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Curvature-driven feedback on aggregation-diffusion of proteins
in lipid bilayers

Arijit Mahapatra, David Saintillan, Padmini Rangamani
Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500
Gilman Drive, La Jolla, CA 92093, U.S.A.

Abstract

Membrane bending is an extensively studied problem from both modeling and experimental

perspectives because of the wide implications of curvature generation in cell biology. Many of the

curvature generating aspects in membranes can be attributed to interactions between proteins and

membranes.These interactions include protein diffusion and formation of aggregates due to

protein-protein interactions in the plane of the membrane. Recently, we developed a model that

couples the in-plane flow of lipids and diffusion of proteins with the out-of-plane bending of the

membrane. Building on this work, here, we focus on the role of explicit aggregation of proteins on

the surface of the membrane in the presence of membrane bending and diffusion. We develop a

comprehensive framework that includes lipid flow, membrane bending, the entropy of protein

distribution, along with an explicit aggregation potential and derive the governing equations for the

coupled system. We compare this framework to the Cahn-Hillard formalism to predict the regimes

in which the proteins form patterns on the membrane. We demonstrate the utility of this model

using numerical simulations to predict how aggregation and diffusion, when coupled with

curvature generation, can alter the landscape of membrane-protein interactions.

Graphical Abstract

Curvature-driven feedback limits the extent of aggregation of the curvature-inducing proteins in

the membrane
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1 Introduction

Cellular membranes contain a variety of integral and peripheral proteins whose spatial

organization has biophysical implications for cellular function [1, 2]. In the plane of the

membrane, many of these proteins are known to diffuse [3], induce curvature in the bilayer

[4], and aggregate either through protein-specific interactions [5] or due to membrane

curvature [6]. Interactions between proteins can also lead to the formation of protein

microdomains depending on the strength of interaction forces [6, 7]. The ability of these

proteins to induce curvature, coupled with the ability of curvature to influence the lateral

diffusion-aggregation dynamics, can result in a feedback loop between membrane curvature

and protein density on the surface (Figure 1a) [8-10]. In addition to protein aggregation, in-

plane viscous flow of the lipid molecules has been found to dominate some of the phase-

transition kinetics of vesicle shapes [11]. Recently, we showed that the interaction of

membrane bending, protein diffusion, and lipid flow can lead to an aggregation-like

configuration on the membrane under specific conditions [12].

The aggregation of particles in solvents is a well-studied theoretical problem. Flory [13] and

Huggins [14] presented a theoretical formulation for a polymer chain in solution and

established the conditions that can lead to its phase separation from the solvent. In binary

alloy systems, there has been significant progress on the modeling of the phase transition

mechanisms starting from the fundamental Ginzburg-Landau energy [15] that models the

interaction energy between the phases as an algebraic expansion in the area fraction of the

binary phases around a reference value. Additionally, there are a number of studies that

considered the effect of surface tension in the phase separation of solid solutions with an

elastic field as a function of concentration field of solute [16-18].

While the classical theories were developed for three-dimensional continua, domain

formation and phase separation on two-dimensional surfaces such as lipid bilayers have been

of paramount interest recently. The aggregation of proteins on the membrane surface can be

viewed as an example of a binary system with lipids and proteins as two phases in a two-

dimensional curvilinear space. For example, a recent modeling study showed that in a
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reaction-diffusion system, a pair of activator and inhibitor molecules can lead to an

aggregation instability in a specific parameter space, and this instability governs the pattern

formation of proteins on membranes [19]. There are many models in the literature that

investigate various aspects of phase separation on surfaces. Gera and Salac [10] numerically

solved a Cahn-Hilliard system for aggregation-diffusion on a closed torus and observed the

temporal evolution of the formation of the aggregation patches. In this case, the surface

geometry was fixed. In a subsequent study, they analyzed the effect of bulk shear flow on the

dynamics of the density distribution of species on a deformable vesicle, where the material

properties are dependent on the species concentration [20]. Nitschke et al. [8] modeled

aggregation-diffusion of a two-phase mixture on a spherical surface with in-plane viscous

flow, and presented numerical results on pattern formation between the two phases and its

strong interplay with the surface flow. The relative interactions between the proteins on the

cellular membrane can lead to phase segregation and form protein domains depending on the

strength of interaction forces compared to the entropy of mixing [7]. Such aggregation

phenomena have been modeled as a polymerization reaction with a very weak free energy of

polymerization [7].

Coupling these aggregation phenomena on the membrane surface with membrane

deformation is a difficult mathematical and computational problem. Reynwar et al. [6]

modeled the interaction between proteins with the help of an inter-particle energy and

showed that curvature alone can lead to aggregation of these protein particles. A majority of

the aggregation studies in the continuum realm consider an aggregation-diffusion chemical

potential, which results in the well-known Cahn-Hilliard equation that represents phase

separation. The energy potential used in studies of protein aggregation on membrane

surfaces consists of an inter-molecular aggregation energy and a diffusion potential

comprising of the entropy of the protein distribution. Veksler and Gov [21] considered the

Ginzburg-Landau energy potential for the aggregation-diffusion energy and modeled the

curvature-diffusion instability to identify the parameter space where such instability occurs.

Mikucki and Zhou [22] developed a numerical solution for aggregation-diffusion of proteins

with bending of the membrane and inviscid flow of lipids. However, their model assumes

that the local membrane curvature is a function of the density of the proteins as opposed to

using a spontaneous curvature, resulting in a weak coupling between bending and diffusion.

