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Abstract 
The predictive performance equation (PPE) is a mathematical 
model of learning and retention that uses regularities seen in 
human learning to predict future performance. Previous research 
(Collins, Gluck, Walsh Krusmark & Gunzelmann,, 2016) found 
that prior data could be used to inform PPE’s free parameters 
when generating predictions of a group’s aggregate performance, 
allowing for more accurate initial performance predictions. Here 
we investigate an extension of this methodology to predict 
performance of individuals, rather than aggregate samples. This 
paper documents the results of that investigation, which is on the 
critical path to the use of this cognitive technology in education 
and training.  
 
Keywords: Mathematical model; Performance predictions; Skill 
learning; Parameter generalization; Educational data mining, 
Individual predictions 
 
Introduction 
It is typical in training and education for instructors to have 
little to no information about the people who are about to 
begin the curriculum. Rather, individuals must complete 
some portion of the curriculum before for their knowledge 
can be assessed. This assessment period can lead to an 
increase in the overall amount of time that training and 
education takes, and can lead to individuals practicing 
skills that have already mastered (Beck & Chang, 2007). 
Ideally, instructors could be able to estimate the future 
performance of both the incoming cohort of students as a 
whole in addition to the specific individuals based on the 
past performance of those who learned the same 
curriculum. This would allow instructors to better adjust a 
given curriculum to fit the needs of the cohort and of 
specific students.   
 In cognitive science, models of learning and retention 
have been developed to account for particular regularities 
in human learning such as the power law of learning 
(Newell & Rosenbloom, 1981) and power law of decay 
(Rubin & Wenzel, 1996), and the spacing effect (Bahrick, 
Bahrick, Bahrick, & Bahrick, 1993 Although many of 
these models were created based on basic laboratory 
phenomena, they can also be used to generate predictions 
of future human performance (Anderson & Schunn, 2000; 
Jastrzembski, Gluck, & Gunzelmann, 2006; Mozer, 
Pashler, Cepeda, Lindsey, & Vul, 2009; Pavlik & 
Anderson, 2008; Raaijmakers, 2003). These models hold 
promise in training and education to increase mastery and 
/or decrease instruction time. 

 
The Predictive Performance Equation 
The model discussed in this paper is the Predictive 
Performance Equation (PPE; Walsh et al, submitted). PPE 
is a mathematical model of human learning and retention 
that can generate performance predictions on declarative 
(know-what) and procedural (know-how) tasks. Prior 
research has validated PPE across a variety of different 
laboratory tasks (Walsh et al., submitted) as well as 
complex human performance data from F-16 fighter pilot 
training research (Jastrzembski et al., 2006) and education 
and training data (Collins, Gluck, & Jastrzembski, 2015). 

PPE represents the effects of three factors on 
knowledge acquisition and retention: recency of practice, 
frequency of practice, and the distribution of practice over 
time (i.e., spacing). The first factor, recency (Tn), captures 
the amount of elapsed time since training began. Tn is 
calculated as a weighted sum of the elapsed time since each 
of each previous training opportunities (ti) (Equation 1). 
The weight (wi) applied to the amount of time that has 
passed since a particular event decreases exponentially 
with time (Equation 2). Although in principle a free 
parameter, prior model exploration has found that the 
exponent, x, can be set to 0.6, which we do in the analyses 
presented here.  

          		𝑇 = 𝑤% ∗ 𝑡%(
%)*                                 (1) 
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./
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(
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The second factor, frequency (Nn), represents the number 
of times that a particular knowledge or skill has been 
rehearsed. These two factors, elapsed time and frequency 
of practice, have a multiplicative effect on activation (Mn), 
which is the strength of a particular memory or skill 
(Equation 3). Amount of practice is scaled by the learning 
rate c, which is fixed to 0.1. As the amount of practice 
increases, activation rises at a decreasing rate, producing 
the power law of learning. The second term, comprised of 
T and d, captures the effects of the power law of decay. The 
decay rate, d, captures spacing effects (Equation 4).  
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The precise effect of spacing on performance is determined 
by the summation term within the decay parameter. When 
lags between successive training opportunities (lagj) are 
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short, the summation term in Eq. 4 approaches 1 and decay 
increases, leading to a greater amount of forgetting. When 
the lags between training opportunities are long, and the 
summation term approaches 0, the decay term decreases, 
leading to less forgetting over time. The decay rate 
equation includes a decay intercept parameter (b) and a 
decay slope parameter (m). The activation value from Eq. 
3 is scaled to performance through a logistic function 
(Equation 5). The function contains two additional free 
parameters controlling its slope (s) and the intercept (𝜏).  
 
