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Continually rising energy needs in conjunction with negative externalities of 

fossil fuel use demand the diversification of energy resources. However, fossil 

hydrocarbons are also used as raw materials for a vast web of manufacturing of 
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industrial and consumer goods. The use of plant based raw materials as substitutes for 

fossil materials in fuels and manufacturing has been demonstrated successfully, and 

microalgae are an extremely diverse and promising resource in this category. One of 

the chief challenges in the implementation of a bio-economy is efficient processing 

and conversion of biomass to platform chemicals. In order to maximize extraction 

efficiency, pretreatment is employed to effect cell rupture. Many pretreatment 

processes have been implemented using empirical operating curves, but the 

fundamental energy requirements of the cell disruption process have not been 

thoroughly explored. To fill this void, a constitutive model of cell rupture energy is 

derived here and implemented for low frequency power ultrasound processing of 

Chlorella vulgaris. A sensitivity analysis of the constitutive model is performed, 

identifying cell diameter as a high sensitivity input. Measured distribution of 

microalgae cell diameters is then used as a fixed input to Monte Carlo simulations of 

cell rupture energy from the constitutive model. The influence of growth media on 

microalgal growth rate is then investigated, and the resultant biomass subjected to 

power ultrasound processing to determine the effect of media choice on processing 

efficiency. The theoretical kinetics of cell rupture via power ultrasound induced 

cavitation is developed next. A reactor model is introduced to convert reactor kinetics 

to reaction zone kinetics. An elementary reaction model is then developed in the 

context of the constitutive model, leading to the introduction of an alternative reaction 

mechanism employing a critical distance parameter to capture the relative energies and 

proximity of cells and cavitation bubbles. This reaction mechanism is extended to 

generate an explicit expression for the cell disruption first order rate constant in terms 
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of cell properties and power ultrasound operating parameters. This rate constant is 

mapped over the parameter space, then used to back-calculate cavitation rate, and 

finally extended to incorporate PDF parameter inputs.     



 

1 
 

Chapter 1 - Introduction 

1.1 Motivation 

Commoditized energy is a large part of the global economy and essential to 

modern everyday living. One part of securing the future of our energy driven society is 

the exploration of alternative fuels. An essential part of the biofuels branch of this 

exploration is the processing of microalgae biomass. 

The United States (US) Department of Energy (DOE) estimates global energy 

use to have been 553 x10
18

 J/yr in 2010, and projects it will reach 865 x10
18

 J/yr in 

2040 [1]. The US used 104 x10
18 

J/yr in 2010 [2] and is projected to reach 

112 x10
18

 J/yr in 2040 [3]. This usage is segregated into sectors of: residential 

(21.2%), commercial (18.5%), industrial (32.1%), and transportation (28.2%) [3].  

In 2012, the sources of energy providing for total US usage to these sectors 

were: petroleum and other liquids (37.7%), natural gas (27.6%), coal (18.2%), nuclear 

(8.47%), hydropower (2.81%), biomass (2.66%), other renewable energy (2.07%), and 

other sources (0.41%) [3].  

The fossil resources that make up 83.5% of these energy sources are 

decreasing in availability (relative to increasing demand), stability, and extractability 

for a variety of reasons; and sources of the remaining balance each face their own 
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unique obstacles to fulfilling existing and future energy and material demands within 

economic, political, and environmental constraints [3].  

1.1.1 Energy Alternatives 

The resounding conclusion from many energy analyses has been that no single 

energy source will emerge as a predominant solution moving forward [3-5]. Thus a 

diverse set of energy solutions are required, including: conventional fossil fuel 

resources, new fossil fuel extraction technologies, nuclear power, alternative fuels, 

biofuels, alternative energy systems, carbon capture and sequestration, and efficiency 

measures in transportation, lighting, appliances, building codes, and industrial 

processes [6, 7].      

Because of the projected decreases in availability relative to growing demand 

and increases in volatility of fossil fuel sources, campaigns have focused on replacing 

them with domestically produced non-fossil fuel and energy sources. However, the 

rate of increase in overall energy demand outpaces the rate of increase in capacity of 

non-fossil energy, so not only does the consumption of fossil fuels not decrease; it 

continues to increase, albeit at a slower rate than it otherwise would. These non-fossil 

energy sources include both direct power generation and solid, liquid, and gas fuels 

derived from renewable sources.  

Direct power generation has the most potential to displace fossil fuel 

consumption by replacing the combustion of coal to generate electricity. Renewable 

energy sources that directly produce electricity in stationary plants include: solar, 

wind, hydro, tidal, geothermal, and nuclear (a non-renewable mineral source) [8]. 
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While natural gas is increasing its market share as the fuel of choice for electricity 

generation, coal is still the largest fuel source for this purpose [3]. Renewable 

resources can also be tapped to produce fuels that take the place of fossil fuels in these 

stationary combustion plants (hydrogen, biomass, and biogas) [8].  

Renewable fuels and direct power generation are also used in mobile 

platforms, most significantly in transportation. Because these fuels are “better defined 

by their performance specifications than by the sum of specific molecules,” [5] they 

can in some cases be engineered to be direct drop-in substitutes for fossil fuels, with 

no required or minor equipment alterations. These include: biodiesel, bio-jet fuel, 

ethanol, and bio-gasoline.  

While the most significant displacement of fossil fuels can be accomplished 

through efficiency increases and grid-scale renewable electricity generation, global 

transportation is a significant fraction of energy demand [1]. Transportation runs 

predominantly on an existing liquid fuel infrastructure. The efficiencies inherent in 

utilizing existing infrastructure make renewable liquid fuels worth pursuing; and 

biologically derived fuels comprise a large sector under investigation. 

During the late 20
th
 century, liquid biofuels production emphasized corn based 

ethanol, cellulosic ethanol, biodiesel, and bio-jet fuel. Controversial aspects of food 

crop based ethanol and technical difficulties of cellulosic ethanol led to a limiting of 

their production. Biodiesel and bio-jet fuel gained only limited adoption in boutique 

and military test applications. In the early 21
st
 century, focus has shifted away from 

biofuels that are largely used in mixes with petroleum based fuels (such as those listed 
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above), and more toward drop-in purely biologically based substitutes for liquid 

petroleum [9, 10]. The keys to this shift have been to 1) focus on bio-oil 

extraction/generation rather than fermentation and 2) transition to high density aquatic 

biomass production rather than land based crop production [5, 9, 11]. The crop that fits 

these requirements is microalgae.    

1.1.2 Algae Biofuels 

Investigations into the use of algae in fuels in the US began in the middle of 

the 20
th
 century, with the investigation of their use to produce methane via anaerobic 

digestion [12, 13] under the DOE Marine Biomass Program [5]. From 1968 to 1990, 

the feasibility of cultivating, harvesting, and anaerobically digesting macroalgae 

(California kelp) to produce methane as a substitute for natural gas was investigated. 

The conclusion was that this process would not be cost-competitive with fossil based 

natural gas at the time of the study [14]. 

Spurred forward by the OPEC oil embargo, investigation into algae as a 

feedstock for biofuels had a major acceleration in the United States in the 1970s with 

the Aquatic Species Program. This program cataloged, characterized, and preserved 

cultures of over 3,000 microalgae species from the continental US with the goal of 

identifying those species with potential for biofuels development. The initial focus of 

the program was on hydrogen production, but switched to biodiesel (liquid fuels) in 

the 1980’s. The discovery of oil droplet accumulation in algae cells under certain 

conditions had been made in the 1940’s, with further investigations in the 50’s and 

60’s, but this phenomenon wasn’t linked to energy production until the 1970’s [5]. 
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The results of the Aquatic Species Program (1978 - 1996) were summarized in the 

program closeout report [15], and created the foundation for many ongoing 

investigations and commercial developments.  

In 2007 the DOE Renewable Fuel Standards increased volumes of renewable 

liquid fuels required in the national blend over time. Towards accomplishing these 

goals, a major step forward was the National Algae Biofuels Technology Roadmap 

[5]. This report brought together all of the compartments of algae biofuels production, 

defining the state of technology and acting as a guide for scientific, engineering, 

policy, and economic collaboration to fill the gaps in solutions to make algae based 

biofuels viable.  

In 2012 the IEA/OECD Renewable Energy Division (RED) determined that 

algae biomass was not sufficiently viable at the time to be considered in short term 

international energy decisions, but rather something to be encouraged for the future 

[16]. More recent efforts have emphasized integrating processes to maximize the net 

energy of the production chain. However, significant questions remain, including the 

operational details and limits of the component processes [17]. 

1.1.3 Processing and Co-Products 

One approach to improving viability is expanding the value chain to co-

products. A few of the additional materials produced from biomass include: oils, 

plastics, nutritional supplements, pharmaceuticals, foods, building materials, dyes, and 

fertilizers. The intersection in the production lines of fuels and co-products lies at a 

common set of source materials. In a bio-refinery, biomass can be used to produce 
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syn-gas (CO and H2) and some of the same platform chemicals that have traditionally 

been extracted from petroleum. This allows the production of bio-plastics, bio-oils, 

and some biofuels; things that would otherwise have been produced using petroleum 

as feedstock [18-22]. 

Initiatives to replace fossil fuels with biofuels have recently become more 

comprehensive. Recognizing the variety of products produced from crude oil, efforts 

have begun to focus on “replacing the whole barrel” of crude oil by making 

biologically based crude oil replacements as “drop-in” solutions that can be directly 

substituted in existing infrastructure [9].  

Bio-refinery and selected associated technologies for energy extraction and 

refinement are shown in Figure 1.1: liquefaction [22], gasification [18-20, 22, 23], 

anaerobic digestion [18, 20, 23], fermentation [18-20, 22, 23], hydrothermal 

carbonization[24], pyrolysis [18-20, 22, 23], and oil extraction [18, 19, 22]. 



7 

 

 

Figure 1.1 – Biorefinery process categories and their feed stocks. Adapted from [5, 9, 

20, 22, 25-30] 

 

After processing and extraction is complete, there exists a significant amount 

of reject material. In the case of chemical extraction, this reject material will in most 

cases be contaminated by extraction solvents. This contamination renders the material 

unusable for most purposes without further treatment, and investigations are underway 

to avoid this by the use of green solvents, non-solvent extraction processes, or whole 

cell utilization [9].  
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Waste stream challenges notwithstanding, the most significant challenges lie in 

the stages that occur prior to refining: growth; harvesting and dewatering; and 

pretreatment and extraction. 

Among these 3 high potential areas, the pretreatment of microalgae biomass 

shows significant promise to increase the efficiency of harvesting of cell constituent 

materials. The investigation of technical aspects of this processing step has the 

potential to contribute significantly and positively to the techno-economic analyses 

(TEA) and energy return on investment (EROI) that are used to evaluate the viability 

of biofuels process trains [5, 19, 31, 32].   

1.2 Pretreatment of Microalgae Biomass 

This section presents a literature review summarizing the state of the field of 

pretreatment applied to microalgae biomass processing for biofuels production. The 

diversity of available pretreatments is introduced, and methods for their analysis are 

explored. 

Mechanical oil extraction processes used for seed oil crops (i.e. presses) are 

ineffective on microalgae for the simple reason that the algae are so small [33]. 

Chemical methods of oil extraction compete with conflicting properties of microalgae. 

Those with high lipid content tend to have strong cell walls that keep the oil within the 

cell, and those with weak cellular structures tend to have low lipid fractions [34]. In 

order to access the oil within the cells of those tougher strains, the cells must be 

weakened or ruptured with a pretreatment step. Many pretreatment processes have 
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been developed, but their effectiveness is directly tied to how well they are customized 

to the biomass input.  

1.2.1 Pretreatment Taxonomy 

The design objective of biomass pretreatment is a mechanical failure of the cell 

wall and membrane. This objective can be accomplished with mechanical and/or non-

mechanical mechanisms. The taxonomy of cell disruption technologies (Figure 1.2) 

begins with this distinction between mechanical and non-mechanical methods. 

Mechanical methods of cell disruption are characterized by the direct 

application of surface force as solid and liquid shear. Three methods that fall into the 

solid shear category are bead milling, expeller pressing, and grinding with a mortar 

and pestle. Liquid shear methods are grouped here by the creation of highly localized 

pressure and velocity gradients within a fluid. These can be present alone, or they can 

be combined with a solid surface on which materials in the fluid impinge. Four groups 

of processes in this classification are homogenization, cavitation, microfluidization, 

and French press.  

Non-mechanical methods of cell disruption are more diverse, being 

characterized by the absence of direct application of force as a surface force. These 

can be identified as the modification of the cells’ environment to impart new, or take 

advantage of existing, body forces. These body forces then translate to surface forces 

in the context of a closed surface in local tension or compression, namely the cell wall 

and membrane. These non-mechanical methods can be categorized as: 

electromagnetic, thermodynamic, pressure, chemical, and biological. 
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Figure 1.2 – Pretreatment Methods. Adapted from [33, 35-40] 
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Pretreatment and microalgae combinations are nearly as diverse as the number 

of papers in the literature on the subject. Many pretreatments are applied simply as a 

method of preparing the sample for analysis. Two of the most prevalent pretreatment 

methods are freeze drying [41-56] and grinding [41, 44-46, 48, 51, 52, 54, 55, 57, 58]. 

However, these two methods are the standard sample preparation steps for extraction 

of lipids by supercritical fluid. The next most prevalent method is sonication [42, 46, 

57, 59-71], followed by microwave [46, 58, 60, 66, 67, 72, 73], thermal [46, 67, 68, 

70, 73-77], high pressure homogenization [63, 64, 78, 79], and autoclaving [60, 61, 

80]. All of these methods disrupt cells, and their appropriateness is application 

dependent. 

The pretreatments applied to microalgae are selected based on the desired 

extraction product.  A significant portion of the literature related to microalgae 

pretreatment for extraction surrounds food processing and nutritional supplement 

extraction. These extraction products are sensitive to contamination and modification 

by the pretreatment process [50]. The cost and efficiency of the pretreatment process 

is also less of a determinant of viability for the production of these products. 

Nutritional supplements and similar products can command a high price on the 

market, justifying the expense of inefficient extraction methods. When considering 

fuel products extraction, the contamination and byproducts limitations are somewhat 

removed. Fuel products are also awash in a sea of alternatives with low immediate 

financial cost, making the efficiency of their extraction a prime driver of their 
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viability. Excluding these non-fuel extraction studies decreases the variety of 

pretreatments considerably.   

1.2.2 Measures of Effectiveness 

As the extracted product varies, so too do measures of effectiveness in 

microalgae pretreatment. Outputs and inputs are measured directly, and calculated 

parameters have been useful for extrapolation in the context of the whole processing 

chain. 

The extraction products considered when making energy products from 

microalgae include oil products, methane gas from anaerobic digestion, and ethanol 

from fermentation. As was noted above, the extraction of oil products for feed into 

biorefineries is a dominating force in microalgae energy research. Accordingly, much 

of the reviewed literature focuses on these products, which occur in the lipid fraction 

of the cell. The products that can be formed depend not only on the total lipid yield, 

but also on the composition of that lipid. 

The total lipid yield is measured in several ways in the literature. 

Gravimetrically, the crude lipid yield is measured as either percent of ash free dry 

weight of algae cell mass [41, 62] or, more simply, as percent of dry weight of algae 

cell mass [42, 45-47, 57, 60, 61, 72-74, 81]. This crude lipid yield has also been 

measured by a calibrated spectrophotometric absorbance from 200nm to 800nm [64]. 

When the composition of the lipid is considered, a lipid yield can be calculated as the 

sum of the concentrations of individual lipid components or their derivatives. For fatty 

acid methyl esters (FAME), the feedstock to biodiesel production, this yield has been 
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measured by gas chromatography (GC) with either flame ionization detector (GC-

FID) [41, 43, 66, 82] or mass spectrometer (GC-MS) [58, 81]. Di- and Tri-acyl-

glyceride [57, 73] and soluble volatile fatty acids (VFA) [68] yields have also been 

determined via GC-FID. Triacylglycerol yield has been determined by liquid 

chromatography (LC) with mass spectrometry (LC-MS) [41]. Triglyceride yield has 

been determined by both nuclear magnetic resonance (H-NMR) [45] and LC with 

triple-quadrupole mass spectrometry (LC-QqQ MS) [64]. Oil yields have been 

described by a first order extraction curve [73]. 

The FAME profile is quantified to determine appropriateness of the lipid 

fraction for a certain application, but in many cases this is done without the calculation 

of total yield from the profile. These FAME profiles are measured by either GC-FID 

[41, 43, 46, 47, 57, 60-62, 66, 82] or GC-MS [58, 72, 73, 81]. The triacylglycerol 

profile has been determined via LC-MS [41] and the triglyceride profile via LC-QqQ 

MS [64]. 

The same distinction between yield and composition is made when considering 

methane in biogas generated by anaerobic digestion of microalgae biomass. Biogas 

yields are measured as a volume of biogas generated [83] or the change in headspace 

pressure [68, 70] in laboratory bioreactors. The biogas composition has been measured 

by GC with thermal conductivity detector (GC-TCD) [68, 84] and as methane fraction 

via methane exclusion by NaOH reaction [83]. 

Bioethanol yield from fermentation of microalgae biomass has been measured 

by both GC-FID [75] and high pressure liquid chromatography (HPLC) [76, 85]. 
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Cell disruption is considered a very important preliminary step for both 

chemical extraction and biochemical transformation of products from microalgae. As 

such, the performance of pretreatment methods can be measured as their effectiveness 

in rupturing cells. The ability of the cell wall and membrane to maintain the separation 

of intracellular and extracellular products is the fundamental underlying behavior. 

However, the measurements of cell disruption correspond to degrees of not only this 

behavior, but also of the availability of cell materials for extraction. This degree of 

availability is the more significant indicator of performance, leading many studies of 

cell disruption to continue treatment beyond the threshold of cell permeability all the 

way to complete cell material disintegration. 

Cell permeability can be measured by absorbance of an indicator dye. This has 

been performed with trypan blue [83], where stained cells can be counted in a 

hemocytometer on a standard light microscope. SYTOX Green staining has also been 

used, where cell counts are performed by dual fluorescence on a light microscope with 

a fluorescein filter [68] or via fluorescence quantified by either a fluorescence 

microscope or flow cytometry [82]. 

Cell permeability is an indicator of cell death, or viability. This has been 

approached from the perspective of growth inhibition, measured as decreased growth 

in subsequent cultures [59] and as the reduction of observed colony forming units 

(CFU) on inoculated plates [82].   

Contents released from the cell are good indicators of failure of the cell wall 

and have been analyzed without further extraction by employing optical methods. 
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Lipid released from microalgae after treatment has been measured as fluorescence 

after staining with Nile Red dye [65]. A corollary performed in that study was the 

prediction of lipid extractability via spectrophotometric absorbance of pigments 

released from the microalgae [65]. Microcystin release has been quantified [59], and 

protein release has been measured via colorimetry using the Bradford reagent [78]. 

The release of general intracellular contents has been measured as UV absorbance at 

260nm [78]. 

The degree of disintegration of cell material is usually an excellent indicator of 

availability of cell contents for further processing.  Large qualitative changes in cell 

wall integrity are observable directly via light microscope [41, 65] and TEM [58, 72, 

82]; and in cases of whole cell disintegration can be quantified as the reduction in the 

number of whole cells counted in either a hemocytometer [59, 63, 64, 78] or bright 

field microscope [67, 82]. The qualitative changes in the cell surface have been 

quantified for comparison as the fractal dimension (box-counting dimension) of 

binarized scanning electron micrograph (SEM) images of pretreated cells [72]. The 

degree of disruption in bulk solution has been measured as turbidity via absorbance at 

750nm [78]. The size distribution of remaining particles, including cells and debris, 

has been measured using the electric sensing zone method in a Coulter counter [41] 

and optically via laser diffraction [68, 78] and dynamic light scattering [63]. However, 

the laser diffraction determinations are discounted by their authors based on the 

likelihood of false assumptions of cell shape after disruption. 
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Cell disruption has been described by a first order kinetic model [86]. The first 

order disruption rate constant has been measured in an algae biofuels context [64], 

however this analysis does not appear frequently in the literature. 

