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Acoustic Attenuation in Self-Affine Porous Structures

Steven R. Pride*
Lawrence Berkeley National Laboratory, 1 Cyclotron Road MS 90-1116, Berkeley, California 94720, USA
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(Received 31 August 2006; published 30 October 2006)

As acoustic waves propagate through fluid-filled porous materials possessing heterogeneity in the
elastic compressibility at scales less than wavelengths, the local wave-induced fluid-pressure response will
also possess spatial heterogeneity that correlates with the compressibility structure. Such induced fluid-
pressure gradients equilibrate via fluid-pressure diffusion causing wave energy to attenuate. This process
is numerically simulated using finite-difference modeling. It is shown here, both numerically and
analytically, that in the special case where the compressibility structure is a self-affine fractal charac-
terized by a Hurst exponent H, the wave’s quality factor Q (where Q�1 is a measure of acoustic
attenuation) is a power law in the wave’s frequency ! given by Q / !H when jHj � 1, and given by
Q / !tanhH in general.

DOI: 10.1103/PhysRevLett.97.184301 PACS numbers: 43.20.+g, 81.05.Rm, 83.60.Bc, 83.60.Uv

Understanding the physics of mechanical wave propa-
gation in porous materials impacts a wide range of appli-
cations ranging from the exploration of Earth’s crust, to the
design of sound-absorbing materials, to the nondestructive
evaluation of fractured materials. From a fundamental
physics perspective, perhaps the greatest challenge is to
understand the way that heterogeneity across all length
scales smaller than the acoustic wavelength affects the
nature of the wave propagation.

In order to define porous-material properties, one needs
to consider samples that contain a minimum of roughly
3 grains to the side. Most natural porous materials such as
rocks and sediments in the earth have heterogeneity in the
porous-continuum properties (e.g., the elastic moduli, den-
sity, and fluid-flow permeability of the grain packs) at
nearly all scales greater than a few grain sizes ( �
10�3 m). Sound-absorbing porous materials can be manu-
factured to have heterogeneity over these scales as well.
Seismic wavelengths used for exploration of the Earth’s
crust are typically in the range from 1 to 100 m. Further,
airborne sound, upon entering sound-absorbing porous
materials, typically has wavelengths on the order of 0.1
to 1 m. There are thus a wide range of so-called ‘‘meso-
scopic’’ length scales l that are larger than grain sizes d
(i.e., can be modeled as a porous continuum), but smaller
than acoustic wavelengths �. Figure 1 graphically depicts
the length-scale relation � > l > d. For the purpose of
modeling an acoustic experiment, it is generally necessary
to define the porous-continuum properties at a scale (reso-
lution) of roughly a tenth of a wavelength.

Many studies [1–10] have focused on the effective
acoustic properties of fluid-filled porous media in the
presence of mesoscopic length-scale heterogeneity. When
an acoustic wave compresses a sample of porous material

containing mesoscopic heterogeneity, the fluid-pressure
response will be relatively large in regions where the
compressibility of the framework of grains is large, and
small where the framework compressibility is small. A
process of fluid-pressure equilibration (i.e., viscous fluid
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FIG. 1 (color online). Depiction of the length-scale relation
� > l > d, where � is the wavelength of the acoustic pulse, l is
the linear dimension of a sample containing mesoscopic-scale
heterogeneity in the local porous-continuum properties, and d is
a characteristic size of a grain.
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flow) ensues that is capable of attenuating significant
amounts of acoustic wave energy.

In the present Letter, we focus on the complex bulk
modulus Ku�!� of sealed samples of porous media that
contain a self-affine fractal structure in the local com-
pressibility of the framework of grains. The subscript u
denotes ‘‘undrained’’ which signifies that no fluid ex-
changes into or out of the sample are allowed to occur.
An undrained modulus is of interest because it can be
shown (e.g., Ref. [11]) that over the acoustic frequencies
! used in both exploration work and audible-sound ab-
sorption (1 Hz<!=2�< 10 kHz), no significant fluid
exchanges occur between the averaging volumes used to
define the effective properties and the surrounding mate-
rial. Any induced flow that needs to be allowed for is
occurring within the averaging volume (sample) and is
due to the presence of mesoscopic-scale heterogeneity.

