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Abstract

Ischemic stroke is a common complication of sickle cell disease (SCD) and without intervention 

can affect 11% of children with SCD before the age of 20. Within the Trans-Omics for 
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Precision Medicine (TOPMed), a genome-wide association study (GWAS) of ischemic stroke 

was performed on 1,333 individuals with SCD from Brazil (178 cases, 1,155 controls). Via a 

novel Cox proportional hazards analysis, we searched for variants associated with ischemic stroke 

occurring at younger ages. Variants at genome wide significance (P<5×10−8) include two near 

genes previously linked to non-SCD early onset stroke (<65 years): ADAMTS2 (rs147625068, 

P=3.70 × 10−9) and CDK18 (rs12144136, P=2.38 × 10−9). Meta-analysis which included the 

independent SCD cohorts Walk-PHaSST and PUSH exhibited consistent association for variants 

rs1209987 near gene TBC1D32 (P = 3.36×10−10), rs188599171 near CUX1 (P = 5.89×10−11), 

rs77900855 near BTG1 (P=4.66×10−8), and rs141674494 near VPS13C (1.68×10−9). Finding 

from this study support a multi-variant model of early ischemic stroke risk and possibly a shared 

genetic architecture between SCD individuals and non-SCD individuals <65 years.
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INTRODUCTION

Ischemic stroke is one of the most common comorbidities of sickle cell disease (SCD), 

occurring 20 times more frequently than seen in non-SCD children1,2. Without early 

preventative therapy, 11% of children with SCD experience at least one overt ischemic 

stroke before the age of 203, with recurrence ranging from 60–92%4 and mortality of 

roughly 5%5. Ischemic stroke is more common than hemorrhagic stroke in children, with 

hemorrhagic stroke more common in ages 20–35 years. The pathophysiology of ischemic 

stroke within SCD is complex1, and the current standard for risk assessment, transcranial 

doppler ultrasonography (TCD) of cerebral vessels, is difficult to perform on children under 

age 3. Also, some individuals with normal TCD still experience stoke3,6,7.

Genetic risk of stroke has been investigated in SCD and non-SCD populations. Within SCD, 

stroke risk is highest in HbSS homozygotes compared to other SCD genotypes, whereas 

the coinheritance of alpha-thalassemia is protective against stroke1. There is mounting 

evidence for the existence of other heritable genetic risk factors for stroke.8–15 A GWAS 

of 677 African Americans with SCD discovered two nonsynonymous variants in the genes 

GOLGB1 and ENPP1 associated with protection from stroke13. The same variant in ENPP1 
was confirmed within a Brazilian SCD cohort, however GOLGB1 was not replicated15. 

Recently, APOE variants were also shown to be associated with ischemic stroke in children 

with SCD ages four and younger16.

Investigating genetic risk within non-SCD stroke may provide additional insight into the 

similarity or differences compared to SCD. Within non-SCD pediatric ischemic stroke 

studies, risk variants near genes ADAMTS2, ADAMTS12, and ADAMTS13 haven been 

discovered, and both ADAMTS2 and ADAMTS12 have been replicated17,18. In separate 

studies, variants near CDK1819 , HABP220, were linked to early onset ischemic stroke but 

have not been replicated. Gaps in our knowledge of the genetic contributors to ischemic 

stroke risk within SCD remain. To address this, we conducted the largest genome-wide 
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association study of stroke in individuals with sickle cell disease (N=1,333). This was 

conducted within the Brazil Sickle Cell Disease Cohort Study as part of the Recipient 

Epidemiology Donor Evaluation Study III (REDS-III)21.

METHODS

Two novel approaches were implemented in this study. Variants were measured via whole 

genome sequencing, avoiding the need to impute on reference panels which may have little 

to no overlap in ancestry with the study cohort. In addition, a Cox proportional hazards 

model was used to estimate differences in time to stroke, allowing for the discovery of 

genetic variants associated with earlier stroke events.

Study Population

The Brazil SCD Cohort Study is part of the National Institutes of Health, National 

Heart Lung and Blood Institute (NHLBI) REDS-III program.22 The Brazil National 

Research Ethics Commission, local ethical committees at each participating center and 

the Institutional Review Boards at University of California, San Francisco (UCSF) and 

the REDS-III data coordinating center, Research Triangle Institute, International (RTI) all 

reviewed and approved the study.