Pretreatments can be implemented to improve performance at various stages of 

biomass processing. The majority of the reviewed literature that measured parameters 

not having directly to do with cell disruption or extraction had to do with biochemical 

conversion. These additional parameters affect the metabolism of microorganisms 

employed, and so are important predictors of conversion performance. Hence the 

effect of pretreatment on these parameters is also important. The effect has been 

studied for: total solids (TS) [68, 70], volatile solids (VS) [68, 70], total Kjeldal 

nitrogen (TKN) [68], chemical oxygen demand (COD) [68, 70], soluble chemical 

oxygen demand (SCOD) [68, 70, 82, 83], ammonium via ion chromatography (IC-

conductivity) [68], phosphate via IC-conductivity [68], sugar profile via HPLC [75, 

76], and reducing sugar concentration via phenol-sulfuric acid method as UV 

absorbance [75]. The effect of pretreatment of microalgae biomass on moisture 

removal rate has also been investigated [61]. 

When considering the viability of energy products, the energy input required is 

important as both a practical concern as financial cost and a more theoretical concern 

related to net energy. Several studies have measured or calculated energy inputs for 

pretreatment. Three convenient forms for analysis are: mechanical energy [58], 

thermal energy [58, 72, 83], and total extraction energy [58]. 
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Energy inputs are all calculated values intended for use in either process 

comparison or extrapolation of energy requirements. The most direct of these is the 

calculation of electrical energy per solution volume [67]. The total disruption energy 

has been calculated as the input energy required to reach a specified level of cell 

disruption for a given pretreatment method [64, 72]. This figure is then transformed to 

disruption energy per cell using measured microalgae cell concentrations [64, 72]. A 

“figure of merit” was presented in one study as the percent cell disrupted over the 

product of energy per volume and treated volume fraction [67]. 

One calculation step not often employed in direct microalgae pretreatment 

studies is the expression of output as an energy value. For the extraction of oils bound 

for a biorefinery, this would be a complicated accounting, and so is reasonably left to 

larger scale studies. However, where a single or few final products are to be created, 

an energy value can be easily generated as the chemical potential energy of the 

extracted products. This has been done as the energy of additional methane produced 

by anaerobic digestion as its higher heating value (HHV) [83]. 

One interpretation of efficiency used commonly in the reviewed literature is 

that of performance as either a fraction of the total (or maximum) performance or a 

ratio of production mass to source mass. In terms of cell disruption this appears as 

fraction of undisrupted cells remaining and fraction of total metabolite not released 

[78]. Lipid extraction efficiency is also shown as percent dry weight of lipid in the 

performed extraction divided by the percent dry weight of total lipid in the algae as 

determined by alternate analysis [45, 73]. In the biochemical conversions, this 
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interpretation of efficiency has been presented as: enhancement of production of 

methane by anaerobic digestion (% over control) [83], steady state methane yield 

divided by maximum theoretical methane yield (m
3
 CH4/kg COD) [70], biochemical 

methane potential (BMP) (ml CH4 / g VS algae)[84], biodegradability efficiency as 

measured versus theoretical BMP [84], ethanol yield (g ethanol/g algae dry weight) 

[75], ethanol production efficiency (unspecified basis) [85], and percent 

biodegradability (unspecified basis) [68]. The interpretation of efficiency in the 

literature begins to shift toward energy with the calculation of performance as lipid 

yield per ultrasonic dosage (kWh/m
3
) [65]. 

As mentioned above, very few papers in the reviewed literature present their 

results in units of energy at the scale of a single treatment process. A correspondingly 

small number of studies are then able to present results in terms of even a limited 

energy balance to translate to energy efficiency of the process. Net energy of a 

pretreatment process as the difference between energy of additional methane produced 

by anaerobic digestion as higher heating value (HHV) and pretreatment energy input 

was determined in [83]. This is converted to a form of energy efficiency for the 

process as the ratio of the HHV of additional methane produced by anaerobic 

digestion to pretreatment energy input. 

1.2.3 Optimization  

Much of the reviewed literature does not include any explicit optimization. 

Optimization is foregone in favor of exploration of the parameter space for select 

pretreatments and/or comparison of performance between select pretreatments. These 
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are done as planned experiments with explicitly stated variables and outcomes to be 

measured, but without explicitly stated objective functions or statistically designed 

experiments. The few exceptions that performed designed experiments and/or 

optimizations employed response surface methodology (RSM) [58], central composite 

design (CCD) [75], and orthogonal analysis technique [85]. Interesting exceptions 

include the estimation of optimal pretreatment conditions based on kinetics of acid 

hydrolysis as an irreversible first order model with Arrhenius type temperature 

dependence [76] and the stated intention of minimizing free radical formation during 

ultrasonication [65], though no quantitative optimization was performed in either case. 

Studies that evaluated only two levels of a given variable were not considered 

optimizations, as they would only generate major effects plots. 

For both enzyme and acid pretreatments, time [75, 76, 85], temperature [75, 

76, 85], and concentration [75, 76, 84, 85] were common parameters explored. The 

most common variable was treatment time, occurring for pretreatments by blender 

homogenizer [67], water bath [67, 73], sonication [57, 59, 63, 64, 67], and microwave 

[58, 67, 72]. Two other variables that are operationally varied by treatment time are 

number of passes in a high pressure homogenizer [63, 64, 78] and treatment intensity 

in pulsed electric field [82, 83]. Additional variables that have been explored include: 

water bath temperature [74], drying temperature [57, 61], cell number concentration 

[64], microalgae mass concentration [75, 83], ratio of biomass to accompanying 

solvent during pretreatment [58, 82], high pressure homogenizer pressure [78], 
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ultrasound amplitude [65], ultrasonic power [68], catalyst concentration [58], ionic 

strength (IS) [83], and pH [83]. 

With so many variables to monitor, attempts have been made to simplify 

comparisons through the introduction of lumped and/or calculated parameters such as: 

sonication power density (W/ml) [59], ultrasonic dosage (kWh/m
3
) [59, 65], specific 

supplied energy (Es = (P*t)/(V*TS0)) [68], combined severity factor (CSF) [76], and 

treatment intensity (TI) [82, 83]. 

1.2.4 Physical and Chemical Characteristics  

Characterization of microalgae strains is performed to determine their 

suitability for use in biofuel production. Information about the composition and 

physical and chemical behavior of microalgae species is used to screen newly isolated 

strains and select strains for comparison in further processing. The most important 

compositional determination related to biofuels is the ratio between the three classes 

of biological macromolecules: lipids, carbohydrates, and proteins. 

The lipid fraction of microalgae biomass is important in biofuels for the 

production of oil and liquid fuel products. The chemical profile of the lipid fraction, as 

mentioned above is still relevant, but is not used as an initial screening tool. 

Determinations of the total lipid include gravimetric measurements of ash free dry 

weight [41, 58, 62], lipid yield as percent of ash free dry weight [41], and lipid yield as 

percent of dry weight [42, 46, 47, 57, 58, 69]. Gravimetric determinations are labor 

intensive, and faster indicator tests have been demonstrated, such as lipid content via 

in vivo fluorescence of Nile Red stain [42] and lipid content via fluorescence of Nile 
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Red stained extracted lipid phase [46]. The staining of the extracted fraction does not 

save much labor, as the extraction must still be carried out. Another important 

determination to make is the lipid distribution in cells. Lipids stored in different 

structures of the cell will have different availability and susceptibility to pretreatment 

and extraction. This distribution has been determined by inspection of transmission 

electron micrograph (TEM) images [58]. 

The carbohydrate fraction of microalgae biomass is most important in biofuels 

for the production of ethanol and methane by fermentation and anaerobic digestion, 

respectively. Total cell carbohydrate has been determined by anthrone reagent 

colorimetry [76, 85], with starch content measured by iodo-starch reaction [76, 85] 

and monomeric sugars measured by HPAEC [85]. Dextrin (a short chain sugar) and 

glucose (a monomer) have also been measured by HPLC [85]. The distinction between 

monomers and starches is important to make. While many simple sugars are easily 

digested in fermentation and anaerobic digestion, the complex starch fraction may 

include refractive materials that do not readily biodegrade, negatively affecting yields. 

The protein fraction of microalgae biomass is only important in biofuels in 

negative ways. A high protein fraction takes away from the fractions in lipids and 

carbohydrates. Protein is not directly extractible as a fuel product and it biodegrades 

more slowly than sugars. Protein also has higher nitrogen content than lipids and 

carbohydrates, contributing to ammonia formation under reducing conditions. 

Measurements related to protein in microalgae include TKN as a fraction of COD 
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[68], ammonium fraction of TKN [68], and total intracellular protein via Bradford 

reagent colorimetry [76, 85]. 

COD of microalgae is an important determination for energy calculations 

relating to biofuels. Because COD is an approximation of the maximum capacity for 

oxidation of a material, it is used as an experimental benchmark for oxidation 

processes. The biofuels generated from microalgae will eventually be combusted, 

completing their oxidation to carbon dioxide, so the starting point at the level of the 

cell is relevant. The change of its soluble fraction has been measured as an indicator of 

performance of pretreatment [83] and the ratio of COD of substrate to VS of 

inoculums is employed in anaerobic digestion [68]. 

Solids measurements are carried out on microalgae cultures used for biofuel. 

They serve to indicate mass concentrations for mixing of solutions (TS and TSS) [82, 

83], but in combination with other measurements such as VS [83] and COD [68] can 

provide indications of biomass composition and density of oxidation potential.  

In addition to the chemical characteristics mentioned above, physical 

characteristics must be considered. The shape and size of cells along with the structure 

and material behavior of their cell walls will have a strong influence on how they react 

to pretreatments intended to rupture the cell wall.  

Particle size of microalgae has been measured by Coulter counter [41], 

dynamic light scattering [63], laser diffraction [68], and visual inspection under a 
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microscope [46]. Cell shape of microalgae has been extensively determined, and is 

easily observed by microscopy. 

The detailed physical characteristics of the cell wall are not easily determined 

using light microscopy. The large scale qualitative integrity of the cell wall, however, 

can be seen [41, 65]. A more detailed picture requires electron microscopy, where 

both SEM and TEM are useful. In terms of composition, SEM provides a qualitative 

elemental analysis of the cell surface when combined with energy-dispersive X-ray 

spectroscopy (EDS) [58]. TEM provides a cross section view that identifies structural 

patterns and quantifies cell wall thickness [58] and pore size [72]. Microalgae cell wall 

structure and composition have been determined, as summarized in [72]. Material 

properties of the microalgae cell wall have been characterized by rupture experiments 

via nitrogen decompression [87], direct physical compression, and atomic force 

microscopy [88]. 

1.2.5 Models of Physical and Chemical Effects  

Models of pretreatment effects in the reviewed literature are mostly empirical 

or speculative in nature. Kinetic models have been applied to thermal degradation [46, 

58] and cell disruption [64, 89]. A less formal curve fitting procedure is more the 

norm, as applied for solvent effects on extraction via linear solvation energy 

relationship (LSER) [47], disruption decay parameters [78], and cell disruption 

fraction as a function of number of HPH passes [78]. The more speculative proposed 

model is exemplified by the assertion that microwave duty cycle (heating cycle) has a  

fatigue effect on cell walls, decreasing failure energy [67]. 
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Theoretical models of cell fracture are more extensively documented for higher 

plants than for microalgae, related specifically to food processing and structural 

lumber products [90-92]. Microalgae cell fracture has been modeled in a limited 

fashion in [38, 64], and these are only developed to the extent required to make a 

rudimentary energy calculation. The two approaches presented are those of cell wall 

tensile strength and hydrogen bond strength. Both of these approaches rely on 

extensive assumptions that, while good for initial approximations, prevent the prudent 

use of their results for any further application.  

1.2.6 Mechanisms  

The mechanisms of pretreatment are not discussed in depth, or at all, in most 

direct pretreatment studies. The mechanism of extraction is occasionally addressed, as 

in the case of a lipid mass transfer kinetic diffusion model and mass transfer 

coefficient from microalgae cells to super-critical CO2 (SCCO2) [81]. There are 

qualitative descriptions of the macroscopic structural mechanisms observed [67], but 

only two nanoscale models were found: a structural biochemical mechanism of cell 

wall disintegration due to microwave [72]; and a mathematical model for the radial 

dynamics of cavitation bubbles with which the magnitudes of the microturbulence 

velocity and pressure amplitude of the shock waves was estimated [69]. 

The diversity of studies seen in microalgae pretreatment for biofuels is an 

encouraging indication of the resources being applied to this problem. However, this 

diversity is also the result of a lack of a systematic and cohesive approach in the field. 
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The data are not sufficiently consistent to allow the reliable prediction of performance 

through the process train or between studies.  

1.3 Outline and Contributions 

This research focuses on the responses of microalgae to pretreatment by power 

ultrasound, and the potential created by those responses, in order to better understand 

the energy relationships involved. Chapter 1 has presented the broader context and 

motivation for the work followed by a brief review of the literature on pretreatment of 

microalgae biomass. Chapter 2 addresses the issue of energy requirements through the 

development of a constitutive model of cell rupture energy. The energy transferred to 

solution in power ultrasound systems is then explored as a measure of energy input to 

solution. The constitutive model predicted energy requirements are then compared to 

experimental pretreatment performance using a selected power ultrasound 

pretreatment system.  

The sensitivity of the constitutive model is evaluated in Chapter 3. The high 

sensitivity variable of cell diameter is then measured to decrease uncertainty in the 

Monte Carlo Simulations of cell rupture energy that follow. Chapter 4 addresses the 

selection of microalgae growth media for cultivation and the growth program during 

cultivation. The effect of growth medium on apparent cell strength as resistance to 

ultrasound pretreatment is then evaluated, and the implications for energy 

extractability are explored.  
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The kinetics and mechanism of cell disruption are developed in Chapter 5 

under two theoretical frameworks that couple the cell constitutive model with 

cavitation dynamics in cell-cavitation interactions. Chapter 6 summarizes the 

conclusions of the study. 

The contributions of this work to scientific knowledge supporting microalgae 

based biofuel development are summarized below: 

 Expansion of the functionality of cell rupture prediction models 

through the development of a constitutive model of cell rupture 

energy; 

 Improved characterization of potential error in the extrapolation of 

single cell rupture energy via identification of high sensitivity 

variables for cell rupture pretreatment of unicellular biomass; 

 Extension of the concept of cell rupture energy from single value 

determinations to distributions with multiple dimension of statistical 

uncertainty; 

 Presentation of a method to evaluate the envelope of cell rupture 

energies for a given species with known physical characteristics; 

 Introduction of the concept that growth conditions have a potential 

impact on susceptibility to pretreatment and experimental evaluation 

of those effects; 
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 Expansion of the understanding of cavitation dynamics by linking a 

kinetic model of reaction, reactor model, constitutive cell rupture 

model, and proximity parameterized energy threshold. 
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Chapter 2 - Energy Requirements and 

Ultrasound Processing 

2.1 Constitutive Model of Cell Rupture 

2.1.1 Introduction 

The efficient processing of unicellular biomass for extraction of products is a 

central requirement of the growing bio-economy. An often employed strategy to 

improve extraction performance is the rupture of cells to encourage the release of 

intracellular materials. In order to evaluate the theoretical limits of the efficiency of 

cell rupture, a theoretical framework of the physical mechanism of cell rupture is 

required. This work develops part of that framework.  

Detailed models have been produced to infer the molecular level mechanics of 

membranes and cell walls. The physics of membranes of various geometries under 

stress is summarized well by [93] and tied to measurements of membrane elasticity 

and buckling behavior. However, it is also noted that dynamic stresses existing in 

complex environments, such as those encountered in most biomass pretreatment 

systems, tends to confound these models as they currently exist. A more applied vision 

is explored in models of the composition, composite structure, and mechanics of cell 

walls in higher plants [91, 94]. These analyses are directly aimed at strength and 

processing requirements of food, lumber, and other products, which makes them 
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slightly more suitable to the dynamic processing of microalgae. However, the 

mechanical efficiency of cell walls in organism level tissue structures exists in a 

completely different boundary scheme than that of a single cell in suspension. Thus 

the characterization of cell wall decomposition and fracture for populations of single 

cells in suspension requires a different approach. 

Two ‘back-of-the-envelope’ approaches to calculating specific cell rupture 

energy were provided in [38] based on the tensile strength of a cell wall modeled as a 

thin shell and based on hydrogen bond energy of a cell wall modeled as 100% 

composed of hydrogen bond pairing atoms. This type of approach accomplishes its 

aim of being both quick and easy to understand, but the simplifying assumptions 

generate somewhat misleading results. Variations in cell properties require validation, 

and direct extrapolation to industrial scale poses risk of large error.  

Specialized material testing procedures are required to measure the properties 

of single cells to validate model parameters, and experimental studies measuring cell 

rupture energy have employed both direct and indirect approaches. Bridging between 

tissue and individual cell tests, micro-penetration has been applied to individual cells 

in cubes of potato parenchyma [95]. For cell suspensions, gas decompression has been 

applied to Chlamydamonas eugametos [87] to correlate cell rupture with pressure 

change to reveal the rupture pressure of the cells. Atomic force microscopy [88] has 

been employed to measure cell surface deflection in response to applied force in 

Tetraselmis suecica, but the requirement of a semi-rigid surface limits this test’s 

applicability.  
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The current work modifies and extends the basic constitutive model of [38]. 

The objective of the model extension is to determine the range of energy required for 

microalgae cell rupture. This is done by exploring the stress-strain behavior of a cell 

wall material in assumed cell geometries. The minimum energy required for rupture is 

important as a benchmark for energy efficiency calculations, and a range will provide 

more useful estimates of industrial performance than single value extrapolation.  

2.1.2 Conceptual Framework 

The aspects of cell rupture that require definition and development for energy 

analysis are: cell geometry, material, applied force, failure threshold, and failure 

mechanism.  

Cell geometry defines the general shape of the cell and the thickness of its wall 

material (Tcw). The two most appropriate approximations to cell shape in microalgae 

are a sphere and a cylinder. Both of these will have an associated diameter (dc) 

defining a circumference (Circcell), but the cylinder will also have length (l). 

Material can be thought of on two scales. At the scale of a suspension of many 

cells, the concentration of cells on a dry mass (Cc) or number (Nc) basis per volume of 

solution is a defining characteristic. This will be used in the extrapolation to overall 

energy, but is not required for the initial modeling of a single cell. The second scale is 

that of the single cell and the material of its cell wall. The density of material can be 

seen as the bulk cell material density (wet basis ρc, or dry basis ρc,d) or more focused 

as the density of only the cell wall material (ρcw). A further complication arises when 

the composition of the cell wall material is defined in terms of mass fraction of its 
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constituent chemical components and the microstructure they form. The cell wall 

material can be considered as a composite, defined by non-uniform material 

distribution and, perhaps, grain size. The truth of the cell wall structure is more 

complex, with constituent components forming something like a woven laminate 

composite at the molecular level [91]. At this level of structural definition layer 

composition and orientation, internal molecular structure and cross-linking, and 

binding agents holding the lamina together could be considered. While the 

composition and structure of the material are important, the factors that we are more 

concerned with, from an energy perspective, are its physical and mechanical 

properties. A simplifying assumption of homogeneity is applied to eliminate these 

complications. The wall is also assumed to be smooth, isotropic, and of uniform 

thickness for modeling purposes.  

The applied force can be considered as either internally or externally applied. 

For an internally applied force, the modes of action are by internal volume expansion 

or contraction causing tension or compression in the constraining wall. Any 

compression in this scenario would likely be extremely transient with the end result  

being folding rather than rupture due to buckling. Thus, internal force leads to failure 

due to tension. Even though these are called internally applied forces, they are still 

caused by changes in externally applied stimuli. Externally applied forces, however, 

can act directly through tension, shear, or compression. Localized tension will be 

expressed in the wall as tension and/or shear, depending on the relative spatial scale of 

the force application area and the cell size. Because a fluid matrix is partially defined 
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by its continuous deformation under shear, the ability to apply a shear force to a cell in 

suspension is questionable. Any attempt to apply a shear force to the cell would 

simply result in displacement within the fluid. Shear forces within flowing fluid would 

be experienced as pressure differentials around the cell, leading to tension within the 

wall material. Shock waves or solid surface impingement on the cell would be a 

compression on the scale of the whole cell, but due to the contiguous pressure vessel 

nature of the cell would be expressed as tension force in the wall material. From this 

discussion it can be seen that one only need model failure in tension. 

