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Topological quantum synchronization of fractionalized spins

Christopher W. Wächtler1, ∗ and Joel E. Moore1, 2

1Department of Physics, University of California, Berkeley, California 94720, USA
2Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

(Dated: May 20, 2024)

The gapped symmetric phase of the Affleck-Kennedy-Lieb-Tasaki (AKLT) model exhibits frac-
tionalized spins at the ends of an open chain. We show that breaking SU(2) symmetry and applying
a global spin-lowering dissipator achieves synchronization of these fractionalized spins. Additional
local dissipators ensure convergence to the ground state manifold. In order to understand which
aspects of this synchronization are robust within the entire Haldane-gap phase, we reduce the bi-
quadratic term which eliminates the need for an external field but destabilizes synchronization.
Within the ground state subspace, stability is regained using only the global lowering dissipator.
These results demonstrate that fractionalized degrees of freedom can be synchronized in extended
systems with a significant degree of robustness arising from topological protection. A direct con-
sequence is that permutation symmetries are not required for the dynamics to be synchronized,
representing a clear advantage of topological synchronization compared to synchronization induced
by permutation symmetries.

Introduction.—From neuroscience to chemical reac-
tions, synchronization emerges in an impressively vast
variety of seemingly unrelated systems [1–5] and despite
its long history continues to be crucial for the develop-
ment of modern technology [6–13]. In the past decade,
the concept of synchronization has been generalized to
the quantum regime with studies ranging from classi-
cally inspired systems like nonlinear oscillators [14–31]
to systems without any classical counterpart like spins
[32–36]. Mutual synchronization and forced synchroniza-
tion have been examined with surprising effects that are
absent in the classical regime, such as for example the
phenomenon of synchronization blockade of two identi-
cal systems [37, 38], which has recently also been verified
experimentally [39]. Promising applications of quantum
synchronization range from quantum information [40–43]
to quantum thermodynamics [44–46].

One approach to synchronization – followed in partic-
ular in the study of quantum many-body systems – is
in terms of persistently oscillating eigenmodes of time-
independent quantum master equations [35, 47, 48]. The
existence of such eigenmodes is intimately related to dy-
namical symmetries [47–49], which together with permu-
tation symmetries allow for synchronized dynamics of
local observables. An illustrative example investigated
in Ref. [47] is a 3-site Hamiltonian which non-trivially
couples three spin-1/2 particles, is reflection symmetric
about the central site, and conserves total magnetization.
Dissipation acting locally on the central spin forces it to
be in the spin-down state. As a consequence, there are
two steady states of the master equation, where the two
remaining spins are both spin-down or form a singlet.
These two pure states form a decoherence-free subspace
[50] such that coherent oscillations between these two
states are possible even in this dissipative setup. Start-
ing in an initial state that has non-vanishing overlap with
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both the singlet and the both-down state, results (after
a short transient time) in perfectly anti-synchronized os-
cillations of the local transverse spin of the non-central
sites 2 and 3, i.e., ⟨σx

2(t)⟩ = − ⟨σx
3(t)⟩. They are anti-

synchronized because the singlet state is anti-symmetric
upon reflection while the spin-down state is symmetric.
In the corresponding Bloch sphere representation, the
central spin rapidly decays to the south pole, while the
other two spins reach the same limit cycle within the
Bloch sphere (parallel to the x-y-plane) which they orbit
perfectly out of phase.

In this Letter we investigate whether a similar strategy
can be exploited to synchronize the fractionalized spin-
1/2 degrees of freedom localized at the open ends of a
spin-1 AKLT chain [51–53]. By applying dissipation that
acts globally on all sites, we show that lifting the ground
state degeneracy through a small external magnetic field
leads to stable synchronization of the fractionalized spins.
In that case, local spin-1 observables at the ends are per-
fectly anti-synchronized with amplitudes that reflect the
topological edge states, i.e. they are exponentially local-
ized at the boundaries. In addition we show that quasi-
local dissipators acting on two neighboring sites that dis-
sipate the energetically lowest state of the total spin S = 2
subspace are sufficient to depopulate the whole excited
subspace and remove unwanted additional oscillations.
The observed synchronization is of topological nature as
the underlying mechanism relies on the fractionalization
of the spin degrees of freedom and is thus topologically
protected by the Z2 ×Z2 symmetry of the AKLT states.
Consequently, the observed synchronization is robust to
perturbations that break the inversion (or permutation)
symmetry, which can induced additional dissipation and
eliminate long-lasting synchronized dynamics. Lastly, we
show that if the fractionalized spins are allowed to in-
teract by decreasing the biquadratic term of the AKLT
Hamiltonian, stable synchronization within the ground
state manifold of the Haldane-gap phase is still possible
even without external magnetic field if one only consid-
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ers a global spin lowering dissipator. This demonstrates
that the dynamic response depends on the microscopic
details of systems even though they belong to the same
symmetry protected topological phase.