                             		𝑃( = 	

*

*BGHI	 J0	KLM
                         (5) 

 
In summary, PPE has four free parameters (i.e., b, m, s, 𝜏). 
These parameters can be calibrated based on existing 
performance data. Once a set of best fitting parameters 
have been found, PPE can use these parameters to predict 
future performance. 
 
Motivation 
Reliable and valid parameter estimates for PPE cannot be 
found with PPE when calibrating to fewer than three 
training opportunities. There are two reasons for this. First, 
when fewer than three data points are available, multiple 
combinations of free parameter values that can fit the 
available training data equally well. This makes it difficult 
to determine which set of parameter values should be used 
to generate out-of-sample predictions (Beck & Cheng 
2007). Second, when calibrating PPE to so little data, PPE 
will likely fit to both the performance of the individual as 
well as to noise in the data (Geman, Bienenstock, & 
Doursat, 1992). This overfitting, in turn, will reduce the 
accuracy of out-of-sample predictions. The combination of 
these two factors are likely to lead to inaccurate and 
uncertain out-of-sample performance predictions. To 
overcome this limitation, Collins et al. (2016) developed a 
method for using prior data (i.e., records of performance 
data collected from previous classes) to inform a subset of 
PPE’s free parameters (prior predictions), under cases 
where there were not enough data points for accurate 
calibration. By using prior data to inform a subset of PPE’s 
free parameters, PPE fits the available training data with a 
constrained parameter set. In circumstances where there is 
little training data, this increases PPE’s prediction accuracy 
for early performance events.  

This prior-informed prediction method was based on 
work from the Educational Data Mining (EDM) literature. 
EDM research applies data mining and statistical learning 
methodologies to educational data to improve student 
learning outcomes (Romero, Ventura, & Baker, 2010). 
EDM methods are primarily data driven, meaning they 
require large amounts of data to develop predictions within 
a specific domain (Webb, Pazzani, & Billsus, 2001). In 
contrast PPE is primarily theory driven, meaning that its 
predictions are based on mechanisms that account for 
general characteristics of human learning and retention. 

The development of PPE’s prior-informed prediction 
method balances the data-driven and theory driven 
approach of these two methods.  

Although Collins et al. (2016) found that prior data 
could be used to generate predictions of the aggregate 
performance of multiple students attempting a single skill, 
their results did not indicate how accurate the predictions 
are at an individual student level of analysis. Using prior 
data to predict the initial performance at a finer level of 
aggregation is more difficult for two reasons. First, the 
performance of a single individual is characterized by 
greater variability, as compared to learning curves 
aggregating across the performance of multiple students, 
making performance of a single student more difficult to 
predict. Second, students are likely to learn skills at 
different rates, meaning that best fitting parameters for an 
aggregate learning curve may not generalize to account for 
the performance of a specific student attempting a 
particular skill.  

In spite of these additional complexities when 
predicting the performance of individual students, 
educational data mining research has shown that prior data 
can be used to inform valid model parameter estimates for 
models used to account for the performance of individual 
students on single skills (Cen, Koedinger & Junker 2007; 
Beck & Chang 2007; Ritter et al., 2009). These findings 
suggest that prior data can serve as a useful tool that can be 
used to inform predictions of individual students and not 
just aggregate samples. In summary, we sought to expand 
our previous research by examining the extent to which our 
method for predicting early performance of groups of 
students generalizes to the individual student level of 
analysis. To evaluate the prior-informed method, we 
compare it against predictions to PPE’s standard non-prior 
predictions during an individual student’s first 4 attempts 
on a new skill.  