When determining the total amount of energy expended to cause a material to 

fail, the mechanism by which the failure occurs is important. This failure mechanism 

and energy are related through the stress-strain behavior of the material. The material 

is first assumed here to exhibit linear elastic (brittle) behavior. The failure threshold 

resulting in cell rupture is assumed to be achieved when the cell wall material reaches 

its failure strain (εf). Without knowing the failure mechanism it is difficult to directly 

model the expected energy of failure. However, because of the short time scale of 

cavitation bubble interactions with cells, a sudden catastrophic failure is assumed.  

2.1.3 Model Derivation 

The constitutive model is derived here as a variation of that presented in [38]. 

The analytical forms and resulting energy values are compared. The conceptual 

framework of the previous section and additional specifications referenced in the 

derivation that follows are summarized graphically in Figure 2.1. 
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Figure 2.1 – Cell wall separation geometry and constitutive cell rupture model 

foundations 
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The objective of this model is to calculate the energy required per unit of 

volume of solution to achieve rupture of a fraction of cells. Total energy (ET) = energy 

per volume solution (e) x volume of solution (V). 

       

Energy per volume solution = energy per cell (ec) x number of cells per volume 

of solution (Nc) x fraction ruptured (ff). 

           

Number of cells per volume of solution = dry mass concentration of cells per 

volume of solution (Cc) / dry mass per cell (mc,d). Additional variables defined for a 

cell are: volume (Vc), diameter (dc), dry weight density (ρc,d), water mass fraction (fw). 
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Energy per cell = Energy per volume of disrupted material (edm) x volume of disrupted 

material (Vdm). 

           

Volume of disrupted material = fraction of circumference separation (fs) x wall 

cross section area (Acs) x failure strain (εf) x ½ circumference of cell (Circc) (assuming 

cylindrical separation at equator). 

    
 

 
                

Energy per volume of disrupted material = Area under the stress (σ) – strain (ε) 

curve for cell wall material. 

          

Assuming a linear elastic region for a brittle material with Young’s modulus 

(Ycw) and tensile strength (TScw) gives: 

        

            
  

 

 
 

 
        

Substituting into the equation for energy per volume of solution gives: 

  
   

   
            

  
 

 
                  

 

 
            

The circumference and cross sectional area are then determined: 
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Substituting these terms gives: 

  
   

   
            

  
 

 
                        

 

 
            

This simplifies to Equations 2.1 below: 

       
                 

 

                
        

              
    

 

 
  (2.1) 

Whereas the equations of [38] in equivalent variables simplify to Equations 2.2 

below: 

    
  

                 
              

       
                

      (2.2) 

 The differences between these results are summarized as:  
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Under the present derivation, the energy requirement shifts from dependence 

on the square of the split fraction to the square of the failure strain of the cell wall 

material. 

This is interesting because our assumed stress-strain behavior limits the value 

of the strain to a very low value. The standard assumed value for the elastic-plastic 

transition for a stiff material is ε = 0.002 [96]. A very rough numerical value can be 

calculated from the numbers used in [38] and [87], and the value of ε assumed here. 

                          
  

  
                                

 

  
  

                                        
  

  
          

           
 

  
       

It should be noted that the value used in [38] for ε was 0.3. A measurement 

from the published image gives an unrounded value of 0.25 for ε. If this number is 

used here, then the value for e becomes e=7.83*10
3
 J/m

3
, which reflects the 4 order of 

magnitude increase we expect based on the quadratic dependence of energy on strain. 

It should also be noted that this value is approximately 6x the value of 1.31*10
3
 J/m

3
 

produced in [38]. One of the reasons for this discrepancy is a failure in [38] to 

normalize the hemispherical force to the wall cross sectional area when determining 

tensile strength from [87]. 
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These energy values may be somewhat unreliable because of their quadratic 

dependence on strain, and the difficulty of actually measuring strain at the scale of a 

cell wall. To determine whether this issue can be avoided, the next section explores 

variations of the model derivation. 

2.1.4 Derivation Outline  

The objective of this section is to first visually outline the derivation presented 

in the previous section, and then use this outline to identify functions that can take 

alternative mathematical forms based on different assumptions, called generic 

functions here. The energy equation is then generalized in terms of these generic 

functions with the intention that combinations of these functions will yield the extrema 

of ranges of total energy.  

Figure 2.3 presents a visual outline of the model derivation. Generic functions 

are boxed. 



39 

 

 

Figure 2.2 – Rupture energy model derivation outline 

 

Generalizing the energy equation in terms of these generic functions gives: 

        
  

 

      
  

              
    

Generic Functions 

σ ε   : stress-strain curve behavior 

Vdm     : volume of disrupted material 

Vc         : volume of the cell  
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2.1.5 Generic Functions 

The stress-strain behavior generic function can describe 5 basic categories of 

material reaction under an applied load: brittle, slightly ductile brittle, ductile, plastic, 

and highly elastic. Characteristic stress-strain curve shapes for each of these 

categories, along with necking behaviors, are presented in Figure 2.4 (adapted from 

Callister, 2007, p. 525, 147, 209) [96]. 

 

Figure 2.3 – Characteristic stress-strain curves and necking behavior 

 

These curves can be represented by piecewise functions to reflect the 

difference in behavior between the elastic and plastic deformation regions. The 

functions presented in this section are only starting points for derivation. 
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A brittle material will have a linearly elastic behavior up until rupture. It is 

represented by a linear stress-strain curve with a slope equal to the Young’s modulus 
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Brittle:         

The slightly ductile brittle material in plastic deformation exhibits a high initial 

slope until the yield strain (εy) followed by a continuous decrease in that slope, 

visually approaching, but never reaching, zero. This can be represented as a square 

root function. 

Slightly Ductile Brittle:       
     

      
 
      
       

  

Ductile material behavior in plastic deformation exhibits a characteristic 

positive decreasing slope that continues to decrease beyond an apex point. This is also 

characteristic of a parabola, so this curve will be described with a quadratic function. 

Ductile:       
     
    

 
      
       

  

The characteristic shape of a stress-strain curve for a plastic material is a 

linearly elastic region, followed by an oscillatory function in plastic deformation. The 

oscillation displays an increasing period with increasing strain and an upward overall 

slope. An initial approximation of this oscillation can be given by a modified sine 

wave with an upward sloping center line. However, it should also be considered that 

our final purpose in this model is to produce the integral of the function. Because this 

is the case, the integral may be more easily determined from a linear approximation 

that would yield approximately the same integral value.  



42 

 

Plastic: 

      
  

            
 
      
       

  

-- or -- 

      
     
      

 
      
       

  

Highly elastic behavior is characterized by continued large strain with very 

little stress, up to a point. Beyond this point the slope of the curve begins to drastically 

increase until failure of the material. This shape can be represented as an exponential 

function shifted down to meet the origin on the graph. 

Highly Elastic:           

The functions for the volume of disrupted material (Vdm) generic function can 

assume either a constant or changing volume over the course of deformation. Within 

each of these, the treatment will vary based on the cell geometry. However, an 

evaluation of a changing volume would require direct measurement, so, for now, 

constant volume is assumed. 

In a spherical or cylindrical cell, it is assumed that the equatorial circumference 

expands into a cylindrical section with a height determined one of three ways. First, 

the height (h) can be assumed as a surface region within a fixed distance from the 

circumference of the undisturbed cell. 
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This distance can take an assumed value, or it can be taken as a fraction (α) of 

the material length in the direction of elongation. In the case of a sphere and cylinder 

we have, respectively: 

             
 

 
                     

If, however, we calculate the height of disrupted material as being proportional 

to the actual strain (at failure or some other point) we have, for a sphere and cylinder, 

respectively: 

             
 

 
                     

The volume of the cell (Vc) generic function will assume a simple geometry 

described by average literature values for a given species. The equations for the 

volumes of a sphere and cylinder are, respectively: 

   
 

 
  

  

 
 
 

      
  

 
 
 

   

Now that the forms have been stated, the permutations of these generic 

functions to form energy equations of different material behavior, geometry, and 

h 

h 
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assumptions are presented. The energy equation is restated below with subscripts to 

identify combinations of the generic functions (Equations 2.3). All combinations will 

result in 30 equations. 

              
  

 

        
 

  

               
    (2.3) 

Table 2.1 – Index notation key for Equations 2.3 
 

σ(ε) Vdm Vc 

( i=1) – Brittle (j=1) – Assumed Height (k=1) – Sphere 

( i=2) – Slightly Ductile 

Brittle 

(j=2) – Surface Fraction (k=2) – Cylinder 

( i=3) – Ductile (j=3) – Strain Based  

( i=4) – Plastic   

( i=5) – Highly Elastic   

 

The expressions for cell volume and volume of disrupted material can be 

combined into six pairings in H(j,k) in the non-integral portions of the energy equation. 

             

  

               
    

Substituting and simplifying in this expression gives: 
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These H(j,k) terms can be factored to separate the common terms as   
         

            
 . 

         
 

  
           

 

 
   

 

             

 

 

            

 

 

              

 

 

             

 

2.1.6 Parameterization 

Before the energy equations can be evaluated, the stress strain curves must be 

parameterized to the available data. In order to reasonably compare the curve integrals 

(energy values), it is first required that the shared parameters between the curves be 

reconciled. If results are to be compared, they must be calculated using the same 

parameter values. This choice implies overlap in the elastic region and at critical yield 

and failure points. 

This creates a problem for several parameters because of their fundamental 

difference under different stress-strain regimes. Young’s modulus, yield stress, yield 

strain, tensile strength, and failure strain must all be reconciled.  
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Tensile stress is the maximum point on the stress-strain curve, occurring at 

either an end point (failure) or an internal point. In Brittle, Slightly Ductile Brittle, and 

Highly Elastic behavior, the maximum stress coincides with the end point of the curve 

at failure. In Ductile behavior, the tensile stress is defined as the apex of the curve, 

occurring before failure. In Plastic behavior, however, we may have a maximum stress 

at either an internal apex or the end point. An initial slope transition leads to the 

internal apex, and strain hardening later leads to an increase in stress before failure, 

which may or may not lie at a higher stress value than the internal apex.[97] 

In the type of blind loading performed on single cells in solution to determine 

material properties (i.e. decompression test), the only measured data are the post 

relaxation strain and the maximum applied stress. Therefore, these must be our 

limiting parameters that must coincide for all models. Recall from above that it may be 

appropriate to simplify analysis of the Plastic curve by approximating its non-linear 

region as linear. This is shown as a dashed line in Figure 2.5. 
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Figure 2.4 – Parameterized stress-strain curves: a) ductile, b) slightly ductile brittle, c) 

plastic, d) brittle, e) highly elastic 

 

 The next difficulty is the observation of post relaxation strain, not actual failure 

strain. With no method for direct determination of the Young’s modulus in a separate 

test, we cannot correct our post relaxation strains to actual strain at failure. In this 

model, such a correction will be assumed to be negligible. 

From the simple fact that we have a measurable elongation of a cell 

wall/membrane after failure [38], we can infer that the material does not behave as a 

purely linearly elastic Brittle material. Then, when the observed post relaxation failure 

strain lies to the right of some lower limit, any estimate of the Young’s modulus that 

assumes this Brittle linear elasticity will be an underestimate. This limit can be shown, 

for purposes of thoroughness in the model, to be     
     

  
   or     

   

  
    . 

Assuming this limit is met, we can use this underestimate as a lower bound for the 

range of the Young’s modulus. However, with the possibility of Highly Elastic 
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behavior, the estimate of energy that would be calculated from the Brittle behavior 

cannot be used as a lower bound to the energy per volume value. 

The Brittle behavior can be easily parameterized as the standard line      

    . Figure 2.5 shows two model Young’s moduli. The brittle model slope is 

distinguished as YB. The line passes through the two points (0,0) and        . This 

results in the model equation below. 

Brittle:      
  

  
  

The non-linear segments of the Slightly Ductile Brittle, Ductile, and Plastic 

curves will be constrained by shared boundary conditions. 

BC#1: 

         

BC#2: 

   

  
 
    

   

BC#3: 

          

As stated above, the slightly ductile brittle non-linear segment will be modeled 

as a square root. The three boundary conditions require three parameters. The basic 

function is:           . Adding a coordinate shift gives:                 . 

The incorporation of a scaling factor then gives the final parameter:      

           .  

By applying the shared boundary conditions (BC#1 – BC#3), the base function 

and parameter values are: 
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The ductile non-linear segment will be modeled as a parabola. The three 

boundary conditions require three parameters. The basic function is:         . 

Adding a coordinate shift gives:               . The incorporation of a scaling 

factor then gives the final parameter:                . The three boundary 

conditions for this case are: 

BC#1: 

         

BC#2: 

   

  
 
    

   

BC#3a: 

   

  
 
    

   

By applying the boundary conditions, the base function and parameter values 

are: 

                      
        

 

  
 

  
   

        
       

The plastic non-linear segment can be modeled as a modified sinusoid. To 

simplify the analysis, the sinusoid model is abandoned in favor of the linear 

approximation. For this case, the basic function is a straight line with BC#1 and 
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BC#3b (σ(εf) = TS), where a discontinuous slope at εy eliminates BC#2. This results in 

the base function and parameters below. 

            
     

     
   

         
     

 

The highly elastic curve is modeled as an exponential, as shown in the 

previous section. We have two boundary conditions for this curve, so we will have 

two parameters. The base function is:        . We can then add a vertical 

coordinate shift to give:          . The incorporation of a scaling factor in the 

exponent then gives the second parameter:           . The two boundary 

conditions for this case are: 

BC#3b: 

σ         

 

BC#4: 

       

Applying these boundary conditions gives the base function and parameter 

values stated below. 

             
        

  
      

2.1.7 Integrals and Model Synthesis 

This section completes the integrals of the stress strain functions and combines 

the model components developed up to this point for energy calculations. The 

integrals of the stress strain curves are presented below. 
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Brittle:          

      
  

 

        
  

 

 
 

 
        

Slightly Ductile Brittle:       
  

              
 
      
       

  

      
  

 

       
  

 

                  
  

  

 

 
 

 
  

  
  

 
      

 
       

  

 
      

 
       

Ductile:       
  

           
 
      
       

  

      
  

 

       
  

 

               
  

  

 

 
 

 
  

  
 

 
      

 
     

 

 
      

 
     

Plastic:       
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Highly Elastic:            

      
  

 

          
  

 

 
 

 
            

Two assumptions are made to refine the curve equations: that the Young’s 

modulus is twice the value calculated from the assumption of linearly elastic Brittle 

behavior (Y = 2YB) and that the stress at yielding takes a value of half the tensile stress 

(σy = TScw/2). These assumptions allow the construction of a first set of curves and the 

calculation of a first set of energy values. 

2.1.8 Calculation 

The model described above was coded in MATLAB for calculation and further 

analysis. The MATLAB output (Figure 2.6) confirms the proper shape of the assumed 

material behaviors and uses the parameter values listed in Table 2.2 to calculate the 

energy to rupture cells as J/m
3
 of solution and pJ/cell directly. 
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Table 2.2 – Inputs for model calculation 
 

Symbol Value Units Symbol Value Units 

TScw 638E6 N/m
2
 Tcw 100E-9 m 

Y 2*(TScw/εf) N/m
2
 ρc,d 1000 kg/m

3
 

ff 1.0 -- h 100E-9 m 

fs 0.25 -- as 0.01 -- 

Cc 2.7 kg/m
3
 ac 0.01 -- 

fw 0.9 -- εf 0.25 -- 

dc,s 5E-6 m σy TScw/2 N/m
2
 

dc,c 15E-6 m εy σy /Y -- 

l 4*15E-6 m    

 

 

Figure 2.5 – Model output confirmation of parameterized stress strain curves 
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2.1.9 Results and Discussion 

The model calculated cell rupture energy values for both spherical and 

cylindrical geometries are presented in Tables 2.3 and 2.4.  

Table 2.3 – Spherical Cells Solution Rupture Energy [(J/m
3
) / (pJ/cell)]. (Bold 

indicates values within a factor of 2 of the AFM measured value, corrected for cell 

diameter.) 

 

Elongation 

Criteria 

Assumed  

Height 

Assumed 

Fraction 

Strain  

Based 

Linear Elastic 2584 / 6.264 1015 / 2.460 25370 / 61.49 

Ductile 3714 / 9.004 1459 / 3.536 36470 / 88.40 

Slightly Ductile 

Brittle 
3445 / 8.351 1353 / 3.280 33820 / 81.99 

Plastic 3230 / 7.829 1268 / 3.075 31710 / 76.87 

Highly Elastic 254.9 / 0.6179 100.1 / 0.2426 2502 / 6.066 

 

Table 2.4 – Cylindrical Cells Solution Rupture Energy [(J/m
3
) / (pJ/cell)] 

 

Elongation 

Criteria 

Assumed  

Height 

Assumed 

Fraction 

Strain Based 

Linear Elastic 47.85 / 78.79 143.6 / 56.37 3589 / 1409 

Ductile 68.78 / 27.01 206.4 / 81.03 5159 / 2026 

Slightly Ductile 

Brittle 
63.80 / 25.05 191.4 / 75.16 4785 / 1879 

Plastic 59.81 / 23.49 179.4 / 70.46 4486 / 1762 

Highly Elastic 4.720 / 1.854 14.16 / 5.561 354.0 / 139.0 

 

The energy values for spherical cells cover a range of 2 orders of magnitude 

and those for cylindrical cells cover a range of 3 orders of magnitude. (Spherical: 0.24 

– 88.40 pJ/cell; Cylindrical: 1.85 – 2025.87 pJ/cell) 

These ranges can be compared to the calculated values from [38] with 

corrected tensile strength and measured values from atomic force microscopy [88]. In 
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order to compare these results on equal footing, the parameters must be normalized. 

The only non-material dependent parameter is the cell geometry. In the case of direct 

measurement with atomic force microscopy, the cell is an ellipsoid with maximum 

dimensions 10x8x6 μm. If it is assumed that the cell wall splits in an equatorial line 

along its longest perimeter (where the highest wall tension would be present), an 

analogous spherical radius can be calculated that would experience an equivalent wall 

stress. This is done by setting the equations for calculated stresses equal to each other 

and solving for the radius in terms of the largest cross section plane half length and 

half height (approximating the perimeter of an ellipse as      
     

 
  ). This gives  

     
 

      , which, for b=4μm and c=5μm, yields r=4.42μm. Note that simply 

equating ellipsoid perimeter and sphere circumference would not account for the 

difference in cross sectional area to which the internal pressure is applied. The energy 

values per cell calculated using this cell diameter (8.84μm), but maintaining all other 

parameter values, along with the parameter values used, are shown in Table 2.5. Final 

energy values are presented as pJ/cell. 

Table 2.5 – Rupture Energy per Cell Comparison. (dc = 8.84μm) 
 

Reference Species Chlamydomonas eugametos Tetraselmis suecica 

Cell Shape Sphere Ellipsoid 

Equation 2.2 2.1 2.1 2.3 AFM measured 

Y  (GPa) 2.13 3.19 2.552 2.552; 5.104  

εf 0.3 0.002 0.25 0.25  

ec (pJ/Cell) 923 0.0123 192 0.758-276 17.43 
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It can be seen from these results that Equation 2.2 produces a drastic 

overestimate of cell rupture energy when applied using the corrected tensile strength. 

Equation 2.1 is highly dependent on strain, as noted above, resulting in under- and 

overestimates when assuming low or high strain values. Equations 2.3 display a 3 

order of magnitude range of cell rupture energy values.  

The cell diameter input is the only difference between the values presented in 

Table 2.3 and Table 2.5. The ratio of the square of the diameters used provides an 

energy conversion ratio of 3.12. Applying this conversion to the AFM value in Table 

2.5 yields 5.59pJ/cell. This energy value matches most closely with Table 2.3 values 

in the assumed height and assumed fraction columns, excluding the highly elastic 

category of stress-strain behavior; and the single value that is both highly elastic and 

strain based. 

