAT, δ is set to 1; allowing attention between adjacent words only.

However, in our study, we find setting δ to [2, 4] helpful for the downstream tasks. Finally,

the vector representations from all the attention heads (as in Eq. (5.2)) are concatenated

to form the output representations Gl ∈ Rn×kdg , where k is the number of attention

heads employed. The goal of the GAT encoder is to encode the dependency structure

into vector representations. Therefore, we design GAT to be light-weight; consisting of

much less parameters in comparison to Transformer encoder. Note that, GAT does not

employ positional representations and only consists of multi-head attention; there is no

feed-forward sublayer and residual connections.

Dependency Tree over Wordpieces and Special Symbols mBERT tokenizes the

input sequence into subword units, also known as wordpieces. Therefore, we modify the

dependency structure of linguistic tokens to accommodate wordpieces. We introduce

additional dependencies between the first subword (head) and the rest of the subwords

(dependents) of a linguistic token. More specifically, we introduce new edges from the

head subword to the dependent subwords. The inputs to mBERT use special symbols:

[CLS] and [SEP]. We add an edge from the [CLS] token to the root of the dependency

tree and the [SEP] tokens.

5.2.3 Syntax-augmented Transformer Encoder

We want the Transformer encoder to consider syntax structure while performing the self-

attention between input sequence elements. We use the syntax representations produced

64



by GAT (outputs from the last layer, denoting as G) to bias the self-attention.

O = Attention(Q+ GGQ
l , K + GGK

l , V,M, dk),

where GQ
l , G

K
l ∈ Rdkdg×dk are new parameters that learn representations to bias the

self-attention. We consider the addition terms (GGQ
l ,GGK

l ) as syntax-bias that provide

syntactic clues to guide the self-attention. The high-level intuition behind the syntax bias

is to attend tokens with a specific part-of-speech tag sequence or dependencies.2

Syntax-heads mBERT employs h (=12) attention heads and the syntax representations

can be infused into one or more of these heads, and we refer them as syntax-heads. In

our experiments, we observed that instilling structural information into many attention

heads degenerates the performance. For the downstream tasks, we consider one or two

syntax-heads that gives the best performance.3

Syntax-layers refers to the encoder layers that are infused by syntax representations

from GAT. mBERT has a 12-layer encoder and our study finds considering all of the

layers as syntax-layers beneficial for cross-lingual transfer.

5.2.4 Fine-tuning

We jointly fine-tune mBERT and GAT on downstream tasks in the source language

(English in this work) following the standard procedure. However, the task-specific

training may not guide GAT to encode the tree structure. Therefore, we adopt an

auxiliary objective that supervises GAT to learn representations which can be used

to decode the tree structure. More specifically, we use GAT’s output representations

2In example shown in Figure 5.2, token dependencies: [en: root→ has→ has→ members→ 315], and
[es: root → formada → hay → senadores → 315] or corresponding part-of-speech tag sequence [VERB
→ VERB → NOUN → NUM]) may help mBERT to predict the correct answer.

3This aligns with the findings of Hewitt and Manning (2019) as they showed 64 or 128 dimension of
the contextual representations are sufficient to capture the syntax structure.
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Dataset Task |Train| |Dev| |Test| |Lang| Metric
XNLI Classification 392K 2.5K 5K 13 Accuracy
PAWS-X Classification 49K 2K 2K 7 Accuracy
MLQA QA 87K 34K 4.5K-11K 7 F1 / Exact Match
XQuAD QA 87K 34K 1190 10 F1 / Exact Match
Wikiann NER 20K 10K 1K-10K 15 F1
CoNLL NER 15K 2K-3K 1.5K-5K 4 F1
mTOP Semantic Parsing 15.7K 2.2K 2.8K-4.4K 5 Exact Match
mATIS++ Semantic Parsing 4.5K 490 893 9 Exact Match

Table 5.1: Statistics of the evaluation datasets. |Train|, |Dev| and |Test| are the numbers
of examples in the training, dev and test sets, respectively. For train set, the number is
for the source language, English, while for dev and test set, the number is for each target
language. |Lang| is the number of target languages we consider for each task.

G = [g1, . . . , gn] to predict the tree distance between all pairs of words (gi, gj) and the tree

depth ||gi|| of each word wi in the input sequence. Following Hewitt and Manning (2019),

we apply a linear transformation θ1 ∈ Rm×kdg to compute squared distances as follows.

dθ1(gi, gj)
2 = (θ1(gi − gj))T (θ1(gi − gj)).

The parameter matrix θ1 is learnt by minimizing:

min
θ1

∑
s

1

n2

∑
i,j

|dist(wi, wj)2 − dθ(gi, gj)2|,

where s denotes all the text sequences in the training corpus. Similarly, we train another

parameter matrix θ2 to compute squared vector norms, dθ2(gi) = (θ2gi)
T (θ2gi) that

characterize the tree depth of the words. We train GAT’s parameters and θ1, θ2 by

minimizing the loss: L = Ltask+α(Ldist+Ldepth), where α is weight for the tree structure

prediction loss.

Pre-training GAT Unlike mBERT’s parameters, GAT’s parameters are trained from

scratch during task-specific fine-tuning. For low-resource tasks, GAT may not learn to

encode the syntax structure accurately. Therefore, we utilize the universal dependency

parses (Nivre et al., 2019) to pre-train GAT on the source and target languages. Note
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that, the pre-training objective for GAT is to predict the tree distances and depths as

described above.

5.3 Experiment Setup

To study syntax-augmented mBERT’s performance in a broader context, we perform an

evaluation on four NLP applications: text classification, named entity recognition, question

answering, and task-oriented semantic parsing. Our evaluation focuses on assessing the

usefulness of utilizing universal syntax in the zero-shot cross-lingual transfer.

5.3.1 Evaluation Tasks

Text Classification We conduct experiments on two widely used cross-lingual text

classification tasks: (i) natural language inference and (ii) paraphrase detection. We use

the XNLI (Conneau et al., 2018) and PAWS-X (Yang et al., 2019a) datasets for the tasks,

respectively. In both tasks, a pair of sentences is given as input to mBERT. We combine

the dependency tree structure of the two sentences by adding two edges from the [CLS]

token to the roots of the dependency trees.

Named Entity Recognition is a structure prediction task that requires to identify

the named entities mentioned in the input sentence. We use the Wikiann dataset (Pan

et al., 2017) and a subset of two tasks from CoNLL-2002 (Tjong Kim Sang, 2002) and

CoNLL-2003 NER (Tjong Kim Sang and De Meulder, 2003). We collect the CoNLL

datasets from XGLUE (Liang et al., 2020). In both datasets, there are 4 types of named

entities: Person, Location, Organization, and Miscellaneous.4

Question Answering We evaluate on two cross-lingual question answering benchmarks,

MLQA (Lewis et al., 2020b), and XQuAD (Artetxe et al., 2020). We use the SQuAD

dataset (Rajpurkar et al., 2016) for training and validation. In the QA task, the inputs

4Miscellaneous entity type covers named entities that do not belong to the other three types
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are a question and a context passage that consists of many sentences. We formulate QA

as a multi-sentence reading comprehension task; jointly train the models to predict the

answer sentence and extract the answer span from it. We concatenate the question and

each sentence from the context passage and use the [CLS] token representation to score

the candidate sentences. We adopt the confidence method from Clark and Gardner (2018)

and pick the highest-scored sentence to extract the answer span during inference. We

provide more details of the QA models in Appendix.

Task-oriented Semantic Parsing The fourth evaluation task is cross-lingual task-

oriented semantic parsing. In this task, the input is a user utterance and the goal

is to predict the intent of the utterance and fill the corresponding slots. We conduct

experiments on two recently proposed benchmarks: (i) mTOP (Li et al., 2021) and (ii)

mATIS++ (Xu et al., 2020). We jointly train the BERT models as suggested in Chen

et al. (2019a).

We summarize the evaluation task benchmark datasets and evaluation metrics in

Table 5.1.

5.3.2 Implementation Details

We collect the universal part-of-speech tags and the dependency parse of sentences by

pre-processing the datasets using UDPipe.5 We fine-tune mBERT on the pre-processed

datasets and consider it as the baseline for our proposed syntax-augmented mBERT. We ex-

tend the XTREME framework (Hu et al., 2020) that is developed based on transformers

API (Wolf et al., 2020). We use the same hyper-parameter setting for mBERT models, as

suggested in XTREME. For the graph attention network (GAT), we set LG = 4, k = 4,

and dg = 64 (resulting in ∼0.5 million parameters). We tune δ6 (shown in Eq. (5.3))

5https://ufal.mff.cuni.cz/udpipe/2

6We observed that the value of δ depends on the downstream task and the source language. For
example, a larger δ value is beneficial for tasks taking a pair of text sequences as inputs, while a smaller
δ value results in better performances for tasks taking single text input. Experiments on PAWS-X using
each target language as the source language indicate that δ should be set to a larger value for source
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Model en ar bg de el es fr hi ru tr ur vi zh ko ja nl pt AVG
Classification - XNLI Conneau et al. (2018)
[1] 80.8 64.3 68.0 70.0 65.3 73.5 73.4 58.9 67.8 60.9 57.2 69.3 67.8 - - - - 67.5
mBERT 81.8 63.8 68.0 70.7 65.4 73.8 72.4 59.3 68.4 60.7 56.7 68.6 67.8 - - - - 67.5
+ Syn. 81.6 65.4 69.3 70.7 66.5 74.1 73.2 60.5 68.8 62.4 58.7 69.9 69.3 - - - - 68.5

Classification - PAWS-X Yang et al. (2019a)
[1] 94.0 - - 85.7 - 87.4 87.0 - - - - - 77.0 69.6 73.0 - - 82.0
mBERT 93.9 - - 85.7 - 88.4 87.6 - - - - - 78.0 73.6 73.1 - - 82.9
+ Syn. 94.0 - - 85.9 - 89.1 88.2 - - - - - 80.7 76.3 75.8 - - 84.3

NER - Wikiann Pan et al. (2017)
[1] 85.2 41.1 77.0 78.0 72.5 77.4 79.6 65.0 64.0 71.8 36.9 71.8 - 59.6 - 81.8 80.8 69.5
mBERT 83.6 38.8 77.0 76.0 70.4 74.7 78.9 63.4 63.5 70.9 37.7 73.5 - 59.3 - 81.9 78.7 68.5
+ Syn. 84.4 40.0 77.0 77.0 71.5 76.1 79.3 64.2 63.8 71.4 37.3 72.7 - 59.3 - 81.9 79.0 69.0