 
Method 

The data used in this report were obtained from 
Learnlab.com’s DataShop (Koedinger, Baker, 
Cunningham, Skogsholm, Leber, & Stamper 2010), which 
is an online educational data repository for student log data. 
DataShop contains a collection of publicly available 
datasets from different math, science, and English 
classroom and tutoring studies. The data used in our 
analyses, consisted of log files of performance metrics of 
students completing their homework for an introductory 
physics class during six different semesters. Students used 
the ANDES tutoring system to complete their homework 
(VanLehn et al, 2005) at the United States Naval Academy 
(USNA). We chose these datasets because they contain the 
largest collection of data from multiple semesters collected 
from the same domain currently available on DataShop, 
allowing us to better investigate the utility of using prior 
data to inform PPE’s performance predictions.  

A single semester’s worth of data on DataShop is 
called a dataset, which is composed of a record of the 

1801



performance of individuals who attempted to solve 
problems in a specific domain within a specific period of 
time. Each dataset contains the record of all of the students’ 
actions across the curriculum’s content. A curriculum is 
made up of problems, defined as “a task [attempted by] a 
student usually involving several steps.” An example of a 
problem would be calculating the difference in velocity 
between trains A and B. Successfully solving a problem 
involves completing a series of steps, which are “an 
observable part of a solution to a problem”, such as finding 
the velocity of train A. We choose to examine the 
performance of students while completing particular steps 
for two reasons. First, steps were the smallest level of 
resolution of data available on Datashop. Second, each step 
isolates a particular knowledge component. Because 
learning occurs at the level of individual knowledge 
components (Anderson & Schunn, 2000), comparing 
analogous steps across problems is the proper way to 
observe the change in performance over time. 	

 
Prediction Procedure 
We systematically selected one of the six datasets as the 
prediction sample, and used the remaining five datasets as 
prior data to inform predictions for an individual on a 
particular step. Then the performance data of a single 
student on a particular skill was selctecd, from the 
prediction sample. All of the students from the prior data 
who also attempted the same skill were selected (relevant 
sample) and used to inform PPE’s predictions. Due to the 
fact that the data collected from the ANDES tutoring 
system are data from homework assignments, the students’ 
first exposure to the curriculum was during class and was 
not their first attempt on a particular step within the 
tutoring system. For this reason, we assumed a six-hour lag 
between class and when a student began to complete their 
homework. This assumption of a lag between class and 
home time allowed for a better estimation of PPE’s model 
time as calculated from PPE’s time variables (Eq. 1and 4). 
For the relevant sample to be able to inform a prediction, 
the average performance and model time variables across 
each participant during each event was calculated. Based 
on aggregate performance and model time computed from 
the relevant samples, PPE model parameters were 
estimated, and then used to make individualized 
predictions of a student’s performance on a particular skill 
on the 2nd, 3rd, and 4th event.  
 For the analysis in this paper, we used PPE to generate 
predictions for two metrics of the students’ performance: 
time to complete a particular step (seconds) and the number 
of incorrect attempts made by a student during a particular 
event. To generate a prior prediction, PPE first calibrated 
to the performance (i.e., completion time in seconds or 
number of incorrect attempts) of the first two events from 
the aggregate performance of the relevant sample. This 
yields a set of best fitting parameters values. The best 
fitting b (bprior) and m (mprior) parameters are then 
generalized to inform PPE’s prior informed prediction of 

an individual student’s performance on the 2nd event given 
their performance on the 1st event. This is done by setting 
PPE’s b and m free parameters to the bprior and mprior values 
and fitting PPE’s remaining two free parameters s and τ to 
the student’s performance during the first event. After PPE 
is fitted to the student’s performance on the 1st event, the 
model is used to generate a prediction of the student’s 
performance on the second event. This procedure was then 
repeated to generate predictions of the 3rd and 4th event, by 
increasing the number of events that PPE is calibrated to 
with the prior sample and the predicted individual before 
generating a performance prediction of the next event.  

In addition to generating prior predictions, we used 
PPE to generate predictions of each student’s performance 
on the 2nd, 3rd, and 4th events without using data from past 
participants. This involved fitting the model with the 
sparse, individual-specific data, and using the model to 
predict performance for the following event.  