To obtain the complex undrained bulk modulus, one can
first apply a temporal step in the normal stress�P that acts
uniformly on the sealed exterior faces of a sample of
material. The induced volumetric strain of the sample � �
�V=V is then measured through time, and a temporal
Fourier transform taken of both the applied stress and
measured deformation to yield Ku�!� � � ~P�!�=~��!�.
The compressional attenuation associated with the phase
shift between stress and strain is conveniently described
using a quality factor QKu defined as

 

4�
QKu

�
total energy lost per stress period

average energy reversibly stored per period
(1)

 �
ImfKu�!�g
RefKu�!�g

: (2)

It is straightforward to demonstrate that the physical defi-
nition of Eq. (1) is equivalent to the operational definition
of Eq. (2) [12].

Our approach here is to measure Ku�!� numerically by
performing finite-difference simulations of the above ex-
periment. Details of how the finite-difference algorithm
works are given by Masson and Pride [13,14]. The numeri-
cal simulations are based on the laws of poroelasticity
[15,16] that provide a continuum description allowing for
fluid-pressure changes and fluid flow in addition to the
elastic deformation and acceleration of the material. The
region � occupied by a sample under study is discretized
into a Cartesian grid at a scale �x that still implicitly
contains within it enough grains (�x > 3d) to justify a
porous-continuum description of the local physics. The
local porous-material properties (elastic moduli of the
framework of grains, permeability, density) are distributed
over the pixels (2D) or voxels (3D) of size �x, and the
complex bulk modulus of the sample determined by nu-
merically performing the experiment of the previous
paragraph.

Let C be an elastic modulus associated with the frame-
work of grains that is specified at each grid point within the
sample and that fluctuates locally over the grid. The fluc-
tuations �C�a�x� in C associated with each length scale
a�x, where a > 1, generally vary in real materials as the
scale factor a varies. A self-affine fractal means that

 �C�a�x� / aH�C��x�; (3)

where H is called the Hurst exponent (H � 1 corresponds
to a self-similar fractal). In practice, since �x is a finite
length (> 3d), the fluctuation �C��x� at the smallest scale
a � 1 is taken to be the standard of deviation of the
probability distribution used to randomly populate the
grid with C values.

We generate self-affine fractal structure within our syn-
thetic samples using the following algorithm: (1) Generate
a pseudorandom realization W�x� of the white noise asso-
ciated with the desired statistical distribution of the mate-
rial property over the grid points x; (2) calculate a spatial
Fourier transform ~W�k� of this white noise; (3) multiply
the white noise with the spectral filter ~F�k� / jkj�E=2�H

representing the correlation function of the self-affine frac-
tal where E is the Euclidean-space dimension; (4) calculate
the inverse Fourier transform of the filtered white noise;
and (5) normalize to the desired variance and add the
appropriate mean to obtain the final realization of the
self-affine fractal material property. It has been numeri-
cally verified that self-affine structure generated in this
manner possesses the scaling of Eq. (3) in both 2D and 3D.

The compressional attenuation as a function of fre-
quency Q�1

Ku�!� numerically determined for a material
possessing self-affine structure in the bulk modulus of
the dry framework of grains is shown in Fig. 2. A
Gaussian distribution was used to generate a single real-
ization of the random fractal structure. At low frequencies,
there is observed a power-law relation Q�1

Ku�!� / ! that
can be attributed to the finite size of the sample (as will be
explained shortly). At high enough frequencies where the
fluid-pressure-diffusion penetration length � �

�����������
D=!

p
(D

is the fluid-pressure diffusivity) is much smaller than the
size of the sample, the finite-size of the sample does not
influence the diffusion process and a more interesting
power-law relation is observed Q�1

Ku�!� / !
�H. The ex-

ample given in Fig. 2 is a 2D simulation (implicitly, a 3D
experiment in which no deformation occurs in the third
dimension which necessitates the shear modulus to be
measured in order to obtain Ku [14]); however, the same
scaling holds for a fully 3D experiment.