NER - CoNLL Tjong Kim Sang (2002); Tjong Kim Sang and De Meulder (2003)
[2] 90.6 - - 69.2 - 75.4 - - - - - - - - - 77.9 - 78.2
mBERT 90.7 - - 68.3 - 74.5 - - - - - - - - - 77.6 - 77.8
+ Syn. 90.6 - - 69.1 - 73.6 - - - - - - - - - 78.5 - 78.0
QA - MLQA Lewis et al. (2020b)
[3] 77.7 45.7 - 57.9 - 64.3 - 43.8 - - - 57.1 57.5 - - - - 57.7
mBERT 80.5 47.2 - 59.0 - 63.9 - 47.5 - - - 56.5 56.6 - - - - 58.7
+ Syn. 80.4 48.9 - 60.8 - 65.9 - 46.7 - - - 59.3 60.1 - - - - 60.3

QA - XQuAD Artetxe et al. (2020)
[1] 83.5 61.5 - 70.6 62.6 75.5 - 59.2 71.3 55.4 - 69.5 58.0 - - - - 66.7
mBERT 84.2 54.8 - 68.9 60.2 71.1 - 55.7 68.6 48.9 - 64.0 57.2 - - - - 63.4
+ Syn. 84.0 55.5 - 71.4 61.3 72.8 - 54.6 68.4 49.8 - 67.6 56.1 - - - - 64.2

Semantic Parsing - mTOP Li et al. (2021)
mBERT 81.0 - - 28.1 - 40.2 38.8 9.8 - - - - - - - - - 39.6
+ Syn. 81.3 - - 30.0 - 43.0 41.2 11.5 - - - - - - - - - 41.4

Semantic Parsing - mATIS++ Xu et al. (2020)
mBERT 86.0 - - 38.1 - 43.7 36.9 16.2 - 1.3 - - 7.8 - 28.2 - 38.2 32.9
+ Syn. 86.2 - - 40.1 - 44.5 38.9 18.7 - 1.5 - - 8.0 - 27.3 - 37.3 33.6

Table 5.2: Cross-lingual transfer results for all the evaluation tasks (on test set) across
17 languages. We report F1 score for the question answering (QA) datasets (for other
datasets, see Table 5.1). We train and evaluate mBERT on the same pre-processed
datasets and considers its performance as the baseline (denoted by “mBERT” rows in the
table) for syntax-augmented mBERT (denoted by “+ Syn.” rows in the table). Bold-faced
values indicate that the syntax-augmented mBERT is statistically significantly better (by
paired bootstrap test, p < 0.05) than the baseline. We include results from published
works ([1]: Hu et al. (2020), [2]: Liang et al. (2020), and [3]: Lewis et al. (2020b)) as a
reference. Except for the QA datasets, all our results are averaged over three different
seeds.

and α (weight of the tree structure prediction loss) in the range [1, 2, 4, 8] and [0.5− 1.0],

respectively. We detail the hyper-parameters in the Appendix.

language with longer text sequences (e.g., Arabic) and vice versa.
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s1/s2 en de es fr ja ko zh
en - 0.7 1.6 1.4 4.7 2.5 5.4
de 0.5 - 2.0 2.1 5.1 3.5 5.9
es 1.0 2.1 - 1.7 4.6 3.0 6.6
fr 0.9 1.7 1.9 - 5.0 2.7 5.4
ja 5.2 5.3 5.6 5.1 - 5.9 5.1
ko 3.1 2.8 4.3 3.9 6.4 - 5.1
zh 5.8 5.5 6.3 6.0 6.1 4.5 -

(a) PAWS-X

q/c en es de ar hi vi zh
en - -0.2 0.3 0.4 0.9 0.6 1.1
es 4.1 - 3.5 5.4 5.3 7.3 7.6
de 3.5 2.8 - 4.0 2.9 4.0 5.0
de 1.8 2.4 1.1 - -0.1 6.2 4.4
hi 1.0 1.8 0.5 0.2 - -0.6 1.0
vi 5.6 4.5 5.5 6.9 4.2 - 5.5
zh 3.8 3.3 4.4 2.4 0.9 5.4 -

(b) MLQA

Table 5.3: The performance difference between syntax-augmented mBERT and mBERT in
the generalized cross-lingual transfer setting. The rows and columns indicate (a) language
of the first and second sentences in the candidate pairs and (b) context and question
languages. The gray cells have a value greater than or equal to the average performance
difference, which is 3.9 and 3.1 for (a) and (b).

5.4 Experiment Results

We aim to address the following questions.

1. Does augmenting mBERT with syntax improve (generalized) cross-lingual transfer?

2. Does incorporating syntax benefit specific languages or language families?

3. Which NLP tasks or types of tasks get more benefits from utilizing syntax?

5.4.1 Cross-lingual Transfer

Experiment results to compare mBERT and syntax-augmented mBERT are presented in

Table 5.2. Overall, the incorporation of language syntax in mBERT improves cross-lingual

transfer for the downstream tasks, in many languages by a significant margin (p < 0.05,

t-test). The average performances across all languages on XNLI, PAWS-X, MLQA, and

mTOP benchmarks improve significantly (by at least 1 point). On the other benchmarks:

Wikiann, CoNLL, XQuAD, and mATIS++, the average performance improvements are

0.5, 0.2, 0.8, and 0.7 points, respectively. Note that the performance gains in the source

language (English) for all the datasets except Wikiann is ≤ 0.3. This indicates that

cross-lingual transfer gains are not due to improving the downstream tasks, but instead,

language syntax helps to transfer across languages.
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5.4.2 Generalized Cross-lingual Transfer

In the generalized cross-lingual transfer setting (Lewis et al., 2020b), the input text

sequences for the downstream tasks (e.g., text classification, QA) may come from different

languages. As shown in Figure 5.2, given the context passage in English, a multilingual

QA model should answer the question written in Spanish. Due to the parallel nature of the

existing benchmark datasets: XNLI, PAWS-X, MLQA, and XQuAD, we evaluate mBERT

and its’ syntax-augmented variant on the generalized cross-lingual transfer setting. The

results for PAWS-X and MLQA are presented in Table 5.3 (results for the other datasets

are provided in Appendix).

In both text classification and QA benchmarks, we observe significant improvements

for most language pairs. In the PAWS-X text classification task, language pairs with

different typologies (e.g., en-ja, en-zh) have the most gains. When Chinese (zh) or

Japanese (ja) is in the language pairs, the performance is boosted by at least 4.5%. The

dataset characteristics explain this; the task requires modeling structure, context, and

word order information. On the other hand, in the XNLI task, the performance gain

pattern is scattered, and this is perhaps syntax plays a less significant role in the XNLI

task. The largest improvements result when the languages of the premise and hypothesis

sentences belong to {Bulgarian, Chinese} and {French, Arabic}.

In both QA datasets, syntax-augmented mBERT boosts performance when the question

and context languages are typologically different except the Hindi language. Surprisingly,

we observe a large performance gain when questions in Spanish and German are answered

based on the English context. Based on our manual analysis on MLQA, we suspect that

although questions in Spanish and German are translated from English questions (by

human), the context passages are from Wikipedia that often are not exact translation of

the corresponding English passage. Take the context passages in Figure 5.2 as an example.

We anticipate that syntactic clues help a QA model in identifying the correct answer span

when there are more than one semantically equivalent and plausible answer choices.
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nl de pt fr es ru bg el hi ur ar vi tr zh ko ja
1
0
1
2
3
4

XNLI Wikiann MLQA mATIS++

Figure 5.4: Performance improvements for XNLI, Wikiann, MLQA, and mATIS++ across
languages.The languages in x-axis are grouped by language families: IE.Germanic (nl, de),
IE.Romance (pt, fr, es), IE.Slavic (ru, bg), IE.Greek (el), IE.Indic (hi, ur), Afro-asiatic
(ar, vi), Altaic (tr), Sino-tibetan (zh), Korean (ko), and Japanese (ja).

5.4.3 Analysis & Discussion

We discuss and analyze our findings on the following points based on the empirical results.

Impact on Languages We study if fine-tuning syntax-augmented mBERT on English

(source language) impacts specific target languages or families of languages. We show the

performance gains on the target languages grouped by their families in four downstream

tasks in Figure 5.4. There is no observable trend in the overall performance improvements

across tasks. However, the XNLI curve weakly indicates that when target languages

are typologically different from the source language, there is an increase in the transfer

performance (comparing left half to the right half of the curve).

Impact of Pre-training GAT Before fine-tuning syntax-augmented mBERT, we pre-

train GAT on the 17 target languages (discussed in § 5.2.4). In our experiments, we

observe such pre-training boosts semantic parsing performance, while there is a little gain

on the classification and QA tasks. We also observe that pre-training GAT diminishes

the gain of fine-tuning with the auxiliary objective (predicting the tree structure). We

hypothesize that pre-training or fine-tuning GAT using auxiliary objective helps when

there is limited training data. For example, semantic parsing benchmarks have a small

number of training examples, while XNLI has many. As a result, the improvement due to

pre-training or fine-tuning GAT in the semantic parsing tasks is significant, and in the

72



XNLI task, it is marginal.

Discussion To foster research in this direction, we discuss additional experiment find-

ings.

• A natural question is, instead of using GAT, why we do not modify attention heads

in mBERT to embed the dependency structure (as shown in Eq. 5.3). We observed a

consistent performance drop across all the tasks if we intervene in self-attention (blocking

pair-wise attention). We anticipate fusing GAT encoded syntax representations helps as

it adds bias to the self-attention. For future works, we suggest exploring ways of adding

structure bias, e.g., scaling attention weights based on dependency structure (Bugliarello

and Okazaki, 2020).

• Among the evaluation datasets, Wikiann consists of sentence fragments, and the semantic

parsing benchmarks consist of user utterances that are typically short in length. Sorting

and analyzing the performance improvements based on sequence lengths suggests that the

utilization of dependency structure has limited scope for shorter text sequences. However,

part-of-speech tags help to identify span boundaries improving the slot filling tasks.

5.4.4 Limitations and Challenges

In this work, we assume we have access to an off-the-shelf universal parser, e.g., UDPipe

(Straka and Straková, 2017) or Stanza (Qi et al., 2020) to collect part-of-speech tags

and the dependency structure of the input sequences. Relying on such a parser has a

limitation that it may not support all the languages available in benchmark datasets, e.g.,

we do not consider Thai and Swahili languages in the benchmark datasets.