Givli et al. [23] presented a theoretical model of diffusion-aggregation in a multicomponent

inviscid stretchable membrane coupled with the bending of the membrane. Additionally,

they performed a stability analysis of the system on a sphere, and obtained the most critical

modes for the instabilities.

While the models described above capture different aspects of the same problem, here, we

sought to develop a comprehensive mathematical model that captures the coupled diffusion

and aggregation dynamics, where the proteins induce a curvature resulting in membrane

bending and lipids can flow in the plane of the membrane. Such a framework can allow us to

explore how the different transport contributions in the plane of the membrane (protein

aggregation, protein diffusion, and lipid flow) can contribute both to the formation of protein

microdomains and to the curvature generation capability of the membrane. The manuscript

is organized as follows. The full system of governing equations is presented in Section 2. We

first analyzed the special case in the absence of bending and reduced the model to a classic
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Cahn-Hilliard system in Section 3. We solved the Cahn-Hilliard equation numerically on a

square domain and demonstrated the configuration of patch formations in the parameter

space. Next, we simulated the fully coupled system in the case of small deformations from a

flat plane in Section 4 and studied the effect of bending energy on the dynamics of

aggregation and diffusion of proteins. Our results show that coupling between curvature,

protein aggregation, and diffusion can lead to a strong mechanical feedback loop stabilizing

the protein microdomains in regions of high curvature.

2 Model development

We first formulate the governing equations for coupled diffusion and aggregation of

curvature-inducing proteins on a deformable viscous lipid membrane with bending elasticity,

building on previous models [12, 24, 25]. We begin by formulating a free energy function

for the membrane and apply the principle of energy minimization to derive the governing

equations. Complete details of the derivation are provided in the Electronic Supplementary

Information (ESI).

2.1 Free energy of the membrane

Our system consists of the lipids that comprise the membrane and transmembrane proteins

that are embedded in the plane of the membrane and are capable of inducing curvature

(Figure 1). Our model does not include the binding or unbinding of proteins from the bulk or

the interactions of the bulk fluid with the membrane. The lipid bilayer is modeled as a thin

elastic shell with negligible thickness that can bend out of the plane and be subject to in-

plane viscous flow. Importantly, we assume that the membrane is areally incompressible and

this constraint is imposed on the membrane using a Lagrange multiplier. Additionally, we

use a continuum description for the protein distribution on the membrane. We describe the

different contributions to the total free energy of the system in detail below.

2.1.1 Protein diffusion—The diffusion of proteins on the membrane surface is modeled

using the principle of entropy maximization [26]. The entropy S of q proteins on n binding

sites can be found from the number of combinations, Ω = nCq, and is given by

S = kB log Ω, (1)

where kB is the Boltzmann constant [27]. For sufficiently large values of q and n, the

entropic component of the free energy per binding site can be represented as a function of

area fraction ϕ = q/n as [26],

Wentropy
n = − TS

n = kBT[ϕ log ϕ + (1 − ϕ) log(1 − ϕ)], (2)

where T is the temperature of system. Note that the area fraction ϕ can also be represented as

the ratio of the local protein density, σ, and the saturation density of proteins on the surface,

σs. The free energy density per unit area of the membrane is obtained by multiplying the free

energy density per binding site (Wentropy/n) with the saturation density of the proteins (σs).
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Note that the entropic component of the free energy Wentropy is minimized when the entropy

S is maximum, which corresponds to a uniform distribution of the proteins in the domain.

2.1.2 Protein aggregation—Aggregation of proteins, on the other hand, can be

modeled using the interaction enthalpy of particles in a binary system. With the help of

mean-field theory, a continuum representation of the aggregation free energy per binding site

can be derived as [21, 23, 26]

Waggregation
n = γ

2ϕ(1 − ϕ) + γ
4σs

∣ ∇ϕ ∣2 , (3)

where γ is the net effective interaction energy of the proteins. This term captures protein-

protein attraction when γ > 0 and protein-protein repulsion when γ < 0.

2.1.3 Bending of the membrane—We model the curvature elastic free energy density

of the membrane using the Helfrich Hamiltonian [28] given by

Wbending = κ[H − C(σ)]2 + κ̄K . (4)

Here, H and K are mean and Gaussian curvatures of the membrane, κ and κ̄ are the bending

and Gaussian rigidities, and C is the spontaneous curvature induced by the proteins. The

spontaneous curvature is assumed to depend linearly on protein density σ [12, 25] as

C(σ) = ℓσ, (5)

where the proportionality constant, ℓ, has units of length.

We obtain the total free energy density of the membrane, in terms of protein area fraction ϕ,

by combining Equations (2) to (4) as

W = kBTσs [ϕ log ϕ + (1 − ϕ) log (1 − ϕ)]
entropic

+
γσs
2 ϕ(1 − ϕ) + γ

4 ∣ ∇ϕ ∣2

aggregation

+ κ(H − ℓσ)2 + κ̄K .
bending

(6)

2.2 Equations of motion

The lipid bilayer is modeled as a two-dimensional surface in a three-dimensional space

(Figure 1b). We refer the reader to [12, 24, 29] for details of the derivation and briefly

summarize the key steps here. The equations of motion are obtained from a local stress

balance on the interface, which can be compactly stated as

∇ ⋅ Σ + pn = 0, (7)
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where Σ is the stress tensor, ∇ · Σ is the surface divergence of the stress, p is the normal

pressure acting on the surface, and n is the unit surface normal vector. As a result, the local

equilibrium of forces, in the tangential and normal directions, is given by Equation (S2) and

Equation (S3) in the ESI. The incompressibility constraint on the surface results in the

following form of the continuity equation [29]

∇ ⋅ v = 2Hw, (8)

where v is the velocity field of tangential lipid flow and w is the normal velocity of the

surface.