2,793 sickle cell disease individuals were enrolled at 6 different centers in Brazil: 

Hemominas Belo Horizonte, Juiz de Fora, and Montes Claros, Hemorio, Rio de Janeiro, 

Instituto de Tratamento do Câncer Infantil, Sao Paulo, and Hemope, Recife. Enrollment 

included interviews, medical abstraction, and blood collection. Written informed consent 

was obtained from participants ≥18 years or from guardians of younger patients, and assent 

was obtained for children aged 7 to 17. Medical records were abstracted for clinical history 

using standardized definitions23. Participants were routine patients at these centers, and 

relatively complete medical histories were available, including acute complications. This 

included a history of ischemic stroke defined as an acute neurological syndrome resulting 

from impaired cerebral blood flow without evidence of hemorrhage. Diagnostic criteria 

included either a magnetic resonance image (MRI) or a computerized tomography (CT) scan 

showing an infarctive central nervous system event consistent with symptoms and signs or 

diagnosis based on examination and clinical history with neurologic symptoms/signs lasting 

>24 hours. Controls were defined as individuals with SCD who had no history of stroke. 

While MRI/CT was available to confirm cases, current guidelines for care of SCD does not 

include MRI/CT when neurological symptoms are absent.

DNA collection and sequencing

Whole blood was collected in ethylenediaminetetraacetic acid (EDTA), and DNA was 

extracted from the buffy coat via ethanol precipitation. Purified DNA was quantified with 

RT-PCR, and normalized to 10 ng/uL. SCD genotypes were confirmed using allele-specific 

pyrosequencing (Qiagen, Hilden, Germany)24 and Sanger sequencing of exons 1 and 2 

of gene HBB if the pyrosequencing results conflicted with medical records. Additional 

sequencing of HBB exon 3, introns, and promoter was performed for samples with 
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unresolved genotypes at the Hemoglobinopathy Reference Laboratory at UCSF Benioff 

Children’s Hospital Oakland.

Whole genome sequencing was conducted within the NHLBI Trans-Omics for Precision 

Medicine (TOPMed) program (freeze 6a)25. Average sequencing depth was 38 fold, 

and variants were called jointly across roughly 140,000 samples, including the N=1,333 

individuals in the current study, using the GotCloud pipeline.25 The list of roughly 18 

million variants were filtered to include only those at observed minor allele frequency >1%, 

resulting in a final list of 14.3 million variant autosomal sites.

Exclusion Criteria

Individuals were excluded from this analysis for the following reasons: not having TOPMed 

DNA sequence data, being a duplicate sample, inability to link DNA to clinical records, 

missing age or stroke status, and not being an HbSS homozygote. Samples were also 

removed if they were clear outliers along principal components 1–3 of the genotype data. 

Finally, we also excluded individuals with no history of stroke who were either undergoing 

chronic transfusion therapy (CTT) or had abnormal transcranial doppler (TCD) readings 

(Supplemental Fig 1). This was done to ensure a more homogenous population included in 

the study.

Statistical Analyses

A Cox proportional hazards model was used to measure single nucleotide polymorphisms 

(SNP) associations. Age at stroke was used for cases, and age at enrollment was right 

censored for controls without a history of ischemic stroke. Principal components (PC) were 

calculated from LD pruned genotypes26 using the entire freeze6a TOPMed cohort and was 

then was subset to the N=1,333 participants in the study. Statistical tests were performed 

using the R package survival27 with the following model:

λ t|Strokei = λ0 t exp β1SNP i + β2PC1i … + PC10i

Where t is time in years to first stroke (or years to enrollment for controls), PC is 

the principal component eigenvector of the observed genotype covariance matrix, and 

SNP represents the genotype of the individual. Genotypes were converted to integers 

prior to populating the model in the following way: 0 = homozygous reference; 1 = 

heterozygous reference/variant; 2 = homozygous variant. Genome-wide significance was 

defined as P < 5 ×10−8. Conditional regression was performed on candidate 5Mb genomic 

regions surrounding the lead SNPs defined by lowest P-value. No independent loci within 

the candidate regions were observed. Code for this analysis is available online: https://

github.com/earleyej/cox-gwas.