There are a couple of challenges in utilizing the universal parsers. First, universal

parsers tokenize the input sequence into words and provide part-of-speech tags and

dependencies for them. The tokenized words may not be a part of the input.7 As a result,

7For example, in the German sentence “Wir gehen zum kino” (we are going to the cinema), the token
“zum” is decomposed into words “zu” and “dem”.
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tasks requiring extracting text spans (e.g., QA) need additional mapping from input

tokens to words. Second, the parser’s output word sequence is tokenized into wordpieces

that often results in inconsistent wordpieces resulting in degenerated performance in the

downstream tasks.8

5.5 Related Work

Syntax-aware Multi-head Attention A large body of prior works investigated the

advantages of incorporating language syntax to enhance the self-attention mechanism

(Vaswani et al., 2017). Existing techniques can be broadly divided into two types. The

first type of approach relies on an external parser (or human annotation) to get a

sentence’s dependency structure during inference. This type of approaches embed the

dependency structure into contextual representations which benefits the target NLP task,

e.g., information extraction (Ahmad et al., 2021c; Sachan et al., 2021), semantic role

labeling (Zhang et al., 2019c), question answering (Zhang et al., 2020), and machine

translation (Wu et al., 2017a; Chen et al., 2017; Wang et al., 2019a,b; Bugliarello and

Okazaki, 2020). Our proposed method falls under this category; however, unlike prior

works, our study investigates if fusing the universal dependency structure into the self-

attention of existing multilingual encoders help cross-lingual transfer. Graph attention

networks (GATs) that use multi-head attention has also been adopted for NLP tasks,

such as text classification (Huang and Carley, 2019) also fall into this category. The

second category of approaches does not require the syntax structure of the input text

during inference. These approaches are trained to predict the dependency parse via

supervised learning (Strubell et al., 2018; Deguchi et al., 2019). For example, Strubell

et al. (2018) introduced linguistically-informed self-attention (LISA); trains self-attention

via multi-task learning combining the target task with dependency parsing.

8This happen for languages, such as Arabic as parsers normalize the input that lead to inconsistent
characters between input text and the output tokenized text.
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Encoding Syntax for Language Transfer Universal language syntax, e.g., part-of-

speech (POS) tags, dependency parse structure, and relations are shown to be helpful for

cross-lingual transfer (Kozhevnikov and Titov, 2013; Pražák and Konopík, 2017; Wu et al.,

2017a; Subburathinam et al., 2019b; Liu et al., 2019b; Zhang et al., 2019c; Xie et al.,

2020; Ahmad et al., 2021c). Many of these prior works utilized graph neural networks

(GNN) to encode the dependency graph structure of the input sequences. In this work,

we utilize graph attention networks (GAT) (Veličković et al., 2018), a variant of GNN

that employs the multi-head attention mechanism.

5.6 Summary

In this chapter, we presented an approach to incorporate universal language syntax into

multilingual BERT (mBERT) by infusing structured representations into its multi-head

attention mechanism. We employ a modified graph attention network to encode the

syntax structure of the input sequences. The results endorse the effectiveness of our

proposed approach in the cross-lingual transfer. We discuss limitations and challenges to

drive future works.
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CHAPTER 6

Representation Learning using Unlabeled Data

6.1 Introduction

Representation learning using unlabeled text data has been the fundamental theme to

make the modern NLP models transferable across languages. The feature space learned by

cross-lingual representation learning techniques often embeds language-dependent features

that hinder cross-lingual transfer. Removal of such language-dependent features from the

representation spaces can facilitate cross-lingual transfer learning. Since unlabeled text

data comes at no price, we can utilize them to design language-agnostic representation

learning techniques. The first half of this chapter is based on Ahmad et al. (2019b).

In that work, we propose leveraging unannotated sentences from auxiliary languages

to help learn language-agnostic representations. Specifically, we present an adversarial

training technique for learning contextual encoders that produce invariant representations

across languages to facilitate the cross-lingual transfer. We conduct experiments on cross-

lingual dependency parsing where we train a dependency parser on a source language

and transfer it to a wide range of target languages. Experiments on 28 target languages

demonstrate that adversarial training significantly improves transfer performances under

several different settings.

Pre-trained language representations have been the key ingredient for transfer learning

in NLP. The success of leveraging unlabeled text data to learn language representations

for NLP encouraged researchers to learn representations for natural and programming

languages jointly. In the second half of this chapter, we present PLBART (Ahmad et al.,

2021a), a sequence-to-sequence model capable of performing a broad spectrum of program
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and language understanding and generation tasks. PLBART is pre-trained on an extensive

collection of Java and Python functions and associated NL text via denoising autoen-

coding. We show that PLBART outperforms or rivals state-of-the-art models on code

summarization in English, code generation, and code translation in seven programming

languages. Moreover, PLBART performs effectively in program understanding tasks,

e.g., program repair, clone detection, and vulnerable code detection. We also show that

PLBART learns program syntax, style (e.g., identifier naming convention), logical flow

(e.g., if block inside an else block is equivalent to else if block) that are crucial to program

semantics and thus excels even with limited annotations.

6.2 Language-agnostic Representation Learning

A typical NLP model consists of a representation learning component, also known as

encoders that convert input text sequences into contextualized representations. In cross-

lingual transfer, most recent approaches assume that the inputs from different languages are

aligned into the same embedding space via multilingual word embeddings or multilingual

contextualized word vectors that are fed into the encoder, such that the an NLP model

trained on a source language can be transferred to target languages. However, when

training a model on the source language, the encoder not only learns to embed a sentence

but it also carries language-specific properties, such as word order typology. Therefore,

the parser suffers when it is transferred to a language with different language properties.

Motivated by this, we study how to train an encoder for generating language-agnostic

representations that can be transferred across a wide variety of languages.

We propose to utilize unlabeled corpora of one or more auxiliary languages to train an

encoder that learns language-agnostic contextual representations of sentences to facilitate

cross-lingual transfer. To utilize the unlabeled auxiliary language corpora, we adopt

adversarial training (Goodfellow et al., 2014) of the encoder and a classifier that predicts

the language identity of an input sentence from its encoded representation produced

by the encoder. The adversarial training encourages the encoder to produce language
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invariant representations such that the language classifier fails to predict the correct

language identity. As the encoder is jointly trained with a loss for the primary task on

the source language and adversarial loss on all languages, we hypothesize that it will learn

to capture task-specific features as well as generic structural patterns applicable to many

languages, and thus have better transferability.

To verify the proposed approach, we conduct experiments on neural dependency

parsers trained on English (source language) and directly transfer them to 28 target

languages, with or without the assistance of unlabeled data from auxiliary languages. We

chose dependency parsing as the primary task since it is one of the core NLP applications

and the development of Universal Dependencies (Nivre et al., 2016) provides consistent

annotations across languages, allowing us to investigate transfer learning in a wide range

of languages. Thorough experiments and analyses are conducted to address a couple of

research questions: (1) Does encoder trained with adversarial training generate language-

agnostic representations? and (2) Does language-agnostic representations improve cross-

language transfer?

6.2.1 Training Language-agnostic Encoders

We study cross-lingual transfer for dependency parsing. A dependency parser consists

of (1) an encoder that transforms an input text sequence into latent representations

and (2) a decoding algorithm that generates the corresponding parse tree. We train the

encoder of a dependency parser in an adversarial fashion to guide it to avoid capturing

language-specific information. In particular, we introduce a language identification task

where a classifier predicts the language identity (id) of an input sentence from its encoded

representation. Then the encoder is trained such that the classifier fails to predict the

language id while the parser decoder predicts the parse tree accurately from the encoded

representation. We hypothesize that such an encoder would have better cross-lingual

transferability. The overall architecture of our model is illustrated in Figure 6.1. In the

following, we present the details of the model and training method.
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Figure 6.1: An overview of our experimental model consists of three basic components:
(1) Encoder, (2) (Parsing) Decoder, and (3) (Language) Classifier. We also show how
parsing and adversarial losses (Lp and Ld) are back propagated for parameter updates.

6.2.2 Proposed Method

Our model consists of three basic components, (1) a general encoder, (2) a decoder for

parsing, and (3) a classifier for language identification. The encoder learns to generate

contextualized representations for the input sentence (a word sequence) which are fed

to the decoder and the classifier to predict the dependency structure and the language

identity (id) of that sentence. The encoder and the decoder jointly form the parsing

model and we consider two alternatives1 from (Ahmad et al., 2019c): “SelfAtt-Graph” and

“RNN-Stack”. The “SelfAtt-Graph” parser consists of a modified self-attentional encoder

(Shaw et al., 2018a) and a graph-based deep bi-affine decoder (Dozat and Manning, 2017),

while the “RNN-Stack” parser is composed of a Recurrent Neural Network (RNN) based

encoder and a stack-pointer decoder (Ma et al., 2018).

We stack a classifier (a linear classifier or a multi-layer Perceptron (MLP)) on top

1(Ahmad et al., 2019c) studied order-sensitive and order-free models and their performances in
cross-lingual transfer. In this work, we adopt two typical ones and study the effects of adversarial training
on them.
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Algorithm 1 Training procedure.
Parameters to be trained: Encoder (θg), Decoder (θp), and Classifier (θd)
Xa = Annotated source language data
Xb = Unlabeled auxiliary language data
I = Number of warm-up iterations
k = Number of learning steps for the discriminator (D) at each iteration
λ = Coefficient of Ld
α1, α1 = learning rate; B = Batch size
Require:
1: for j = 0, · · · , I do
2: Update θg := θg − α1∇θgLp
3: Update θp := θp − α1∇θpLp
4: for j = I, · · · , num_iter do
5: for k steps do
6: (xia)

B/2
i=1 ← Sample a batch from Xa

7: (xib)
B/2
i=1 ← Sample a batch from Xb

8: Update θd := θd − α2∇θdLd
9: Total loss L := Lp − λLd
10: Update θg := θg − α1∇θgL
11: Update θp := θp − α1∇θpL

of the encoder to perform the language identification task. The identification task can

be framed as either a word- or sentence-level classification task. For the sentence-level

classification, we apply average pooling2 on the contextual word representations generated

by the encoder to form a fixed-length representation of the input sequence, which is fed

to the classifier. For the word-level classification, we perform language classification for

each token individually. In this work, following the terminology in adversarial learning

literature, we interchangeably call the encoder as the generator, G and the classifier as

the discriminator, D.

Training

Algorithm 1 describes the training procedure. We have two types of loss functions: Lp for

the parsing task and Ld for the language identification task. For the former, we update

2We also experimented with max-pooling and weighted pooling but average pooling resulted in stable
performance.
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the encoder and the decoder as in the regular training of a parser. For the latter, we adopt

adversarial training to update the encoder and the classifier. We present the detailed

training schemes in the following.

Parsing To train the parser, we adopt both cross-entropy objectives for these two types

of parsers as in (Dozat and Manning, 2017; Ma et al., 2018). The encoder and the decoder

are jointly trained to optimize the probability of the dependency trees (y) given sentences

(x):

Lp = − log p(y|x).

The probability of a tree can be further factorized into the products of the probabilities

of each token’s (m) head decision (h(m)) for the graph-based parser, or the probabilities

of each transition step decision (ti) for the transition-based parser:

Graph: Lp = −
∑

m
log p(h(m)|x,m),

Transition: Lp = −
∑

i
log p(ti|x, t<i).

Language Identification Our objective is to train the contextual encoder in a depen-

dency parsing model such that it encodes language specific features as little as possible,

which may help cross-lingual transfer. To achieve our goal, we utilize adversarial training

by employing unlabeled auxiliary language corpora.