Synchronization model.—We consider the open spin-1
AKLT chain of size N with an additional external mag-
netic field B yielding the Hamiltonian

H = N−1∑
j=1 [

1

2
S⃗j ⋅ S⃗j+1 + 1

6
(S⃗j ⋅ S⃗j+1)2 + 1

3
] + B

N
Sz, (1)

where Sz = ∑N
j=1 Sz

j is the total magnetization. For
sufficiently small values of B, the Hamiltonian remains
gapped even if the chain size is increased, yet breaks
SU(2) symmetry (which will become important for syn-
chronization as we explain later). For B = 0 the ground
state is fourfold degenerate as a consequence of effective
spin-1/2 degrees of freedom that are localized at both
ends of the chain. The ground states of (1) can be con-
structed explicitly, e.g., in terms of Schwinger bosons [54]
or matrix product states [55–57]. As the spin-1/2 degrees
of freedom at the ends are exactly decoupled, there are
three ground states with total spin S = 1, where the two
dangling spin-1/2’s form a triplet state with Sz = 1,0,−1
and one with S = 0, where the dangling spin-1/2’s form
a singlet with Sz = 0. Thus, we may label the ground
states accordingly as ∣G1,1⟩, ∣G1,0⟩, ∣G1,−1⟩ and ∣G0,0⟩.
Note, that while a finite value of B partially lifts the
ground state degeneracy, the corresponding manifold is
still spanned by {∣GS,Sz⟩} as the total magnetization is
preserved; [H,Sz] = 0.

Synchronization is inherently connected to open sys-
tem dynamics because it requires dissipation in order to
reduce all potential dynamics to only the desired, syn-
chronized ones. To this end, we describe the system by
a time dependent density operator ϱ(t) acting on the
Hilbert space of the system H. We consider Markovian
dynamics such that the evolution may be described via
a Lindblad master equation [58, 59],

ϱ̇ = −i [H,ϱ] +∑
µ

(2LµϱL
†
µ − {L†

µLµ, ϱ}) = L[ϱ] , (2)

where Lµ denotes (for now unspecified) Lindblad oper-
ators. The Liouvillian superoperator L is the genera-
tor of a smooth, time-homogeneous, completely positive
and trace-preserving (CPTP) map (or quantum channel),
which obeys the semi-group property. The system dy-
namics described by Eq. (2) is guaranteed to have at
least one steady state ϱss such that L[ϱss] = 0 [58].

A sufficient and necessary condition for the existence
of an eigenstate ϱ = Aϱss of L with purely imaginary
eigenvalue λ = −iω, i.e., L[ϱ] = −iωϱ with ω ∈ R, is given
by [47]

[Lµ,A]ϱss = 0, (3)

⎛⎝−i [H,A] −∑µ [L†
µ,A]Lµ

⎞⎠ϱss = −iωAϱss. (4)

While Eqs. (3) and (4) guarantee the existence of persis-
tent oscillations in the long time limit, one usually de-
mands another condition for (anti-)synchronization [47].
Let Pjk be an operator that exchanges subsystem j with
k and let Pjk[x] = PjkxPjk. Then, if Pjk is a weak
symmetry of the Liouvillian, i.e [L,Pjk] = 0, and (anti-
)commutes with the operator A, PjkAPjk = ±A, then we
find stable synchronization (+) or anti-synchronization
(−) of the two local operators Oj and Ok if Tr [OjAϱss] ≠
0 and conditions (3) and (4) are fulfilled, that is after
some transient time τ