2.3 Mass conservation of proteins

Conservation of mass for the protein density σ is given by

∂σ
∂t + ∇ ⋅ m = 0, (9)

where the flux is

m = vσ − 1
f ϕ∇μ . (10)

This flux has contributions from advection due to the in-plane velocity field v and from

gradients in the protein chemical potential μ. The constant f denotes the thermodynamic drag

coefficient of a protein and is related to its diffusivity D by the Stokes-Einstein relation: D =

kBT/f.

The chemical potential, μ, is obtained as the variational derivative

μ = δF
δϕ , (11)

where F is the total energy of the system of area A, given by,

F = ∫
ω

W(ϕ, ∇ϕ) dA . (12)

Note that the energy density is a function of both the protein area fraction ϕ and its gradient

∇ϕ. Using the definition of the variational derivative, we get the expression of the chemical

potential as:

μ = δF
δϕ = ∂W

∂ϕ − ∇ ⋅ ∂W
∂ ∇ϕ . (13)

Using Equation (6) for W yields
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μ = kBTσs[log ϕ − log(1 − ϕ)] − 2κℓσs(H − ℓσsϕ) −
γσs
2 (2ϕ − 1) − γ

2 ∣ ∇ϕ ∣2 . (14)

Substituting Equation (14) in Equation (10) will result in the evolution equation for σ.

2.4 System of governing equations

Here we summarize the governing equations for the coupled dynamics of the system. Using

Equations (S4) to (S7) for the stresses, the tangential force balance in Equation (S2)

becomes [12, 24, 29]

∇λ + 2ν(∇ ⋅ d − ∇w ⋅ b) − 4νw∇H
viscous

=

− ∇σ kBT log ϕ
1 − ϕ

entropic

− 2κℓ(H − ℓσsϕ)
bending

− γ
2(2ϕ − 1) + γ

2σs
∇ϕ

aggregation

.

(15)

Here, we have introduced a new variable λ, which is the Lagrange multiplier for area

incompressibility and physically represents the membrane tension (see Equation (S6) in the

ESI for details), d is the rate-of-strain tensor (see Equation (S8) in the ESI for the details), b
is the curvature tensor of the surface, and Δ(·) = ∇ · ∇(·) is the surface Laplacian. Along with

the surface incompressibility condition

∇ ⋅ v = 2wH, (16)

Equation (15) describes how the surface pressure gradient is balanced by the tangential

contributions of lipid flow, membrane bending, and membrane-protein interactions. On the

other hand, Equation (16) captures surface incompressibility for a deformed membrane.

Equations (15) and (16) constitute the governing equations for the velocity field and tension

on the evolving surface of the membrane.

The shape of the surface is obtained by the normal force balance Equation (S3), which, after

substituting in Equation (S5), Equations (S4) and (S7), is given by
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κΔ(H − ℓσsϕ) + 2κ(H − ℓσsϕ)(2H2 − K) − 2H(κ(H − ℓσsϕ)2 + κ̄K)
bending

− 2ν[b: d − w(4H2 − 2K)]
viscous

− 2H kBTσs{ϕ log ϕ + (1 − ϕ) log (1 − ϕ)}
entropic

+
γσs
2 ϕ(1 − ϕ) + γ

4 ∣ ∇ϕ ∣2

aggregation

= p + 2λH .
capillary

(17)

While this equation is complex and contains many terms, it can be understood intuitively by

making the following observations. In the absence of all other stresses (bending, viscous,

entropic, and aggregation), Equation (17) simply reduces to the Young-Laplace law. When

the viscous, entropic, and aggregation terms are removed, we recover the so-called ‘shape

equation’ that is commonly used in membrane mechanics [29]. The additional terms capture

the non-trivial coupling between protein density, aggregation, lipid flow, and membrane

bending, and are the novel aspect of the present model. Equation (15) and Equation (17)

both involve the area fraction of proteins ϕ = σ/σs, which evolves according to the mass

conservation equation given by

ϕt + ∇ ⋅ (vϕ) = 1
f Δϕ

kBT
1 − ϕ + 2κℓ2σsϕ − γϕ − 1

f ϕ 2κℓΔH + γ
2σs

Δ2ϕ

+ 1
f ∇ϕ ⋅ ∇ϕ

kBT

(1 − ϕ)2 + 2κℓ2σs − γ − 2κℓ∇H

− γ
2σs

∇(2Δϕ) ,

(18)

where ϕt denotes the time derivative ∂ϕ
∂t . Note that, in the absence of flow and protein-

induced spontaneous curvature, Equation (18) reduces to the Cahn-Hilliard equation for

aggregation-diffusion as discussed in Section 3. Additionally, if we eliminate protein

aggregation (γ = 0), in the limit of dilute concentration of proteins (ϕ ≪ 1), we recover the

classical equation for Fickian diffusion.