Across all of the six datasets collected from Datashop, 
a total of 10,499 predictions were made across 430 students 
and 161 individual steps across the 2nd, 3rd, and 4th 
performance event. 

Results 
To examine the accuracy of PPE’s prior and non-prior 
predictions the average model predictions from the 2nd, 3rd, 
and 4th events were compared to the average observations 
from students whose performance was predicted (Figure 
1).  

In addition to the looking at the average performance, 
the students’ performance and PPE’s predictions were 
separated in to two groups (i.e., canonical and non-
canonical learning). The students in the canonical learning 
groups were students whose performance either improved 
or remained the same over the four observed learning 
events (Figure 2-A, 2-C). Students in the non-canonical 
learning group were students whose performance 
decreased during at least one of the four learning events 
(Figure  2-B, 2-D). The students’ performance was 
separated into canonical and non-canonical learning 
groups, due to the fact the variability in the students’ 
performance effects PPE’s performance predictions. 
Additionally, we wanted to observe to test if PPE’s could  
account for the two types of learning profiles.  
Completion Time  

As seen in Figure 1, when predicting a student’s 
performance on the 2nd event, given their performance on 
the 1st event, there is a significant difference between the 
mean completion time between PPE’s prior (M = 45.50, 
SD = 85.50) and non-prior (M = 192.199, SD = 196.78; 
t(10497) = 90.932, p < .01) predictions compared to the 
students’ average completion time (M = 37.85, SD = 
70.43). Examining the root mean squared deviation 
(RMSD) between PPE’s prior (RMSD = 98.49) and non-
prior predictions (RMSD = 250.18), we see that PPE’s 
prior-informed predictions were more accurate than non-
prior predictions. These results show that informing PPE’s 
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predictions using prior data can improve prediction 
accuracy when prediction performance of the 2nd event 

  
When predicting the students’ performance on the 3rd 

event, given their performance on the first 2 events, again 
a significant difference between PPE’s prior (M = 36.79, 
SD = 81.76) and non-prior (M = 66.85, SD = 143.21; 
t(10497) = 22.78, p < .01) predictions is observed, 
compared to the students’ average performance (M = 
73.96, SD = 179.11). As was seen when predicting the 
students’ average performance on the 2nd event, a similar 
pattern is seen when predicting the 3rd event. A lower 
RMSD was found between the students’ average 
performance and PPE’s prior (RMSD = 99.66) compared to 
non-prior predictions (RMSD = 151.80).  

Finally, when predicting the students’ performance on 
the 4th event, given their performance on the previous 3 
events, again a difference between the PPE’s prior (M = 
35.76, SD = 73.11) and non-prior (M = 71.63, SD = 172.86; 
t(10497) = 22.63, p < .01) predictions are observed, 
compared to the students’ average performance (M = 
33.56, SD = 68.26). Again PPE’s prior informed 
predictions had a lower RMSD (RMSD = 92.13) compared 
to the non-prior predictions (RMSD = 181.53) when 
predicting the students’ performance on the 4th event.  

 
Correct Attempts: Canonical and Non-Canonical 
Learning Profile 

Separating the students’ performances into those who 
displayed canonical and non-canonical learning profiles, 
reveals two different sets of completion times. The 
performance of students who displayed a canonical 
learning profile was found to be monotonically improve 
over the course of the three events (Figure 2-A). Students 
who the non-canonical learning profile, on average 