⟨Oj(t)⟩ = ± ⟨Ok(t)⟩ ∀t ≥ τ (5)

up to exponentially small corrections. In the example
referred to in the introduction the local transverse spin
of the non-central sites 2 and 3 will be perfectly anti-
synchronized, i.e., ⟨σx

2(t)⟩ = − ⟨σx
3(t)⟩ ∝ cos(ωt), where

the oscillation frequency ω depends on the specific choice
of Hamiltonian [47]. As we discuss later, the necessity
of permutation symmetry is omitted for topological syn-
chronization in the AKLT chain as long as the Z2 ×Z2 is
preserved.
In the following we first focus on the ground state man-

ifold and show how a single, globally acting dissipator
LG leads to the fulfilment of conditions (3)-(5) within
the ground state manifold and thus to stable synchro-
nization. In a second step we will then show that addi-
tional, locally acting dissipators force the dynamics into
the ground state manifold.

In order to find adequate dissipators such that Eqs. (3)
and (4) are fulfilled, we utilize the fractionalized spins
of the AKLT ground states: Since the triplet and sin-
glet states have different respective total spin S = 1 and
S = 0, a global lowering operator S− = ∑N

j=1 S−j leaves the

singlet state ∣G0,0⟩ invariant while lowering the magneti-
zation Sz of the triplet states. Repeated application of
S− will then force the population into the state with the
lowest weight, i.e., ∣G1,−1⟩, which is also invariant upon
acting with S−. Hence, a globally acting Lindblad dis-
sipator LG = √γS− with dissipation rate γ, establishes
two steady states of the master Eq. (2) given by the pure
states ϱ0 = ∣G0,0⟩ ⟨G0,0∣ and ϱ1 = ∣G1,−1⟩ ⟨G1,−1∣. Together
with the operator A = ∣G1,−1⟩ ⟨G0,0∣ conditions (3) and (4)
are fulfilled; in particular it holds that

L[ϱ10 = Aϱ0] = iB
N
ϱ10, L[ϱ01 = ϱ0A†] = −iB

N
ϱ01. (6)

Note, that ϱ1 = Aϱ0A†. We now also recognize that lift-
ing the ground state degeneracy is necessary to observe
synchronization, i.e., without the external magnetic field
in Eq. (1) the oscillation frequency would be zero.
Depopulating the excited states.—So far we have dis-

cussed how synchronization may arise within the ground
state manifold with the help of a dissipative channel in
terms of LG. However, in addition the excited states
need to be depopulated. This can be done either in a
two-step process where one prepares the ground state
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FIG. 1. Evolution of the local transverse spin ⟨Sx
j ⟩ of the synchronized AKLT model for an open chain of length N = 6 (sites

j = 1,2,3 in solid lines, sites j = 4,5,6 in dashed lines). (a) Starting from a random pure state, i.e., a vector of dimension 36 with
random complex amplitudes (we also investigated random mixed states with equivalent results), the two halves of the chain are
perfectly anti-synchronized with each other after a transient time because the dynamical symmetry operator A = ∣G1,−1⟩ ⟨G0,0∣
is anti-symmetric upon inversion of the chain. The (anti-)synchronized amplitudes after the transient time decay exponentially
into the bulk. (b) Same plot as in (a) but focusing on the early time dynamics: The random initial conditions result in
transient random spin dynamics. (c) The balanced superposition of ∣G0,0⟩ and ∣G1,−1⟩ as initial state is immune to dissipation
and maximizes the observed (anti-)synchronization amplitudes. The oscillation frequency is ω = B/N . Parameters: B = 0.2,
γ = κ = 0.2.
subspace first using established approaches [60–69] or
via depopulation during the dissipative evolution. As
a proof of principle, we here opt for the latter and con-
struct the simplest possible operators by exploiting that
the Hamiltonian (1) preserves total angular momentum.
In particular, for B = 0, each term in H can be writ-

ten as P
(2)
j,j+1, where P (2)j,j+1 denotes the projector of two

spin-1’s on sites j and j + 1 onto total spin-2. Hence,
the ground states are reached by driving two adjacent
spin-1 particles out of the S = 2 subspace. The previ-
ously introduced dissipative channel (LG = √γS−) forces
all population within the S = 2 subspace to eventually
reach the Sz = −2 state. Thus, we only need to depopu-
late these states to dissipatively reach the ground state
manifold. An exemplary choice is the Lindblad dissi-
pators Lj,j+1 = √κ ∣00⟩ ⟨−−∣j,j+1 written in the Sz basis