2.5 Non-dimensionalization

We non-dimensionalize the system of Equations (15)-(18) using the following reference

scales. The characteristic length scale is taken to be the size L of the domain. The membrane

tension λ is scaled by its mean value λ0. Velocities are non-dimensionalized by vc = λ0L/ν,

and we use the diffusive time scale tc = L2/D. Note that the protein area fraction ϕ = σ/σs is

already dimensionless. The governing equations in dimensionless form (where tildes are

used to denote the dimensionless variables) are provided in the ESI (Equation (S10)-

Equation (S13)).
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The system of dimensionless equations involves seven dimensionless groups that are defined

in Table 1 along with their physical interpretation. In all the analyses that follow, we assume

that the transmembrane pressure, p, is zero. From here on, we use the dimensionless

variables but omit the tildes for brevity.

2.6 Estimation of physical parameters

Given the vast number of physical parameters in the model, we used data from the literature

to estimate the ranges for these parameters and use these to inform the range of the

dimensionless parameters in our simulations. We set the value of the bending rigidity κ to 84

pN·nm [30, 31]. The range of spontaneous curvature length, ℓ, was chosen as 1 – 8 nm based

on known protein-induced spontaneous curvature values [32]. The saturation density of

proteins, σs, on the lipid bilayer was varied in the range of 2 × 10−4 to 2 × 10−3 nm−2, which

corresponds to 20 – 70 nm for the protein size [33]. The viscosity of the membrane, ν, was

taken as 5 × 10−6 pN·s/nm [34, 35], and the diffusion coefficient of a protein, D, was taken

to be 5 × 105 nm2/s [3, 36, 37]. For all the simulations, the domain was fixed as a square of

side L of 1 μm. The average membrane tension, λ0, was considered as 1 ×10−4 pN/nm [38].

As a result, the Péclet number, Pe, was fixed at 40, the range of S  was 200 to 2000, and the

range of L became 1 × 103 to 8 ×103. We found that the minimum value of A to promote

aggregation is 11.1 based on stability analysis (Section 3.2) and considered the value of A in

the range of 25 to 100 for the Cahn-Hilliard system (Section 3.3). Although, for the coupled

system of aggregation with bending, we used the value of A as 25 (Section 4.2). The value of

B at room temperature became 4.93 × 10−2. However, to demonstrate the dynamic coupling

of aggregation and bending, we used a lower value of temperature T in the numerical

simulations; corresponding B was 4.93 × 10−4. This regime led to a strong interaction

between the membrane deformations and aggregation diffusion dynamics.

3 Cahn-Hilliard system and stability analysis

3.1 Reduction to the Cahn-Hilliard system

We first consider the simplified diffusion-aggregation system in the absence of membrane

bending and in-plane lipid flow to gain insight into how diffusion and aggregation compete

in the plane of the membrane to form protein aggregates (also referred to as patterns or

microdomains). We assume that the proteins have zero spontaneous curvature (L = 0) in this

case. As a result of these simplifications, the surface gradient reduces to the planar gradient

∇ = ∂
∂x i + ∂

∂y j and the surface Laplacian Δ becomes ∇2 = ∂2

∂x2 + ∂2

∂y2 . Neglecting the flow

and bending terms in Equation (18), we arrive at a transport equation similar to the Cahn-

Hilliard equation:

ϕt = ∇2ϕ 1
1 − ϕ − Aϕ + ∣ ∇ϕ ∣2 1

(1 − ϕ)2 − A − ϕ A
2S

∇4ϕ . (19)

Equation (19) reduces to Fickian diffusion in the dilute limit (ϕ ≪ 1) in the absence of

aggregation (A = 0). Equation (19) is also similar to the system presented by Givli and
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Bhattyacharya [23], for which they conducted a stability analysis on a closed surface. Here,

we present a stability analysis of the equivalent Cahn-Hilliard system on a flat surface, and

complement the analysis with numerical simulations of the nonlinear system in a periodic

domain.

3.2 Linear stability analysis

We perform a linear stability analysis of Equation (19) to identify the parameter regimes that

can lead to protein aggregation. The homogeneous state with uniform concentration ϕ0 is

perturbed by a small amount ϕ′ such that ϕ = ϕ0 + ϕ′. Linearizing Equation (19) results in

the equation for density fluctuation ϕ′ as

ϕt′ = ∇2ϕ′ 1
1 − ϕ0

− Aϕ0 − A
2S

ϕ0∇4ϕ′ . (20)

We consider normal modes of the form ϕ′ = eαtei2πk·x and obtain the dispersion relation

α = 4π2 Aϕ0 − 1
1 − ϕ0

k2 − 8π4 A
S

ϕ0k4 . (21)

We find that the growth rate α is always real. The first term in Equation (21) is positive and

is destabilizing as long as the strength of aggregation exceeds a certain threshold:

A ≥ Ac = [ϕ0(1 − ϕ0)]−1 (≈ 11.1 for ϕ0 = 0.1), whereas the second term is always stabilizing.

The marginal stability curves α = 0 in the (A, S) plane are plotted for various wavenumbers k

in Figure 2. For a given choice of A and S , this results in a band of unstable wavenumbers 0

≤ k ≤ kc, where

kc
2 = S

2π2 1 −
Ac

A
, (22)

and the maximum growth rate occurs at wavenumber km = kc ∕ 2. The corresponding

wavelength Λ = 2π/km provides a prediction for the characteristic lengthscale of

aggregation patches, which is expected to decay with increasing S  but to increase with

increasing A.