Figure 3 gives the high-frequency power-law exponent
of Q�1

Ku�!� corresponding to materials covering a range of
H values. When the Hurst exponent has a large magnitude
compared to one (jHj � 1), the attenuation exponent tends
to either �1 (large negative H) or �1 (large positive H).
This suggests the following scaling relation valid for all H
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 Q�1
Ku�!� / !

� tanhH (4)

that, in Fig. 3, is seen to do an adequate job of fitting the
numerical data. Equation (4) and Figs. 2 and 3 are the main
results of this Letter.

We now explain these observations. The rate at which
energy is locally being lost per unit volume of porous
material is �k=��jrpfj2, where k is the local fluid-flow
permeability, � is the fluid viscosity, and pf the fluid
pressure. If, as in the above examples, the amount of
dissipated energy in each cycle is small compared to the

amount of stored energy, the average energy reversibly
stored per unit volume is half the peak stored energy
KU�2, where KU is the local (and real) undrained bulk
modulus and � the local volumetric strain. Equation (1)
then gives

 Q�1
Ku �

1

!�

R
� kjrpfj

2dVR
� KU�

2dV
: (5)

An approximate analysis of this expression is provided that
retains the essential elements required to produce the at-
tenuation scaling law of Eq. (4).

Each length scale a�xwill make its own contribution to
Q�1
Ku. If the only heterogeneity in the system occurred at the

length scale a�x, the attenuation curve Q�1
a �!� associated

exclusively with this scale awould rise linearly in! up to a
peak value, then descend as !�1=2 [6–10]. Peak attenu-
ation at scale a occurs at the frequency !a at which the
fluid pressure just has time to diffuse across the distance
a�x in a single cycle; i.e., it occurs at the frequency !a �
D=�a�x�2. Here, D is the fluid-pressure diffusivity that is
well approximated as (cf. Ref. [11])D � kKf=����where
Kf is the fluid’s bulk modulus and � is porosity.

We will make the approximation that the full attenuation
curve Q�1

Ku�!� in the presence of all length scales corre-
sponds to the envelope bounding the sum of the attenuation
curves coming from each length scale. In the presence of a
continuum of length scales a, this is very well approxi-
mated as Q�1

Ku�!� � Q�1
a �!a� 8 a.

To determine the peak valuesQ�1
a �!a� of the attenuation

associated with each scale a, we return to Eq. (5). The local
pressure gradient driving the fluid flow is created by the
volumetric compression acting on the heterogeneous grain
pack and is approximated as jrpfj 	 �C�a�x��=a�x,
where C is the elastic modulus responsible for creating a
fluid-pressure change in the grain pack from the applied
volumetric strain; i.e., C � �pf=� and is, like KU, defined
assuming undrained (sealed sample) conditions.
Expressions that detail how C depends on the bulk modu-
lus of the dry framework of grains and on the moduli of the
fluid and solid phases can be found in many places includ-
ing Ref. [11]. Further, in this ‘‘order-of-magnitude’’ analy-
sis, we replace all locally varying fields by their mean
values in the system (denoted with hi) to obtain an estimate
of the peak attenuation associated with scale a

 Q�1
a �!a� 	

hki
�C�a�x��2

!a��a�x�2hKUi
�
h�i
�C�a�x��2

KfhKUi
; (6)

where

 !a �
hkiKf

�h�i�a�x�2
(7)

was used for the frequency of peak attenuation at scale a.
Equation (6) predicts that the peak attenuation associated

FIG. 3 (color online). Demonstration that Q�1
Ku�!� / !