{∣+⟩ , ∣0⟩ , ∣−⟩}.
Synchronized dynamics.— Combining all Lindblad op-

erators, the dissipative evolution of the density matrix
which eventually leads to the synchronization of the frac-
tionalized spins is given by

ϱ̇ = −i [H,ϱ] + D [LG]ϱ + N−1∑
j=1 D [Lj,j+1]ϱ = L[ϱ] , (7)

where D [L]ϱ = 2LϱL† − {L†L,ϱ}. Its solution, given
that the system is initialized in the state ϱ(0), may be
expressed using the spectral decomposition of the Liou-
villian superoperator as

ϱ(t) = ∑
k

Ck exp (λkt)ϱk, (8)

where ϱk is the right eigenstate of L with correspond-
ing eigenvalue λk, i.e., L[ϱk] = λkϱk. As L is non-

Hermitian, the left eigenstates defined by L† [σk] = λ∗kσk
may differ from the right ones. However, it holds that

Tr(σ†
kϱk′) = δkk′ . The constant Ck in Eq. (8) denotes

the overlap of the eigenstates with the initial state ϱ(0),
i.e., Ck = Tr [σ†

kϱ(0)] . Note that because L generates a
CPTP map, the eigenvalues λk can lie only in the left
half of the complex plane with Re[λk] ≤ 0, and they al-
ways come in pairs, i.e., if λk is an eigenvalue, so is λ∗k.
All eigenstates of L with negative real part of the corre-
sponding eigenvalues will experience selective decay, and
only the ones which lie on the imaginary axis contribute
to the dynamics in the long time limit.

As discussed previously, the dynamics given by Eq. (7)
will eventually terminate in the decoherence-free sub-
space [50] spanned by {ϱ0, ϱ1, ϱ10, ϱ01}. Thus, the ex-
pectation value of some observable O is given by

lim
t→∞ ⟨O⟩ (t) =C0Tr (Oϱ0) +C1Tr (Oϱ1)

+ [eiBt/NC01 ⟨G0,0∣O∣G1,−1⟩ + c.c.] . (9)

Because the subspace is decoherence-free, Ci =
Tr[σ†

i ϱ(0)] = Tr[ϱ†
iϱ(0)]. In order to observe stable

synchronization, not only does the initial state need to
have non-vanishing overlap with the eigenstate ϱ01, but
also that the observable is non-zero in that state, i.e.,
Tr(OAϱ0) = ⟨G0,0∣O∣G1,−1⟩ ≠ 0. A suitable choice of local
operators that may be used as witnesses of the fraction-
alized spin synchronization are given by the transverse
spin Sx

j , for which the first two terms in Eq. (9) are

identical to zero, and only C01 = ⟨G0,0∣ϱ(0)∣G1,−1⟩ and⟨G1,−1∣Sx
j ∣G0,0⟩ contribute to the long-time dynamics.

As the dynamical symmetry operator A = ∣G1,−1⟩ ⟨G0,0∣
is anti-symmetric upon inversion of the chain, an opera-
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FIG. 2. (a) Eigenvalues of the Liouvillian superoperator L close to the imaginary axis for an open chain of length N = 6 and
different values of ε, considering both global and local dissipators. The purely imaginary eigenvalues for ε = 0 move away from
the imaginary axis as the biquadratic term is decreased. Simultaneously the oscillation frequency increases resulting in fast
but damped (anti-)synchronization. Parameters: B = 0.2, κ = γ = 0.2. (b, c) Stable synchronization may be recovered for finite
values of ε within the ground state subspace for B = 0 if one considers only the global dissipator LG (i.e. κ = 0). Sites j = 1,2,3
are in solid lines, sites j = 4,5,6 in dashed lines. The oscillation frequency in panel (c) with ε = 1/6 is larger compared to
panel (b) with ε = 0.1 because of the increased gap above the threefold degenerate ground state. The initial state is the infinite
temperature state within the ground state manifold.