2.1.10 Conclusions 

There are 2 sets of possible conclusions of equal merit, eliminating 6 

combinations of volume and stress-strain behavior. Either 1) the volume of material 

considered in the rupture energy calculation is not strain based, and the cell wall does 

not exhibit highly elastic behavior; or 2) the volume of material is strain based and is 

highly elastic. It can also be observed from a comparison of Table 2.3 and Table 2.4 

that cylindrical cells will require 1-2 orders of magnitude greater energy to rupture 

than spherical cells.  
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2.2 Ultrasound System Calorimetry 

2.2.1 Introduction 

The overall efficiency of biomass pretreatment systems is dependent not only 

on the resistance of biomass to treatment, but also on the energy transfer efficiency of 

the treatment system itself. Analysis of energy transfer in power ultrasound systems 

applied to suspensions of unicellular microalgae requires qualitative and quantitative 

consideration of several modes of energy transfer.     

The application of power ultrasound (sonication) introduces pressure 

oscillations in solution at a high frequency and intensity. This causes extreme 

localized pressure fluctuations in solution. These pressure fluctuations lead to the 

formation and subsequent collapse of solvent vapor bubbles in solution (cavitation). 

The implosion of these bubbles results in localized shockwaves, thermal singularities, 

and high velocity micro-jets of solvent from asymmetric implosions. The shockwaves 

and jets exert force on cells, potentially rupturing them. Free radical formation is also 

induced at thermal singularities, leading to oxidation of solution constituents [98, 99]. 

Additional phenomena, such as acoustic streaming, acoustic heating, and 

waveform distortion, arise from non-linear interactions that become significant for the 

high intensity perturbations characteristic of power ultrasound [100].   

The efficiency of ultrasound power transfer to solution is affected by 

ultrasound amplitude, ambient pressure, and temperature and viscosity of the medium 

[101, 102], reactor geometry [103], and media type and liquid height in the reactor 
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[104].  Frequency also has a strong effect on the efficiency of cavitation generation, 

with the inducement of cavitation at 10kHz requiring 10% of the ultrasound intensity 

required at 400kHz [98]. The relationship between cavitation threshold pressure and 

stimulation frequency in water is nearly flat up to ~100kHz, beyond which there is a 

drastic increase in pressure required at increasing frequencies [105].   

Increasing ultrasound intensity (W/cm
2
) influences the effectiveness of 

ultrasound by extending the reaction zone, thus increasing the number of cavitation 

events per volume [99]. This is one of the reasons for the use of booster horns with 

small effective area in ultrasound systems [98]. For a smaller probe, the same power 

applied at the ultrasound generator experiences less impedance, allowing for more 

displacement at the same frequency. Increased displacement corresponds to higher 

acoustic energy, and that acoustic energy is applied over a smaller area. However, the 

high intensity provided by these booster horns makes them susceptible to erosion; and 

this erosion alters the tip geometry, potentially altering the delivered ultrasound 

intensity.  

The front end efficiency of the ultrasound generator is also important as an 

economic consideration. This takes lesser precedence in theoretical and experimental 

investigations, but is essential to the viability of scale-up. 

The boundaries of operationally useful conditions are defined on one end by 

the inducement of cavitation and the other end by the decoupling of the ultrasound 

surface from the solvent at the solid-liquid interface, replacing cavitation with 

agitation.     
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In order to determine the transfer efficiency of energy applied for cell rupture, 

that energy is measured to select and characterize an ultrasound pretreatment system. 

 The objectives of this study are to: 1) quantify power transfer to solution in 

ultrasound probe-reactor systems, 2) select an appropriate reactor system for future 

experiments with microalgae, 3) characterize power transfer efficiency of the 

ultrasound probe-reactor systems, and 4) determine whether ultrasound probe tip 

erosion affects power transfer efficiency. 

2.2.2 Theory 

The incidence and intensity of cavitation due to power ultrasound are 

dependent on ambient pressure, frequency and amplitude of oscillation, and the 

density, viscosity, and vapor pressure of the solution solvent. Descriptions of these 

relationships generally start from the Raleigh-Plesset equation for the stable oscillation 

of a cavitation bubble [106].  

    
 

 
    

 

  

       
  

 
    

  

 
        

According to this equation, the cavitation bubble radius (R) can be determined 

as a function of time. From this radius, theoretical collapse energy can be calculated. 

In the case of a known solvent within a limited operational temperature range, the 

density (  ), viscosity (  ), vapor pressure (  ) , and ambient pressure can be taken as 

constant. Thus the bubble radii and corresponding collapse energies are a function of 

    , an external pressure driving function dependent on the ultrasound frequency and 

amplitude. 
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While acoustic heating has been characterized as the result of non-linear 

interactions of the acoustic and entropy modes of strong perturbations under the 

momentum conservation, mass conservation, and entropy equations [100], power 

dissipation to solution by a sonicator can be more easily and directly quantified via the 

calorimetric method [69, 107]. 

      

  

  
         

 

 

 

 The terms of this energy balance equation are the integral of sonotrode power 

input, power dissipation to solution (     ), and thermal energy flux out of the system 

(  ); where    is the liquid medium density,    
 is the constant volume specific heat of 

the liquid medium,   is temperature,   is time, and   is volume of solution. The 

experimental measurement of       is performed as a temperature measurement over 

the initial treatment time with the assumptions that temperature is uniform within the 

reactor (complete mixing), heat energy flux out of the system is negligible during the 

initial treatment time, and density and specific heat are constant. This yields a 

simplified equation where the slope of the linear segment of the temperature curve 

over time can be used to calculate power dissipated to solution:  

            

  

  
 

2.2.3 Experimental Approach  

The calorimetric method is used to determine power transferred to solution for 

a series of laboratory vessels and liquid volumes. Average electrical power draw of the 
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sonotrode system is used to assess system efficiency, and power transfer is assessed on 

a gross basis. Qualitative visual observations of mixing and probe-liquid coupling are 

made to assess validity of results and appropriateness of vessel-volume combinations 

for future investigations. Comparison is made between power transfer of smooth and 

strongly eroded sonotrode tip faces.  

2.2.4 Materials and Methods 

 The experimental apparatus consists of a longitudinally oscillating probe 

sonotrode (QSonica Q55 with 1/8 inch microtip) and digital probe thermometer (VWR 

Precision 0.01 and Robothermometer) suspended in parallel with a separation of 

~1.5cm by ring clamps over a lab jack with a neoprene deck pad to hold the reactor 

vessels.  

 Power transfer to solution was measured using the calorimetric method as the 

change in temperature during treatment. All test were performed in randomized order 

at a power setting of 100 with the probe tip immersed 1.5cm below the liquid free 

surface and clearance of at least 1cm from the reactor bottom. The placement of the 

horn tip has been shown to not influence power measurements [104, 108]. However, 

initial trials showed poor mixing with placement of the horn tip within 1cm of the 

reactor bottom; and decoupling of the horn from the liquid by entrainment of ambient 

air due to breakage of the liquid surface around the probe when the tip face was within 

1cm of the free surface.   

The dependence of energy transfer on reactor type and solution volume was 

investigated using the following vessels filled with 25ml, 50ml, 100ml, or 200ml tap 
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water as outlined in the experimental design: 50ml plastic centrifuge tube (NUNC), 

100ml glass beaker (VWR), 400ml glass beaker (VWR), and 50ml glass jacketed 

beaker (Kimble). Temperature stabilization to room temperature (22-28
o
C) was 

observed for 30 minutes prior to treatment for all except the jacketed beaker. A re-

circulating bath was used to bring the jacketed beaker sample to a stable temperature 

of 25
o
C then deactivated during treatment. Sample volumes were treated for 20s, as 

outlined in the experimental design (Table 2.6).  

Power draw of the system was measured as apparent power via rms voltage 

and rms current measurements taken during operation using a digital multimeter with 

probes contacting the lines coming in to the AC adapter in parallel and series, 

respectively.  

                    

Current and voltage were measured at power settings from 10 to 100 at 

intervals of 10 with the probe tip immersed 1.5cm below the surface of a 500ml tap 

water reservoir. Power transfer efficiency was calculated as  

  
     

         
 

Ultrasound probe tip surfaces are prone to significant erosion on the tip face. 

Because this face is the cavitation inducing surface, modifications to this interface 

have the potential to alter power transfer and cavitation. To determine whether this 



63 

 

was occurring, a side by side comparison of calorimetry results was performed in 

50ml of tap water in the 50ml glass jacketed beaker (Kimble).  

 Linear least squares regression was performed on pooled calorimetry time 

series’ for each experimental condition.  Determination of difference in calorimetric 

time series’ between new and eroded sonotrode tips was performed visually. All error 

bars have length of one standard deviation. 

Table 2.6 – Experimental Design 
 

Vessel 
Liquid Volume 

(ml) 

Treatment Duration 

(s) 

Number of 

Replicates 

50ml Centrifuge 

Tube 

25 20 3 

50 20 6 

100ml Beaker 50 20 6 

100 20 6 

400ml Beaker 100 20 6 

200 20 3 

50ml Jacketed 

Beaker – new tip 
50 20 3 

50ml Jacketed 

Beaker – eroded tip 
50 20 3 

 

2.2.5 Results and Discussion 

Ultrasound power transfer to solution was determined calorimetrically for 

multiple experimental systems. Power dissipated to solution ranged from 5.59 - 9.27W 

(Figure 2.7). Results from these tests were used to select an appropriate reactor and 

liquid volume combination for future tests processing microalgae. 
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Figure 2.6 – Cumulative energy transferred to solution by Q55 sonotrode at setting of 

100 using 1/8 inch microtip immersed1.5cm in specified volume of tap water and 

reactor. Horizontal error bars are one standard deviation of time lumped for 

visualization, but not for regression 
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At a given frequency, varying amplitude will vary power (W), and probe tip 

face area determines the intensity (W/cm
2
) of that power [109, 110]. When treating 

varying volumes of liquid, the power dissipated to solution is often normalized by 

volume to give an ultrasound dose or specific power (W/ml) [102, 104].   

When normalized, the power transfer values observed here correspond to 

ultrasound intensities of 70.6 - 117 W/cm
2
  over an area of 0.0792cm

2
 and ultrasound 

doses of 0.112 – 0.185 W/ml in 50ml. This intensity is well above the threshold 

intensity of 4 W/cm
2
 required to induce cavitation in air-free water [98].  

From the perspective of the reactor as a closed system, the presence of such 

significant variation in energy accumulation for what should be a constant mechanical 

power input seems to violate the conservation of energy. If it is assumed that the heat 

losses from the system are still negligible during the measurement period, then the 

discrepancy of energy must be explained through the differential parsing of acoustic 

energy into its dominant non-linear interaction modes. These are: acoustic streaming 

(hydrodynamic flows), sound-sound interactions (soundwave distortion), and acoustic 

heating (heat transfer) [100]. Higher acoustic streaming would display as lower 

mixing delay. Higher acoustic heating would display as higher calorimetric power. 

Increased sound-sound interactions would not display directly under the measurements 

taken, but would imply increased instability and inconsistency of pressure oscillations. 

Since consistent pressure oscillations are required for the successive formation and 

collapse of cavitation bubbles, sound-sound interaction could imply lower cavitation 

activity. When a Punnett square of the two measured non-linear behaviors is 
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superimposed on a plot of calorimetric power versus mixing delay, the reactor 

combinations are easily separated into pairings of heating and streaming behaviors 

(Figure 2.8). If it is assumed that the energy of the 3 dominant nonlinear behaviors are 

conserved together, then an ideal reactor would display high heating and high 

streaming, minimizing the energy available for sound-sound interactions that might 

interfere with cavitation.  

 

Figure 2.7 – Categorization of reactors according to non-linear interactions 
 

Only one reactor – liquid volume combination falls into the categories of both 

high heating and high streaming. This was the Kimble jacketed beaker with a solution 

volume of 50ml, which also showed negligible delay in temperature increase during 

calorimetry (Table 2.7). Because the reactor system will be used to investigate energy 

models of microalgae processing, fulfillment of the assumption of complete mixing 

with minimal to no transient startup is essential. Because of these combined 
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characteristics and its capacity for temperature control, the 50ml Kimble jacketed 

beaker is selected for future studies despite its only moderate power transfer of 8.13W. 

Table 2.7 – Linear regression coefficients for cumulative energy transfer and average 

power transfer efficiency (η). Power transfer to solution is given by the slope, and 

mixing delay is given by the x-intercept 
 

Name Power (W) Mixing Delay (s) R
2 

η 

25ml in 50ml NUNC 8.69 3.31 0.9720 0.343 

50ml in 50ml NUNC 8.62 2.74 0.9141 0.341 

50ml in 50ml Kimble 8.13 -0.619 0.8625 0.321 

50ml in 100ml VWR 8.01 3.31 0.8268 0.317 

100ml in 100ml VWR 9.09 2.45 0.7667 0.359 

100ml in 400ml VWR 9.27 2.89 0.8995 0.366 

200ml in 400ml VWR 5.59 3.45 0.9211 0.221 

 

The efficiency of the QSonica Q55 system in converting electrical energy to 

heat dissipated to solution ranged from 22.1 – 36.6% (Table 2.7), based on apparent 

power measured at a setting of 100 (Figure 2.9). The QSonica Q55 system generator 

has a power rating of 55W, however, the nominal power of the generator is not 

specified. The high voltage (700Vrms) and frequency (20kHz) output of the sealed 

generator makes measurement of nominal power both hazardous and impractical in 

our lab and these characterizations have been performed elsewhere [102, 111].  

While the calorimetric efficiency of this specific laboratory system is not 

directly applicable to energy requirements for biomass processing at scale, it is a 

necessary step in the energy analysis of the process. In order to fully contextualize the 

calorimetric measurements provided here in the frame of effective energy efficiency of 

biomass pretreatment for microalgae cell disruption, knowledge of the energy 

conversion efficiency will be required in addition to measurements of process yield 
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[102]. As noted above, calorimetric measurement of ultrasound power dissipation to 

solution does not capture all forms of energy imparted to the treated volume. It is 

common practice to take calorimetric measurements as representative of cavitation 

activity in the non-linear operating mode (past the cavitation threshold) [111], and 

correlations have been presented to support this [112]. However, in order to eventually 

optimize a real process, a differentiation between thermal, cavitation, and effective 

process efficiencies will be required [102].  

 

Figure 2.8 – Apparent power draw of Q55 sonotrode over full performance range 

using 1/8 inch microtip immersed 1.5cm in 500ml tap water reservoir 

 

The comparison of power transfer by a new sonotrode tip to that of an eroded 

tip yielded inconclusive results (Figure 2.10, Table 2.8). The eroded tip does appear to 

provide lower power. However, high variance in the experimental measurements 

prevents confirmation of this difference to a sufficient degree of certainty. Probe tips 

are constructed of a titanium alloy or silica, specifically chosen to resist erosion [98]. 
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However, the tips are considered to be a disposable component due to the significant 

erosive potential of the ultrasound and cavitation action. 

 

Figure 2.9 – Cumulative energy transferred to solution by Q55 sonotrode at setting of 

100 using 1/8 inch microtip immersed1.5cm in 50ml in 50ml Kimble jacketed beaker 

using new and eroded sonotrode tips 

 

Table 2.8 – Linear regression coefficients for cumulative energy transfer and average 

power transfer efficiency (η). Power transfer to solution is given by the slope, and 

mixing delay is given by the x-intercept 
 

Name Power (W) Mixing Delay (s) R
2 

η 

422-17 (old) 7.71 -0.275 0.8338 0.305 

422-A (new) 8.55 -0.929 0.9280 0.338 

 

One of the challenges associated with sonotrode tip erosion is the complex 

geometry of a cavitation eroded surface, which is difficult to characterize and 

measure. The three possibilities of reaction to this changed geometry are decreased, 

increased, and static cavitation activity. A decrease in cavitation activity could occur 

from interference of multiple acoustic waves leaving the eroded face. On close 
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inspection, the eroded face is pitted with multiple concave impressions, and concave 

surfaces focus acoustic energy. The pitting of the probe surface may convert it from a 

single flat generating surface to a field of multiple focused generating surfaces.  

It is also possible that both of these mechanisms and/or others effectively 

cancel each other out to differing degrees with a random net result. This is borne out 

by qualitative observation of the cavitation zones of the flat and eroded tip faces. The 

flat face produces a cavitation zone visible as a dense cloud of bubbles that is axi-

symmetrically conical with height approximately equal to the diameter of the probe 

face. This conical shape is mirrored across a plane perpendicular to the probe axis at 

the apex of the cavitation zone. The mirrored cone appears to be a region of 

concentrated acoustic streaming, visible as a refractive distortion of the fluid and by 

entrained dispersed bubbles. The cavitation zone of the eroded face is also symmetric, 

but forms a semi-ellipsoid dome with height approximately half the diameter of the 

probe. The acoustic streaming from the eroded tip is not axially symmetric, but 

maintains a somewhat conical shape with its apex superimposed somewhere within the 

last several millimeters of the probe body. Cavitation is visually confirmed in both 

cases, but the relative levels of cavitation are unknown. The degree of change in 

energy partitioning between non-linear interaction effects is also unknown with both 

conditions still falling within the high heating, high streaming zone of Figure 2.8.        

2.2.6 Conclusions 

The calorimetric power transferred to solution in the tested experimental 

systems ranged from 5.59-9.27 W. Additional differentiation by mixing delay and 
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analysis of the results in the context of non-linear acoustic theory led to classification 

of reactors in terms of acoustic streaming and acoustic heating. The 50ml Kimble 

jacketed beaker was chosen for future tests based on inferred lower interference with 

cavitation due to high streaming and heating behavior. Calorimetric efficiencies of the 

systems were relatively consistent, and the power transfer of a smooth probe tip could 

not be differentiated from that of an eroded tip face. A mechanism was proposed to 

explain this lack of difference between smooth and eroded tip faces. Additional 

characterization of energy partitioning between linear and non-linear acoustic 

phenomena is required moving forward in the field, but the inferences presented here 

facilitate decision making and classification where direct measurement is impossible 

or impractical.        
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2.3 Ultrasound Processing of Chlorella vulgaris 

2.3.1 Introduction 

Energy commodities and co-products produced from microalgae are the result 

of extraction processes that often begin in pretreatment of biomass with the intent to 

rupture individual cells. The rupture of cells makes cellular products more accessible 

for extraction and the efficiencies of pretreatment and extraction are essential to 

process feasibility. 

The challenge of generalizing energy relationships in microalgae biomass 

processing stems from a lack of understanding of the physical responses of microalgae 

to applied pretreatment energy. There have been a large number of efforts to 

characterize pretreatment system performance, but these works have focused on single 

system-species-extract combinations, while neglecting energy relationships. If the 

underlying behavior of cells in pretreatment were better understood, the requirement 

for individual characterizations could be minimized and system level extrapolations 

could be made more accurately. The capacity for inference from these pretreatment 

characterizations would also greatly benefit from the inclusion of energy analysis.  

Power ultrasound is a widely used system for cell disruption in molecular 

biology and has been adopted for microalgae biomass pretreatment in fuel and co-

products extraction. Low frequency power ultrasound is most efficient at generating 

the cavitation operative in cell rupture. Chlorella vulgaris is both widely used as a test 

organism and the subject of biofuels investigations based on its ability to accumulate 
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lipids that can be extracted as bio-oil. This study fills the gap in current knowledge 

using ultrasound processing of Chlorella vulagaris to validate cell rupture energy 

calculated using a constitutive model. 

In order to explore the energy efficiency of cell rupture pretreatment, this study 

addresses the following objectives: 1) Characterize the rate of cell rupture under low 

frequency power ultrasound treatment; 2) Determine the power ultrasound energy 

required to rupture microalgae cells; and 3) Evaluate modeled cell rupture energy 

requirements in the context of power ultrasound pretreatment processes.  

2.3.2 Experimental Approach 

Chlorella vulgaris was grown in semi-continuous batch aerated cultures. 

Harvested biomass was treated with power ultrasound in triplicate for 30 minutes in 

each replicate. Samples were taken every 3 minutes and analyzed for cell 

concentration and percent viability. The time series of cell rupture was fitted to a first 

order empirical disruption model. Cell disruption data was analyzed for average 

energy requirements for cell rupture and compared to theoretical predictions.  