All genotype-level analyses were performed in a HIPPA compliant environment on 

DNAnexus (https://www.dnanexus.com/). Annotated views of genomic candidate regions 

were created with LocusZoom28 using the full (ALL) 1000 genomes reference for linkage 

disequilibrium (LD) estimates. Tests on GWAS summary statistics, including gene-level 

association and enrichment tests were performed using the online portal Functional Mapping 
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and Annotation of GWAS (FUMA29). Gene-level association was performed on the full 14 

million P-values using Multi-marker Analysis of GenoMic Annotation (MAGMA)30 using 

default settings. Gene set pathway analysis was performed on the Gene Ontology (GO) 

database (N=9,988). Colocalization analysis was performed with the R package coloc31 on 

1Mb regions surrounding each independent genome-wide significant SNP with the lowest P-

value for that region (aka ‘lead’ SNP). Additional gene set enrichment was performed on the 

GWAS Catalog32 of genes using hypergeometric tests and corrected for multiple hypothesis 

testing using Benjamini-Hochberg FDR33. Candidate genes were defined as being within 

500Kb of a lead SNP, or if no genes were present within 500Kb, then the most proximal 

gene was used for that region. Meta-analysis of candidate SNPs with Walk-PHaSST and 

PUSH cohorts was performed using Fisher’s method.

Multi-variant survival analysis

Individuals were categorized reflecting the number of lead SNPs they carried. All categories 

were required to have at least 10 participants, for a total of 5 categories (0, 1, 2, 3, and 

≥4). These were used as categorical variables in a univariate survival analysis. P-values were 

calculated using Gehan-Wilcoxon34, a non-parametric test which has more sensitivity in 

detecting differences between groups where the hazard ratio is higher at earlier timepoints.

RESULTS

Cohort characteristics

Of the 2,793 SCD individuals enrolled in the REDS-III Brazil SCD Cohort, 1,460 were 

excluded, with a final set of 1,333 individuals (Supplemental Figure 1). Younger age was 

strongly associated with ischemic stroke (OR=0.9; CI=0.89–0.92; P<0.001; Figure 1A) 

but not sex (male risk OR=0.9; CI, 0.65–1.24, P=0.5) or Hemocenter (OR=0.98; CI, 0.89–

1.08; P=0.7). Many patients reported taking hydroxyurea (HU); however, the majority of 

participants initiated treatment after their first stroke and thus we did not consider HU in 

our analysis for time to first ischemic stroke. Genome-wide association was conducted on 

HbSS homozygotes only (N=1,333). Within this set were 178 (13.4%) individuals who 

experienced ischemic stroke (Table 1) with a median age at stroke of 9.5 years (Table 1, Fig 

1A).

Genetic architecture of ischemic stroke in Brazilian Sickle Cell

We observed 28 genome-wide significant variants (Supplemental Table 1) across 14 

independent regions associated with stroke occurring at younger ages (Figure 1B, Table 

2). No systemic inflation of P-values was observed (Genomic Control Lambda = 1.02; 

Supplemental Figure 2). Most variants sites were intergenic; however, three regions were 

intronic to genes CUX1, KIAA1217, and CNNM2 (Supplemental Figure 3). Also Included 

in this list of 14 lead SNPs were three regions previously linked to stroke – ADAMTS2, 
CDK18, FUT818–20.

Out of the 14 genome-wide lead variants, 5 were only observed in heterozygous state 

whereas 9 were observed in both heterozygous and homozygous variant state. Individuals 
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possessing at least one of these 14 variants exhibited increased risk for ischemic stroke at 

earlier ages (P < 0.001 for all 14 variants, Gehan-Wilcoxon) (Supplemental Figure 4).