tor acting locally on site j will be anti-synchronized with
the corresponding site at the other end of the chain lo-
cated at (N + 1) − j. Figure 1(a) and (b) show the time
evolution of the transverse spin ⟨Sx

j ⟩ for a chain of length
N = 6 with a random pure state as initial condition (solid
lines correspond to the left half of the chain j = 1,2,3,
dashed lines to the right half j = 4,5,6). The oscillations
are perfectly anti-synchronized upon inversion of the
chain. As a consequence of the fractionalized spin, the
amplitudes decay exponentially into the bulk. As seen
in Fig. 1(b) for short times there is no synchronization.
However, the transient time is short compared to the
oscillation frequency ω = B/N . For random initial con-
ditions the oscillation amplitudes even at the boundaries
are small. The reason is that the overwhelming majority
of states has no overlap with the ground state coherences
such that C01 = ⟨G0,0∣ϱ(0)∣G1,−1⟩ ≪ 1. However, one
may maximize this overlap by choosing ϱ(0) = ∣ψ⟩ ⟨ψ∣ as
initial state, where ∣ψ⟩ represents an equal superposition
of ∣G0,0⟩ and ∣G1,Sz ⟩. This suggests that the previously
mentioned two-step process may be better suited for ac-
tual experimental implementations. Fig. 1(c) shows the

dynamics for ∣ψ⟩ = (∣G0,0⟩ + ∣G1,−1⟩)/√2 as initial state.
As this state is decoherence free, the amplitudes are un-
affected by the dissipation and anti-synchronization is
stable. Note, that the transient relaxation time, related
to the Liouvillian gap ∆, scales in general exponentially
with system size. However, within the ground state sub-
space ∆ = 2γ. Thus, in combination with the previously
mentioned two-step process, where the ground state man-
ifold can be prepared dissipatively in polyonomial time
[61] or via a constant-depth quantum circuit [68], the syn-
chronized dynamics can be achieved efficiently in general.

Haldane chain.—The AKLT Hamiltonian (1) exhibits

spin-1/2 degrees of freedom that are perfectly localized
at boundaries and do not interact. In the following we
investigate the impact of interactions by decreasing the
value of the biquadratic term in Eq. (1), i.e., we consider
the Hamiltonian

Hε =H − εN−1∑
j=1 (S⃗j ⋅ S⃗j+1)2 . (10)

For finite values of ε, the Hamiltonian cannot simply be
expressed via projection operators and the Lindblad op-
erators Lj,j+1 induce additional dissipation. Fig. 2(a)
shows the complex eigenvalues of L close to the imagi-
nary axis for different values of ε in the range of [0,1/6],
where ε = 1/6 removes the biquadratic term completely,
and corresponds to the spin-1 Heisenberg chain (with ad-
ditional magnetic field). Upon increasing ε the initially
purely imaginary eigenvalues move away from both the
real and the imaginary axis, i.e. the oscillation frequency
increases, yet the synchronization is damped. However,
the real part remains small and in particular the eigen-
values with second smallest real part also move away
from the imaginary axis. Thus, there exist a time range
for which all eigenstates but the synchronized ones are
damped. Such damped synchronized dynamics has also
been termed metastable synchronization [47].
Stable synchronization may however be restored under

certain conditions even for the Heisenberg chain (ε = 1/6).
To this end we consider the case of B = 0, such that for
ε = 0 the ground state is fourfold degenerate. Perturba-
tions to the biquadratic term of the AKLT Hamiltonian
partially lift the ground degeneracy such that the S = 0
state is energetically distinct from the states within the
S = 1 subspace. In the following, we will refer to both the
fourfold degenerate ground state for ε = 0 as well as the
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threefold degenerate subspace together with the ground
state for ε ≠ 0 as the ground state subspace. As Hε and
the dissipator LG preserve the total angular momentum,
the dynamics is confined to their respective total angular
momentum subspace for κ = 0. Then, there exists again
a dynamical symmetry operator connecting the threefold
degenerate subspace (S = 1) with the S = 0 state. Simi-
lar to the previous discussion, this results in perfect anti-
synchronization if the initial state is chosen to be within
the ground state subspace. Figs. 2(b) and (c) show the
time evolution of the transverse spin ⟨Sx

j ⟩ (t) for a chain

of length N = 6 for ε = 0.1 and ε = 1/6, respectively. The
dynamics show perfect anti-synchronization for the infi-
nite temperature state within the ground state subspace
as initial state. The oscillation frequency in Fig. 2 (c)
is larger compared to (b) as the energy gap between the
S = 1 and S = 0 subspaces opens.