2.3.3 Materials and Methods 

Microalgae Growth 

Chlorella vulgaris was obtained from Carolina Biological and grown in Bold’s 

Basal Medium [113] (modified to 1/6 trace metals concentration) from a single colony 

isolate. All media were autoclaved at 121
o
C for 30 minutes before inoculation using 

aseptic technique. 3.0L cultures were grown in foam stopped 4L round glass bottles, 
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mixed by convection induced by HEPA filtered air bubbling through a ¼ inch 

diameter open ended glass weighted  tube terminating at the bottom of the vessel wall. 

Lighting was on a 14hr/10hr on/off cycle via 2x 40W, 2600 lumen, 4100K fluorescent 

light tubes suspended ~3ft above the cultures. Ambient temperature regularly 

fluctuated in the range of 20-25
o
C. Semi-continuous batch operation was maintained 

in exponential growth phase using 1.5L of each culture volume remaining as inoculum 

after harvest. 

Cultures were monitored using spectrophotometric absorbance (300nm-800nm, 

BioMate3S). Spectra were monitored for aberrant peaks that could indicate 

contamination. Biomass was measured as absorbance at 750nm. 

Power Ultrasound 

Low frequency power ultrasound treatment was performed using a 20kHz 

sonotrode system (Qsonica Q55) with 1/8 inch micro-tip. The tip was immersed to a 

depth of 1.5cm in 50ml samples in a 50ml jacketed beaker with recirculating water at 

25.5
o
C (sample temperature 25

o
C). Treatment was performed in triplicate at a setting 

of 100 (8.13W, 103 W/cm
2
, 0.163 W/ml) for 30 minutes. Temperature was monitored 

to check for overheating (max. 28.5
o
C). Power transfer to solution was determined 

calorimetrically [101] in a separate test. 

Analysis 

Cell concentrations and % viability were determined optically via automated 

cell counts (Nexcellom Cellometer AutoX4) in duplicate. 20μl of culture sample was 
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combined with 20μl propidium iodide (PI) stain (Cellometer ViaStain™ PI Staining 

Solution) in a 1.5ml microcentrifuge tube and vortexed for 10 seconds. A 20μl sample 

was then pipetted to a Cellometer counting chamber and allowed to stabilize for 2 

minutes. A bright field cell count was executed, followed by stimulation of the sample 

at 501nm and emission measurement at 595nm for 10 seconds of exposure. Dead cells 

were identified via fluorescence of PI in an automated count of fluorescing cells. 

Percent viability was determined as the difference between the bright field and 

fluorescence cell counts divided by the bright field cell count. 

2.3.4 Results and Discussion 

Power Ultrasound 

 The total number of cells disrupted at the end of 30 min treatment of a 50ml 

volume averaged 4.67 x10
8
. The treatment provided 8.13W to solution, resulting in an 

average energy requirement of 31.3 μJ per cell disrupted. This value is 4 orders of 

magnitude higher than constitutive model predictions of picojoules to rupture a single 

cell. However, examination of the cell disruption curve shows it to be non-linear 

(Figure 2.11), making the direct average comparison less appropriate. 
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Figure 2.10 – Cell disruption over time under power ultrasound 
 

  A first order empirical disruption model is applied to express disruption rate as 

a function of disrupted cell concentration (Nd): 
   

  
                  

                 [89]. The initial whole cell concentration is N0, D is the 

disrupted fraction, and the solution to this equation for           is     

    . This model generally fits disruption data well with the reaction constant being a 

function of starting cell concentration and ultrasound frequency and intensity [64]. 

The value of the disruption rate constant observed here is 0.0411 min
-1

 (Figure 2.12). 
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Figure 2.11 – First order empirical cell disruption model 
 

Where       and                  , the average cumulative 

energy expended per cell ruptured over time is 
 

    
 

   

            
. The instantaneous 

expended energy per cell ruptured is described by a different function of time, 

      
     

      
 

  

   
 

 

   
       , and ec increases exponentially as a function of 

time. A comparison of this model prediction versus an approximation of Δe/ΔNd is 

presented in Figure 2.13. 
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Figure 2.12 – Model predicted versus measured marginal rupture energy per cell over 

time under power ultrasound treatment 
 

The average measured rupture energies (excluding outliers) range from 

18μJ/cell to 76μJ/cell, showing that use of the cumulative average of 31.3μJ/cell 

misses important operational realities, and the general reporting of average energy 

values out of context is inappropriate because of its dependence on k, N0, and t .  

The model fit is immediately recognized as poor and the high observed 

variance points out the limitations of applying a deterministic model to a high variance 

system. This high variance should be incorporated into future model predictions of cell 

rupture energy requirements.  

2.3.5 Conclusions 

The power ultrasound treatment of Chlorella vulgaris required an average 

ultrasound energy input per cell ruptured ranging from 18 to 76μJ. The 4 order of 
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magnitude difference between observed and predicted energy requirement may be due 

to power transfer efficiencies inherent in the treatment method. The rupture rate fits a 

first order disruption model relatively well. However, high variance observed in cell 

rupture energy requirement implies a need to expand the constitutive model of cell 

rupture to incorporate the variability of model inputs. Additional model expansion 

may be required to incorporate the observed first order disruption behavior. 

 

Chapter 2, in part, has been submitted for publication of the material as it may 

appear in Biomass & Bioenergy, 2017, Klinger, Rory; Garoma, Temesgen, Elsevier, 

2017; and in Ultrasonics Sonochemistry, 2017, Klinger, Rory; Garoma, Temesgen, 

Elsevier, 2017. The dissertation author was the primary investigator and author of this 

material. 
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Chapter 3 - Sensitivity Analysis  

3.1 Introduction 

Because the inputs and control systems of physical processes display inherent 

variation, so too do the outputs of those processes. The pretreatment of microalgae 

biomass for extraction is not an exception to this rule, and its variation should be 

accounted for in design decisions. A more routine industrial approach to 

accommodating this process variation is the use of systematic testing to assess 

variation and control plots to implement quality control, and this approach is reflected 

in the literature. However, this approach interprets the process as a black box, 

precluding the evaluation of sub-process mechanisms. In order to evaluate the 

component energy relationships of the cell rupture process, a deterministic model is 

presented. This model assesses the energy requirements for rupture of a single 

microalgae cell with assumed properties. An analysis of the sensitivity of this model to 

its various inputs is performed here to capture process input and output variation. This 

will expand the ability of the model to reflect measured variation in cell properties 

across multiple species, extrapolate process scale energy requirements with more 

precision and accuracy, and allow simulation based process optimization across 

species. This chapter presents both analytical and statistical sensitivity analysis of the 

constitutive model of cell rupture energy. The physical measurement of a high 

sensitivity input is then performed and used as a statistical input to Monte Carlo 
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simulations of the energy requirement for rupture of a physically diverse axenic 

population of unicellular microalgae.   

3.2 Sensitivity Analysis of Constitutive Model 

The influence of intra- and interspecies variation of geometry and material 

properties on single cell rupture energy for unicellular microalgae is evaluated here. 

An attempt to determine the controlling parameters of a constitutive model of cell 

rupture energy analytically leads to a simplified model representation. This simplified 

model is assessed for sensitivity analytically. 

The original constitutive model is then evaluated via formal sensitivity 

analyses. An initial assessment of sensitivity is obtained by adjusting one input at a 

time (OVAT) with all other parameters held constant to evaluate the effect on rupture 

energy for a single cell. The entire input space is then further explored using scatter 

plots of a single variable versus rupture energy with all other inputs sampled randomly 

(uniformly) within a set range.  

3.2.1 Methods 

The categories of model inputs evaluated for sensitivity are cell geometry, 

material properties, and failure extent. The influence of cell geometry is tested using 

1) cell diameter (dc) and 2) wall thickness (Tcw). The influence of material properties is 

tested using 3) tensile strength (TScw) and 4) failure strain (εf). The influence of failure 

extent is tested using 5) the fraction of circumference split (fs). The objective is to 
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understand the relative sensitivity of each model variant to each input, and to order 

those inputs to identify the highest priority for further investigation.  

An initial evaluation of sensitivity is performed analytically. The model 

equations are separated into equations for volume of disrupted material and 

energy/volume integrals of stress-strain behavior. Order dependence on each input in a 

simplified model is then assessed and used as a comparison for formal sensitivity 

analysis of the original constitutive model. 

OVAT line plots are produced by holding all non-varied inputs at their central 

values and varying one input uniformly between the low and high values in Table 3.1. 

Table 3.1 – Input Ranges for Sensitivity Analysis 
 

 Low (-90%) Central High (+90%) 

dc 1E-6 m 10E-6 m 19E-6 

Tcw 10E-9 m 100E-9 m 190E-9 m 

TScw 63.8E6 Pa 638E6 Pa 1212E6 Pa 

εf 0.025 0.25 0.475 

fs 0.025 0.25 0.475 

 

Confounding is explored by varying 2 inputs at a time. Energy values are 

calculated for the entire 2D I/O space for the model.  

The entire input space is then explored using scatter plots of a single input 

versus rupture energy with all other inputs varied randomly (uniformly) within the 

Table 3.1 range.  
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3.2.2 Results and Discussion 

The order influence of inputs is directly seen in the volume equations, as 

presented in Table 3.2. However, inspection of the energy/volume integrals shows a 

much less straight forward input order, preventing adequate sensitivity analysis by 

order alone.  

Table 3.2 – Model Sensitivity Order by 

Variable in Volume of Disrupted Material 
 

dc 2 

Tcw 1 

TScw 0 

εf 1 

fs 1 

 

When reexamining the parameterized model equations, the integrals of stress-

strain curves can all be alternatively parameterized to            , where  

   . A simplified model equation is produced by recognizing the following: β does 

not depend on fs, Tcw, or dc; Vdm is not dependent on TScw; and Vdm does depend on εf in 

the case of strain based fraction of material. This simplified model equation is: 

                                 . Varying this parameterized model one variable 

at a time should produce the order dependence shown in Table 3.3. 
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Table 3.3 – Simplified model order of dependence on inputs: TScw / Tcw / fs / εf / dc 

 

 Vdm Model Variant 

Material Behavior Fixed 

height 

Defined 

fraction 

Strain based 

Linear Elastic 1/1/1/1/1 1/1/1/1/2 1/1/1/2/2 

Ductile 1/1/1/1/1 1/1/1/1/2 1/1/1/2/2 

Slightly Ductile Brittle 1/1/1/1/1 1/1/1/1/2 1/1/1/2/2 

Plastic 1/1/1/1/1 1/1/1/1/2 1/1/1/2/2 

Highly Elastic 1/1/1/1/1 1/1/1/1/2 1/1/1/2/2 

 

An example of OVAT line plots of rupture energy per cell with model inputs 

varied one at a time (as a uniformly distributed set of points between the low and high 

values in Table 3.1) is shown in Figure 3.1. When examined with the order 

representations in Table 3.3, the curves produced by varying one parameter at a time 

match these order dependencies. 

 

Figure 3.1 – Constitutive model cell rupture energy versus cell diameter for 15 model 

variants: (a) assumed height of material at h = 100nm, (b) circumference fraction of 

material at α = 0.01, (c) strain based fraction of material at εf = 0.25 
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Variations of cell diameter and failure strain produce non-linear responses 

(approximately 2
nd

 order), so these will be the most influential parameters, but only in 

the circumference fraction and strain based fraction model variants.  

Similar patterns are observed across model variants and may be due to the 

structure of the equations and the choice to vary each input by ±90% of the central 

value. The uniform application of this choice has the effect of multiplying the energy 

equation by the same linear set of fractions between 0.1 and 1.9 regardless of which 

parameter is varied. This effect is compounded in the non-linear relationships, leading 

to different magnitudes between similar shaped non-linear curves. However, identical 

fractional changes in inputs sharing the same order of influence will produce the same 

overall effect on model output.  

Varying more than one input at a time will compound the effects of each 

scaling. Three sets of order dependences are seen in Table 3.3, each with 5 potentially 

varying inputs. This gives 2
5
=32 combinations of binary input states (constant or 

varied) for each model variant, implying 3*32=96 total sets of scaling factors. 

However, when the orders of impact of each varied input under each model variant are 

matched and summed for each input state, only 8 distinct outcomes are observed, 

ranging from 0 to 7
th

 order (Figure 3.2). This number is the result of having only 3 

potential orders of influence, the consistently shared first order influence of 3 inputs 

across all model variants, and an assumption of equal scaling in the variation of each 

input. An infinite number of overall scaling factors can be produced by non-equal 

scaling of individual inputs, but these are bounded by the range of each scaling factor 
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and remain controlled by the number of inputs varied and their order of influence. The 

bounds thus defined are scaling between 0.1^7 and 1.9^7, or 1E-7 to 89.4, 

corresponding to ranges with factors somewhere between 10 and 10
9
.   

 

Figure 3.2 – Frequency distribution of cumulative order of influence of 

input scaling under 3 constitutive cell rupture energy model variants 
 

This represents a wide output variation, but this range can be narrowed by 

limiting the number of varying inputs to those that are most influential. If cell 

diameter, failure strain, and one other input are varied, 3 response patterns should be 

observed based on the 3 combinations of order dependence seen in Table 3.3, with the 

third varying input acting as a linear scaling factor. Contour plots of the expected 

patterns observed by varying failure strain and cell diameter under the 3 material 

volume model variants are shown in Figure 3.3. These contour plots show both 

symmetric and asymmetric influence scenarios for failure strain and cell diameter. The 

0.00 0.10 0.20 0.30 

0 

1 

2 

3 

4 

5 

6 

7 

Frequency 

C
u
m

m
u

la
ti

v
e 

O
rd

er
 

Fixed Height 

Defined Fraction 

Strain Based 



87 

 

energy ranges produced are at the low end of that possible in the bounds identified for 

the simplified model.   

 

 
 

 
 

Figure 3.3 – Cell rupture energy (J) output contours of constitutive cell rupture model 

over input space of cell diameter and failure strain: (a) assumed height model 

h = 100E-9m, (b) set fraction height model α = 0.01. (c) strain based height model 

fs = 0.25 

 

The exploration of the 2D input space is expanded using scatter plots of energy 

outputs with uniform random variation of all inputs, including those held constant in 

the line and contour plots. Linear Elastic model scatter plots are representative of 

scatter shape, and are presented alone in Figures 3.4 – 3.6. 
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Figure 3.4 – Scatter plots of cell rupture energy versus tensile strength and versus wall 

thickness for linear elastic constitutive model with uniform random variation of all 

other inputs: (a and d) assumed height of material at h = 100nm, (b and e) 

circumference fraction of material at α = 0.01, (c and f) strain based fraction of 

material at εf = 0.25 
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Figure 3.5 – Scatter plots of cell rupture energy versus split fraction and versus failure 

strain for linear elastic constitutive model with uniform random variation of all other 

inputs: (a and d) assumed height of material at h = 100nm, (b and e) circumference 

fraction of material at α = 0.01, (c and f) strain based fraction of material at εf = 0.25 
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Figure 3.6 – Scatter plot of cell rupture energy versus cell diameter for linear elastic 

constitutive model with uniform random variation of all other inputs: (a) assumed 

height of material at h = 100nm, (b) circumference fraction of material at α = 0.01, (c) 

strain based fraction of material at εf = 0.25 
 

Both an envelope of rupture energy values and degree of influence are 

suggested from these scatter plots. All exhibit monotonic increase. However, some 

also display indications of asymptotic increase rather than the unbounded increase 

seen in Figure 3.1. The most influential variables are again recognized as cell diameter 

and failure strain. The ranges of energy values observed also lie within the scaling 

ranges indicated by the simplified model at 10
4
 - 10

7
. 

3.2.3 Conclusions 

 A simplified constitutive model of cell rupture energy predicts both first and 

second order dependencies on the 5 tested inputs. An anticipated variation of ±90% in 

each input produces potential for energy ranges scaled by 10 – 10
9
. OVAT analysis of 
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the non-simplified constitutive model found that the simplified model orders of 

dependency on each input match those of the non-simplified model. Variation of only 

the 2 high influence inputs in the non-simplified model produce range scaling lower 

than that predicted by the same variation in the simplified model. Random variation of 

all inputs to the non-simplified model produced energy range scaling from 10
4
 - 10

7
, a 

smaller range than predicted by the simplified model. Results indicate that cell 

diameter and failure strain are the most influential inputs, and that the simplified 

model should not be used because of a significant and unnecessary loss in precision.   
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3.3 Cell Diameter Measurement and Monte Carlo 

Simulations of Cell Strength 

 

Sensitivity analysis of the constitutive model of cell rupture energy both 

expanded the deterministic prediction of rupture energy to ranges incorporating 

random variation of model inputs and confirmed the primary importance of cell 

diameter and failure strain in controlling rupture energy. Model predictions are further 

refined here by incorporating more realistic statistical variation of input populations 

and directly measuring the inputs that hold primary importance.  

While direct measurement of the primary inputs could decrease uncertainty 

associated with model predictions of cell failure energy, experimental systems present 

challenges of measurability. The in-vivo failure strain of a single cell wall is not 

readily measurable, but the distribution of diameters of cells in a culture can be 

measured by several established methods.  

This section of the study addresses the challenge of improving model 

prediction accuracy and precision by measuring the distribution of Chlorella vulgaris 

cell diameters and performing Monte Carlo simulations of constitutive cell rupture 

energy using this improved input data.  

3.3.1 Materials and Methods 

Chlorella vulgaris was obtained from Carolina Biological. Cultures were 

grown in medium modified from ATCC Medium: 5 Sporulation Agar [114]. Media 
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was prepared with the following composition in deionized water: yeast extract 

(0.333g/L), beef extract (0.333g/L), FeSO4-7H2O (0.00133g/L), dextrose (3.33g/L). 

Cultures were grown for 30 days under fluorescent light on a 12hr/12hr on/off cycle 

using active mixing in foam stopped bottles, and then stored at 4
o
C until analysis. 

Cell size was analyzed in 3 triplicate sequences (n=10,000 per run) using an 

M3 Coulter Counter (Beckman-Coulter, USA), employing the electric sensing zone 

method [115] with a 50μm aperture. Isoton II diluent was employed to maintain 

isotonic conditions for all measurement runs, and the system was calibrated using a 

5μm L5 standard (Beckman-Coulter).  

Monte Carlo Simulation 

The MonteCarlo simulation is a sampling based approach to simulation of 

complex processes. Random samples from the assumed distributions of inputs are fed 

into the process model equations. Each set of random sample inputs produces a single 

output. Multiple samplings thus lead to multiple outputs. These outputs are the 

distribution of outputs under random sampling of the input distributions, and should 

represent actual output distribution [116]. 

A central value and standard deviation are assigned to each input with an 

assumed normal distribution, and used in place of the uniform random distribution 

utilized in the sensitivity analysis. Standard deviations are arbitrarily chosen as 20% of 

the mean value. The simulations are performed first with the inputs specified in Table 
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3.4. Simulations are then repeated with the fitted distribution of measured cell 

diameter in place of the arbitrarily chosen distribution. 