3.3 Numerical simulations

We conducted numerical simulations of Equation (19) inside a square domain for various

combinations of A and S  that satisfy the necessary condition of aggregation as given in

Equation (22) and Figure 2. The initial condition was set as a homogeneous distribution of

ϕ0 = 0.1 with a small random spacial perturbation with magnitude ∣ϕ′∣ ≤ 1 × 10−4. We

numerically restricted the value of ϕ to the interval [ϵ, 1 − ϵ] with ϵ = 1 × 10−3 to ensure that

neither ϕ or 1 − ϕ becomes zero during the simulations. We used periodic boundary

conditions for the protein density and solved the equation numerically using a finite

difference technique (the Fortran code is available on https://github.com/armahapa/
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protein_aggregation_in_membranes). In Figure 3, we show the evolution of the protein

distribution over time for three different values of the dimensionless number S  that denotes

the ratio of domain area to the protein footprint, while maintaining the aggregation strength

at A = 25. In all cases, we find that the initial perturbation in the density field evolves

towards the formation of distinct dense circular protein patches that are distributed randomly

and nearly uniformly across the domain, in agreement with standard Cahn-Hilliard

aggregation dynamics [10]. The main effect of varying S , which is more dramatic than

varying A as we further show below, is to control the number of patches as well as their size.

Indeed, we recall that S , which is a dimensionless measure of the finite size of the proteins,

directly controls the stabilizing term in the dispersion relation Equation (21) and therefore

the dominant wavenumber of the instability. Consistent with the stability predictions, we

find that larger values of S  produce larger numbers of patches with smaller sizes. During the

transient evolution, proteins get drawn towards the emerging patches due to aggregation, and

at steady state we find that the density inside the patches approached the saturation density

(ϕ = 1), whereas it approaches zero outside (Also see Movies M1-M3 in the ESI). We

quantify the growth of density fluctuations by plotting in Figure 3j the time evolution of the

density variance, defined as

Vϕ = ∫
A

(ϕ − ϕ0)2dA . (23)

We find that the growth of the variance is exponential at short times, consistent with the

expected behavior for a linear instability, before reaching a constant plateau at long times.

The growth is observed to increase with S  in agreement with the linear prediction of

Equation (21). The steady state value, on the other hand, is found to decrease slightly with S ,

although the differences are small.

A more complete exploration of pattern formation is provided in Figure 4a, showing the

long-time configurations of aggregated protein patches in the parameter space of A and S .

We note that the number of patches, their size, and their homogeneity vary with both

parameters. As we already observed in Figure 3, increasing S  for a given value of A

increases the number of patches and decreases their size. On the other hand, increasing A for

a given S  tends to increase inhomogeneity among patches, with some visibly denser patches

while others tend to be more diffuse. The dependence of the number of patches as a function

of both A and S  is shown in Figure 4b, while the steady-state variance is plotted in Figure 4c.

The variance is found to decrease with A, as the more diffuse patches forming at large A
result in weaker spatial fluctuations.

4 Coupling of aggregation with bending: analysis in the small deformation

regime

To understand how the inclusion of membrane curvature alters the aggregation-diffusion

landscape, we simulated the dynamics of the coupled system Equations (S10) to (S13) in the

regime of small deformations from a plane. The surface is represented using the Monge
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parametrization, such that the position vector is given by r = xαeα + z(x1, x2, t)e3. In the

regime of small deformations from the plane, we consider gradients of the surface

deformation to be small and ignore the higher-order terms [12]. The surface gradient and

Laplacian in the Monge parameterization simplify to ∇ = ∂
∂x i + ∂

∂y j and ∇2 = ∂2

∂x2 + ∂2

∂y2 . In

the limit of small deformations, the system of governing equations Equation (S11) to

Equation (S13) reduces to Equation (S14) to Equation (S17).

4.1 Linear stability analysis

We first perform a stability analysis of the system of equations (Equation (S14) to Equation

(S17)) to identify the parameter regimes similar to the analysis of Section 3.2 but in the

presence of bending due to spontaneous curvature induced by the protein. In the base state,

the membrane is flat and at rest with uniform tension (z0 = 0, v0 = 0, λ0 = 1), and the protein

density is uniform with value ϕ0. We showed in an earlier study [12] that a uniform protein

distribution on a flat membrane is indeed a steady state even when the proteins induce a

spontaneous curvature. We perturb the variables by small amounts with respect to this base

state:

ϕ = ϕ0 + ϕ′, z = 0 + z′, v = 0 + v′, and, λ = 1 + λ′ . (24)

Linearizing Equations (S14) and (S15) provides the governing equations for velocity and

tension fluctuations as

∇ ⋅ v′ = 0, (25)

and,

∇λ′ + ∇2v′ + ∇(∇ ⋅ v′) = − ∇ϕ′ 2BS
T

log
ϕ0

1 − ϕ0
+ 4L2S2

T
ϕ0 − ABS

T
(2ϕ0 − 1

) .
(26)

The normal force balance of Equation (S16) reduces to

∇4z′ − 2LS ∇2ϕ′ − 2BS ∇2z′ {ϕ0 log ϕ0 + (1 − ϕ0) log(1 − ϕ0)} + A
2 ϕ0(1 − ϕ0)

+ L2S
B

ϕ0
2 = T ∇2z′ .