A few remarks are in order: First, the synchronization
observed in Figs. 2(b) and (c) is distinct from regular
coherent dynamics: While without dissipation, coherent
(anti-phase) oscillations are still present, there also ex-
ists an additional constant shift depending on the ini-
tial conditions: different locally acting observables may
not exhibit the same shift, so in the strict definition of
Eq. (5) they are not synchronized. Open system dynam-
ics are thus necessary for perfect (anti-)synchronization
even within the ground state subspace of the Haldane
chain. Second, perfect anti-synchronization in the Hal-
dane chain (ε ≠ 0) is possible without an additional mag-
netic field (B = 0), which demonstrates the significance
of microscopic details for synchronization even for sys-
tems belonging to the same (Haldane) phase. Third,
the Haldane phase is protected as long as any one of
three symmetries is preserved [53, 70]. That is time-
reversal symmetry, link inversion symmetry (lattice in-
version about the center of a bond), and Z2 ×Z2 symme-
try (π rotations about two orthogonal axes). As a con-
sequence, synchronization within the ground state sub-
space is robust even if the inversion symmetry is bro-
ken, for example by perturbing the interactions between
neighboring spins or via an inhomogenous magnetic field
[71]. This is in clear contrast to previous spin chain mod-
els [35, 47, 48] where permutation symmetry of the Li-

ouvillian is necessary for synchronized dynamics of local
observables as defined in Eq. (5). In particular, synchro-
nization induced by permutation symmetries becomes, in
general, unstable upon symmetry breaking perturbations
(i.e., the purely imaginary eigenvalues acquire a negative
real part), whereas it remains stable in the presence of
symmetry-protected topological order. However, addi-
tional single site-dissipation or decoherence is not pro-
tected by the topology and will render synchronization
metastable, similar to other spin chains with dynamical
symmetries.
Conclusions.—We have shown that it is possible to

synchronize the fractionalized spin degrees of freedom in
the spin-1 AKLT chain via engineered dissipation and an
external magnetic field. The observed synchronization is
stable and topologically protected. While perturbations
to the biquadratic term result in an additional dissipa-
tion channel, stable synchronization is restored within
the ground state subspace of the chain even without
magnetic field via a single global spin lowering operator.
Given recent experimental advancements in the prepara-
tion of the ground state of the AKLT model on a digi-
tal quantum computer [68] and the Heisenberg chain in
cold atoms [72], coupled with the experimental capabil-
ity to implement collective decay processes on these plat-
forms (either through a combination of ancillary systems
and measurements [73] or via a collective cavity mode
in the ‘bad cavity’ limit [74, 75]) the prospect of realiz-
ing topological synchronization seems attainable in the
near future [71]. Our results illuminate on the possibil-
ity to utilize dissipation in order to control the dynamics
of fractionalized degrees of freedom, not only to prepare
them, and provide a pathway to topologically induced
quantum synchronization.
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[55] U. Schollwöck, The density-matrix renormalization group
in the age of matrix product states, Ann. Phys. 326, 96
(2011), january 2011 Special Issue.

[56] D. Perez-Garcia, F. Verstraete, M. M. Wolf, and J. I.
Cirac, Matrix product state representations, Quantum
Info. Comput. 7, 401 (2007).
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I. TOPOLOGICAL PROTECTION OF THE SYNCHRONIZED DYNAMICS

The ground state manifold of the open AKLT chain with Hamiltonian

HAKLT = N−1∑
j=1 [

1

2
S⃗j ⋅ S⃗j+1 + 1

6
(S⃗j ⋅ S⃗j+1)2 + 1

3
] (S1)

belongs to the Haldane phase and is protected by three symmetries [53, 70]: time-reversal symmetry (TRS), link
inversion symmetry (lattice inversion about the center of a bond) and Z2 × Z2 symmetry (π rotations about two
orthogonal axes). Importantly, the AKLT ground states are protected as long as any one of the three symmetries
is preserved. In order to synchronize the non-interacting fractionalized degrees of freedom via the collective decay
channel mediated through LG = √γS− = √γ∑j S