Table 3.4 – Monte Carlo Simulation Input Distribution Descriptors 
 

 Mean Standard Deviation 

Cell Diameter 10E-6 m 2E-6 m 

Cell Wall Thickness 100E-9 m 20E-9 m 

Tensile Strength 638E6 Pa 128E6 Pa 

Failure Strain 0.25 0.05 

Fraction of Circumference 

Split 

0.25 0.05 

 

3.3.2 Results and Discussion 

Cell Diameter 

The measured cell diameter displays a unimodal positive skew distribution 

with mean 3.96μm, median 3.85μm, standard deviation 0.814μm, skew 0.902, and 

kurtosis 2.99. A Q-Q test plot for normality (Figure 3.7) shows poor fit of cell 

diameter to a normal distribution, but a much closer fit to log-normal. This degree of 

fit is confirmed quantitatively using a correlation coefficient based p-value criteria for 

assessing fit of a normal distribution [117]. The raw data yield a correlation coefficient 

of 0.981 and p-value of <0.01, signifying very poor fit. The log-transformed data yield 

a correlation coefficient of 0.998 and p-value of >0.5, signifying excellent fit. The log 

transformed cell diameter distribution displays a unimodal relatively symmetric 

distribution with mean 1.36, median 1.35, standard deviation 0.200, skew 0.157, and 

kurtosis 0.232.  
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a) 

 

b) 

 

Figure 3.7 – Graphical Q-Q test for normality of a) raw cell diameter distribution and 

b) log transformed cell diameter distribution 
 

Monte Carlo Simulation 

Initial Monte Carlo simulations with all input distributions assumed are 

presented in Figures 3.8 and 3.9. The scatter plots observed in model sensitivity 

analysis have been significantly refined, presenting clearly defined envelopes of 

anticipated cell rupture energies. These envelopes are more clearly interpreted when 

the Monte Carlo outputs of the full set of 15 model variants are visualized together as 

a set of cumulative distribution functions (CDFs) (Figure 3.9). While there is 

horizontal displacement among all CDFs, the forms are relatively consistent. Each 

shows rupture energies ranging over approximately 1.5 – 2 orders of magnitude, 

which is much more precise than the 4 – 7 order of magnitude ranges observed in 

sensitivity analysis. Each also displays a steep ascent with small tails, reflecting the 

tightly clustered energy values seen in the scatter plots. The 5 rightmost lines in Figure 
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3.9 (strain based) display the pattern that is observed for the other 2 disrupted volume 

model variant groups but is obscured slightly by overlap.  

 

Figure 3.8 – Scatter plots of Monte Carlo simulation outputs for assumed normal 

distributions of all inputs: (a) assumed height of material at h=100E-9, (b) 

circumference fraction of material at α = 0.01, (c) strain based fraction of material 

εf = 0.25. Cell diameter versus rupture energy plots are presented as representative of 

observed results 
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Figure 3.9 – Cumulative distribution functions of cell rupture energy for all Monte 

Carlo simulation outputs with fully assumed normal input distributions 

 

The measurement based log-normal model distribution of cell diameter is then 

substituted for the assumed normal distribution, and the Monte Carlo simulations are 

repeated. Results are shown in Figures 3.10 and 3.11. The CDFs in Figure 3.11 have 

the same shape and approximate magnitude of range as those in Figure 3.9, but are 

shifted to the left by different amounts for each of the three model groupings for Vdm, 

resulting in the observed spread of previously overlapping CDFs. This corresponds to 

the downward shift of the scatter positions from Figure 3.8 to Figure 3.10.  
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Figure 3.10 – Scatter plots of Monte Carlo simulation outputs for measurement based 

cell diameter input. Cell diameter versus rupture energy plots are presented as 

representative of observed results: : (a) assumed height of material at h = 100nm, (b) 

circumference fraction of material at α = 0.01, (c) strain based fraction of material at εf 

= 0.25 

 

Figure 3.11 – Cumulative distribution functions of cell rupture energy for all Monte 

Carlo simulation outputs with measurement based cell diameter input distribution 
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Because of the similar shapes of these distributions and the nature of the 

pretreatment process, a threshold energy value comparison is appropriate. The natural 

point of diminishing returns for energy investment toward cell rupture is the inflection 

point of the CDF around the 50
th
 percentile. However, because of the goal of maximal 

cell rupture and the narrow CDF shoulders, the 90
th
 percentile is chosen for 

comparison and assigned the symbol E90. A comparison of E90 values for all model 

variants is presented in Figure 3.12. The measurement based assumed height, assumed 

fraction, and strain based model variant predictions were scaled down by 60%, 85%, 

and 84%, respectively, relative to the assumed value predictions. The improved input 

also had the effect of decreasing the span of E90 values across all model variants from 

701pJ to 113pJ.   

 

Figure 3.12 – E90 values for cell rupture from Monte Carlo simulations. (prefixes: AH 

= assumed height; AF = assumed fraction; SB = strain based) (suffixes: LE = linear 

elastic; D = ductile; SDB = slightly ductile brittle; P = plastic; HE = highly elastic) 
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Values of E90 provide limits to test against energy content of the cell for 

feasibility in terms of net energy. Assuming a single energy level is supplied, the 

cumulative distribution of energy/cell can be used to predict the energy/cell 

requirement to rupture a specified fraction of cells in solution. This value can then be 

conditionally extrapolated to total energy input for a suspension of many cells as has 

been done in [38]. This can then be conditionally extrapolated further to 

process/extraction performance improvements given appropriate correlations that will 

be process specific. Where experiments provide correlation between fractional cell 

rupture and process performance, the energy to attain that performance change can be 

predicted based on the constitutive model using appropriate cell information. 

Extrapolation of expected energy requirements from E90 can be made, but 

those extrapolations assume a one-to-one matching of single energy treatment 

interactions with 100% efficiency. Because this is not the case in any pretreatment 

system, the E90 extrapolation can at best be used as a lower bound of expected process 

energy requirements. Additional insight requires the consideration of the underlying 

assumptions of interaction frequency, pretreatment energy distribution, and the 

criticality of interactions in terms of cell rupture. 

A set of cumulative distributions of rupture energy was obtained from Monte 

Carlo simulations. In physical experiments, 100% rupture is not usually a reasonably 

attainable endpoint. This leads to the use of 50% rupture as a benchmark or a first 

order empirical model of cumulative rupture as a function of energy input [64, 87]. 

The empirical model framing makes some sense as the number of cells available to 
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rupture in a batch reactor will decrease over the course of treatment. However, this 

black box model neglects the compound structure of the problem. The rupture process 

is not simply a change in availability of a reactant with uniform properties. 

3.3.3 Conclusions 

 Monte Carlo simulations of constitutive cell rupture energy produced 

distributions with ranges of approximately 2 orders of magnitude. This is a drastic 

improvement in precision from the results of sensitivity analysis. Cell diameter was 

observed to follow a log-normal distribution. Substitution of the measured cell 

diameter distribution for the assumed distribution in Monte Carlo simulations resulted 

in a negative shift of the energy distributions, but negligible change in precision for 

any single model variant. Interpretation of the CDFs of rupture energy in terms of E90 

revealed that the measurement of cell diameter reduced the spread of modeled rupture 

energy across the suite of model variants by a factor of approximately 7, a drastic 

improvement in overall model precision.  

  

 Chapter 3, in part, is currently being prepared for submission for publication 

of the material. Klinger, Rory; Garoma, Temesgen. The dissertation author was the 

primary investigator and author of this material. 
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Chapter 4 - Growth Media Selection 

and Power Ultrasound Processing 

The effect of microalgae growth medium on power ultrasound treatment of 

microalgal biomass was investigated. Chlorella vulgaris was grown in Bold’s Basal 

Medium, high and low iron Bristol’s Medium, Sueoka Medium, HAMGM Medium, 

and MiracleGro All Purpose Water Soluble Plant Food. High iron Bristol’s Medium 

and HAMGM Medium did not produce sufficient growth to warrant further 

investigation. The other 4 media showed statistically indistinguishable intrinsic growth 

rates, averaging 0.052/day. Power ultrasound treatment was applied at 9.5W for 5 

minutes. MiracleGro showed chemical oxygen demand solvation post-sonication of 

66%, twice that of other growth media per cell ruptured; which was unexpected based 

on observed consistent biomass quality. Media differences do not appear to have an 

effect on ultrasound power transfer; thus Chlorella vulgaris grown in MiracleGro 

medium has a decreased strength in terms of resistance to rupture by ultrasound. These 

results suggest that while biomass productivity and composition are important for the 

efficiency of extraction, media effects on the susceptibility of cells to pretreatment 

should not be ignored in overall process design.   

4.1 Introduction 
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Material extraction from microalgae is a technically viable option for the 

production of many products from food and beauty products to plastics and fuels. 

However, the technical feasibility of these products has not always translated to 

financial feasibility. In order to enhance the extraction process, pretreatment of the 

microalgae biomass is often required [32, 118]. The objective of pretreatment is the 

rupture of the cell wall and membrane toward the end of increasing availability for 

reaction of expelled cell contents and newly exposed cell materials [35].  

Power ultrasonic treatment has been demonstrated as an effective method of 

microalgae cell disruption and extraction enhancement [59, 60, 63-65, 67]. However, 

extraction efficiency is also affected by the composition of the cell biomass, which can 

be controlled to a certain extent by the growth medium selection [57, 119]. While the 

individual effects of media on composition [119] and pretreatment on extraction [60] 

have been investigated, the effect of media on the efficiency of pretreatment is a gap 

in current knowledge. 

By understanding the effect of growth media on pretreatment effectiveness, the 

relationship between growth medium and pretreatment efficiency may be incorporated 

into process optimizations for both energy and cost for a given extraction product. 

In order to explore this relationship, the objectives of this study are: 1) to 

identify appropriate growth media based on isolation ability and growth rate, 2) to 

characterize cultures grown on these media in terms of biomass production and energy 

conversion potential, and 3) to determine the effect of growth medium on low 

frequency power ultrasound pretreatment performance. 
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4.2 Materials and Methods 

Growth Media 

Growth of feedstock material consistent enough for reproducible laboratory 

analysis is facilitated by the use of synthetic media. Synthetic freshwater media used 

to grow Chlorella vulgaris include: Sueoka Medium [120], Bold’s Basal Medium 

(BBM) [113] (modified to 1/6 trace metals concentration, Bristol’s Medium [121], 

Bristol’s Medium amended with excess ferric chloride [122], and HAMGM Medium 

[123]. The Bristol’s media are designated Bristol’s (-Fe) and Bristol’s (+Fe), 

respectively. TAP Medium [124], which is supplemented with organic carbon, was 

also used to include a minimally enriched medium.  

Informal online materials for lab instructors and students [125] recommend 

MiracleGro All Purpose Water Soluble Plant Food (Material: SH1181) as a simple 

isolation media for the growth of microalgae in the laboratory, and it has been used in 

the literature as a nitrogen and phosphorus supplement [126]. Preliminary tests mixing 

rich media with MiracleGro at varying ratios to encourage growth rate and microalgae 

dominance in culture led to the determination that the most consistently aseptic and 

high rate growth came from a basal medium consisting of only MiracleGro solution 

(2.337 g/L - Hydrated). In order to remain consistent with the literature while 

exploring this simple alternative media, MiracleGro is run in parallel with the 

synthetic freshwater media identified above. 

Microalgal Growth 
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Chlorella vulgaris was obtained from Carolina Biological Supply Company 

(USA). All media were autoclaved in individual growth bottles at 121
o
C and 16.5psi 

for 30 minutes. A starter culture was created from an agar plate single colony isolate, 

and inoculations were performed inside a laminar flow hood using aseptic technique. 

150ml cultures were grown in foam stopped 250ml media bottles, magnetically stirred 

to produce an ~6mm vortex well (~400RPM). Lighting was on a 14h/10h on/off cycle 

via 2x 40W fluorescent light tubes suspended ~1m above the cultures. The lab 

temperature regularly fluctuated in the range of 20-25
o
C. Three growth runs were 

completed in duplicate for each medium, with the exceptions of Bristol’s (+Fe) and 

MiracleGro. Bristol’s (+Fe) produced no growth, and so was abandoned after the first 

run and replaced with MiracleGro in subsequent runs. 

Biomass concentration was monitored by measuring the spectrophotometric 

absorbance of each culture for 31 days (300nm-800nm) using a BioMate3S 

spectrophotometer. Spectra were monitored for aberrant peaks that could indicate 

contamination. In order to minimize the risk of contamination during sampling, the 

culture bottles were measured directly, and absorbance values corrected to 1cm path 

length via Lambert’s Law using a matched 1cm cuvette reading at the end of growth 

for each culture bottle.  

Culture Analyses 

At the end of the growth period, each culture was sampled and its absorbance 

spectra read (300-800nm) in a 1cm cuvette. Cultures were then analyzed for: chemical 

oxygen demand (COD), soluble COD (SCOD), total solids (TS), ash free dry weight 
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(AFDW), cell concentration, % cell viability, electrical conductivity (EC), Oxidation 

Reduction Potential (ORP), and pH.  

COD and SCOD were measured as indicators of total and soluble organic 

carbon. Samples were analyzed using the dichromate reactor digestion method 

(HACH method 8000), with the soluble fraction taken as the supernatant after 

centrifugation at 17,000xg for 5 minutes.  

TS was measured as culture mass remaining after drying at 105
o
C. AFDW, 

representing the biomass fraction of TS,  was measured as the mass lost from the TS 

sample upon firing at 550
o
C for 1 hour [127].  

Cell concentrations and % viability were determined optically via automated 

cell counts (Nexcellom Cellometer AutoX4). 20μl of culture sample was combined 

with 20μl propidium iodide (PI) stain (Cellometer ViaStain™ PI Staining Solution) in 

a 1.5ml microcentrifuge tube and vortexed for 10 seconds. A 20μl sample was then 

pipetted to a Cellometer counting chamber and allowed to stabilize for 2 minutes. A 

bright field cell count was performed, followed by stimulation of the sample at 501nm 

and emission measurement at 595nm for 10 seconds of exposure. Dead cells were 

identified via fluorescence of PI, and an automated count of fluorescing cells was 

executed. Percent viability was then determined as the difference between the bright 

field and fluorescence cell counts divided by the bright field cell count. 

EC was measured to determine relative salinity of the media, an important 

indicator of media habitability for microalgae. Measurement was performed using a 2-

plate epoxy conductivity cell probe (Model 250 Denver Instruments, USA). 
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Change in ORP is a common indicator of overall oxidation state of chemical 

species in a solution. As such, it can also be an indicator of succession of microbial 

communities and redox conditions that can influence microbial growth. Measurement 

was performed using an Ag/AgCl referenced platinum disc ORP/Redox probe 

(MTC101 HQ440d Hach, USA).  

pH is important to CO2 availability and the multitude of reactions essential for 

microalgal growth. Measurements were performed using an Ag/AgCl single junction 

glass pH probe (PHC101 HQ440d Hach, USA).      

Low Frequency Ultrasound Treatment 

Low frequency power ultrasound treatment was performed using a sonotrode 

system (20kHz) with a 1/8in (3.175mm) micro-tip (Q55 Qsonica, USA) immersed 

1.5cm in 50ml of sample in a 50ml jacketed beaker with recirculating water at 25.5
o
C 

for a sample temperature of 25
o
C. Treatment was performed at a setting of 100 

(8.13W) for 5 minutes. Temperature was monitored to check for overheating (max. 

28.4
o
C). Power transfer to solution was determined calorimetrically [101] in a separate 

test. 

The fixed growth period led to culture samples being treated directly, without 

dilution. Because of the small culture volume, and the desire to determine the effect of 

the media as it existed at the end of the growth period, dilution was not practical. 

While there is a recognized effect of cell concentration on power ultrasound 

performance, it has been shown to decrease significantly in magnitude with a decrease 
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in the power of ultrasonic treatment, becoming insignificant at 32.5W [64], well above 

the power of 8.13W used here. 

After power ultrasound treatment, samples were again analyzed for cell 

concentration, % cell viability, COD, SCOD, EC, ORP, and pH. Because solvents, 

digestive enzymes, and other extracellular reactants of biomass processing tend to be 

non-permeant to live cells, cell death is measured as an indication of susceptibility to 

processing. The fraction of total COD that is soluble is a direct measure of the organic 

constituents that are most directly accessible to physical separation, chemical reaction, 

and microbiological transformation [128]. EC, ORP, and pH can be influenced by the 

release of intracellular molecules, and thus may be indicators of: the release of 

intracellular contents, solution characteristics that may influence downstream 

processes, and suitability of treated media for recirculation after biomass dewatering.  

Statistical Methods 

Three types of statistical analyses were used. In group, pre-post comparisons 

were analyzed using a one tailed paired t-test. Significant difference of values among 

groups was identified using one-way ANOVA. Significant differences of values in 

pair-wise multiple-comparisons between groups were identified and quantified using 

Fisher’s protected LSD. A significance criteria of α=0.05 was used for all analyses. p-

values are presented for t-test and ANOVA results, but not for Fisher’s LSD where it 

could be misleading and thus is not conventionally done [129]. 
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4.3 Results and Discussion 

Media Selection 

Growth rates are calculated as intrinsic (exponential) growth rate from the 

change in absorbance at 750nm [130]. Optical density is a common surrogate for cell 

count in microalgal growth. The absorbance spectra of sample dilutions were analyzed 

at each wavelength (300-800nm; 2nm spacing) for linearity of correlation with cell 

count. Linear regression R
2
 of 0.9975 and 0.9992 for 600nm and 750nm, respectively, 

confirm the appropriateness of these wavelengths. However, absorbance at 750nm 

avoids interference by changing pigment absorption over the microalgae life cycle 

[131]. A sample absorbance spectrum is presented as Figure 4.1.  

 

Figure 4.1 – Sample spectrophotometric absorbance spectrum of Chlorella vulgaris 

grown in BBM medium 
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  Because Bristol’s (+Fe) did not produce any growth, it is excluded from all 

analyses. TAP medium consistently produced considerable growth, but is excluded 

from growth rate and other analyses because of a contamination frequency of 1. While 

HAMGM medium produced viable growth, consistent formation of precipitates and 

floc confounded optical density measurements and was inconsistent with growth in the 

other media. For these reasons, HAMGM is also excluded from further analyses.  

The highest growth rate of Chlorella vulgaris was obtained in BBM medium, 

followed by Sueoka, Bristol’s (-Fe), and MiracleGro medium (Figure 4.2). Results of 

one-way ANOVA show no significant difference of intrinsic growth rate among the 

growth media (p=0.238). Follow-up multiple comparison using Fisher’s Protected 

LSD confirms this result.   

 

Figure 4.2 – Intrinsic growth rates (r) of Chlorella vulgaris grown in specified media. 

Sample size is indicated by n, defined as the number of cultures that reached an 

observable maximum growth rate within 31 days without crash due to contamination. 

Error bars are one standard deviation 
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Because pond crash prevention is such a critical aspect of successful 

commercial microalgae cultivation, the tendency of laboratory cultures to maintain 

algae dominance is important to consider. While strict biological procedures would 

require the maintenance of axenic cultures, non-axenic cultures are a reality of 

commercial microalgae production and results are presented here in that context. This 

tendency toward algae dominance in culture is presented here as isolation ability, 

calculated as one minus the frequency of contamination; 1-n(contaminated)/n(total). 

When considering viability of growth overall, a combined frequency of contamination 

and non-growing cultures, Fc,ng, can be used; 1 - ( n(contaminated) + n(non-growth) ) / 

n(total). Of the six cultures inoculated in each medium, with the exception of 

MiracleGro with 4 cultures, only Np algae dominant culture growths were observed. 

The growth rate, contamination, and non-growth data are summarized in Table 4.1 and 

the media ranked according to both intrinsic growth rate and frequency of non-viable 

cultures. BBM and Sueoka are identified as the best media for growth rate. Bristol’s (-

Fe) and Sueoka are identified as the best media for isolation and viability of growth. 

The success of growth in these cultures is not surprising given that they are standard 

media used in laboratory microalgae cultivation. Interestingly, MiracleGro matches 

Bristol’s (-Fe) in terms of growth rate, and performs reasonably well in terms of 

isolation and viability of growth, though not nearly as well as the synthetic freshwater 

media Bristol’s (-Fe), Sueoka, and BBM. 
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Table 4.1 – Intrinsic growth rates and frequency of contamination and non-growth of 

Chlorella vulgaris in specified media. The mean intrinsic growth rate (r) is presented 

± one standard deviation. Fc,ng is the combined frequency of contamination and non-

growth. Np is the number of algae dominant culture growths 
 

 

Biomass Production and Energy Conversion Potential 

While intrinsic growth rate (r) determined from batch growth curves is 

sufficient to rank the media in terms of biomass productivity for a commercial semi-

continuous culture harvested in the logarithmic phase, the utility of that biomass is not 

considered. In order to incorporate utility, a substrate yield would normally be 

considered. However, to broadly represent the yield of energy conversion potential, a 

generalized substrate should be considered. Here, biomass is represented by TS, 

generalized bio-methane potential is represented by AFDW, and generalized energy 

conversion potential is represented by COD. Thus the biomass yield is taken as 

AFDW/TS and the energy conversion potential is COD/TS (Table 4.2). These 

relationships are commonly used in anaerobic digestion operations. The system 

response to AFDW and COD loading is generally characterized under a given set of 

operating conditions to produce a conversion factor in units of gCH4/gCOD [132]. An 

analogous performance correlation using SCOD of microalgae solutions after pre-

treatment has also been presented in the literature [83].  