(27)

Finally, the transport equation for the protein density given in Equation (S17) becomes

ϕt′ = ∇2ϕ′ 1
1 − ϕ0

+ 2L2S
B

ϕ0 − Aϕ0 − ϕ0
L
B

∇4z′ + A
2S

∇4ϕ′ . (28)
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We find that the linearized equations the velocity field and tension partially decouple from

the shape equation (27) and protein transport equation (28): in other words, lipid flow and

tension fluctuations do not affect the membrane shape and protein transport in the linear

regime. To analyze the dynamics of protein aggregation, we therefore need only consider

Equations (27) and (28). Performing a normal model analysis (see ESI for details), we

obtain the dispersion relation as

α = 4π2k2 Aϕ0 − 1
1 − ϕ0

− 2L2S
B

ϕ0g(k) − 8π4ϕ0
A
S

k4, (29)

where g(k) is given by

g(k) = 1 − 16π4k4

M(k) , (30)

and,

M(k) = 16π4k4 + 8π2k2BS {ϕ0 log ϕ0 + (1 − ϕ0) log(1 − ϕ0)} + A
2 ϕ0(1 − ϕ0)

+ L2S
B

ϕ0
2 + 4π2k2T .

(31)

Similar to Equation (21), the second term in Equation (29) is always stabilizing, and

therefore protein aggregation takes place only if the first term is positive. The necessary

condition for protein aggregates to form becomes

A − 2L2S
B

g(k) ≥ 1
ϕ0(1 − ϕ0) , (32)

or

A ≥ Ac + 2L2S
B

g(k), (33)

where Ac was previously defined in Section 3.2 in the Cahn-Hilliard case. Here again, we

find that there exists an unstable range of wave numbers 0 < k < kc, where kc satisfies the

implicit equation

kc
2 = S

4π2 1 −
Ac
A − 2L2S

BA
g(kc) . (34)

The maximum growth rate occurs at wavenumber km, also given by an implicit equation:
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km =
kc
2 1 + 1

4π2km

L2S2

BA
g′(km)

−1 ∕ 2
. (35)

Figure 5 shows the dependence of g(k) on wave number k for A = 25 and various

combinations of L and S . When both L and S  increase, g(k) tends to increase for small

wavenumbers and thus stabilizes the system. This means in particular that proteins with

large spontaneous curvature, as captured by L, can in fact have a stabilizing effect on protein

aggregation, and this counterintuitive observation will be confirmed in numerical

simulations as we discuss next.

4.2 Numerical simulations

We solved Equations (S14) to (S17) numerically on a square domain with periodic boundary

conditions for a small random density perturbation over a homogeneous steady state density

of ϕ = 0.1. The proteins now induce a spontaneous curvature in the membrane, and the

model also captures the viscous flow on the membrane manifold. Typical transient dynamics

are illustrated in Figure 6 in a simulation with L = 8 × 10−3, A = 25, and S = 2000. The initial

random distribution resolves into strong patches of proteins over time with the same number

of patches as we observed in the Cahn-Hilliard system (compare Figure 3a-c with Figure 6a-

c). Because the system of equations now accounts for coupling of curvature with protein

dynamics, we observe that the formation of dense protein patches is accompanied by the

localized growth of membrane deformations, in the form of nearly circular peaks surrounded

by flatter regions of oppositely-signed curvature (Figure 6a-c). We also observe that the

formation of protein aggregates is coupled with a tangential velocity field in the plane of the

membrane, to accommodate the deformation of the membrane (Figure 6 d-f): as the protein

aggregates form and deflect the membrane in the normal direction, a source-like flow is

generated locally as dictated by the continuity relation Equation (S14). During this process,

the magnitude of the velocity increases until the system approaches a steady state where

aggregation balances diffusion. As the steady state is approached, the flow in the membrane

changes nature as the normal velocity vanishes, with each protein patch driving a weaker

flow with quadrupolar symmetry.

As we have noted in prior works [12, 24, 39], coupling of lipid flow to membrane

deformation not only completes the description of the physics underlying the viscoelastic

nature of the membrane but also allows for the accurate calculation of the membrane tension

field (the Lagrange multiplier for incompressibility). This is particularly relevant for

understanding how microdomains of proteins can alter the tension field in the membrane.

The tension field on the membrane tracks with the protein microdomains and the

deformation in the coupled system (Figure 6g-i). Initially, the membrane has nearly uniform

tension, but as regions of high protein aggregation and therefore high membrane curvature

form, these locations are found to have lower tension in comparison with the rest of the

membrane (see [39] for a detailed discussion on this point). Thus, the dynamics of the

coupled system is able to capture key experimental observations in the field of membrane-

protein interactions: (a) regions of high curvature and aggregation are correlated for
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curvature-inducing proteins suggesting a positive feedback between these two important

factors [40], (b) lipid flow is important to sustain the deformations ([41]), and (c) membrane

tension is a heterogeneous field and varies with the local membrane composition [38].

To further quantify these behaviors, we investigated the parameter space of S  and L, to

understand how the spontaneous-curvature induction versus protein footprint compete in a

fixed regime of aggregation-to-diffusion (A = 25 fixed) (see Equation (33)). We varied S  in

the range of 200 to 2000 and L from 1 × 10−3 to 8 × 10−3 and summarize these results in

Figure 7. We first observed that the growth rate of the variance of ϕ shows a strong

dependence on L (Figure 7a). For S = 200, the growth rate for the two different values of L

differ slightly with the growth rate being slower for larger L. This effect persists and is

amplified for larger S: as both S  and L increase, the growth rate decreases, indicating that it

takes longer time for patterns to form on the membrane. However, when S = 2000, we see a

decay in the variance of protein density ϕ as opposed to the exponential growth and eventual

plateau for the cases where protein aggregrates form. This result, which is consistent with

the stability analysis of Section 4.1 suggests that the induction of curvature on the membrane

can alter significantly the dynamics of protein aggregation.