Multiple variant survival analysis

To investigate the impact of possessing multiple lead risk variants within the same 

individual, participants were divided into categories based on the number of lead SNPs 

they harbored. Individuals with zero lead SNPs had a stroke rate of 4% (n=716), whereas 

those with at least one of the 14 lead variants had an increased rate at 14% (n=430), and 

this rate increased even further for individuals with two (36%; n=125), three (70%; n=50), 

or four or more variants (83%; n=12) (Figure 2A). The relative impact of these alleles on 

cohort level risk was measured by calculating the product of minor allele frequency with the 

hazard ratio (Figure 2B). The variant rs12144136 near CDK18 exhibited the highest relative 

weight of risk for early stroke within this cohort.

Cis-co-localization analysis of ischemic stroke using GTEx

All 14 candidate SNPs from this study occur in inter-genic or intronic regions. To investigate 

evidence of these SNPs influencing gene expression, the lead SNPs were searched against 

the GTEx database of gene expression to identify cis- and trans- expression quantitative trail 

loci (eQTL) variant associations across different tissue types. The lead SNP on chromosome 

1, rs12144136, is a cis-eQTL for the gene CDK18 within the Skeletal Muscle tissue category 

(Supplemental Table 2) which appears to upregulate this gene. No other SNPs at genome-

wide significance showed evidence of cis-eQTL activity.

Expanding to 1Mb regions around each lead SNP, we assessed co-localization of cis-eQTL 

associations with 24 different tissue types relevant to stroke. Three of the 14 candidate 

regions showed strong evidence (Posterior Probability, PP > 0.9) of colocalization with a 

cis-eQTL (Supplemental Table 2). On chromosome 12, two cis-eQTLs were found for genes 

LUM in the frontal cortex (rs77217583) and NUDT4 (rs117881990) in the hypothalamus. 

On chromosome 14, one cis-eQTL was found for RAB15 in the substantia nigra; and on 

chromosome 15, one cis-eQTL was found for VPS13C in cervical spinal cord. Three other 

moderately strong signals (P > 0.5) were detected on chromosome 8 – one cis-eQTL for 

WRN expression in heart left ventricle and two cis-eQTLs for PURG in the substantia nigra.

Gene-level Association

We performed a gene-level association on 19,021 protein coding genes using the 14M site 

summary statistics (Supplemental Figure 5; Supplementary Table 3). No genes exhibited 

genome-wide significant enrichment defined at the Bonferroni-corrected alpha of 2.6×10−6; 

however, three genes exhibited some evidence of association (P<10−4), including GPR15 
(P=3.9×10-5), MMP26 (P=4.6×10−5), and GOLT1B (P=7.5×10-5).

Gene-set enrichment analysis was performed to predict impact on biological functions using 

the Gene Ontology (GO) database (Supplemental Table 4). While no gene set achieved the 

Bonferroni-corrected p-value of 5×10−6, top results at the P<0.001 threshold included the 

platelet dense tubular network (P = 3.63×10−5), the hemoglobin complex (P = 0.0007), gas 
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transport (P = 0.0006), and regulation of systemic arterial blood pressure by hormone (P = 

0.0008).

Replication with other SCD cohorts

Candidate SNP analysis of the 14 lead SNPs was performed within two independent SCD 

cohorts: Walk-PHaSST (12 cases, 300 controls)35 and PUSH (14 cases, 202 controls)36 

(Supplemental Table 5). Cox regression for stroke timing, adjusting for sex and the first 

genetic principal component, showed increased risk for early stroke at SNPs rs1209987 

near gene TBC1D32 (P = 0.01) and rs188599171 near gene CUX1 (P = 0.001) within 

the combined Walk-PHaSST/PUSH cohort. Meta-analysis with the REDS-III Brazil SCD 

cohort and the combined Walk-PHaSST/PUSH cohort showed genome-wide significance for 

four SNPs: rs1209987 near gene TBC1D32 (P = 3.36×10–10), rs188599171 near CUX1 
(P = 5.89×10–11), rs77900855 near BTG1 (P=4.66×10–8), and rs141674494 near VPS13C 
(1.68×10−9), although we note these results are being driven largely by the REDS-III Brazil 

SCD cohort as none of the SNPs reached genome-wide significance within Walk-PHaSST or 

PUSH.

A comparison was also made to the results from Flanagan et al13 (122 cases, 167 controls). 