−
j , the fourfold degeneracy of the ground state manifold needs

to be lifted – at least partially – while preserving the total magnetization ([H,Sz] = 0), such that different total
spin sectors do not mix. A viable choice (considered in the main manuscript) is an additional magnetic field, i.e.
HB = (B/N)∑j S

z
j , which breaks TRS symmetry. However, as the other symmetries are still preserved, the system

remains gapped and the ground state manifold is topologically protected. To show explicitly that a single symmetry
is sufficient for synchronized dynamics, we consider in the following the Hamiltonian

H = N−1∑
j=1 (1 − Ji) [

1

2
S⃗j ⋅ S⃗j+1 + 1

6
(S⃗j ⋅ S⃗j+1)2 + 1

3
] + N∑

j=1
B −Bj

N
Sz
j , (S2)

where Ji ∼ U(0, Jmax) and Bj ∼ U(0,Bmax) are uniformly distributed random variables, and 0 ≤ Jmax < 1 and
0 ≤ Bmax < B. Both the spin interactions and the inhomogeneous magnetic field break the inversion symmetry of
the chain, yet the synchronized dynamics within the ground state subspace remains as shown in Figs. S1(a) and (b).
However, if all three symmetries are broken by considering for example an additional perpendicular magnetic field(Bx/N)∑j S

x
j , synchronization is not stable in the long-time limit; see Fig. S1(c). The topological robustness of the

closed chain thus directly translates to the dissipative dynamics of the fractionalized spins at the ends of the chain
resulting in stable synchronization over a wide range of parameters.

II. POTENTIAL IMPLEMENTATIONS OF COLLECTIVE DISSIPATION IN SUPERCONDUCTING
QUTRIT SYSTEMS

As stated in the main manuscript, the most suitable implementation of topological quantum synchronization follows
a two-step process: Firstly, preparation of the ground state manifold of the symmetry-protected topological spin-1
chain, followed by a single global dissipative process, which realizes the actual synchronization. In the following, we
will discuss two approaches building on recent experimental advancements.

The symmetry-protected Haldane phase has been realized in cold atoms using the spin-1/2 Fermi-Hubbard two-leg
ladder [72]. This achievement serves as a promising starting point for observing synchronized dynamics by utilizing a
cavity to implement the collective decay. However, one may also use superconducting qutrits in combination with a
cavity to prepare the AKLT ground state subspace as proposed for example in Ref. [69]. In both cases, the collective
decay is achieved by operating in the so-called ‘bad cavity’ limit, which has been realized experimentally in cold atoms
[74] as well as nitrogen-vacancy centers [75].

Assuming, that all spin-1s or qutrits are coupled to the cavity with the same magnitude λ, the total system is given
by the Hamiltonian

Htot =HAKLT + λ∑
j

(S−j a† + S+j a) +Ωa†a, (S3)
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FIG. S1. Robustness of topological synchronization within the ground state subspace if inversion symmetry is broken. In all
three figures, the initial state is a random superposition between all four states belonging to the ground state subspace. (a)
Synchronized dynamics for Jmax = 0.5 and homogeneous magnetic field (Bj = 0). (b) Additional perturbations to the magnetic
field with Bmax = 0.2B. (c) Breaking all symmetries of the AKLT model by considering an additional perpendicular magnetic
field (Bx/N)∑j S

x
j results in damped synchronized dynamics.
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FIG. S2. Circuit diagram for a single time step of the implementation of collective decay for a two-qutrit system via measurement
of an ancilla system. The circuit presented here needs to applied repeatedly and ensemble averaged in order to correspond to
the collective decay channel LG. The generalization to many qutrits is straight forward.

with bosonic operators a† and a and cavity frequency Ω. Additionally, the cavity is subject to dissipation giving rise
to the dynamics