The steady-state patterns and deformations are illustrated in Figure 7b (also see Movies M4-

M6, and Figures B.1 and B.2 in the ESI), where we observe that the number of protein

patches is largely unaffected by L for S = 200. The number of patches increases with S  for a

given L (as already found in Figure 4). However, when S  increases to 1000, the number of

patches decrease with L. Since the deformation is directly affected by spontaneous

curvature, we find however that L has a strong effect on the magnitude of membrane

deflections, with larger protein footprints resulting in stronger deflections. Surprisingly,

when S = 2000, we noticed that protein aggregates do not form for the value of L = 8 × 10−3

and the membrane remains flat. This phenomenon can be explained from the critical value

of A in Equation (33). Since both L and S  have a stabilizing effect on density fluctuations ϕ′
(Equation (33)), for higher value of S  and L, an aggregation coefficient of A = 25 is not

sufficient to overcome the stabilizing barrier. However, for lower values of L or lower values

of S , where the stabilizing effect is relatively weak, we see the formation of protein

aggregates.

The tension profile in the membrane follows the inhomogeneity of the protein distribution as

expected (Figure 7c and Figure B.2). As previously noted in Figure 6, the patches are

associated with tension minima. We find that the range of λ depends strongly on S  and L, as

∇λ linearly depends on the negative of the gradient of the spontaneous curvature, which in

turn depends on both ℓ and σ. This is consistent with our previous results showing that λ is a

heterogeneous field on the membrane and varies with the protein-induced spontaneous

curvature [12, 39]. Figure 7c further highlights the coupling between curvature, flow, and

aggregation dynamics. Finally, we look at the variance and the number of patches as a

function of both S  and L (Figure 7d,e). We note that for a given value of S , the variance

decreases with increasing L for higher values of S  and this decrease is more dramatic when

compared to the Cahn-Hilliard model (Figure 4b). Even though the number of patches
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remains more or less unaltered for small values of S  as L increases, the number decreases

with increasing L for larger values of S  (Figure 7e), consistent with the stability behavior

noted in Equation (33). These results suggest that the landscape of protein inhomogeneity is

not only governed by the A‐S  space as is the case in the Cahn-Hilliard model; rather the

curvature parameters, specifically L in this case, can have a significant impact on the protein

aggregation behavior. Thus, we find that the aggregation-diffusion landscape on the surface

of the membrane is altered by the protein-induced spontaneous curvature – tuning these

different effects can allow for differential control of curvature-aggregation feedback.

5 Discussion

The interaction of peripheral and integral membrane proteins with the lipid bilayer of

cellular membranes is fundamental to cellular function [42-44]. In this work, we have

developed a comprehensive modeling framework that couples the multiple effects that take

place in such membrane-protein interactions: protein diffusion in the plane of the membrane,

interaction between the proteins resulting in aggregation, lipid flow in the plane of the

membrane, and out-of-plane curvature generation due to protein-induced spontaneous

curvature. The resulting system of equations now completely describes the mechanics of a

lipid membrane with a second species that can both diffuse and aggregate in the plane of the

membrane. We compared this system against a reduced system of Cahn-Hilliard equations to

show how the coupling with membrane bending alters the system behavior using both linear

stability analysis and numerical simulations. In the absence of curvature coupling (the Cahn-

Hilliard system), the dynamics of protein aggregation is driven by the competition between

two key parameters, S , representing the relative size of the protein footprint and A,

representing the relative strength of protein aggregation over diffusion. In the presence of

curvature coupling due to protein-induced spontaneous curvature, these dynamics are altered

and depend strongly on the strength of the spontaneous curvature induced by these proteins.

These altered dynamics can be summarized as follows: for certain regimes of S  and L,

microdomains of proteins form on the membrane and are closely tied to the membrane

curvature as is expected, generating a strong feedback between curvature and aggregation.

We also found that for certain regimes of S  and L, the growth rate decays, preventing the

formation of protein aggregates and the membrane remains flat.

The interaction between curvature and protein aggregation in membranes has been studied in

multiple modeling [21, 23, 45, 46], simulation [6, 7, 10], and experimental contexts [47-51].

Our work builds on this literature with a few key differences. Many of the theoretical models

analyze the governing equations in simplified settings. In some cases, the geometry is fixed

and the emergence of patterns is analyzed, and in other cases, the dynamics of the protein

interactions on the surface is ignored [10, 23]. Here, we have analyzed the fully coupled

system without any assumptions on the dominant regimes and demonstrated how curvature

generation can affect aggregation. Another important feature of our model is the calculation

of membrane tension. Since the lipid bilayer is assumed to be incompressible, the

calculation of the Lagrange multiplier, which is widely interpreted as membrane tension (see

detailed discussion in [39] and references therein), is an important aspect of the coupled

physics. By incorporating the viscous nature of the membrane, we ensure that the
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incompressibility constraint is met rigorously at all times and therefore obtain the tension

fields on the membrane. Our calculation of the heterogeneous tension fields are consistent

with previous models as noted above and with experimental observations [52]. Moreover, a

lower tension inside the phase-separated domain further supports the existence of line

tension at the domain boundary, which has been observed experimentally [38].

