
Lawrence Berkeley National Laboratory
LBL Publications

Title

PeleC: An adaptive mesh refinement solver for compressible reacting flows

Permalink

https://escholarship.org/uc/item/6vb1r6c3

Journal

The International Journal of High Performance Computing Applications, 37(2)

ISSN

1094-3420

Authors

de Frahan, Marc T Henry
Rood, Jon S
Day, Marc S
et al.

Publication Date

2023-03-01

DOI

10.1177/10943420221121151

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6vb1r6c3
https://escholarship.org/uc/item/6vb1r6c3#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

Research Paper

The International Journal of High
Performance Computing Applications
2022, Vol. 0(0) 1–16
© The Author(s) 2022

Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/10943420221121151
journals.sagepub.com/home/hpc

PeleC: An adaptive mesh refinement solver
for compressible reacting flows

Marc T Henry de Frahan1*, Jon S Rood1*, Marc S Day1,
Hariswaran Sitaraman1, Shashank Yellapantula1,
Bruce A Perry1, Ray W Grout1, Ann Almgren2,
Weiqun Zhang2, John B Bell2 and Jacqueline H Chen3

Abstract
Reacting flow simulations for combustion applications require extensive computing capabilities. Leveraging the AMReX
library, the Pele suite of combustion simulation tools targets the largest supercomputers available and future exascale
machines. We introduce PeleC, the compressible solver in the Pele suite, and detail its capabilities, including complex
geometry representation, chemistry integration, and discretization.We present a comparison of development efforts using
both OpenACC and AMReX’s C++ performance portability framework for execution on multiple GPU architectures. We
discuss relevant details that have allowed PeleC to achieve high performance and scalability. PeleC’s performance
characteristics are measured through relevant simulations on multiple supercomputers. The success of PeleC’s design for
exascale is exhibited through demonstration of a 160 billion cell simulation and weak scaling onto 100% of Summit, an
NVIDIA-based GPU supercomputer at Oak Ridge National Laboratory. Our results provide confidence that PeleC will
enable future combustion science simulations with unprecedented fidelity.

Keywords
High performance computing, graphics processing units, combustion, computational fluid dynamics, compressible reacting
flows, adaptive mesh refinement

1. Introduction

High-fidelity simulations of turbulent combustion at the
exascale will play a major role in the development of
predictive models for design of efficient, clean engines.
Combustion simulations incorporating detailed kinetic
mechanisms describing multi-component fuel chemistry in
relevant parameter regimes along with multi-physics
phenomena (i.e., spray, soot and thermal radiation) in
complex flow configurations will provide unprecedented
insight into details about physical and chemical processes
in engines. For example, simulations will inform fuel–air
mixture formation injection strategies tailored to ensure
optimal ignition timing and combustion rates while min-
imizing emissions inside of a heavy-duty freight vehicle or
ship engine. They will also inform fueling rates, place-
ment, and strength of ignition sources relevant to flame-
holding, for example, in a scramjet engine. Insights de-
rived from simulations will also improve the performance
of combustion technologies such as stationary gas turbine
engines that accommodate fuel and load flexibility (e.g.,

carbon-free energy carriers such as hydrogen and ammonia
blends).

The Pele suite of combustion application codes, devel-
oped under the United States’ Exascale Computing Project
(ECP), seeks to provide combustion modeling capabilities
that tackle these areas, among others. PeleC and PeleLM,
the two primary applications within the Pele suite, feature

1Computational Science Center, National Renewable Energy Laboratory,
Golden, CO, USA
2Center for Computational Sciences and Engineering, Lawrence Berkeley
National Laboratory, Berkeley, CA, USA
3Combustion Research Facility, Sandia National Laboratories, Livermore,
CA, USA

*These authors contribute equally to this work.