displayed non-monotonic improvement in their 
performance over the four events (Figure 2-B). 
Additionally, it is seen that the accuracy of PPE’s prior and 
non-prior predictions varied based on the performance of 
the students’ learning profile. When predicting the 
performance of students’ who showed a canonical learning 
profile, PPE’s prior and non-prior predictions became more 
accurate as PPE was calibrated to additional events before 
generating a prediction, during the 2nd (Prior: RMSD = 
117.97; Non-prior: RMSD = 310.42), 3rd (Prior: RMSD = 
82.90; Non-prior: RMSD = 132.78), and 4th(Prior: RMSD = 
56.31;Non-prior: RMSD  =91.52) event (Figure 2-A). 
However, PPE’s accuracy decreased when it was calibrated 
to each additional event when predicting performance of 
students’ whose performance was found to have a non-
canonical learning profile. When predicting the 
performance of students’ who showed a non-canonical 
learning profile, PPE’s prior and non-prior prediction 
accuracy decreased as PPE calibrated to additional events, 
during the 2nd (Prior: RMSD = 41.26; Non-prior: RMSD = 
95.67), 3rd, (Prior: RMSD = 101.62; Non-prior: RMSD = 
154.06 ) and 4th(Prior: RMSD = 95.80; Non-prior: RMSD  
= 190.80) event (Figure 2-B). Although, PPE’s prediction 
accuracy varied based on the students’ learning profile, 
PPE’s prior performance predictions were more accurate 
than PPE’s non-prior predictions.  
 
Number of Incorrect Attempts  

Examining the average students’ number of incorrect 
attempts on the 2nd event given a students’ previous 
performance on the first event (Figure 2), a large difference 
is observed in the predicted average number of incorrect 
attempts in PPE’s prior (M = .47, SD = 1.25) and non-prior 

Figure 1. The average performance metric, completion time 
(seconds) (left plot) and number of incorrect attempts (right 
plot) on the 2nd, 3rd, and 4th event, across human data (solid 
black line), prior informed predictions (dashed blue line), 
and non-prior informed predictions (dashed red line).  
	

Figure 2. The average performance metric, completion time 
(A, B) and number of incorrect attempts (C, D) for both 
students who fit the canonical (A, C) and non-canonical (B 
D) learning profile, for both the human data (solid black 
line), non-prior predictions (dashed red line) and prior 
predictions (dashed blue line) on the 2nd, 3rd, and 4th event.  
	

A

B

C

D
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(M = 2.19, SD = 4.58; t(10496) = 38.97, p < .01) 
predictions, compared to the students’ average number of 
incorrect attempts (M = .38, SD = 1.09). Looking at the 
RMSD between PPE’s predictions and the students’ 
performance, PPE’s prior (RMSD = 1.51) predictions had 
a lower RMSD than PPE’s non-prior informed predictions 
(RMSD =4.87).  

When predicting the students’ average number of 
incorrect attempts (M = .39, SD = 1.63) on the 3rd event, 
again a significant difference between PPE’s prior (M = 
.49, SD = 1.63) and non-prior predictions is observed (M = 
1.20, SD = 3.58;	 t(10496) = 20.92, p < .01). However, 
unlike when predicting performance on the 2nd event, the 
RMSD of PPE’s prior informed predictions increased 
(RMSD = 2.14). While as well as PPE’s non-prior (RMSD 
= 3.91) decreased slightly.  

Finally, when predicting the students’ number of 
incorrect attempts on their 4th event, given their 
performance on the previous three events, a similar pattern 
of predictions is seen. A significant difference was 
observed between PPE’s prior (M = .52, SD = 2.13) and 
non-prior predictions (M = 1.24, SD = 3.79; t(10496) = 
22.62, p < .01), compared to the students’ average 
performance was observed (M = .39, SD = 1.63). 
Additionally, the RMSD between the PPE’s prior (RMSD 
= 2.22) and non-prior predictions (RMSD = 3.87) were not 
seen to improve. However, the PPE’s prior informed 
predictions were lower than PPE’s non-prior informed 
predictions.   
 