Setup We adopt the basic generative adversarial network (GAN) for the adversarial

training. We assume that Xa and Xb be the corpora of the source and auxiliary language

sentences, respectively. The discriminator acts as a binary classifier and is adopted to

distinguish the source and auxiliary languages. For the training of the discriminator,

weights are updated according to the original classification loss:

Ld = Ex∼Xa [log D(G(x)] + Ex∼Xb [log (1−D(G(x))].

81



Language
Families

Languages

Afro-Asiatic Arabic (ar), Hebrew (he)
Austronesian Indonesian (id)
IE.Baltic Latvian (lv)

IE.Germanic Danish (da), Dutch (nl), English (en), German (de),
Norwegian (no), Swedish (sv)

IE.Indic Hindi (hi)
IE.Latin Latin (la)

IE.Romance Catalan (ca), French (fr), Italian (it), Portuguese (pt),
Romanian (ro), Spanish (es)

IE.Slavic Bulgarian (bg), Croatian (hr), Czech (cs), Polish (pl),
Russian (ru), Slovak (sk), Slovenian (sl), Ukrainian (uk)

Korean Korean (ko)
Uralic Estonian (et), Finnish (fi)

Table 6.1: The selected languages grouped by language families. “IE” is the abbreviation
of Indo-European.

For the training of dependency parsing, the generator, G collaborates with the parser

but acts as an adversary with respect to the discriminator. Therefore, the generator

weights (θg) are updated by minimizing the loss function,

L = Lp − λLd,

where λ is used to scale the discriminator loss (Ld). In this way, the generator is guided

to build language-agnostic representations in order to fool the discriminator while being

helpful for the parsing task. Meanwhile, the parser can be guided to rely more on the

language-agnostic features.

6.2.3 Experiments and Analysis

In this section, we discuss our experiments and analysis on cross-lingual dependency

parsing transfer from a variety of perspectives and show the advantages of adversarial

training.
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Settings In our experiments, we study single-source parsing transfer, where a parsing

model is trained on one source language and directly applied to the target languages.

We conduct experiments on the Universal Dependencies (UD) Treebanks (v2.2) (Nivre

et al., 2018) using 29 languages, as shown in Table 6.1. We use the publicly available

implementation3 of the “SelfAtt-Graph” and “RNN-Stack” parsers.4 (Ahmad et al., 2019c)

show that the “SelfAtt-Graph” parser captures less language-specific information and

performs better than the ‘RNN-Stack” parser for distant target languages. Therefore,

we use the “SelfAtt-Graph” parser in most of our experiments. Besides, the multilingual

variant of BERT (mBERT) (Devlin et al., 2018) has shown to perform well in cross-lingual

tasks (Wu and Dredze, 2019b) and outperform the models trained on multilingual word

embeddings by a large margin. Therefore, we consider conducting experiments with both

multilingual word embeddings and mBERT. We use aligned multilingual word embeddings

(Smith et al., 2017; Bojanowski et al., 2017b) with 300 dimensionss or contextualized word

representations provided by multilingual BERT5 (Devlin et al., 2018) with 768 dimensions

as the word representations. In addition, we use the Gold universal POS tags to form the

input representations.6 We freeze the word representations during training to avoid the

risk of disarranging the multilingual representation alignments.

We select six auxiliary languages7 (French, Portuguese, Spanish, Russian, German,

and Latin) for unsupervised language adaptation via adversarial training. We tune the

scaling parameter λ in the range of [0.1, 0.01, 0.001] on the source language validation

set and report the test performance with the best value. For gradient reversal (GR) and

GAN based adversarial objectives, we use Adam (Kingma and Ba, 2015) to optimize the

3https://github.com/uclanlp/CrossLingualDepParser

4We adopt the same hyper-parameters, experiment settings and evaluation metrics as those in (Ahmad
et al., 2019c).

5https://github.com/huggingface/pytorch-transformers

6We concatenate the word and POS representations. In our future work, we will conduct transfer
learning for both POS tagging and dependency parsing.

7We want to cover languages from different families and with varying distances from the source
language (English).
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discriminator parameters, and for WGAN, we use RMSProp (Tieleman and Hinton, 2012).

The learning rate is set to 0.001 and 0.00005 for Adam and RMSProp, respectively. We

train the parsing models for 400 and 500 epochs with multilingual BERT and multilingual

word embeddings respectively. We tune the parameter I (as shown in Algorithm 1) in

the range of [50, 100, 150].

Language Test. The goal of training the contextual encoder adversarially with un-

labeled data from auxiliary languages is to encourage the encoder to capture more

language-agnostic representations and less language-dependent features. To test whether

the contextual encoders retain language information after adversarial training, we train

a multi-layer Perceptron (MLP) with softmax on top of the fixed contextual encoders

to perform a 7-way classification task.8 If a contextual encoder performs better in the

language test, it indicates that the encoder retains language specific information.

Results and Analysis

Table 6.2 presents the main transfer results of the “SelfAtt-Graph” parser when training

on only English (en, baseline), English with French (en-fr), and English with Russian

(en-ru). The results demonstrate that the adversarial training with the auxiliary language

identification task benefits cross-lingual transfer with a small performance drop on the

source language. When multi-lingual embedding is employed, the performance significantly

improves, in terms of UAS of 0.48 and 0.61 over the 29 languages when French and Russian

are used as the auxiliary language, respectively. When richer multilingual representation

technique like mBERT is employed, adversarial training can still improve cross-lingual

transfer performances (0.21 and 0.54 UAS over the 29 languages by using French and

Russian, respectively). Similar to the “SelfAtt-Graph”parser, the “RNN-Stack” parser

resulted in significant improvements in cross-lingual transfer from unsupervised language

adaptation. We discuss our detailed experimental analysis in the following.

8With the source (English) and six auxiliary languages.
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Lang Multilingual Word Embeddings Multilingual BERT
(en) (en-fr) (en-ru) (en) (en-fr) (en-ru)

en 90.23/88.23 90.01/88.08 89.93/87.93 93.19/91.21 92.81/90.97 92.77/90.86
no 80.82/72.94 80.60/72.83 80.98/73.10 85.81/79.03 85.50/78.64 85.43/78.76
sv 80.33/72.54 79.90/72.16 80.43/72.68 85.61/78.34 85.64/78.58 85.44/78.33
fr 77.71/72.35 78.49†/73.30† 78.31/73.29 85.22/80.78 84.76/80.26 85.91†/81.63†
pt 76.41/67.35 76.88†/67.74 77.09†/67.81 82.93/73.33 82.71/73.13 83.43†/73.88†
da 76.58/68.11 75.99/67.64 76.25/68.03 82.36/73.53 82.40/73.68 82.36/73.86†
es 73.76/65.46 74.14/65.78 74.08/65.84 80.81/72.66 81.11/72.80 81.38†/73.29†
it 80.89/75.61 81.33†/76.14† 80.70/75.57 87.07/82.38 86.90/82.22 87.41/82.67
hr 62.21/52.67 63.38†/53.83† 63.11†/53.62† 72.96/62.65 73.39†/62.20 74.20†/63.55†
ca 73.18/64.53 73.46†/64.71 73.40/64.90† 80.40/71.42 80.30/71.42 80.75/71.78
pl 74.65/62.72 75.65†/63.31† 75.93/63.60 81.51/69.25 82.33†/69.91† 82.48†/70.54†
uk 59.25/51.92 60.58†/52.72† 60.81†/52.66† 69.98/61.52 70.24/61.61 71.21†/62.84†
sl 67.51/56.42 68.14/56.52 68.40/56.87 75.15/63.12 74.60/62.52 75.50/63.65†
nl 68.54/59.99 68.80/60.23 69.23†/60.51† 76.76/68.35 76.94/68.28 76.89/68.76†
bg 79.09/67.61 80.01†/68.42 79.72/68.39 86.82/75.47 87.08/75.40 87.61†/75.94†
ru 60.91/52.03 61.42†/52.27† 61.67†/52.41† 71.92/62.09 72.31/62.15 72.88†/62.94†
de 71.41/61.97 70.70/61.41 71.05/61.84 78.66/69.81 78.04/69.23 79.08†/70.26†
he 55.70/48.08 57.33†/49.37† 57.15†/49.36† 64.46/55.82 64.97†/55.63 65.30†/55.76
cs 63.30/54.14 63.94†/54.63† 64.37†/55.08† 73.78/63.52 74.57†/63.86 74.56†/64.17†
ro 65.13/53.98 65.86/54.76 65.57/54.42 75.10/62.99 75.85†/63.92† 76.06†/63.78†
sk 66.79/58.23 67.46†/58.77 67.42†/58.70 76.30/67.38 77.08†/67.57 77.86†/68.28†
id 49.85/44.09 52.05†/45.76† 51.57/45.31 56.80/50.24 57.45†/50.27 57.30†/50.70†
lv 70.45/49.47 70.03/49.38 70.67†/49.61† 75.63/53.93 75.27/53.78 75.62/54.29
fi 66.11/48.73 65.84/48.61 66.28/48.82 71.59/53.81 71.35/53.63 71.74/53.79
et 65.01/44.78 65.31†/45.12† 65.38†/45.32† 71.55/50.98 71.73/51.27 71.25/51.16
ar 37.63/27.48 38.72†/28.00† 38.98†/27.89† 49.27/37.62 50.37†/39.37† 50.95†/39.57†
la 47.74/34.90 48.80†/35.64† 49.17†/35.73† 51.83/38.20 51.48/38.00 52.20/38.28
ko 34.44/16.18 33.98/15.93 34.23/16.08 38.10/20.62 38.03/20.59 38.98†/21.54†
hi 36.34/27.43 36.72/27.40 37.37†/28.01† 45.40/35.03 47.74†/35.90† 46.10†/34.74

Average 65.92/55.86 66.40†/56.22† 66.53†/56.32† 73.34/62.93 73.55/62.99 73.88†/63.43†

Table 6.2: Cross-lingual transfer performances (UAS%/LAS%, excluding punctuation) of
the SelfAtt-Graph parser Ahmad et al. (2019c) on the test sets. In column 1, languages
are sorted by the word-ordering distance to English. (en-fr) and (en-ru) denotes the
source-auxiliary language pairs. ‘†’ indicates that the adversarially trained model results
are statistically significantly better (by permutation test, p < 0.05) than the model trained
only on the source language (en). Results show that the utilization of unlabeled auxiliary
language corpora improves cross-lingual transfer performance significantly.
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Lang Auxiliary Language Perf. Average Cross-lingual Perf. Lang. Test Perf.
(Src. + Aux.) AT MTL AT MTL AT MTL

en + fr 78.49/73.30† 78.26/72.98† 66.40/56.22 66.18/56.04 62.25 59.94
en + pt 76.53/67.45† 75.88/66.75 66.40/56.22 66.27/56.08 60.17 72.02
en + es 73.66/65.48 74.04/65.83† 66.38/56.24 66.22/56.12 56.78 74.52
en + ru 61.67/52.41† 61.08/52.04 66.53/56.32 66.35/56.20 37.34 60.56
en + de 71.65/62.11† 71.17/61.88 66.41/56.13 66.18/56.12 61.22 72.08
en + la 49.22/35.94† 48.04/35.09† 66.45/56.20 66.17/56.05 50.04 64.91

Table 6.3: Comparison between adversarial training (AT) and multi-task learning
(MTL) of the contextual encoders. Columns 2–5 demonstrate the parsing performances
(UAS%/LAS%, excluding punctuation) on the auxiliary languages and average of the 29
languages. Columns 6–7 present accuracy (%) of the language label prediction test. ‘†’
indicates that the performance is higher than the baseline performance (shown in the 2nd
column of Table 6.2).