 BBM Sueoka Bristol’s (-Fe) MiracleGro HAMGM TAP 

r 
0.059 

±0.006 

0.054 

±0.006 

0.047    

±0.015 

0.047 

±0.008 
NA NA 

Fc,ng  0.167 0.000 0.000 0.500 0.667 1.000 

Np 5 6 6 2 2 0 

Rank(r, Fc,ng) (1,3) (2,1) (3,1) (3,4) ( - ,5) ( - ,6) 
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Table 4.2 – Growth Rate, Biomass Yield, and Energy Conversion Potential of 

Chlorella vulgaris in specified media. Values are mean ± one standard deviation 
 

 

Results of one-way ANOVA for AFDW/TS and COD/TS show no significant 

difference between the different media cultures. The relative consistency of these 

measures between cultures grown in each of these media suggests that intrinsic growth 

rate should remain the prominent selecting factor among these options for Chlorella 

vulgaris growth media. 

Growth Medium Effect on Power Ultrasound Pretreatment Performance 

Pretreatment performance was measured as cell death and dissolution of cell 

materials. Cell death is presented as the change in percent cell viability (Figure 4.3). 

Dissolution is calculated as the change in soluble fraction of COD (Figure 4.4).  

 BBM Sueoka Bristol’s (-Fe) MiracleGro 

r 0.059 ±0.006 0.054 ±0.006 0.047 ±0.015 0.047 ±0.008 

AFDW/TS  0.467 ±0.021 0.347 ±0.159 0.433 ±0.107 0.464 ±0.051 

COD/TS 0.409 ±0.084 0.292 ±0.189 0.337 ±0.202 0.244 ±0.037 
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Figure 4.3 – Power ultrasound effect on % viability of Chlorella vulgaris grown in 

specified media. Change in Chlorella vulgaris % cell viability as PI fluorescence after 

power ultrasound treatment. Error bars are one standard deviation. Minimum viability 

of cultures prior to treatment was 98.2% 

 

 

Figure 4.4 – Solvation of Chlorella vulgaris COD in specified media by power 

ultrasound. Soluble fraction of COD before and after power ultrasound treatment of 

50ml volume. Error bars are one standard deviation 
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It appears from Figure 4.3 that MiracleGro culture cells were more susceptible 

to death by sonication, with the other media being approximately equivalent. Analysis 

of the data presented in Figure 4.3 using one-way ANOVA reveal a significant 

difference (p=7x10
-3

) among growth media in the effect of sonication on cell viability. 

Multiple-comparison using Fisher’s protected LSD gives overlapping but non-

combining ranges of significant differences, grouping Sueoka with BBM , BBM with 

Bristol’s (-Fe), and Bristol’s (-Fe) with MiracleGro. Differences in effect between 

media are presented in Table 4.3. 

Table 4.3 – Paired differences of change in % viability of Chlorella vulgaris after 

power ultrasound between growth media. Read table as ‘column’ shows ‘value’ higher 

change in % viability than ‘row’. Values are the mean difference ± Fisher’s LSD 95% 

confidence intervals 
 

 BBM Sueoka MiracleGro 

Bristol’s (-Fe) 2.21 ±5.55 5.37 ±5.10 6.04 ±7.08 

BBM -- 3.15 ±5.81 8.25 ±7.61 

Sueoka -- -- 11.40 ±7.28 

 

The increased sensitivity of MiracleGro cultures extends to solvation of cell 

contents as COD, but in more dramatic fashion. The effect of power ultrasound 

treatment on SCOD/COD was shown to be significant for each growth medium via 

one-tailed paired t-test (Bristol’s (-Fe) p=5x10
-5

; BBM p=2x10
-4

; Sueoka p=1x10
-6

; 

MiracleGro p=1x10
-3

). The change in SCOD/COD between growth media was also 

shown to be significantly different by one-way ANOVA (p=4 x10
-9

). Multiple-

comparison using Fisher’s protected LSD confirms what can be seen in Figure 4; that 

MiracleGro cultures released COD at a significantly higher level than other growth 
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media, and there is not a significant difference amongst the other media. The 

significant differences in treatment effect between media are presented in Table 4.4. 

Table 4.4 – Significant differences between media in COD solvation by power 

ultrasound. Values are mean difference ± Fisher’s LSD 95% confidence interval 
 

 

Potential Explanations of the Observed Medium-Pretreatment Relationship 

From the results above, a relationship was detected between the medium in 

which Chlorella vulgaris is grown and the change of soluble COD fraction after power 

ultrasound treatment. However, the question remains whether the relative increases of 

SCOD/COD are due to differences in: proportion of intracellular SCOD material, 

power ultrasound mechanical performance, susceptibility to rupture, or a combination 

of factors. 

The continuity of composition observed in Table 4.2 and the high likelihood of 

complete digestion of unicellular organisms in a COD reaction speak against the 

possibility of differences in intracellular SCOD material among growth media. 

Power ultrasound mechanical performance is affected by a number of factors, 

with solvent vapor pressure and solution viscosity being most relevant here [101, 133]. 

Temperature changes were uniform for all treatments. Solvent vapor pressure is very 

important in ultrasound cavitation. Based on Raoult’s Law (Pv,solution=xsolvent * Pv,solvent ; 

where x is the mole fraction and Pv is vapor pressure) the vapor pressure of the solvent 

Media Pairing Difference in SCOD/COD 

MiracleGro - Bristol’s (-Fe) 0.330 ±0.079 

MiracleGro - BBM 0.309 ±0.085 

MiracleGro - Sueoka 0.342 ±0.082 
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will decrease as more constituents are added to solution. Decreased vapor pressure 

leads to an increase in the amount of energy required to volatilize in a cavitation 

bubble. Thus the relative energy requirements for cavitation in each of the growth 

media can be determined based on their composition. An end of growth surrogate for 

this is the EC, as it is an indicator of ion concentration. As can be seen in Table 4.5, 

the ascending order of EC of sonicated solutions is Bristol’s (-Fe) < BBM < 

MiracleGro < Sueoka (EC values did not appreciably change due to sonication). This 

order does not match what would be expected if the ion concentration effect on vapor 

pressure were a controlling factor in sonotrode performance (i.e. MiracleGro < 

Bristol’s (-Fe) < BBM < Sueoka).  

Table 4.5 – Chlorella vulgaris culture end conditions. pH, EC, and ORP of Chlorella 

vulgaris cultures at the end of 31 days growth in selected media. Values are mean ± 

one standard deviation 
 

 Bristol’s (-Fe) BBM Sueoka MiracleGro 

pH 7.18 ±0.18 8.59 ±0.51 6.98 ±0.02 7.88 ±0.13 

EC (μS/cm) 741.3 ±164 929.6 ±193 1558 ±75 1150 ±85 

ORP (mV) 266.0 ±5.0 239.4 ±16.8 286.3 ±12.3 241.3 ±3.5 

 

 Another solution property that strongly affects ultrasound power transfer and 

cavitation is viscosity. In fact, viscosity is the only damping term in the Rayleigh–

Plesset model  of acoustically driven bubble oscillation [105, 106]. The relationship 

between dissolved salts and viscosity is generally that an increase in dissolved salts 

will increase viscosity. This would suggest that more saline solutions would have 

more damped cavitation bubble oscillations. Decreased oscillation amplitude might 

suggest decreased bubble instability and thus decreased bubble collapse. If this is the 
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case, then the order of ranked values of EC also does not match what would be 

expected if the ion concentration effect on viscosity were a controlling factor in 

sonotrode performance. 

 Thus it is concluded that there is a difference in the resistance to cell rupture of 

MiracleGro grown Chlorella vulgaris cells in response to 20kHz power ultrasound 

treatment at 8.13W. 

4.4 Conclusions 

BBM represents the best medium for rate of Chlorella vulgaris biomass 

production. MiracleGro showed the highest rate of solvation of COD. The amount of 

solvation was also proportionally higher than in other media on a per cell rupture 

basis, which was unexpected based on observed consistent biomass quality among 

growth media. Media differences do not appear to have an effect on ultrasound power 

transfer, and thus Chlorella vulgaris grown in MiracleGro medium has a decreased 

strength in terms of resistance to rupture by ultrasound. These results suggest that 

while biomass productivity and composition are important for the efficiency of 

extraction, media effects on the susceptibility of cells to pretreatment should not be 

ignored in overall process design. Future work will address this balance of 

productivity and susceptibility to rupture in terms of relative induced extraction 

potential per cell mass and biomass composition.  
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Chapter 4, in full, has been accepted for publication of the material as it will 

appear in Proceedings of ECOS 2017 - 30th International Conference on Efficiency, 

Cost, Optimization, Simulation and Environmental Impact of Energy Systems, 2017. 

Klinger, Rory; Garoma, Temesgen. The dissertation author was the primary 

investigator and author of this material. 

 

  



 

120 

Chapter 5 - Theoretical Kinetics and 

Mechanism of Cell Disruption 

 A theoretical development of the kinetics and mechanism of microbial cell 

disruption via ultrasound horn induced cavitation is presented. The general assumption 

of complete mixing in small to moderate size test systems is challenged and corrected 

using a mass balance on a 2 concentric reactor model system with 100% recycle. A 

first order elementary reaction model is employed and then binned to component 

parallel reactions based on a probability density function (PDF) of cell strength. 

Consideration of the likely existence of a PDF of cavitation energy leads to the 

expansion of the parallel cell disruption reactions to a second order elementary 

reaction model. An assumption of steady state cavitation generation and interpretation 

of the cell strength and cavitation energy PDFs through the lens of activation energy 

allows the creation of a first order rate equation for this second order process. An 

experimental approach for the determination of binned cell disruption rate constants is 

proposed. An alternative reaction mechanism based on mechanical shear is then 

developed using the concept of critical distance. The critical distance model is then 

expanded by incorporating the failure limits of the cell wall material under a 

constitutive model perspective to derive an expression for the first order rate constant 

as an explicit function of the operational parameters of microbial cell disruption under 

ultrasound induced cavitation. A known rate constant value for specific experimental 
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conditions is then used in conjunction with the critical distance and concentric reactor 

models to predict the cavitation rate under a sonotrode. The critical distance 

mechanical shear model is used to prove the existence of a critical distance for any 

bubble-cell interaction, and the model is then expanded to incorporate the use of PDF 

inputs for cell and cavitation radii.  

5.1 Introduction 

Direct laboratory tests of kinetics [64] and quantitative and qualitative process 

performance indicators [65, 67, 110] are common approaches to the measurement and 

modeling of cell disruption processes. Direct tests provide useful data characterizing 

specific systems, but have not been conducted or analyzed in a mathematically 

generalized framework that can be used to predict the performance of alternative 

systems. 

 Power ultrasound treatment of unicellular microbial biomass is one category of 

specific systems in which such a framework is possible. The species and concentration 

of biomass [64, 110], geometry and volume of reactor [98], ultrasound probe 

specifications and placement [98] are generally cited as having quantitatively 

unpredictable impacts on system performance. Knowledge of microbial cell strength is 

an important key to the prediction of the minimum energy required to disrupt a 

population of cells for the purpose of commodity extraction [38]. However, this 

benchmark is usually foregone in practice. This has resulted in an expansive literature 

full of narrowly defined systems and performance specifications that are not useful for 
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drawing general conclusions or predicting cell rupture performance in an alternative 

system [134].  

 The interaction of power ultrasound with a solution has been conceptually 

described as taking place within a discrete reaction zone localized in front of the active 

face of the ultrasound probe tip [135]. The reaction constants of the overall reactor 

have been presented in the literature [64, 78, 89, 136]. However, in order to 

quantitatively predict the elementary reaction kinetics for use in reactor design two 

models are required: one of the reactor and another of the reaction taking place within 

the reaction zone. The separation of these models is required in order to isolate the 

reaction itself, and eliminate the reactor dependent nature of rate constants as they are 

generally presented in the literature. 

To improve understanding of the reaction mechanism, move toward a 

theoretical system optimization, and provide a framework for quantitative prediction 

of reactor independent cell disruption rate constants under power ultrasound, this 

study develops a probabilistic kinetic model of cell rupture and couples it to an 

isolated reaction zone reactor model.   

5.2 Reactor Model 

 A sonotrode tip placed in the center of a cylindrical batch reactor with rounded 

edges generates an approximately toroid circulation via acoustic streaming. The 

reaction zone is below the sonotrode face, and the remainder of the reactor is treated 

as a storage reservoir with 100% recycle. Mass balances of this recycling 2 reactor 
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system form a first order linear system of ODEs with constant coefficients, where the 

reaction zone is assigned the subscript 1. 

  

   

  
              

  

   

  
          

The reaction term (r) is assumed to follow first order decay (r = ‒k1N1), 

matching the form observed in the overall reactor. With this assumption in place, the 

system is easily solved by elimination to give a second order linear ODE.  

 
    

 
   

          
      

 
   

             

Since measurements of concentration can only be taken in reaction zone 2, and 

this concentration is known to follow an apparent first order decay, the first order 

solution with N2(0)=N0 is substituted for N2 and it’s derivatives:       
    ; 

  
       

    ;   
        

   . This is solved for the zone 1 rate constant in 

terms of the apparent rate constant from zone 2 sampling. Note that as V2 approaches 

zero, k1 approaches k, denoting a CMBR testing scenario.  
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5.3 Elementary Reaction Model 

 The observed bulk cell rupture rate by ultrasound is well described by a first 

order elementary reaction model (r = ‒kN) [64]. In typical chemical reactions, k is 

independent of N, but dependent on temperature. In power ultrasound, k is reported as 

dependent on initial concentration, total power, power intensity, specific power, 

frequency, reactor geometry, probe geometry, solvent, and temperature. These 

observed dependencies of k direct this discussion of the reaction model.  

The dependence of k on initial concentration implies that the elementary first 

order model may not be appropriate. While drastic changes in cell concentration can 

impact viscosity [137] and thus both cavitation and mixing, this should be used to 

define operational limits of a reactor system rather than impacting the reaction 

kinetics. 

 The dependence of k on power intensity (W/m
2
) makes sense as a 

normalization of the thermal analog of power from different sources, but should really 

be captured in a change of the reaction zone affiliated with the increased surface area 

of the probe. Equal intensities could imply equal reaction zone volumes since a larger 

surface area probe must match the intensity of that of a smaller probe by having a 

shorter longitudinal displacement amplitude. However, the relationship between 

amplitude and intensity is likely non-linear given that both the active volume through 

which the probe passes and the amplitude of pressure fluctuations (due to increased 

velocity) will increase if the frequency is held constant. 
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 Dependence of k on specific power (W/m
3
) is reactor dependent, and thus 

inappropriate for consideration in the reaction model. 

 Dependence of k on ultrasound frequency is appropriate, as frequency drives 

the resonant sizes and thus collapse energies of cavitation bubbles. These bubbles will 

be characterized as a reactant in the reaction mechanism and thus separated from k 

here. 

Dependence of k on reactor geometry is not appropriate for exploration here, 

as it is a matter for reactor design rather than investigation of the elementary reaction. 

The ultrasound probe geometry and design are a matter for a study of 

cavitation generation and mixing in conjunction with reactor design, not the 

fundamental reaction process. Solvent selection and temperature effects are also 

influencers of cavitation generation, not the fundamental reaction process for an 

assumed rate and distribution of cavitation. 

The elementary reaction assumed by the first order empirical model is: 

           
           
                       

To expand this reaction model, cavitation bubbles are treated as discrete 

reactants rather than an intensive property of the solution (an initially appropriate 

assumption given that ultrasound power is routinely measured calorimetrically):  
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  The reaction activity of whole cells (Cw) can be described using number per 

volume concentration (Nc) as in the first order rate model, and the activity of 

cavitation bubbles (B) can be described similarly (NB). However, the cells have a 

distribution of strengths (fcs) (an analog to activation energy of rupture), suggesting a 

reaction series based on the discretization of fcs. 

Reaction series Rate equations 

      

  
      

       

  
          

      

  
      

       

  
          

    

      

  
       

       

  
          

Where             in a common volume, 
   

  
  

 

  
                  . 

While the overall rate may be 1
st
 order, that of component reactions may not be. These 

reactions are considered to run independently and in parallel with no deterioration of 

NB, and it is also reasonable to assume that the cavitation bubble collapse energy (bce) 

in a dynamic environment exists as a distribution (fbce) rather than a single value. The 

distribution fbce and NB are used to specify an effective NB,i for each reaction in the 

series based on the bce required to rupture cells in a specified range. The rate 

equations for this second order elementary reaction series with parsed bubble 

concentration is:  
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Reaction series Rate equations 

       

  
      

       

  
              

       

  
      

       

  
              

    

       

  
       

       

  
              

With constant NB, and effective                     , where F is the 

cumulative distribution function identifying the fraction of bubbles below the 

threshold required to rupture cells in a specified range, the overall rate equation is 

rewritten as: 

   

  
                         

 

 

When interpreted in the context of Fcs, five observable behaviors are expected 

as Fbce is translated horizontally across Fcs. Where             , the rate is zero 

because the cavitation energies available are insufficient to rupture any cells. The 

opposite case is more representative of practice. Where            , the rate 

becomes independent of     , as all cavitation energies available are sufficient to 

rupture any cells. This scenario ensures that all cells may be ruptured and increases the 

rupture rate, but requires input of excess ultrasound energy to achieve.  
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The set of intermediate cases,                  , can be evaluated using the 

final extents of reaction,                         . Thus,             

   
           . The upper boundary of this intermediate set lies at              , 

and represents minimal matching of the discrete activation and available energies to 

achieve         . However, no information about      can be extracted from 

bulk rupture experiments other than its maximum value. 

A set of transitional cases is defined where                . Here, 

        , and there is no cell rupture corollary (other than rate) in this range.  

One potential path to extract additional information about             and NB 

would be to determine   
                    from experiment. The resultant ki

*
 

would trace a reflection of the bubble collapse energy distribution, in the region of 

CDF overlap, scaled by a constant equal to     . The integral of      outside the 

bounds [cs1, csn] represents non-ideal energy matching. Low-value cavitation energy 

wasted in the system is identified as            , and energy of excessive value as 

           . This could be quantified as            
   

   
      

   

   
  only 

where      had been determined. However, the value of the integral of Fbce in the 

overlapping region could be used as a relative figure of merit along with a 

characterization of energy wastage and/or excessive value. In order to achieve this, a 

method for the measurement or estimation of ki
*
 is required.   
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 The overall reaction rate stated in the elementary reaction model section above 

is affiliated with reactor zone 1 and equated with r1.  

   

  
                         

 

 

The number of unknowns in this equation can be reduced from 3n+2 to n+1 

and further by re-lumping constants, minimizing the grid size for discretization, and 

implementing a physical filter bank to bin cells by size and thus strength. This 

treatment assumes sufficient NB to prevent competitive effects, and is summarized in 

the matrix equation below with the increasing derivative subscripts denoting 

individual treatment bins with increasing filter mesh size.  

 
 
 
 
 
  

   
  

   
  

  
   

   
 
      

 
 
 

 
 
 

                 
  

   
   

        
  
 
 
 
 

 
 
 
 
 
  

  

  

 
   

 
 
 
 

  

 
 
 
 
 
        
        
        

 
         

 
 
 
 

 

However, the individual reaction rate constants are not mathematically 

separable and cannot be directly determined individually without fluorescence flow 

cytometry, a technology currently unavailable to our group.  

5.4  Reaction Mechanism and Critical Distance 

The assumed interaction, relative energy, and proximity of the reaction 

mechanism are lumped in practical empirical correlations. The first two of these 

assumptions were addressed in the elementary reaction model section above. To 
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address the issue of proximity, an alternative reaction mechanism is presented and 

used to theoretically derive the first order rate constant for microbial cell rupture under 

ultrasound induced cavitation. 