Incorrect Attempts: Canonical and Non-Canonical 
Learning Profile 

Separating the students’ performance into those who 
displayed canonical and non-canonical learning profiles, 
two different sets of the students’ number of incorrect 
attempts are seen. From students who displayed a 
canonical learning profile, number of incorrect responses 
decreased over the course of the four learning events 
(Figure 2-C). Conversely, students who displayed a non-
canonical learning profile on average displayed a non-
monotonic performance over the four events (Figure 2-D). 
The accuracy of PPE’s prior and non-prior predictions 
varied based on the type of learning displayed by the 
students. When predicting the performance of students who 
showed a canonical learning profile, PPE’s prior and non-
prior predictions became more accurate when PPE 
calibrated to additional events, during the 2nd (Prior: RMSD 
= 1.04, Non-Prior: RMSD = 4. 69), 3rd, (Prior: RMSD = .68 
Non-Prior: RMSD = 2.27) and 4th(Prior: RMSD = .56 Non-
Prior: RMSD =1.29) event (Figure 2-C). However, PPE’s 
accuracy decreased when it calibrated to additional events 
of students with a non-canonical learning profile. When 
predicting the performance of students’ who showed a non-
canonical learning profile, PPE’s prior and non-prior 
predictions became less accurate as PPE calibrated to 
additional events, during the 2nd (Prior: RMSD = 2.03; Non-
Prior: RMSD = 5.14), 3rd (Prior: RMSD = 3.30; Non-Prior: 

RMSD = 5.57), and 4th(Prior: RMSD = 3.34; Non-Prior: 
RMSD = 5.96) (Figure 2 –D). Although, prediction 
accuracy varied based on the students’ average 
performance based on the learning profile of the student, 
PPE’s prior performance predictions were more accurate 
than PPE’s non-prior predictions.  

 
Discussion 
 The primary goal of this paper was to describe our 
assessment of the accuracy of PPE predictions of 
performance in the tutoring data available on DataShop, 
both with and without the use of informative priors.  We 
find evidence that incorporating prior data into PPE’s 
predictions at a lower (individual student) level of 
aggregation, slightly improves prediction accuracy, 
depending on the performance measure, the event being 
predicted, and the student’s learning profile.  
 When predicting a student’s completion time on the 2nd, 
3rd, and 4th event, we  found that PPE’s prior informed 
predictions were more accurate than PPE’s individualized 
predictions. Additionally, we found that PPE’s predictions 
varied based on the student’s learning profile. When 
predicting the performance of students’ who were found to 
have a canonical learning profile, the accuracy of PPE’s 
increased as PPE was calibrated to additional events. 
However, the opposite results were observed when 
predicting the performance of students’ who were found to 
have a non-canonical learning profile. Here it was observed 
that PPE’s ability to predict performance depended on the 
variability of the students performance history in their 
performance. When variability in a student’s performance 
history was low and improved regularly (i.e., canonical 
learning profile), PPE was better able to predict their future 
learning. When variability was high and a student’s 
performance history showed both improvement and 
forgetting (i.e, non-canonical learning), the increased 
uncertainty in performance hindered the PPE’s predictions 
from accurately predicting future performance. Although, 
the benefit of using priors was observed in PPE’s 
predictions in each of these cases. 
 These results are partially consistent with results from 
Collins et al. (2016), where we found an initial benefit of 
using prior predictions to generate initial performance 
predictions of the 2nd event, as was found when predicting 
the student’s completion time. Without information from 
prior data, PPE’s parameters must  be estimated with sparse 
data from the student’s prior performance during the first 
event. Because the model is under constrained in this case, 
the parameter estimates are likely unreliable. 

Additionally, when predicting the average completion 
time and the number of incorrect attempts, a benefit of 
using a priors was found. When predicting a student’s 
future performance, PPE is able to utilize information from 
other students who have previously performed the skill 
before, allowing for a better estimate of the student’s future 
performance will be. These findings are in line with our 

1804



previous findings that PPE’s prior predictions benefit 
PPE’s predictions beyond the 2nd event.  
 
Conclusion 
The benefits of using prior data are not new to cognitive 
science. However, within the context of the PPE line of 
investigation, little previous research has been conducted 
on how prior data can be used to inform predictions, 
especially within the context of early performance 
predictions of individual students. In summary, we find 
evidence that our previously proposed method of 
incorporating information from prior data into PPE’s free 
parameters (Collins et al. 2016), can add some benefit to 
prediction accuracy when attempting to predict the 
performance of individual students on particular skills. The 
results suggest that prior data is a useful source of 
information about the performance of individual students 
when generating predictions with PPE. Future work should 
attempt to incorporate information from prior data to 
generate initial performance predictions in order to 
decrease overall training or education time. 
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