Impact of Adversarial Training To understand the impact of different adversarial

training types and objectives, we apply adversarial training on both word- and sentence-

level with gradient reversal (GR), GAN, and WGAN objectives. Among the adversarial

training objectives, we observe that in most cases, the GAN objective results in better

performances than the GR and WGAN objectives. Our finding is in contrast to (Adel

et al., 2018) where GR was reported to be the better objective. To further investigate, we

perform the language test on the encoders trained via these two objectives. We find that

the GR-based trained encoders perform consistently better than the GAN based ones

on the language identification task, showing that via GAN-based training, the encoders

become more language-agnostic. In a comparison between GAN and WGAN, we notice

that GAN-based training consistently performs better.

Comparing word- and sentence-level adversarial training, we observe that predicting

language identity at the word-level is slightly more useful for the “SelfAtt-Graph” model,

while the sentence-level adversarial training results in better performances for the “RNN-

Stack” model. There is no clear dominant strategy. In addition, we study the effect of using

a linear classifier or a multi-layer Perceptron (MLP) as the discriminator and find that

the interaction between the encoder and the linear classifier resulted in improvements.9

9This is a known issue in GAN training as the discriminator becomes too strong, it fails to provide
useful signals to the generator. In our case, MLP as the discriminator predicts the language labels with
higher accuracy and thus fails.
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Adversarial v.s. Multi-task Training An alternative way to leverage auxiliary

language corpora is by encoding language-specific information in the representation via

multi-task learning. In the multi-task learning (MTL) setup, the model observes the same

amount of data (both labeled and unlabeled) as the adversarially trained (AT) model.

The only difference between the MTL and AT models is that in the MTL models, the

contextual encoders are encouraged to capture language-dependent features while in the

AT models, they are trained to encode language-agnostic features.

The experiment results using multi-task learning in comparison with the adversarial

training are presented in Table 6.3. Interestingly, although the MTL objective sounds

contradiction to adversarial learning, it has a positive effect on the cross-lingual parsing, as

the representations are learned with certain additional information from new (unlabeled)

data. Using MTL, we sometimes observe improvements over the baseline parser, as

indicated with the † sign, while the AT models consistently perform better than both the

baseline and the MTL model (as shown in Columns 2–5 in Table 6.3). The comparisons

on parsing performances do not reveal whether the contextual encoders learn to encode

language-agnostic or dependent features.

Therefore, we perform language test with the MTL and AT (GAN based) encoders,

and the results are shown in Table 6.3, Columns 6–7. The results indicate that the MTL

encoders consistently perform better than the AT encoders, which verifies our hypothesis

that adversarial training motivates the contextual encoders to encode language-agnostic

features.

6.2.4 Related Work

Adversarial Training. The concept of adversarial training via Generative Adversarial

Networks (GANs) (Goodfellow et al., 2014; Szegedy et al., 2014; Goodfellow et al., 2015)

was initially introduced in computer vision for image classification and received enormous

success in improving model’s robustness on input images with perturbations. Later many

variants of GANs (Arjovsky et al., 2017; Gulrajani et al., 2017) were proposed to improve
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its’ training stability. In NLP, adversarial training was first utilized for domain adaptation

(Ganin et al., 2016). Since then adversarial training has started to receive an increasing

interest in the NLP community and applied to many NLP applications including part-

of-speech (POS) tagging (Gui et al., 2017; Yasunaga et al., 2018), dependency parsing

(Sato et al., 2017), relation extraction (Wu et al., 2017b), text classification (Miyato et al.,

2017; Liu et al., 2017; Chen and Cardie, 2018), dialogue generation (Li et al., 2017).

In the context of cross-lingual NLP tasks, many recent works adopted adversarial

training, such as in sequence tagging (Adel et al., 2018), text classification (Xu and

Yang, 2017; Chen et al., 2018), word embedding induction (Zhang et al., 2017; Lample

et al., 2018), relation classification (Zou et al., 2018b), opinion mining (Wang and Pan,

2018), and question-question similarity reranking (Joty et al., 2017). However, existing

approaches only consider using the target language as the auxiliary language. It is unclear

whether the language invariant representations learned by previously proposed methods

can perform well on a wide variety of unseen languages. To the best of our knowledge, we

are the first to study the effects of language-agnostic representations on a broad spectrum

of languages.

Unsupervised Cross-lingual Parsing. Unsupervised cross-lingual transfer for de-

pendency parsing has been studied over the past few years (Agić et al., 2014; Ma and

Xia, 2014b; Xiao and Guo, 2014; Tiedemann, 2015; Guo et al., 2015; Aufrant et al.,

2015; Rasooli and Collins, 2015; Duong et al., 2015; Schlichtkrull and Søgaard, 2017;

Ahmad et al., 2019c; Rasooli and Collins, 2019b; He et al., 2019). Here, “unsupervised

transfer” refers to the setting where a parsing model trained only on the source language

is directly transferred to the target languages. In this work, we relax the setting by

allowing unlabeled data from one or more auxiliary (helper) languages other than the

source language. This setting has been explored in a few prior works. (Cohen et al.,

2011) learn a generative target language parser with unannotated target data as a linear

interpolation of the source language parsers. (Täckström et al., 2013) adopt unlabeled

target language data and a learning method that can incorporate diverse knowledge
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sources through ambiguous labeling for transfer parsing. In comparison, we leverage

unlabeled auxiliary language data to learn language-agnostic contextual representations

to improve cross-lingual transfer.

Multilingual Representation Learning. The basic of the unsupervised cross-lingual

parsing is that we can align the representations of different languages into the same

space, at least at the word level. The recent development of bilingual or multilingual

word embeddings provide us with such shared representations. We refer the readers

to the surveys of (Ruder et al., 2017) and (Glavaš et al., 2019) for details. The main

idea is that we can train a model on top of the source language embeddings which are

aligned to the same space as the target language embeddings and thus all the model

parameters can be directly shared across languages. During transfer to a target language,

we simply replace the source language embeddings with the target language embeddings.

This idea is further extended to learn multilingual contextualized word representations,

for example, multilingual BERT (Devlin et al., 2018), have been shown very effective

for many cross-lingual transfer tasks (Wu and Dredze, 2019b). In this work, we show

that further improvements can be achieved by adaptating the contextual encoders via

unlabeled auxiliary languages even when the encoders are trained on top of multilingual

BERT.

6.3 Representation Learning for Programming Languages

Engineers and developers write software programs in a programming language (PL) like

Java, Python, etc., and often use natural language (NL) to communicate with each other.

Use of NL in software engineering ranges from writing documentation, commit messages,

bug reports to seeking help in different forums (e.g., Stack Overflow), etc. Automating

different software engineering applications, such as source code summarization, generation,

and translation, heavily rely on the understanding of PL and NL—we collectively refer

them as PLUG (stands for, Program and Language Understanding and Generation)
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(a) Program snippet in Python

1 def sort_list(uns):
2 return sorted(uns , key=lambda x:x[0])

(b) Program snippet in Java

1 static Tuple[] sortArray(Tuple[] uns){
2 return Arrays.sort(
3 uns , new Comparator <Tuple >() {
4 public int compare(
5 Tuple o1, Tuple o2) {
6 return o1.get(0) == o2.get (0);
7 }
8 });
9 }

Summary: sort a list of tuples by first element

Figure 6.2: Example motivating the need to understand the association of program and
natural languages for code summarization, generation, and translation.

applications or tasks. Note that the use of NL in software development is quite different

than colloquially written and spoken language. For example, NL in software development

often contains domain-specific jargon, e.g., when software engineers use Code Smell10,

it means a potential problem in code (something other than Smell in regular English

language).

Our goal is to develop a general-purpose model that can be used in various PLUG

applications. Recent advancements in deep learning and the availability of large-scale

PL and developers’ NL data ushered in the automation of PLUG applications. One

important aspect of PLUG applications is that they demand a profound understanding

of program syntax and semantics and mutual dependencies between PL and NL. For

example, Figure 6.2 shows two implementations of the same algorithm (sorting) in two

PL and corresponding NL summary. An automatic translation tool must understand that

function sorted in Python acts similar to Arrays.sort in Java and the lambda operation in

Python is equivalent to instantiating a Comparator object in Java. Similarly, a tool that

summarizes either of these code must understand that x[0] in Python or Tuple.get(0) in

10https://en.wikipedia.org/wiki/Code_smell

90



Java refers to the first element in the tuple list.

Most of the available data in PL and NL are unlabeled and cannot be trivially

used to acquire PLUG task-specific supervision. However, PLUG tasks have a common

prerequisite — understanding PL and NL syntax and semantics. Leveraging unlabelled

data to pretrain a model to learn PL and NL representation can be transferred across

PLUG tasks. This approach reduces the requirement of having large-scale annotations for

task-specific fine-tuning. In recent years we have seen a colossal effort to pretrain models

on a massive amount of unlabeled data (e.g., text, images, videos) Devlin et al. (2019);

Liu et al. (2019c); Conneau and Lample (2019); Conneau et al. (2020); Li et al. (2019);

Sun et al. (2019b) to transfer representation encoders across a wide variety of applications.

There are a few research effort in learning general purpose PL-NL representation encoders,

such as CodeBERT Feng et al. (2020) and GraphCodeBERT Guo et al. (2021) that are

pretrained on a small-scale bimodal data (code-text pairs). Such models have been found

effective for PLUG tasks, including code search, code completion, etc.

Language generation tasks such as code summarization is modeled as sequence-to-

sequence learning, where an encoder learns to encode the input code and a decoder

generates the target summary. Despite the effectiveness of existing methods, they do

not have a pretrained decoder for language generation. Therefore, they still require a

large amount of parallel data to train the decoder. To overcome this limitation, Lewis

et al. (2020a) proposed denoising sequence-to-sequence pre-training where a Transformer

Vaswani et al. (2017) learns to reconstruct an original text that is corrupted using an

arbitrary noise function. Very recently, Lachaux et al. (2020) studied denoising pre-training

using a large-scale source code collection aiming at unsupervised program translation and

found the approach useful.