The mechanical shear [134], mechanical acoustic resonance [110], and kinetic 

[64] models of cell disruption under ultrasound cavitation are useful frameworks for 

cell disruption rate and energy studies. However, each is incomplete on its own. The 

kinetic model recognizes a generic energy of interaction, focusing on empirical curve 

fitting to provide direct practical knowledge. The mechanical acoustic resonance 

model ignores the influence of cavitation in cell disruption by cavitation. It offers a 

potentially valid but separate mechanism of cell disruption in the high frequency 

(MHz) regime that will not be applicable at low frequency (kHz). The mechanical 

shear model implements the parameter of critical distance, which is analogous to the 

kinetic model rate constant but makes explicit the mechanical mechanism of rupture.  

The mechanical shear model defines a critical distance (lc) of a system as the 

distance from a cell surface within which cavitation bubble collapse occurring leads to 

disruption of the cell. The critical distance is used as a floating lumped parameter to 

represent the unknown system of bubble collapse shear force (a function of cell to 

bubble relative distance and bubble collapse velocity) and cell wall “shear” strength 

that define the criticality of the interaction of a single bubble-cell pair.  

The conceptual framework begins with the assumption that cells are distributed 

in solution in a random close-pack configuration with a defined cell volume fraction. 

This allows the calculation of the half distance between cell surfaces (‎δ), defining the 
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spherical boundary of a system of a single cell. Probability of an interaction being 

critical (ψc) is defined for a single cell as the ratio of annular volume from the cell 

surface to lc and the annular volume from the cell surface to δ. While the size and 

position distributions of cavitation bubbles are unknown [106, 111, 138], there are 

implicit assumptions here that the spatial distribution is random and the bubble size is 

single valued. The number rate of cell disruption (Mk) is then taken as the product of 

the number of cavitations generated per time (ϕ) and probability of critical co-location 

ψc, creating a two parameter (ϕ and lc) family of solutions. 

       

This simplification is an elegant implementation of spatial probability to define 

reaction rate in terms of the outcome of a single interaction, but it is developed under 

extremely limiting assumptions. The foremost simplification assumes that all bubble-

cell combinations have a critical distance, which they may not. 

The critical distance conceptual framework presented in [134] is developed 

here into a theoretical framework, implementing some corrections and alternative 

assumptions. 

The extrapolation of ψc from a single cell to a reactor volume ψc,r requires that 

the non-cell annular volume be defined by the void fraction of the entire reactor rather 

than the single cell system volume and that the critical volume be scaled by the 

number concentration of cells in the system (Nc).  
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From this expression, the limits of probability, [0, 1], can be used to derive the 

potential range of lc:       
 

    
 
 / 

  . 

Substituting      in the critical diameter cell disruption rate equation with 

              and rearranging gives a theoretically derived, non-integer order 

rate equation with no explicit empirical rate constant: 

   

  
  

    

  

       
       

  

          
 

Recognizing the magnitudes of cell radius (~10
-6 

m) and concentration (~10
13 

m
-3

), the second term in the denominator of the quotient on the right becomes 

negligible (~10
-5

). Thus the non-integer order rate equation becomes a first order rate 

equation, as is observed in experiment. 

   

  
              

   

   

       
      

Now lc is expanded to make explicit the combined influence of bubble collapse 

energy, cell strength, and relative position on disruption rate. A collapsing bubble near 

a surface induces a local velocity gradient between the bubble and the surface. 

Assuming for simplicity that the flow is steady across the surface, a liquid shear stress 

of   
  

 
 (μ= dynamic viscosity, v= velocity, l= distance from the surface to the 
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bubble surface) acts tangent to the surface [139] in radial spokes toward a point sink 

where the cell surface is co-normal to the bubble.  

A mass balance can be applied to the cylindrical column of height (h) below 

the bubble collapse footprint to estimate an average velocity (v) at the boundary for 

mass flux. The height is calculated in 2 regimes. Where the bubble radius (rb) is 

greater than the cell diameter (r), h is taken as extending to the equatorial plane of the 

cell,         . Where rb < r, h decreases as the projection of the bubble on the 

cell moves up the cell surface,                
 . Assuming an 

incompressible liquid solvent, volume replacement for the cell-adjacent bubble hemi-

sphere only, and collapse time equal to half the period of the ultrasound driving 

frequency (f), the average velocity (v) is            . Assuming a linear velocity 

profile and no-slip condition at the surface, the velocity at height h in the velocity 

profile will be twice the average. Substituting the variations of h gives: 

  

 
 
 

 
 

  

    
         

      

    

               
  

      

  

 The fluid shear stress is applied as a tangential force on the cell wall surface 

over the projection area (a spherical cap), generating a wall tension force along the 

perimeter of the projection. This tension force exerted across the thickness of the cell 

wall (Tcw) along this perimeter will exert a tension stress (σT) in the cell wall material. 

The condition for cell rupture under this mechanism is then that σT be greater than or 

equal to the tensile strength of the cell wall material (TScw). Under this condition σ is 
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denoted as critical (σc) and the distance between the cell and bubble surfaces (l) 

becomes the critical distance (lc). 

   

 
 
 

 
 

   

  

   
      

    
           

  
 

 

      
      

 
 
 

 
 

      

Solving for σc in terms of TScw: 

   

 
 
 

 
 

   

       

 
      

          

  
           

  
       

  

Critical distance (lc) is then defined in terms of σc: 

   
  

  
 

 
 
 

 
 

   

      

                 
      

      
           

  
 

 

                       
  

      

  

And solving for lc produces: 
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In conjunction with the first order rate equation, 
   

  
              

   

   
       

     , and the recognition that ϕ will be dependent on power, the 

determination of lc has resulted in the derivation of an expression for the first order 

rate constant as an explicit function of the operational parameters of microbial cell 

disruption under ultrasound induced cavitation. 

                               

5.5 Rate Constant Mapping 

The reaction zone volume is reasonably assumed to be isolated to the 

cavitation cone produced at the face of a sonotrode. Based on visual observations of 

turbidity at sonotrode faces, the cavitation cone has a height approximately equal to 

the diameter (2rs) of the sonotrode face, and         
   . For rs=1.5875E-3m, 

V1=8.379E-9 m
3
.        

Typical cavitation bubble radii are 1-5μm [140]. Observed average cell radius 

for Chlorella vulgaris is ~4μm. Typical low frequency power ultrasound runs from 20-

100kHz [140].  

The viscosity is held at 890μPa-s assuming a temperature of 25
o
C in aqueous 

solution. Tcw is approximately 100nm [141] and TScw is 638MPa [87]. When not 

varied, f=20kHz, r=4μm, rb=3μm, and ϕ=1E6s
-1

. 

The interaction of these parameters in an isothermal, isochoric, system with a 

single cell wall type is             shown below in Figure 5.1-5.6 (ϕ indicated as 



136 

 

phi). An anomalous wrinkle is observed in all the contours of Figures 5.2-5.6, but not 

in Figure 5.1, which does not include any variation of either bubble or cell radius. The 

vertical nature of the transition in Figures 5.2, 5.4, and 5.5 suggests a threshold in 

ultrasound frequency and cavitation rate for the effect of both r and rb on k. The slope 

of the transition line in Figure 5.6 not equaling 1 suggests that the transition between 

velocity models at the equality of r and rb does not cause the anomaly.  

 

Figure 5.1 – Cell disruption rate constant over frequency and cavitation rate 
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Figure 5.2 – Cell disruption rate constant over bubble radius and cavitation rate 
 

 

Figure 5.3 – Cell disruption rate constant over cell radius and cavitation rate 
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Figure 5.4 – Cell disruption rate constant over bubble radius and frequency 
 

 

Figure 5.5 – Cell disruption rate constant over cell radius and frequency 
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Figure 5.6 – Cell disruption rate constant over cell radius and bubble radius 
 

5.6 Prediction of Cavitation Rate 

A cell disruption first order rate constant of 0.0411/min (6.85x10-4/s) was 

observed in Chapter 2.3 for Chlorella vulgaris treated at 20kHz using a 1/8 inch 

diameter sonotrode in a 50ml reactor volume. 

Based on the re-circulating reactor model, the zone 1 reaction rate constant for 

Chlorella disruption under these conditions will be a function of the acoustic 

streaming driven re-circulation flow rate (Q), k1=f(Q). 

If the typical bubble radius is left as a free variable, then the critical distance 

model is now k1=g(ϕ,rb). Then f(Q)= g(ϕ,rb) and there are three unknowns remaining 
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in the system (Q, rb, ϕ). Because ϕ is least amenable to estimation, the system is 

parameterized in terms of Q and rb.  

A first estimate of Q is produced from the zone 1 volume (V1=8.379 x10-9 m
3
) 

and ultrasound frequency (20kHz). Assuming a maximum flow rate caused by an 

expulsion of the entire zone 1 volume with each stroke, Q = f V1, the maximum flow 

rate is Q=167.58 x10-6 m
3
/s. This estimate of 168ml/s is unrealistically high, 

representing more than 3 passes of the entire 50ml reactor volume per second. 

An alternative estimate of Q can be made using the volume of displacement of 

the sonotrode face during a single cycle. The amplitude of tip displacement (A) can be 

estimated according to       
 

 
           [104], using calorimetric power 

dissipated to solution (Pdiss), acoustic impedance of the solution (Z=1.484 x106 kg·m
-

2
·s

-1
 for water), ultrasound frequency (f=20,000Hz), and sonotrode face area 

(S=7.917 x10-6 m
2
). With average Pdiss for old and new Q55 sonotrode microtips 

observed in Chapter 2.2 as 8.13W, A=9.362 x10-6 m, and V = S A =7.412 x10-11 m
2
 leads 

to Q = V f =1.482 x10
-4 m

3
/s. This estimate of 1.5ml/s is much more realistic and will 

be used as a median value.  

The model equation to predict cavitation rate is presented below, and its result 

is displayed in Figure 5.7. The predicted rate of cavitation generation is on the order of 

10
8
/s. 
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Figure 5.7 – Cavitation rate as a function of bubble radius and streaming flow rate for 

known reactor rate constant 
 

 These figures display the outputs of combinations of single value inputs. Inputs 

with frequency distributions require additional treatment. 

5.7 Treatment of PDF Inputs 

In order to determine ki
*
, the distribution of cell radii is binned, and all 

operations are performed for a cell concentration input for a single cell radius bin, Ni. 

For constant frequency and cavitation rate within a single cell radius bin,             

becomes      . 
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The disruption rate constant k → 0 only where lc → 0, and lc → 0 only where 

rb → 0. Thus all bubble-cell interactions have a critical distance, and there is no lower 

threshold for exclusion of low-energy bubbles under the mechanical shear critical 

distance disruption mechanism. 

Assuming a distribution of rb, this distribution is binned and multiplied by the 

cavitation rate to generate ϕj for each bubble bin. The bin disruption rate constant ki,j is 

then evaluated for all bin combinations. 

Thus, 
   

  
                           is translated to  

   

  
    

        , 

and   
                    becomes   

                 . 

This requires an assumed distribution of rb, which is the same issue as was 

encountered above in the kinetic mechanism approach. However, when compared to 

the expression   
                   , the critical diameter based ki

*
 has one fewer 

unknown in the absence of ki. 

5.8 Conclusions 

 A generalized correction factor has been derived for the normalization of the 

cell disruption rate constant determined in any sonotrode test system. An elementary 

reaction model used to describe the second order interaction of cells and cavitation 

bubbles defaults to a first order rate relationship under the assumption of steady state 

cavitation generation. The first order rate constant can be interpreted as the product of 

cavitation rate, an interaction rate constant, and an overlap of the cumulative 
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distribution functions of constitutive cell strength and cavitation energy. A mechanical 

shear reaction model has been used to create an alternative constant for the first order 

rate equation. The expression for this rate constant removes lumped parameters, 

resulting in an explicit expression for the rate constant in terms of the operational 

inputs of cell disruption under power ultrasound. The rate constant exhibits anomalous 

patterns as a function of cell and bubble radii, and these were determined to not be a 

model artifact. A known set of system parameters was used to estimate the cavitation 

rate under a 1/8 inch, 20kHz, 8.13W sonotrode to be on the order of 10
8
s

-1
.  The 

derived reaction rate constants are also amenable to the incorporation of PDF inputs 

for cavitation and cell radii. 

 

Chapter 5, in part, has been submitted for publication of the material as it may 

appear in Ultrasonics Sonochemistry, 2017, Klinger, Rory; Garoma, Temesgen, 

Elsevier, 2017. The dissertation author was the primary investigator and author of this 

material. 
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Chapter 6 – Conclusions 

6.1 Summary 

Continually rising energy needs in conjunction with negative externalities of 

fossil fuel use demand the diversification of energy resources. However, fossil 

hydrocarbons are also used as raw materials for a vast web of manufacturing of 

industrial and consumer goods. The use of plant based raw materials as substitutes for 

fossil materials in fuels and manufacturing has been demonstrated successfully, and 

microalgae are an extremely diverse and promising resource in this category. One of 

the chief challenges in the implementation of a bio-economy is efficient processing 

and conversion of biomass to platform chemicals. In order to maximize extraction 

efficiency, pretreatment is employed to effect cell rupture. Many pretreatment 

processes have been implemented using empirical operating curves, but the 

fundamental energy requirements of the cell disruption process have not been 

thoroughly explored.  

A constitutive model of cell rupture energy was derived here and implemented 

for low frequency power ultrasound processing of Chlorella vulgaris. A sensitivity 

analysis of the constitutive model was performed, identifying cell diameter as a high 

sensitivity input. Measured distribution of microalgae cell diameters was then used as 

a fixed input to Monte Carlo simulations of cell rupture energy from the constitutive 
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model. The influence of growth media on microalgal growth rate was then 

investigated, and the resultant biomass subjected to power ultrasound processing to 

determine the effect of media choice on processing efficiency.  

The theoretical kinetics of cell rupture via power ultrasound induced cavitation 

was developed next. A reactor model was introduced to convert reactor kinetics to 

reaction zone kinetics. An elementary reaction model was then developed in the 

context of the constitutive model, leading to the introduction of an alternative reaction 

mechanism employing a critical distance parameter to capture the relative energies and 

proximity of cells and cavitation bubbles. This reaction mechanism was extended to 

generate an explicit expression for the cell disruption first order rate constant in terms 

of cell properties and power ultrasound operating parameters. This rate constant was 

mapped over the parameter space, then used to back-calculate cavitation rate, and 

finally extended to incorporate PDF parameter inputs. 

6.2 Conclusions 

Evaluation of the constitutive model in the context of experimental results led 

to two sets of conclusions about the constitutive behavior of microalgae cells. Six of 

15 proposed model variants were eliminated to reveal that either: the volume of 

material considered in the rupture energy calculation is not strain based, and the cell 

wall does not exhibit highly elastic behavior; or the volume of material is strain based 

and is highly elastic. It was also observed that cylindrical cells will require 1-2 orders 

of magnitude greater energy to rupture than spherical cells. 
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The calorimetric power transferred to solution in the tested low frequency 

power ultrasound systems ranged from 5.59-9.27 W. Additional differentiation by 

mixing delay and analysis of the results in the context of non-linear acoustic theory led 

to classification of reactors in terms of acoustic streaming and acoustic heating. The 

50ml Kimble jacketed beaker was chosen for further tests based on inferred lower 

interference with cavitation due to high streaming and heating behavior. Calorimetric 

efficiencies of the systems were relatively consistent, and the power transfer of a 

smooth probe tip could not be differentiated from that of an eroded tip face. A 

mechanism was proposed to explain this lack of difference between smooth and 

eroded tip faces. Additional characterization of energy partitioning between linear and 

non-linear acoustic phenomena is required moving forward in the field, but the 

inference methods presented here facilitate decision making and classification where 

direct measurement is impossible or impractical. 

The power ultrasound treatment of Chlorella vulgaris required 18 – 76μJ 

ultrasound energy input per cell ruptured. The 4 order of magnitude difference 

between observed and predicted energy requirement may be due to power transfer 

efficiencies inherent in the treatment method. The rupture rate fit a first order 

disruption model relatively well. However, high variance observed in cell rupture 

energy requirement implied a need to expand the constitutive model of cell rupture to 

incorporate the variability of model inputs. The requirement of additional model 

expansion was anticipated to incorporate the observed first order disruption behavior. 



147 

 

Sensitivity analysis of the constitutive model of cell rupture revealed high 

order of influence model inputs, facilitating improvement via experimental 

measurement. A simplified constitutive model of cell rupture energy predicted both 

first and second order dependencies on the 5 tested inputs. An anticipated variation of 

±90% in each input produces potential for energy ranges scaled by 10 – 10
9
. OVAT 

analysis of the non-simplified constitutive model found that the simplified model 

orders of dependency on each input match those of the non-simplified model. 

Variation of only the 2 high influence inputs in the non-simplified model produce 

range scaling lower than that predicted by the same variation in the simplified model. 

Random variation of all inputs to the non-simplified model produced energy range 

scaling from 10
4
 - 10

7
, a smaller range than predicted by the simplified model. Results 

indicate that cell diameter and failure strain are the most influential inputs, and that the 

simplified model should not be used because of a significant and unnecessary loss in 

precision.  

Monte Carlo simulations of constitutive cell rupture energy produced 

distributions with ranges of approximately 2 orders of magnitude. This was a drastic 

improvement in precision from the results of sensitivity analysis. Cell diameter was 

observed to follow a log-normal distribution. Substitution of the measured cell 

diameter distribution for the assumed distribution in Monte Carlo simulations resulted 

in a negative shift of the energy distributions, but negligible change in precision for 

any single model variant. Interpretation of the CDFs of rupture energy in terms of E90 

revealed that the measurement of cell diameter reduced the spread of modeled rupture 



148 

 

energy across the suite of model variants by a factor of approximately 7, a drastic 

improvement in overall model precision.   

The evaluation of growth media influence on microalgal growth and 

susceptibility to power ultrasound revealed unsatisfactory performance of some 

established media, and a surprising difference in rate of cell constituent solvation. 

BBM was found to be the best medium for rate of Chlorella vulgaris biomass 

production. MiracleGro showed the highest rate of solvation of COD. The amount of 

solvation was also proportionally higher than in other media on a per cell rupture 

basis, which was unexpected based on observed consistent biomass quality among 

growth media. Media differences did not appear to have an effect on ultrasound power 

transfer, and thus Chlorella vulgaris grown in MiracleGro medium has a decreased 

strength in terms of resistance to rupture by ultrasound. These results suggest that 

while biomass productivity and composition are important for the efficiency of 

extraction, media effects on the susceptibility of cells to pretreatment should not be 

ignored in overall process design.  

In developing the theoretical kinetics of cell disruption by ultrasound 

cavitation, a generalized correction factor was derived for the normalization of the cell 

disruption rate constant determined in any sonotrode test system. An elementary 

reaction model used to describe the second order interaction of cells and cavitation 

bubbles was found to default to a first order rate relationship under the assumption of 

steady state cavitation generation. The first order rate constant was interpreted as the 

product of cavitation rate, an interaction rate constant, and an overlap of the 
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cumulative distribution functions of constitutive cell strength and cavitation energy. A 

mechanical shear reaction model was used to create an alternative constant for the first 

order rate equation. The expression for that rate constant removed lumped parameters, 

resulting in an explicit expression for the rate constant in terms of the operational 

inputs of cell disruption under power ultrasound. The rate constant exhibited 

anomalous patterns as a function of cell and bubble radii, and these were determined 

to not be a model artifact. A known set of system parameters was used to estimate the 

cavitation rate under a 1/8 inch, 20kHz, 8.13W sonotrode to be on the order of 10
8
s

-1
.  

The derived reaction rate constants were made amenable to the incorporation of PDF 

inputs for cavitation and cell radii. 

6.3 Future Directions 

Future work should address the balance of productivity and susceptibility to 

rupture in terms of relative induced extraction potential per cell mass and biomass 

composition. Cell size bin reaction rate constants should be measured using 

fluorescence flow cytometry to infer the distribution of cavitation bubble energies in 

power ultrasound systems. Mapping of reactor independent cell disruption rate 

constants could also be extended to unify future cell disruption system 

characterizations.  
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