Corresponding author:
Marc T Henry de Frahan, Computational Science Center, National
Renewable Energy Laboratory, 15013 Denver W Pkwy, Golden, CO
80401, USA.
Email: marc.henrydefrahan@nrel.gov

https://uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/10943420221121151
https://journals.sagepub.com/home/hpc
https://orcid.org/0000-0001-7742-1565
https://orcid.org/0000-0002-7513-3225
https://orcid.org/0000-0002-9150-8103
https://orcid.org/0000-0003-2103-312X
https://orcid.org/0000-0001-8092-1974
https://orcid.org/0000-0002-5749-334X
mailto:marc.henrydefrahan@nrel.gov
http://crossmark.crossref.org/dialog/?doi=10.1177%2F10943420221121151&domain=pdf&date_stamp=2022-09-06

the use of block-structured adaptive mesh refinement, ar-
bitrary geometries, an extensible set of combustion models,
and non-ideal equations of state. They solve the reacting
Navier–Stokes equations in the compressible and low
Mach regimes, respectively. Each of the two codes links to
PelePhysics, a library of models for thermodynamics,
transport, and reaction chemistry. In addition, PeleMP
provides access to multi-physics extensions that plug into
both the compressible and low Mach formulations, in-
cluding Lagrangian particle-based multi-phase models to
represent fuel sprays, and soot and thermal radiation
transport. Both PeleC and PeleLM are the outgrowth of
over 20 years of development in adaptive mesh incom-
pressible and reacting flow simulation algorithms
(Almgren et al., 1998, 2010; Day and Bell, 2000; Nonaka
et al., 2012, 2018; Rendleman et al., 1998). The suite
implements many modern software development prac-
tices, for example, automatically generated documenta-
tion, releases via GitHub, continuous integration (CI),
nightly testing dashboards, static analysis, memory
checking, post-processing tools, and tutorials.

This work focuses on software contributions in the de-
velopment of PeleC for graphics processing unit (GPU)
hardware with an emphasis on performance portability
beyond NVIDIA GPUs. Additionally, we discuss perfor-
mance test cases on pre-exascale machines, associated
metrics, and scaling results in high performance computing
(HPC) environments.

2. Description of the PeleC software

PeleC, which has been used for simulations of direct fuel
injection in a supersonic cavity flame-holder (Sitaraman et al.,
2021b), Figure 1, leverages the AMReX (Katz et al., 2020;
Zhang et al., 2019, 2021) adaptive mesh refinement (AMR)
library for meshing infrastructure, including grid refinement,
distributed parallelism, geometry representation, and output.
Although the AMReX library has been extensively docu-
mented in the supplied references, we briefly recall the relevant

concepts pertinent to this work. Grids in AMReX are repre-
sented with Boxes; each Box defines the extents in a global
index space of a data container known as a FAB. A FAB
contains a chunk of contiguous memory used to hold field data
that is associated with a Box. The data in a single FAB can be
viewed as a single multi-component array and, while the
individual Boxes do not overlap, the data in the FABs may
overlap due to ghost cells. A collection of FABs are managed
as a MultiFab, which includes tools to manage overlapping
“grow” cells to simplify stencil-type computations. Typically,
the state data at each AMR level in an AMReX calculation is
stored in MultiFabs. This data structure is distributed, at the
granularity of a FAB, across processing units on a distributed
memory computing platform. A MultiFab iterator, MFIter,
provides the iterator structure to perform work in parallel
across a distributed machine. PeleC leverages these data
structures and iterators to define state data and operations on
the state, including stencil operations for diffusion and hy-
drodynamic operators as well as chemistry integration. These
operations are implemented as “kernels,” that is, a set of
computationally dense operations on a given box.

PeleC solves the conservation equations for mass, spe-
cies mass fractions, momentum, and energy with a finite rate
evaluation of chemistry in the compressible flow regime

∂
∂t
ðρÞ þ = � ðρuÞ ¼ 0, (1)

∂
∂t
ðρYkÞ þ = � ðρuYkÞ ¼ �= � F k þ ρ _ωk , (2)

∂
∂t
ðρuÞ þ = � ðρuÄ uÞ þ =p ¼ �= �Π, (3)

∂
∂t
ðρEÞ þ = � ðρuE þ puÞ ¼ = � Q � = � ðΠ � uÞ (4)

where ρ is the density, u is the velocity vector, p is the
pressure of the mixture, Ns is the number of species, and Yk
is the mass fraction of the k-th species. Thermal equilibrium
is assumed for the different species in the gaseous mixture,

Figure 1. Simulation of direct fuel injection in a supersonic cavity flame-holder using PeleC (Sitaraman et al., 2021a,b).