This raises a natural question, can we unify pre-training for programming and natural

language? Presumably, to facilitate such pre-training, we need unlabeled NL text that is

relevant to software development. Note that unlike other bimodal scenarios (e.g., vision

and language), PL and associated NL text share the same alphabet or uses anchor tokens

(e.g., “sort”, “list”, “tuple” as shown in Figure 6.2) that can help to learn alignment between
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Java Python NL
All Size 352 GB 224 GB 79 GB
All - Nb of tokens 36.4 B 28 B 6.7 B
All - Nb of documents 470 M 210 M 47 M

Table 6.4: Statistics of the data used to pre-train PLBART. “Nb of documents” refers to
the number of functions in Java and Python collected from Github and the number of
posts (questions and answers) in the natural language (English) from StackOverflow.

semantic spaces across languages.

We introduce PLBART (Program and Language BART), a bidirectional and autore-

gressive transformer pre-trained on unlabeled data across PL and NL to learn multilingual

representations applicable to a broad spectrum of PLUG applications. We evaluate

PLBART on code summarization, generation, translation, program repair, clone detection,

and vulnerability detection tasks. Experiment results show that PLBART outperforms or

rivals state-of-the-art methods, e.g., CodeBERT and GraphCodeBERT, demonstrating its

promise on program understanding and generation. We perform a thorough analysis to

demonstrate that PLBART learns program syntax, logical data flow that is indispensable

to program semantics, and excels even when limited annotations are available. We release

our code11 to foster future research.

6.3.1 Denoising Pre-training

PLBART uses denoising sequence-to-sequence pre-training to utilize unlabeled data in

PL and NL. Such pre-training lets PLBART reason about language syntax and semantics.

At the same time, PLBART learns to generate language coherently.

6.3.1.1 Pre-training PLBART

Data & pre-processing We pre-train PLBART on a large-collection of Java and

Python functions and natural language descriptions from Github and StackOverflow,

respectively. We download all the GitHub repositories associated with Java and Python

11https://github.com/wasiahmad/PLBART
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PLBART Encoder Input PLBART Decoder Output

Is 0 the [MASK] Fibonacci [MASK] ? <En> <En> Is 0 the first Fibonacci number ?

public static main ( String args [ ] ) { date =
Date ( ) ; System . out . ( String . format ( "
Current Date : % tc " , ) ) ; } <java>

<java> public static void main ( String args [ ]
) { Date date = new Date ( ) ; System . out .
printf ( String . format ( " Current Date : % tc
" , date ) ) ; }

def addThreeNumbers ( x , y , z ) : NEW_LINE
INDENT return [MASK] <python>

<python> def addThreeNumbers ( x , y , z ) :
NEW_LINE INDENT return x + y + z

Table 6.5: Example encoder inputs and decoder outputs during denoising pre-training
of PLBART. We use three noising strategies: token masking, token deletion, and token
infilling (shown in the three examples, respectively).

languages available on Google BigQuery.12 We extract the Java and Python functions

following the pre-processing pipeline from Lachaux et al. (2020). We collect the StackOver-

flow posts (include both questions and answers, exclude code snippets) by downloading

the data dump (date: 7th September 2020) from stackexchange.13 Statistics of the pre-

training dataset are presented in Table 6.4. We tokenize all the data with a sentencepiece

model (Kudo and Richardson, 2018) learned on 1/5’th of the pre-training data. We train

sentencepiece to learn 50,000 subword tokens.

One key challenge to aggregate data from different modalities is that some modalities

may have more data, such as we have 14 times more data in PL than NL. Therefore, we

mix and up/down sample the data following Conneau and Lample (2019) to alleviate

the bias towards PL. We sample instances for pre-training according to a multinomial

distribution with probabilities (q1, q2, . . . , qN):

qi =
1

pi
· pαi∑N

j=1 p
α
j

, pi =
ni∑N
j=1 nj

,

where N is the total number of languages and ni is the total number of instances in

language i. We set the smoothing parameter α to 0.3.

12https://console.cloud.google.com/ marketplace/details/github/github-repos

13https://archive.org/download/stackexchange

93



PLBART Encoder Input PLBART Decoder Input

S def maximum (a , b , c) : NEW_LINE INDENT
return max ( [ a , b , c ] ) <python> <En> Find the maximum of three numbers

G Find the maximum of three numbers <En>
<java> public int maximum ( int a , int b , int c
) { return Math . max ( a , Math . max ( b , c )
) }

T
public int maximum ( int a , int b , int c ) {
return Math . max ( a , Math . max ( b , c ) ) }
<java>

<python> def maximum (a , b , c) : NEW_LINE
INDENT return max ( [ a , b , c ] )

Table 6.6: Example inputs to the encoder and decoder for fine-tuning PLBART on sequence
generation tasks: source code summarization (S), generation (G), and translation (T).

Architecture PLBART uses the same architecture as BARTbase (Lewis et al., 2020a),

it uses the sequence-to-sequence Transformer architecture (Vaswani et al., 2017), with

6 layers of encoder and 6 layers of decoder with model dimension of 768 and 12 heads

(∼140M parameters). The only exception is, we include an additional layer-normalization

layer on top of both the encoder and decoder following Liu et al. (2020), which is found

to stabilize training with FP16 precision.

Noise function, f In denoising autoencoding, a model learns to reconstruct an input

text that is corrupted by a noise function. Reconstruction of the original input requires the

model to learn language syntax and semantics. In this work, we use three noising strategies:

token masking, token deletion, and token infilling (Lewis et al., 2020a). According to

the first two strategies, random tokens are sampled and replaced with a mask token or

deleted from the input sequence. In token infilling, a number of text spans are sampled

and replaced with a single mask token. The span lengths are drawn from a Poisson

distribution (λ = 3.5). We mask 35% of the tokens in each instance.

Input/Output Format The input to the encoder is a noisy text sequence, while the

input to the decoder is the original text with one position offset. A language id symbol

(e.g., <java>, <python>) is appended and prepended to the encoder and decoder inputs,

respectively. We provide a few examples in Table 6.5. The input instances are truncated

if they exceed a maximum sequence length of 512.
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Learning PLBART is pre-trained on N languages (in our case, N=3), where each

language Ni has a collection of unlabeled instances Di = {x1, . . . , xni
}. Each instance

is corrupted using the noise function f and we train PLBART to predict the original

instance x from f(x). Formally, PLBART is trained to maximize Lθ:

Lθ =
N∑
i=1

mi∑
j=1

logP (xj|f(xj); θ)

where mi is the number of sampled instances in language i and the likelihood P is

estimated following the standard sequence-to-sequence decoding.

Optimization We train PLBART on 8 Nvidia GeForce RTX 2080 Ti GPUs for 100K

steps. The effective batch size is maintained at 2048 instances. We use Adam (ε = 1e-6,

β2 = 0.98) with a linear learning rate decay schedule for optimization. We started the

training with dropout 0.1 and reduced it to 0.05 at 50K steps and 0 at 80K steps. This

is done to help the model better fit the data (Liu et al., 2020). The total training time

was approximately 276 hours (11.5 days). All experiments are done using the Fairseq

library (Ott et al., 2019).

6.3.1.2 Fine-tuning PLBART

We fine-tune PLBART for two broad categories of downstream applications.

Sequence Generation PLBART has an encoder-decoder architecture where the de-

coder is capable of generating target sequences autoregressively. Therefore, we can directly

fine-tune PLBART on sequence generation tasks, such as code summarization, generation,

and translation. Unlike denoising pre-training, the source sequence is given as input

to the encoder during fine-tuning, and the decoder generates the target sequence. The

source and target sequence can be a piece of code or text sequence. Table 6.6 shows a few

examples of input and output to and for PLBART for different generation tasks. Note

that PLBART prepends a language id to the decoded sequence; it enables fine-tuning
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Task Dataset Language Train Valid Test

Summarizaion Husain et al. (2019)

Ruby 24,927 1,400 1,261
Javascript 58,025 3,885 3,291
Go 167,288 7,325 8,122
Python 251,820 13,914 14,918
Java 164,923 5,183 10,955
PHP 241,241 12,982 14,014

Generation Iyer et al. (2018) NL to Java 100,000 2,000 2,000

Translation
Code-Code (Lu et al., 2021) Java to C# 10,300 500 1,000

C# to Java 10,300 500 1,000
Program Repair Javasmall 46,680 5,835 5,835
(Tufano et al., 2019) Javamedium 52,364 6,545 6,545

Classification

Vulnerability Detection C/C++ 21,854 2,732 2,732(Zhou et al., 2019)
Clone Detection Java 100,000 10,000 415,416(Wang et al., 2020)

Table 6.7: Statistics of the downstream benchmark datasets.

PLBART in a multilingual setting (e.g., code generation in multiple languages).14

Sequence Classification We fine-tune PLBART on sequence classification tasks fol-

lowing Lewis et al. (2020a). The input sequence is fed into both the encoder and decoder.

For a pair of inputs, we concatenate them but insert a special token (“</s>”) between

them. A special token is added at the end of the input sequence. This last token’s

representation from the final decoder layer is fed into a linear classifier for prediction.

Optimization We fine-tune PLBART for a maximum of 100K steps on all the down-

stream tasks with 2500 warm-up steps. We set the maximum learning rate, effective batch

size, and dropout rate to 3e-5, 32 and 0.1, respectively. The final models are selected

based on the validation BLEU (in generation task) or accuracy (in classification tasks).

Fine-tuning PLBART is carried out in one Nvidia GeForce RTX 2080 Ti GPU.
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6.3.2 Experiments Setup

To understand PLBART’s performance in a broader context, we evaluate PLBART on

several tasks. Our evaluation focuses on assessing PLBART’s ability to capture rich

semantics in source code and associated natural language text.

6.3.2.1 Evaluation Tasks

We divide the evaluation tasks into four categories. The evaluation task datasets are

summarized in Table 6.7. We use CodeXGLUE (Lu et al., 2021) provided public dataset

and corresponding train-validation-test splits for all the tasks.

Code Summarization refers to the task of generating a natural language (English)

summary from a piece of code. We fine-tune PLBART on summarizing source code

written in six different programming languages, namely, Ruby, Javascript, Go, Python,

Java, and PHP.

Code Generation is exactly the opposite of code summarization. It refers to the task

of generating a code (in a target PL) from its NL description. We fine-tune PLBART on

the Concode dataset (Iyer et al., 2018), where the input is a text describing class member

functions in Java and class environment, the output is the target function.

Code Translation requires a model to generate an equivalent code in the target PL

from the input code written in the source PL. Note that the source and target PL can be

the same. Hence, we consider two types of tasks in this category.

The first task is a typical PL translation task, translating a code i.e., from Java code

to C#, and vice versa. In this task, the semantic meaning of the translated code should

exactly match the input code. Thus, this task evaluates PLBART’s understanding of

program semantics and syntax across PL. The second task we consider is program repair.