None of the 14 lead SNPs were genotyped in this cohort, and investigating the surrounding 

1Mb regions did not uncover any loci exhibiting association with ischemic above the 

P=0.001 threshold (results not shown).

A third and final comparison was made to an independent cohort of SCD children with 

genome sequence data, comprised of 15 patients with a history of ischemic stroke, 26 

patients with a history of abnormal TCD, and 140 control patients (J.M.F. and R.E.W. 

Unpublished data, 2022). A combined Armitage test for trend on the combined stoke/

abnormal TDC (N=413) versus controls (N=140) showed modest, but not genome-wide 

significant, replication of rs116211928 near gene TLE6 (P = 0.022).

Candidate-gene Enrichment Analysis to GWAS Catalog

To assess overlap in genetic architecture between early ischemic stroke and other relevant 

cardiovascular traits, we performed an enrichment test against the GWAS Catalog of gene 

by trait associations. Candidate genes from the current study were defined as located within 

500Kb of a lead SNP, or the most proximal gene if none were present in that region, 

resulting in a list of 52 genes (Supplemental Table 6). Significant overlap in gene sets was 

observed for mean arterial pressure (3/9 genes; P = 5.82 × 10−4), hypertension (5/98 genes; 

P = 1.48 × 10−3), immature fraction of reticulocytes (4/104 genes; P = 1.64 × 10−2), and 

myocardial infarction (3/55 genes; P = 3.53 × 10−2) (Figure 3).

Comparison to previous ischemic stroke studies in SCD and non-SCD

Previous candidate SNP studies of stroke in SCD have evaluated 12 SNPs, as well as 

one additional SNP from a GWAS8–15. None of these candidates SNPs reached genome-

wide significance in the current study (Supplemental Table 7). Expanding the search to 

surrounding 1Mb region centered on the 13 candidate SNPs uncovered the lead SNP 

rs147625068 (P = 3.7×10−9) near gene LTC4S on chromosome 9.
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A similar search was performed for non-SCD early onset ischemic stroke candidate 

genes: ADAMTS2 (rs469568), ADAMTS12 (rs1364044), CDK18 (rs77571454), HABP2 
(rs11196288)17–20. In the current study, the variant rs77571454 near gene CDK18 was 

not observed, and none of the other three variants reached genome-wide significance 

(Supplemental Table 8). Searching within the 1Mb region centered on these four candidate 

SNPs uncovered the two lead SNPs rs12144136 (P = 2.38×10−9), near CDK18, and 

rs147625068 (P = 3.7×10−9), near ADAMTS2, and one additional variant near ADAMTS12 
(rs534089428, P = 2.43×10−5).

DISCUSSSION

We have discovered 14 genetic regions associated with ischemic stroke occurring at earlier 

ages in SCD individuals. This study included 1,333 HbSS individuals, the largest genome-

wide evaluation of ischemic stroke within SCD to date. We implemented a Cox proportional 

hazards model to estimate risk at earlier timepoints. Results implicate gene candidates 

previously linked with non-SCD early-onset stroke – ADAMTS2, CDK18; genes linked to 

cardiovascular disease risk factors – BTG1, CNMM2, CUX1, FUT8, KIAA1217, LUM, 
NT5C2, NUDT4, PKD1L1, WRN; and eight novel genes – SH3RF3, RAB15, RPS3AP52, 
TBC1D32, VPS13C, and TLE6. To our knowledge this is the first independent replication of 

genetic risk associated with increased stroke at alleles near genes CDK18 and FUT8.

Previous candidate gene studies of stroke in SCD implicated five alleles within genes 

TGFBR3, TEK, ANXA2, IL4R, and ADCY910–12; however, the single published GWAS 

of ischemic stroke in SCD did not find evidence for alleles near these genes influencing 

stroke risk but instead found alleles near two novel genes – GOLGB1 and ENPP113. We did 

not find evidence of alleles near these genes exhibiting genome-wide significant association 

to stroke. The reasons for this are unclear, although we should note the previous GWAS 

enrolled African Americans whereas the current work enrolled Brazilians, each having 

distinct histories of admixture.