ϱ̇(t) = −i [Htot, ϱ(t)] + D [Lcav]ϱ(t), (S4)

where Lcav = √Γa. In the bad cavity limit Γ > λ ≫ κ, where κ denotes the decay rate of individual atoms, we can
neglect local dissipation. Moreover, we can adiabatically eliminate the cavity mode and assume it remains in the
ground state. The Heisenberg equation of motion for the cavity mode a is then given by

ȧ = −iλ⎛⎝∑j S−j
⎞⎠ − (iΩ + Γ

2
)a ≈ −iλ⎛⎝∑j S−j

⎞⎠ − Γ

2
a. (S5)

In the bad cavity limit we assume ȧ = 0 since the presence of the coupled qutrits does not alter the cavity amplitude,
which remains unchanged. The resulting expression for the cavity mode can be resubstituted into Eqs. (S3) and (S4),
which yields

ϱ̇(t) = −i [HAKLT, ϱ(t)] + 4λ2

Γ
(S−ϱ(t)S+ − 1

2
{S+S−, ϱ(t)}) = −i [HAKLT, ϱ(t)] + D [LG]ϱ(t) (S6)

where LG = √γS− with γ = 4λ2/Γ, and we have neglected the cavity term because we assume that the cavity remains

in the ground state, i.e. Ωa†a ∣0⟩ = 0. Note that the collective decay with rate γ occurs on time scales much faster
than individual decay processes in the bad cavity limit because we assumed Γ > λ≫ κ.

If one prepares the ground state subspace of the AKLT model in terms of digital quantum simulation as for example
shown recently in Ref. [68], one can use a quantum circuit in order to effectively implement also the global dissipation
via repeatedly measuring (or replacing) an ancilla system. An example of a recent experimental implementation of
collective decay in qubits can be found in Ref. [73]. In the following we discuss the implementation for collective
decay of two qutrits explicitly but its generalization to larger chains is straightforward. The circuit that needs to be



3

implemented is shown in Fig. S2, where the system consists of two qutrits (1 and 2) and an ancilla (A). We initialize

the ancilla in the ground state ∣0⟩A. The unitary to be implement corresponds to Utot = exp(−i√δtλHA), where
HA = 2∑

j=1 (S+j ∣0⟩ ⟨1∣A + S−j ∣1⟩ ⟨0∣A) =H1 +H2. (S7)

We can approximate the total unitary Utot using a second order Trotter-Suzuki formula as

Utot(∆t) = e−i√∆tλ
4 H1e−i

√
∆tλ
2 H2e−i

√
∆tλ
4 H1 +O(∆t2) = U1(∆t/4)U2(∆t/2)U1(∆t/4) +O(∆t2). (S8)

Note that we do not need to implement the AKLT Hamiltonian as we assume we are already in the ground state
subspace. After the unitary evolution with Utot(∆t) we measure the ancilla which yields the post-measurement state∣ψm(∆t)⟩ for the two qutrits depending on the measurement outcome m = 0,1. These are given by

∣ψ1(∆t)⟩ = −i S−√⟨S+S−⟩ ∣ψ(t = 0)⟩ + O(∆t3/2), ∣ψ0(∆t)⟩ = [1 − ∆tλ

8
(S+S− + ⟨S+S−⟩)] ∣ψ(t = 0)⟩ + O(∆t3/2), (S9)

where ∣ψ(t = 0)⟩ is the initial state of the two qutrits before the unitary and the measurement. After measurement,
the ancilla is reset to state ∣0⟩A (or replaced by a new qubit). This realizes a stochastic Schrödinger equation for the
two qutrits with a single stochastic step given by

∣dψ⟩ = ∣ψ(t +∆t)⟩ − ∣ψ(t)⟩ = ⎡⎢⎢⎢⎢⎣
⎛⎝−i S−√⟨S+S−⟩ ∣ψ⟩ − 1

⎞⎠dN − ∆tλ

8
(S+S− + ⟨S+S−⟩)⎤⎥⎥⎥⎥⎦ ∣ψ(t)⟩ , (S10)

where dN is a Poison increment with dN2 = dN and E [dN] = (λ∆t/4) ⟨S+S−⟩. Hence, repeatedly evolving the
qutrit-ancilla system and measuring the state of the ancilla results in a collective dissipative process. Upon ensemble
averaging, this precisely implements the collective dissipator LG = √γ∑j S

−
j with γ = λ∆t/4.