14We do not perform multilingual fine-tuning in this work.
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In this task, the input is a buggy code, and the output is a modified version of the same

code which fixes the bug. This task helps us understand PLBART’s ability to understand

code semantics and apply semantic changes in the code.

Code Classification aims at predicting the target label given a single or a pair of

source code. We evaluate PLBART on two classification tasks. The first task is clone

detection, where given a pair of code, the goal is to determine whether they are clone

of each other (similar to paraphrasing in NLP). The second task is detecting whether a

piece of code is vulnerable. This task help us gauging PLBART’s effectiveness in program

understanding in an unseen PL since the code examples in this task are written in C/C++.

6.3.2.2 Evaluation Metrics

BLEU computes the n-gram overlap between a generated sequence and a collection of

references. We use corpus level BLEU (Papineni et al., 2002) score for all the generation

tasks, except code summarization where we use smoothed BLEU-4 score (Lin and Och,

2004) following Feng et al. (2020).

CodeBLEU is a metric for measuring the quality of the synthesized code (Ren et al.,

2020). Unlike BLEU, CodeBLEU also considers grammatical and logical correctness based

on the abstract syntax tree and the data-flow structure.

Exact Match (EM) evaluates if a generated sequence exactly matches the reference.

6.3.2.3 Baseline Methods

We compare PLBART with several state-of-the-art models and broadly divide them into

two categories. First, the models that are trained on the evaluation tasks from scratch,

and second, the models that are pre-trained on unlabeled corpora and then fine-tuned on

the evaluation tasks.
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Methods Ruby Javascript Go Python Java PHP Overall
Seq2Seq 9.64 10.21 13.98 15.93 15.09 21.08 14.32
Transformer 11.18 11.59 16.38 15.81 16.26 22.12 15.56
RoBERTa 11.17 11.90 17.72 18.14 16.47 24.02 16.57
CodeBERT 12.16 14.90 18.07 19.06 17.65 25.16 17.83
PLBART 14.11 15.56 18.91 19.30 18.45 23.58 18.32

Table 6.8: Results on source code summarization, evaluated with smoothed BLEU-4 score.
The baseline results are reported from Feng et al. (2020).

Training from Scratch

Seq2Seq (Luong et al., 2015b) is an LSTM based Seq2Seq model with attention

mechanism. Vocabulary is constructed using byte-pair encoding.

Transformer (Vaswani et al., 2017) is the base architecture of PLBART and other

pre-trained models. Transformer baseline has the same number of parameters as PLBART.

Hence, a comparison with this baseline demonstrates the direct usefulness of pre-training

PLBART.

Pre-trained Models

PLBART consists of an encoder and autoregressive decoder. We compare PLBART on

two categories of pre-trained models. First, the encoder-only models (e.g., RoBERTa,

CodeBERT, and GraphCodeBERT) that are combined with a randomly initialized decoder

for task-specific fine-tuning. The second category of baselines include decoder-only models

(CodeGPT) that can perform generation autoregressively.

RoBERTa, RoBERTa (code) are RoBERTa (Liu et al., 2019c) model variants.

While RoBERTa is pre-trained on natural language, RoBERTa (code) is pre-trained on

source code from CodeSearchNet (Husain et al., 2019).

CodeBERT (Feng et al., 2020) combines masked language modeling (MLM) (Devlin

et al., 2019) with replaced token detection objective (Clark et al., 2020) to pretrain a

Transformer encoder.
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Methods EM BLEU CodeBLEU
Seq2Seq 3.05 21.31 26.39
Guo et al. (2019) 10.05 24.40 29.46
Iyer et al. (2019) 12.20 26.60 -
GPT-2 17.35 25.37 29.69
CodeGPT-2 18.25 28.69 32.71
CodeGPT-adapted 20.10 32.79 35.98
PLBART 18.75 36.69 38.52
PLBART10K 17.25 31.40 33.32
PLBART20K 18.45 34.00 35.75
PLBART50K 17.70 35.02 37.11

Table 6.9: Results on text-to-code generation task using the CONCODE dataset (Iyer
et al., 2018).

GraphCodeBERT (Guo et al., 2021) is a concurrent work with this research which

improved CodeBERT by modeling the data flow edges between code tokens. We report

GraphCodeBERT’s performance directly from the paper since their implementation is

not publicly available yet.

GPT-2, CodeGPT-2, and CodeGPT-adapted are GPT-style models. While GPT-

2 (Radford et al., 2019) is pretrained on NL corpora, CodeGPT-2 and CodeGPT-adapted

are pretrained on CodeSearchNet (Lu et al., 2021). Note that, CodeGPT-adapted starts

from the GPT-2 checkpoint for pre-training.

6.3.3 Results & Analysis

We aim to address the following questions.

1. Does PLBART learn strong program and language representations from unlabeled

data?

2. Does PLBART learn program characteristics, e.g., syntax, style, and logical data

flow?

3. How does PLBART perform in an unseen language with limited annotations?
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Input text: returns the count to which the specified key is mapped in this frequency
counter , or 0 if the map contains no mapping for this key .

(a) Reference Code

1 Integer function (T arg0) {
2 Integer loc0 = counter.get(arg0);
3 if (loc0 == null) {
4 return 0 ;
5 }
6 return loc0;
7 }

(b) Generated Code

1 int function (T arg0) {
2 Integer loc0 = counter.get(arg0);
3 if (loc0 == null) {
4 return 0 ;
5 }
6 else {
7 return loc0;
8 }
9 }

Figure 6.3: An example of generated code by PLBART that is syntactically and semanti-
cally valid, but does not match the reference.

6.3.3.1 Code Summarization

Table 6.8 shows the result of code summarization. PLBART outperforms the baseline

methods in five out of the six programming languages with an overall average improvement

of 0.49 BLEU-4 over CodeBERT. The highest improvement (∼16%) is in the Ruby

language, which has the smallest amount of training examples. Unlike CodeBERT,

PLBART is not pretrained on the Ruby language; however, the significant performance

improvement indicates that PLBART learns better generic program semantics. In contrast,

PLBART performs poorly in the PHP language. The potential reason is syntax mismatch

between the pre-trained languages and PHP. Surprisingly, RoBERTa performs better

than PLBART on the PHP language. We suspect that since RoBERTa is pre-trained

on natural language only, it does not suffer from the syntax mismatch issue. Overall

in comparison to the Transformer baseline, PLBART improves with an average of 2.76

BLEU-4, and we credit this improvement to the pre-training step.
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Methods Java to C# C# to Java
BLEU EM CodeBLEU BLEU EM CodeBLEU

Naive Copy 18.54 0 34.20 18.69 0 43.04
PBSMT 43.53 12.50 42.71 40.06 16.10 43.48
Transformer 55.84 33.00 63.74 50.47 37.90 61.59
RoBERTa (code) 77.46 56.10 83.07 71.99 57.90 80.18
CodeBERT 79.92 59.00 85.10 72.14 58.80 79.41
GraphCodeBERT 80.58 59.40 - 72.64 58.80 -
PLBART 83.02 64.60 87.92 78.35 65.00 85.27

Table 6.10: Results on source code translation using Java and C# language dataset
introduced in (Lu et al., 2021). PBSMT refers to phrase-based statistical machine
translation where the default settings of Moses decoder (Koehn et al., 2007) is used. The
training data is tokenized using the RoBERTa (Liu et al., 2019c) tokenizer.

6.3.3.2 Code Generation

Table 6.9 shows the evaluation result on code generation from NL description. PLBART

outperforms all the baselines in terms of BLEU and CodeBLEU. While CodeGPT-

adapted Lu et al. (2021) achieves the best Exact Match (EM) score, PLBART outperforms

CodeGPT-adapted by a large margin in terms of CodeBLEU. This result implies that

PLBART generates significantly more syntactically and logically correct code than all the

baselines.

Figure 6.3 shows an example of code generated by PLBART. The difference between

the reference code and the generated code is in line 6 onward. In the reference code, loc0

is returned, however same loc0 is returned in an else block in the generated code. If we

look closely, in the reference code, line 6 will be executed only if the condition in line 3

(i.e., loc0 == null) is false. In the generated code, loc0 will be returned only if the

condition in line 3 is false, making the generated code semantically equivalent to the

reference code.

To study whether PLBART learns code syntax and logical flow during pre-training or

fine-tuning, we perform an ablation study where we use subset of the training examples

(10K, 20K, and 50K) to fintune PLBART in this task. As table 6.9 shows, with only

10K examples, PLBART outperforms all baselines in terms of CodeBLUE. This ablation
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shows that PLBART learns program syntax and data flow during pre-training, resulting

in effective performance on downstream tasks even when finetuned on small number of

examples.

As shown in prior works Yin and Neubig (2017); Chakraborty et al. (2020), generating

syntactically and logically correct code has been a big challenge in program generation.

We conjecture that PLBART’s large-scale denoising sequence-to-sequence pre-training

helps understand program syntax and logical flow; therefore enables PLBART to generate

syntactically and logically valid code.

6.3.3.3 Code Translation

Table 6.10 presents the evaluation results on code translation. PLBART outperforms all

the baselines w.r.t. EM, BLEU, and CodeBLEU. PLBART improves over CodeBERT

by 9.5% and 10.5% when translating from Java to C# and C# to Java, respectively.

Although PLBART is not pretrained on C# language, there is a significant syntactic and

semantic similarity between Java and C#. Thus PLBART understands C# language

syntax and semantics. However, such similarities are non-trivial, making the Naive copy

and PBSMT perform very poorly in both the translation tasks.

Figure 6.4 shows an example where PLBART’s generated C# code does not exactly

match the reference; however, they are semantically equivalent. In the reference, the

else block (line 4-9) is equivalent to the else if block (line 4-7) in the generated code.

In addition, start is generated as function parameter and used in the function body,

equivalent to start_1 in the reference code. This further corroborates the syntactic

understanding of PLBART and its ability to reason about the data flow in source code.

In the program repair task, both the input and the output are in the same language.

While the input is a buggy code, the output should be the target bug-free code. Thus

in this task, the exact match is the critical metric. Nevertheless, as shown in table 6.11,

PLBART can generate 17.13%, and 74.03% more correct bug fixes than CodeBERT in

Javasmall and Javamedium datasets, respectively. On the other hand, PLBART performs

103



(a) Reference Code : C#

1 public bool find(int start_1 ){
2 findPos = start_1;
3 ...
4 else{
5 if (findPos >= _regionEnd ){
6 matchFound = false;
7 return false;
8 }
9 }

10 ...
11 }

(b) Generated Code : C#

1 public bool find(int start){
2 findPos = start;
3 ...
4 else if (findPos >= _regionEnd ){
5 matchFound = false;
6 return false;
7 }
8 ...
9 }

Figure 6.4: Example C# code generated by PLBART that does not exactly match the
reference code.

comparably to GraphCodeBERT that uses structure-aware pre-training to learn program

syntax and semantics.