Results from this work implicate genes previously linked to non-SCD early onset 

stroke: ADAMTS2 and CDK1817–19. Alleles near genes ADAMTS2 and ADAMTS12 
were previously associated with pediatric stroke in two separate U.S. populations17,18. 

ADAMTS2 also appears to have a role in cerebral aneurysm37 and cardiac muscle 

hypertrophy38 possibly through regulation of the extracellular matrix39. We observed one 

variant, rs534089428, within 500kb of ADAMTS12 at P = 2×10−5.

High reticulocyte count is a reliable risk factor for ischemic stroke in sickle cell individuals1. 

Variants affecting candidate genes from the current study, CUX1, CNNM2, and NUDT4, 
have been previously associated with higher reticulocyte counts40 41. CNNM2 has also 

been linked to numerous stroke related traits – hypertension, coronary artery disease, and 

mean corpuscular hemoglobin42–49. CNNM2 gene is expressed throughout the body but is 

particularly high in the brain, kidney, and endocrine tissue50 and appears to play a role in 

renal magnesium uptake51,52
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This study is limited in a few ways. First, this work did not consider the influence of 

environmental exposures and lifestyles on ischemic stroke risk. Non-acute, unreported 

comorbidities may also play a role. This study is larger than previous at N=1,333, but the 

observed association of alleles at a frequency of 1–5% within a case size of N=178 means 

that relatively few individuals are driving this signal, and future studies in independent 

cohorts will need to validate these findings. In addition, we define candidate genes based on 

proximity to lead SNPs and note the possibility risk alleles may actually be linked to distant 

genes via, for example, trans-QTL effects.

In conclusion, we have identified risk alleles associated with earlier ischemic stroke. 

Findings from this work have overlapped previously identified non-SCD early onset 

ischemic stroke genes – ADAMTS2 and CDK18– and discovered 16 novel genes. Future 

studies will be needed to confirm the clinical significance of these findings and to 

disentangle the potentially complex interaction among these alleles.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(A) Histogram of age at first ischemic stroke for the GWAS cohort. (B) Manhattan plot 

of results from proportional hazards GWAS P-values for ischemic stroke in HbSS SCD 

(N=1,333). Horizontal dotted line represents the genome-wide significance threshold of P = 

5 × 10–8. The nearest gene to each lead genome-wide significant SNP is annotated.
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Figure 2. 
(A) Kaplan-Meier plot of individuals harboring multiple co-occurring genome-wide 

significant risk alleles for early stroke. Curves represent subsets of the study cohort who 

possessed zero (N=716), one (N=430), two (N=125), three (N=50), or four or more (N=12) 

stroke risk alleles in any combination from the 14 lead SNPS. (+) represents right-censored 

data. (B) A scatter plot of observed hazard ratios (HR) and minor allele frequencies (MAF). 

Points represent the 14 lead SNPs and are annotated with the nearest gene. The relative 

impact of each allele on the cohort-scale risk of earlier ischemic stroke is calculated as 

the product of MAF and HR and is color coded from gray (lower impact) to black (higher 

impact).
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Figure 3. 
Gene enrichment test results against the GWAS Catalog of reported gene by trait 

associations. Candidate genes were defined as being within 500kb of a lead SNP. Left, 

horizontal bar plots of the proportion of genes within each trait category observed in the 

candidate gene list (gray) and the P values (black) from a hypergeometric enrichment test 

(FDR adjusted). Traits relevant to ischemic stroke are listed in bold. Right, a visual matrix 

showing which candidate genes overlap a given trait.
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Table 1.

Demographics of HbSS Individuals within the REDS-III Brazil SCD Cohort

Total cohort size N=1,333

Sex (%)

 Female 720 (54.0)

 Male 613 (46.0)

Age at enrollment, mean (±SD), y 20.6 (±13.1)

Age at first stroke, mean (±SD), y 9.5 (±9.4)

Stroke, no. (%)

 cases 178 (13.4)

 controls 1155 (86.6)

Hemocenter, no. (%)

 Hemominas BH 313 (23.5)

 Hemominas JFO 149 (11.2)

 Hemominas MOC 205 (15.4)

 Hemope 285 (21.4)

 Hemorio 332 (24.9)

 ITACI SP 49 (0.04)
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