2 The International Journal of High Performance Computing Applications 0(0)

at a common temperature, T. The viscous stress tensor, Π,
under the Newtonian assumption, is given by

Π ¼ η
�
=uþ ð=uÞT�þ

�
κ � 2

3
η

�
I= � u (5)

where η is the shear viscosity and κ is the bulk viscosity. F k is
the diffusive transport flux of the k-th species, approximated
using a mixture-averaged diffusion process, and Q is the
thermal conduction heat flux. The chemical species reaction
source term for the k-th species is denoted by _ωk. PeleC is
coupled with PelePhysics, a library that provides models and
parameters associated with thermodynamics, transport proper-
ties, and chemical reactions, and supports several useful
equations of state, including ideal gas mixtures and the Soave–
Redlich–Kwong (Soave, 1972) real gas model. PeleC currently
supports both a constant and a dynamic version of the
Smagorinsky-type large eddy simulation (LES) model, with a
variety of discrete test and explicit filtering schemes (Henry De
Frahan et al., 2017; Sagaut and Grohens, 1999).

Finite-rate chemistry integration is performed through the
PelePhysics library, which includes a Python-based translator
(Emmett et al., 2014; Sitaraman and Grout, 2017) called
FUEGO that converts combustion models expressed in the
CHEMKIN (Kee et al., 1989) format into loop-unrolled C++
code for rate evaluations. As will be discussed in Section 4,
chemistry integration is typically the most time-consuming
routine in PeleC and has been the focus of many optimization
efforts. The computational cost of this facet depends strongly
on the complexity of the chemistry (number of species and
reactions) as well as the inherent numerical stiffness of the
chemical timescales relative to the size of PeleC’s time step. As
a result, the choice of the ordinary differential equation (ODE)
integrator used to compute the chemical source term at a single
coupled step is critical.

The system of partial differential equations (1)–(4) is spa-
tially discretized using a second-order finite volume approach.
Two different discretizations are supported in PeleC to compute
the hyperbolic fluxes: unsplit piecewise parabolic method
(PPM) (Colella and Woodward 1984), with optional hybrid
PPM WENO variants (Motheau and Wakefield, 2020), and a
second-order characteristic-based spatial method coupled with a
Runge–Kutta time integration (i.e., a method of lines (MOL)
approach). The diffusion fluxes are discretized in space with
second-order centered differences. Transport coefficients are
computed at cell centers from the evolving state data and
harmonically averaged to cell faces. PeleC supports two options
for coupling the physical processes over the numerical time
step: A standard predictor–corrector approach with (optional)
fixed point iteration to tightly couple stiff chemistry and
transport or an iteratively coupled scheme based on a spectral
deferred correction approach (Nonaka et al., 2018).

An embedded boundary (EB) formulation (Pember et al.,
1995) is used to represent complex geometries. This method

allows for the determination of correct local normal fluxes at
faces generated by “cut-cells” for geometric features that do not
align along Cartesian coordinate directions, represented in
Figure 2. AMReX provides the necessary EB data structures,
including volume and area fractions, shown in Figure 2(a),
surface normals and centroids, and local connectivity informa-
tion. Fluxes in each cut cell are the usual fluxes through the faces,
multiplied appropriately by the face areas, with the addition of
the flux through the EB, shown in Figure 2(b). A state redis-
tributionmethodology (Berger andGiuliani, 2021;Giuliani et al.,
2022) is implemented to circumvent numerical instabilities re-
garding small cut cells, illustrated in Figure 2(c). This is achieved
through the use of a linearity preserving, conservative, and
accuracy preserving redistribution scheme of state quantities in
the neighborhood of each cut cell. The algorithm consists of (i)
temporarily merging each cut cell into potentially overlapping
neighborhoods of cells, (ii) computing a stabilized value that
preserves conservation and accuracy using a weighted convex
sum of the solution in the neighborhoods, and (iii) replacing the
cut cell state with this stabilized state. This redistribution scheme
is available through theAMReX-Hydro (Almgren, 2022) library.
Currently, EB simulations require the use of theMOL numerical
scheme for the transport fluxes, which is generally faster, but is
both less accurate and requires a smaller time step than the PPM
option typically preferred for non-EB cases.