Finally, we discuss the relevance of our model in the context of biological systems. Coarse-

grained molecular dynamic simulations of N-BAR proteins on flat membranes and spherical

vesicles showed that at low protein density these proteins form linear aggregates and meshes

on the membrane surface [53]. Many proteins, especially those that belong to the coat family

of proteins including clathrin and COP, are known to aggregate on the membrane and their

aggregation results in morphologolical changes of the membrane [54]. The nucleation of

these protein aggregates and the subsequent deformation of the membrane has been studied

using simplified systems [55]. While the exact role of lipid flow, diffusion, and aggregation

is often not unraveled in these experiments, they have shown that the extent of curvature

induced depends on multiple physical parameters including the composition of the

membrane and the nature of the protein [43, 56]. From a physiological perspective, many

neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, and

Huntington’s disease are associated with surface aggregation of proteins in cells. Even

though the precise mechanisms of such aggregation are not fully established, the role of

membrane-protein interactions, particularly aggregation, is becoming increasingly important

[57].

The formation of domains is not specific to lipid-protein systems but is also observed in

vesicles that have two different kinds of lipids. The temporal behavior of formation of

disordered lipid domains was studied in a ternary mixture of fluid membrane [41] and it was

shown that in-plane flow was critical to the formation of such domains [8] and that smaller

domains can be attracted towards larger domains following the internal flows [58].

In developing models for many of these experimental observations described above,

aggregation of domains of protein-induced curvature is often assumed a priori or curvature is

proposed as an organizing factor to explain cellular observations and experiments in

reconstituted systems [59-65]. By developing a general theoretical framework that accounts

for the coupled effects of protein diffusion, aggregation, and curvature generation, we have

eliminated the need for such strong assumptions and more importantly, demonstrated that

the intricate interactions between these different physics can lead to different regimes of

pattern formation and membrane deformations. These regimes can be tuned and controlled

by different parameters, allowing for exquisite control of experimental design. In summary,

the comprehensive model that we have developed here allows for a broader interpretation

and understanding of membrane-protein interactions in a unifying framework.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1:
Schematic of protein aggregation and representation of a membrane surface. (a) Aggregation

of trans-membrane proteins on the membrane can lead to domain formation and curvature

generation. Here, we develop a continuum model that captures these different interactions.

(b) Representation of a membrane surface and the surface coordinates. r is the position

vector, a1 and a2 are the tangent basis vectors, n is the unit surface normal.
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Figure 2:
Marginal stability curves for the Cahn-Hilliard system in the (A,S) plane for ϕ0 = 0.1 and

various wavenumbers k, as predicted by Equation 19. We mark three points in this figure to

identify the parameter values for which we perform nonlinear numerical simulations in

Figure 3.
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Figure 3:
Temporal evolution of the protein distribution in simulations of the Cahn-Hilliard model of

Equation 19 on a flat square patch of area 1 μm2 for A = 25 and three different values of S .

The three rows in panels (a-i) correspond to three distinct times: at an early time tb = 3 ×

10−3 shortly after the start of the simulation, at an intermediate time tin when protein density

variance reaches Vϕ = 2 × 10−3, and at a late time ts = 0.3 when the system has reached

steady state. The three columns correspond to S = 200 (a‐c), S = 500 (d-f), and S = 1000 (g-i).
Also see Movies M1-M3 in the ESI for the corresponding dynamics. (j) Temporal evolution

of the variance Vϕ of the protein density for the same cases shown in (a-i). The dashed lines

indicate the intermediate time tin when the variance reaches Vϕ = 2 × 10−3.
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Figure 4:
(a) Configurations of protein aggregates on a flat square membrane at a late time t = 0.3

approaching steady state for various combinations of A and S . (b) Variation of the number of

protein patches with A, for different values of S . (c) Variation of of the protein density

variance Vϕ with A for different values of S .
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Figure 5:
Dependence of g defined in Equation 30 on wavenumber k for different values of S  and L,

with A = 25.
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Figure 6:
Temporal evolution of protein distribution, membrane shape, in-plane velocity and tension

for a square membrane of size 1 μm2 with A = 25, S = 200, and L = 8 × 10−3. (a-c) Height of

the membrane colored with the local protein density, (d-f) in-plane velocity field, and (g-i)
membrane tension at dimensionless times 0.003, 0.216, and 0.3.
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Figure 7:
Effect of S  and L on protein aggregation and membrane dynamics. (a) Temporal evolution of

the protein density variance Vϕ for two values L and the same three values of S  shown in (b).

(b) Distribution of protein density on the deformed membrane at a long time approaching

steady state (t = 0.3) for various combinations of L and S , with A = 25. The corresponding

dynamics are also shown in movies M4-M6 of the ESI. (c) Distribution of the local

membrane tension for the same cases as in (b). (d) Variance of protein density Vϕ and (e)

number of protein patches np at t = 0.3 as functions of L, for various values of S .
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Table 1:

List of dimensionless numbers and their definitions.

Dimensionless Number Expression Physical interpretation

B
kBT

κ
Thermal energy
Bending energy

L
ℓ
L

Spontaneous curvature length
Domain length

A
γ

kBT
Aggregation coefficient

Diffusion coefficient

S σsL
2 Domain area

Protein footprint

T
2L2λ0

κ

Membrane tension energy
Bending energy

Pe
λ0L2

νD

Advection strength
Diffusion strength
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