� tanhH

does a fine job fitting the numerical data.
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FIG. 2 (color online). Results of 2D numerical simulations of
Q�1
Ku�!� for synthetic samples that have different Hurst expo-

nents. The symbols are numerical data and the solid line corre-
sponds to !�H. To the right are images of the self-affine
structure present in the porous-continuum elastic modulus.

PRL 97, 184301 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
3 NOVEMBER 2006

184301-3



with a given scale is proportional to the square of the
fluctuation at that scale.

To obtain the full curve for the self-affine material, we
employ the definition of a self-affine fractal �C�a�x� �
aH�C��x� and rearrange Eq. (7) to give an expression for
a in terms of !a. Putting this in Eq. (6) gives the desired
frequency scaling law

 Q�1
a �!a� � Q�1

Ku�!� �
h�i
�C��x��2

KfhKUi

�
!
!1

�
�H
; (8)

where!1 is the!a of Eq. (7) evaluated at a � 1. The result
of Eq. (8) also demonstrates that the attenuation curve is
proportional to the variance 
�C��x��2 of the probability
distribution used to randomly distribute the elastic moduli
through the sample; a result that has also been numerically
confirmed.

In the limits that jHj ! 1, two other scaling rules
emerge. As H ! �1, the only fluctuations present in
the sample are those occurring at the smallest scale a �
1. Across the finite bandwidth we study, this means we are
always in the low-frequency regime where attenuation is
increasing linearly with frequency. To explain this linear
scaling in !, we again appeal to Eq. (5). At low enough
frequencies, the diffusive penetration of the fluid pressure
across the low-diffusivity patches of size �x (the only
patches of significance when H ! �1) occurs rapidly
during each stress period, and any remaining pressure
gradients are decreasing linearly with decreasing ! not
because the diffusion distance is changing, but because the
average fluid-pressure difference �pf between two local
patches is decreasing with !. Using theoretical results
from Ref. [7], one has in this case that jrpfj 	
�pf�!�=�x � ����x�=k�!, where � is a dimensionless
material property bounded as 0<�< 1 (cf. Ref. [7] for
the detailed nature of �). Using this in Eq. (5) gives that
limH!�1Q

�1
Ku / ! as is numerically observed in the

simulations.
As H ! �1, the dominant fluctuation is that at the

scale a � s of the sample itself. In this scenario, over the
finite frequency bandwidth available, we are always in the
high-frequency regime where fluid-pressure penetration
distances are less than the scale s�x of the sample. The
sample-scale fluctuation of the elastic moduli is thus re-
sponsible for a sample-scale fluctuation of the fluid pres-
sure so that the fluid-pressure gradient to be used in Eq. (5)
is independent of frequency and given by jrpfj 	
�C�s�x��=�s�x�. Using this in Eq. (5) predicts that
limH!�1Q

�1
Ku / !

�1 as is numerically observed. Combin-
ing these results for both the large and small jHj limits
yields Q�1

Ku / !
� tanhH, which is consistent with the nu-

merical data.
The fact that there exists a simple relation between the

frequency exponent for the acoustic attenuation in a self-
affine porous material and the Hurst exponent of the struc-
ture is the central ‘‘interesting’’ result of this Letter. Many

earth scientists (e.g., [17–19]) believe that a reasonable
stochastic model for earth materials is self-affine structure
in the physical properties with �1=2<H < 0 (property
fluctuations decreasing with increasing scale). We encour-
age laboratory (or field) experimentalists to look for the
power-law relation Q�1

Ku / !
�H that might hold in such

heterogeneous earth materials. Unfortunately, this requires
performing acoustic (or quasielastostatic) measurements
on samples much larger than normally considered. To
obtain two decades of length-scale variation within a sam-
ple, one needs to work with sample sizes on the order of
tens of centimeters to a meter. Most laboratory protocols
for measuring attenuation employ samples that are several
centimeters in size.
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