PeleC uses estimates of the computational expense within
each cell to inform load balancing in distributed systems.
AMReXmanages load balancing using a space-filling Z-Morton
curve to enumerate the grids based on the assigned computa-
tional weights. The resulting ordering is then partitioned evenly
across distributed processes. AMReX also implements the
Message Passing Interface (MPI) communication in distributed
systems and is actively being optimized for future systems.
Aggregation is used whenever possible to minimize the number
of messages between pairs of MPI ranks.

An extensive verification and validation study has been
performed to ensure correctness of PeleC results. TheMethod of
Manufactured Solutions (MMS) (Roache, 2002), implemented
through the MASA library (Malaya et al., 2012), is used to
formally verify second-order accuracy for the fluid transport
operators. Validation of PeleC was performed using standard
benchmark cases, including the decay of homogeneous iso-
tropic turbulence, non-reacting and reacting Taylor–Green
vortex breakdown, a counter flow diffusion flame, and an
unstretched pre-mixed flame (PMF). Verification and validation
simulations exercising the EB capability include, amongst
others, a MMS convergence test, ignition within complex ge-
ometries, andmultispecies shock tubes at an incline with respect
to the AMR mesh.

PeleC also leverages other libraries. Most notably,
SUNDIALS (Hindmarsh et al., 2005), which is a library of
solvers for nonlinear and differential/algebraic equation
systems. PeleC uses git submodules to track specific ver-
sions of the necessary libraries to ensure that users have a

Henry de Frahan et al. 3

consistent and compatible software stack. PeleC is publicly
available at the software’s GitHub repository, https://github.
com/AMReX-Combustion/PeleC.

3. Software engineering for HPC
performance portability

At the inception of the PeleC project, the target computing
architecture was the Intel Xeon Phi processor, which resem-
bled previous x86 central processing units (CPUs), but in-
cludedwider SIMD lanes, a tiled architecture, and on-die high-
bandwidth memory. These characteristics made it amenable to
many existing programming models. Early development of
AMR software libraries such as SAMRAI (Wissink et al.,
2001), BoxLib (BoxLib Team, 2018; Zhang et al., 2016),
PARAMESH (MacNeice et al., 1999), and FLASH (Fryxell
et al., 2000) were written (at least partially) in Fortran due to its
reputation for aggressive compiler optimization. Over time,
some of these libraries suggested overall application orches-
tration be done in C++ while the computational kernels
continued in Fortran. Therefore, PeleC development originally
used this design. As the Xeon Phi was discontinued, the first
exascale machines became focused on GPU architectures in
the United States, notably with initial offerings from Intel,
AMD, and NVIDIA providing the GPU accelerators. To
address this evolution in target architecture, PeleC develop-
ment experimented with porting the main components of the
code to both the OpenACC programming model and AM-
ReX’s C++ framework for performance portability. PeleC’s
current design targets both GPU architectures and CPUs by
utilizing AMReX’s framework. We note that other AMReX
codes are following a similar path as PeleC (Katz et al., 2020),
and this work seeks to continue sharing lessons learned, albeit
for different physical domains. In this section, we first describe
the original PeleC programming model tailored toward CPU
performance and then discuss our initial port using the
OpenACC programming model for accelerated hardware and
finally the use of the new C++ programming model provided
by AMReX.

3.1. Original PeleC programming model for CPUs

In the original PeleC implementation, C++ orchestration
routines called Fortran kernels that preferred “lowered loops”
which focused on vectorization in a single spatial direction by
performing a minimal variety of operations in each inner loop.
Since the interface between C++ and Fortran happened at each
kernel through the routine arguments, duplicate Fortran ker-
nels were required for 1D, 2D, and 3D support such as in the
hydrodynamic and diffusion fluxes. Additionally, many of
these kernels had time-consuming operations, that is, rate
evaluations in PelePhysics, which were C functions. There-
fore, the code had C++ functions calling Fortran functions,
which then called C functions. This mixed language regime
posed difficulties which will be discussed in later sections.
Listing 1. Example PeleC kernel for OpenMP C++/Fortran
model.