6.3.3.4 Classification

In both clone detection and the vulnerability detection tasks, PLBART outperforms

CodeBERT. We present the results in Table 6.12. In the vulnerability detection task, code

semantics is the most critical feature Zhou et al. (2019); Chakraborty et al. (2020). Since

PLBART is not pretrained on C/C++ language, its improved performance compared to

the Transformer baseline is the testament that PLBART can identify semantics beyond the

language syntax’s specifics. Moreover, PLBART’s improved performances over CodeBERT

and GraphCodeBERT confirms its effectiveness in program understanding in addition to

its generation ability.

We acknowledge that neither PLBART nor CodeBERT is state-of-the-art in vulnera-

bility detection, as graph-based models perform best in this task. In this evaluation, our

104



Methods Small Medium
EM BLEU EM BLEU

Naive Copy 0 78.06 0 90.91
Seq2Seq 10.00 76.76 2.50 72.08
Transformer 14.70 77.21 3.70 89.25
CodeBERT 16.40 77.42 5.16 91.07
GraphCodeBERT 17.30 80.58 9.10 72.64
PLBART 19.21 77.02 8.98 88.50

Table 6.11: Results on program repair (in Java).

Tasks Vulnerability Clone
Detection Detection

Transformer 61.64 -
CodeBERT 62.08 96.5
GraphCodeBERT - 97.1
PLBART 63.18 97.2

Table 6.12: Results on the vulnerable code detection (accuracy) and clone detection (F1
score) tasks.

goal is to study how well PLBART understands program semantics in an unseen language

for a different type of task (other than the generation, i.e., classification).

6.3.4 Related Work

Transformer (Vaswani et al., 2017), a sequence-to-sequence architecture that includes

an encoder and decoder, has shown tremendous promise in natural language processing

(NLP), computer vision, software engineering, and more. Devlin et al. (2019) first proposed

to pre-train a large Transformer architecture, called BERT, to learn representations of

natural language using large-scale unlabeled data in a self-supervised fashion. Later,

BERT’s task-independent pre-training approach is rigorously studied (Devlin et al., 2019;

Liu et al., 2019c; Solaiman et al., 2019; Feng et al., 2020; Sun et al., 2019b; Li et al.,

2020). While BERT-like models have shown effectiveness in learning contextualized

representation, it is not very useful in generation tasks. GPT (Radford et al., 2018)

style models improve upon BERT for generative tasks with autoregressive pre-training;

however, unlike BERT, they are not bidirectional. Lewis et al. (2020a) introduced BART,

105



a denoising autoencoder that uses a bidirectional encoder and an auto-regressing decoder.

Similar to BART, PLBART uses denoising pre-training to cope with generative tasks and

learns multilingual representations of programming and natural language jointly.

6.4 Summary

This chapter studied representation learning using unlabeled data. Specifically, we

leverage unlabeled language resources for adversarial training and denoising pre-training

to induce language-agnostic encoders to improve the performances of the cross-lingual

transfer in downstream tasks. To make cross-lingual dependency parsing more robust

and generalizable, we presented an adversarial training framework by using English as

the source language and unlabeled resources from six foreign languages. Experiments

and analysis not only show improvements on cross-lingual parsing, but also demonstrates

that contextual encoders successfully learns not to capture language-dependent features

through adversarial training. This study opens up the opportunity to investigate the

effectiveness of adversarial training for multi-source transfer parsing and other cross-lingual

NLP applications.

This chapter also presents PLBART, a sizeable sequence-to-sequence model pre-trained

on a large collection of unlabeled programming and natural language data that can perform

program and language understanding and generation tasks. PLBART achieves state-of-

the-art performance on various downstream software engineering tasks, including code

summarization, code generation, and code translation. Furthermore, experiments on

discriminative tasks establish PLBART’s effectiveness on program understanding. We

also show that PLBART learns crucial program characteristics due to pre-training, such

as syntax, identifier naming conventions, data flow. In the future, we want to explore

ways to fine-tune PLBART on all the downstream tasks jointly.
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CHAPTER 7

Conclusion and Future Work

Cross-lingual representation learning has emerged as an indispensable ingredient to avail

modern NLP applications in a broad spectrum of languages. However, it is challenging

to utilize such representations in the target languages since no or limited supervision is

available. This dissertation discussed challenges in cross-lingual representation learning

and presented several approaches to improve the robustness and generalizability of

such representations to facilitate the cross-lingual transfer. Figure 7.1 summarizes the

contributions made in this dissertation.

7.1 Summary of Contributions

The world is well connected nowadays, and people seek information about events taking

place around the world. Therefore, a multilingual NLP system that extracts and processes

news and stories in different languages can facilitate information dissemination around

the globe. Chapter 1 of this dissertation motivates the need to learn multilingual

representations to build NLP systems capable of processing information provided in

multiple languages. We discuss the limitations of multilingual NLP via supervised

learning; it requires annotated resources in all the target languages. To remedy the lack of

resources in most languages of today’s world, we emphasize transfer learning by utilizing

resources available in popular languages like English. We also provide the reasoning

behind representation learning for cross-lingual transfer.

In chapter 2, we present the brief history of vector-based representation learning for

NLP. To lay the groundwork, we discuss several approaches to learning distributed and
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Figure 7.1: Summary of contributions made in the dissertation. Different chapters
demonstrated the challenges in cross-lingual representation learning due to word order
differences across languages (Chapter 3), how universal dependencies can be utilized
to enhance representation learning (Chapter 4) and pre-trained multilingual encoders
(Chapter 5) for cross-lingual transfer, and how such representations can be learned or
improved by using unlabeled data (Chapter 6).

contextualized representations. The second half of the chapter presents cross-lingual

counterparts of the representation learning approaches. Then we discuss how unlabeled

monolingual resources and other available linguistic resources are utilized to facilitate

cross-lingual representation learning. The chapter ended by discussing the pros and cons

of training deep neural network structures to encode natural language and transfer them

across languages.

In chapter 3, we discuss the challenge in modeling word order to tackle the typological

differences across languages. We particularly address the question, what type of neural

architectures are suitable to learn transferable representations given that the source

and target languages are closer or distant from each other? We perform a thorough

study on the two preeminent neural architectures, Recurrent Neural Networks (RNNs)

and Self-Attention mechanism as the cross-lingual representation learning encoders. We

showed that the Self-Attention mechanism that is less susceptible to word order performs
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better when the source and target languages are distant to each other and vice versa. We

quantify the distance between two languages based on the differences in word order. We

chose dependency parsing task as the test bed since word order typology significantly

influences the task. To further improve cross-lingual transfer, we propose to discard

directional information while encoding word positions in sentences so that the Self-

Attention mechanism can adapt to the word order variances of distant target languages.

The next chapter shows that leveraging the universal dependency structure in learning

contextual representations improves cross-lingual relation and event extraction. Specifi-

cally, we present a Graph Attention Transformer Encoder (GATE) to learn contextual

representations by encoding the dependency structure of the input sequence. GATE

modifies the self-attention mechanism in the Transformer encoder as it uses the pair-

wise syntactic distances between words to weigh the attention score. Experiments show

that GATE is less sensitive to language word order and thus suitable to transfer across

typologically diverse languages, e.g., English to Arabic.

While prior works showed that multilingual language encoder, mBERT learns composi-

tional features during pre-training that mimick universal dependency structure, in chapter

5, we argue that it is necessary to force mBERT to embed the dependency structure

while fine-tuning on the downstream tasks in the source language. We propose a fusion

technique to add syntax-bias to the self-attention mechanism. The underlying idea is to

guide the self-attention mechanism to attend tokens with a specific part-of-speech tag

sequence or dependencies. To augment mBERT with syntax information, an auxiliary

objective is adopted when mBERT performs the downstream task during fine-tuning.

The chapter ends with discussion on the limitations and the scope for future works.

In chapter 6, we advocate the use of unlabeled resources to make multilingual represen-

tations robust and transferable across languages. Since there is a scarcity of annotations

for low-resource languages, we can collect corpora of unlabeled sentences. Given such

corpora, one fundamental research question is how we can improve the cross-lingual

transferability of the language encoders? We design an adversarial training framework to

make multilingual encoders language-agnostic, resulting in effective cross-lingual transfer.
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We extend our study on using unlabeled data in NLP to benefit software engineering

applications by jointly pre-training language models on natural and programming lan-

guages. The language model achieved state-of-the-art performances on several software

engineering tasks.

7.2 Future Work

There are several research questions in cross-lingual representation learning that demand

further research; we briefly discuss a few of them.

Modeling word order for transfer learning. This dissertation showed that the

self-attention mechanism outperforms recurrent neural networks in cross-lingual transfer

between distant language pairs, e.g., English – Arabic, English – Hindi. Our proposal of

dropping the directional information while encoding word position in sentences improved

transfer performances further. Many recent works proposed different positional encoding

mechanisms and showed improvements in many applications, e.g., machine translation

(Cooper Stickland et al., 2021; Liu et al., 2021). However, it is still an open question

about how to model word positions such that the typological differences between target

and source languages minimize. It is particularly challenging in the zero-shot setting

where there are no labeled resources for the target languages. In such a setting, utilization

of databases of structural properties of languages could benefit modeling word positions,

such as WALS1. It has been shown that effective modeling of word order can benefit many

NLP applications; however, it is still unknown how much typological differences affect

different NLP applications. Since benchmark datasets are now available in a wide range

of languages for many NLP applications, it is high time to study the effect of word order

modeling in cross-lingual transfer.

1https://wals.info/
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Role of language syntax in improving alignment of multilingual contextual

word representations. Pre-trained multilingual language encoders, such as multi-

lingual BERT Devlin et al. (2019) and XLM-R Conneau et al. (2020), demonstrate

noteworthy performance on zero-shot cross-lingual transfer for many downstream appli-

cations. These language encoders learn a shared contextual embedding space; represent

word pairs in parallel sentences with similar contextual representations. However, they

lack when the source and target languages are less similar at levels of morphology, syntax,

and semantics. Recent studies Cao et al. (2020); Pan et al. (2021); Dou and Neubig (2021)

have shown that aligning the representations of different languages in the multilingual

embedding space plays an important role in zero-shot cross-lingual transfer learning.

Most of these works use parallel data to further fine-tune the encoders to learn language

alignment. Since languages have universal dependency structure, it would interesting to

investigate the role of language syntax in learning cross-lingual alignment.

Representation learning across domains. The challenges in cross-lingual represen-

tation learning are not limited to tackling the differences between languages at levels of

morphology, syntax, and semantics. A big challenge in natural language processing is

understanding the use of language in different domains, such as social media. In social

networks, often a user uses code-mixed language; mixed up two or more languages in

the same conversation. Also, non-English users often write sentences in their native

language but using the English alphabet. For example, “Se tar kajer prothom ongsho

sesh koreche.” (translates to “He finished the part of his work.”). Different domains pose

different challenges in learning representations, and cross-lingual representation learning

techniques should account for those challenges too.
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