#pragma omp parallel
for (amrex::MFIter mfi(F,true);
mfi.isValid(); ++

-mfi) {
const amrex::Box& box =

mfi.tilebox();
amrex::Array4<amrex::Real const>

const& u = U.
-const_array(mfi);

amrex::Array4<amrex::Real> const&
f = F.array(

-mfi);
kernel(box, u, f); // Fortran kernel

that can
-include C calls

}

The initial development for PeleC targeted addition of an
X+Y parallel execution model (from merely X at its in-
ception) where X is an inter-nodal communication model. In

Figure 2. EB representation of cut cell geometry in 2D. The gray region is excluded from the calculation. Figures reproduced from
AMReX Team (2022). (a) Face areas, A and volume, V, (b) regular fluxes, F, and EB fluxes, FEB, and (c) mass redistribution from cut cell
(red) to neighbor cells.

4 The International Journal of High Performance Computing Applications 0(0)

https://github.com/AMReX-Combustion/PeleC
https://github.com/AMReX-Combustion/PeleC

this work, X is the MPI and Y is an intra-nodal parallel
programming model (e.g., OpenMP) based on multiple
threads of computation with shared memory access to the
data within that rank. The objective of this hybrid model is to
enable additional parallelism while avoiding increased
metadata usage. When the AMReX library introduced this
hybrid model, PeleC operations were adapted to a framework
more explicitly aware of work distribution. This effort
specifically focused on an MPI+OpenMPmodel. This model
uses logical tiling, or cache blocking, to modify loops to
improve data locality (Unat et al., 2013) and parallel work
distribution in a multi-threaded shared memory environment.
AMReX provides data accessors and optional arguments to
MFIter loops for developers to implement tiling while
reducing implementation errors. To transition PeleC from a
“flat-MPI” model, that is, no threading, to a MPI+OpenMP
model, all MFIter loops had to be manually analyzed and
appropriately modified to ensure the data operated on were
properly prepared for tiling, particularly for stencil operations
requiring cells outside the data boundary. An example of the
overall MFIter loop structure for computing with the
MPI+OpenMP model on a FAB is shown in Listing 1.

After implementation of this model, small speedups were
observed (approximately 10%) by trading ranks for a small
number of threads (typically 2 or 4 threads per rank for Intel
Xeon Phi and Haswell systems) when using large numbers of
ranks (on the order of 200k–500k). On the Intel Xeon Phi
system tested in this work, when less than around 200k MPI
ranks were necessary for a simulation, we found that a flat-MPI
arrangement was typically sufficient for performance while
avoiding increased complexity of process mappings at runtime.

3.2. OpenACC programming model for PeleC on
CPUs and GPUs

When the Intel Xeon Phi processor was discontinued, GPUs
became the de facto architecture for exascale in the United
States (while CPU-based approaches to exascale are also vi-
able, e.g., the Fugaku supercomputer in Japan (Fujitsu, 2022)).
With PeleC’s original programming model a mix of C++,
Fortran, and C, an effort was made to avoid rewriting all of
PeleC’s kernels in another language, while still allowing ex-
ecution on the GPU. At the time of this work, OpenACC was
the most mature pragma-based GPU offloading model for
Fortran and was chosen to explore offloading with minimal
code changes. OpenMP 4 introduced accelerator support
around 2013, but it was not well supported by many compilers
until much later (Larkin, 2018). Using OpenACC also made it
unnecessary tomodify the existing OpenMP pragmas in PeleC
which kept the MPI+OpenMP model intact.

Profiling showed that 90% of PeleC’s runtime was
under a single advance routine that contained five
routines requiring GPU parallelization. Within those

five routines, there were around 50 small routines that
needed to be labeled as device routines, or seq in
OpenACC. Most of these routines are generated from
the FUEGO chemistry code generator. This required
creation of a version of FUEGO which emits Fortran
rather than C code.

Chemistry integration also required execution on the
device. The original chemistry integrator was based on
DVODE, an implicit time step integrator (Hindmarsh,
1983). It was written in Fortran and contained numerous
logic statements not suited for GPU accelerators.
Therefore, an explicit 6-stage 4th-order Runge–Kutta
(RK) integrator (RK64) with an embedded error esti-
mator for time step adaption (Kennedy et al., 2000) was
specifically written with GPU performance in mind.
This integrator reduced CPU performance for stiff re-
action mechanisms where a large number of sub-
iterations were necessary to ensure stability, making it
the costliest facet of PeleC.
Listing 2. Example PeleC kernel for OpenACC model.

for (amrex::MFIter mfi(mf, Ti-
lingIfNotGPU()); mfi.

-isValid(); ++mfi) {
const amrex::Box& bx = mfi.tilebox();
amrex::FArrayBox& fab = mf[mfi];
plusone_acc(BL_TO_FOR-

TRAN_BOX(tbx),
-BL_TO_FORTRAN_ANYD(fab));

subroutine plusone_acc() ! arguments
omitted

!$acc parallel loop gang vector
collapse(3)

-default(present)
do k = lo3, hi3

do j = lo2, hi2
do i = lo1, hi1

data(i,j,k) = data(i,j,k) +
1.0d

call deep_nest_of_functions()
end do

end do
end do
!&acc end parallel loop
end subroutine plusone_acc

Concurrently with these efforts, AMReX’s C++
framework was being developed, discussed in Section 3.3,

Henry de Frahan et al. 5

and allowed us to leverage its memory-pool manager
(AMReX Team, 2022) instead of explicitly managing the
memory for the kernels in OpenACC. For most kernels, we
were able to use the default(present) statement in OpenACC
which assumed data existed on the device for all pointers
in the kernel. These OpenACC development efforts re-
sulted in code structured as in Listing 2. The statement
acc parallel loop gang vector collapse(3) is used to off-
load the kernel calculation of a single FAB onto the entire
device, targeting one thread per cell. Since single FABs
are sometimes not big enough to saturate an entire GPU
device, concurrent kernel execution was deployed to
compute multiple boxes simultaneously on a device. This
was achieved through the use of NVIDIA’s multi-process
server (MPS) utility. MPS allows multiple MPI ranks to
share a single GPU device simultaneously, which in-
creased utilization of the GPU. On Summit (described in
Section 4.1.1), PeleC used MPS with seven MPI ranks per
V100 GPU on a node.

As stated earlier, AMReX’s C++ performance porta-
bility framework was progressing in development
alongside our OpenACC work. Use of this C++ frame-
work was also being prototyped in PeleC. In Figure 3, we
show the performance results for a weak scaling test on
Summit using both prototypes. We see that both proto-
types were able to provide similar performance. How-
ever, much of the same functionality was being used for
each prototype. Namely, they shared similar data man-
agement, both were using concurrent kernel execution
methods (discussed in Section 3.3 for C++), and both
methods launched kernels for boxes over the entire de-
vice. After observing these results, it was apparent one
could achieve similar performance on the GPU in both the
OpenACC and C++ models.

Nevertheless, once the OpenACC prototype was in place,
several drawbacks for keeping Fortran code in PeleC became
evident: Compiler support was lacking, and GPU support
beyond existing hardware was unclear. Supporting mixed

languages was also a barrier because of increased de-
bugging difficulty, increased difficulty for the compiler to
perform optimizations, and reduced support across the
toolchain. With the single language C++ prototype
achieving similar performance, these reasons motivated
the decision to move PeleC to AMReX’s C++ model. In
summary, the main benefits of OpenACC were that it
required minimal changes to the code and it could provide
similar performance to the C++ programming model
which compiled kernels with NVIDIA’s CUDA language
in this case.

3.3. AMReX C++ programming model for PeleC on
CPUs and GPUs

AMReX’s C++ programming model for CPUs and GPUs is
quite similar to the Kokkos (Edwards et al., 2014), RAJA
(Beckingsale et al., 2019), and GridTools (ETH Zurich,
2022) approaches for performance portability. It exploits the
use of lambda functions in which the developer writes the
kernels that perform calculations on a FAB. These lambda
functions are then compiled into assembly code for the
particular device back end requested at compile time, tar-
geting either the CPU or a particular GPU architecture,
typically using the device’s native vendor supplied pro-
gramming model. AMReX’s programming model is not as
general as Kokkos or RAJA, however. State variables are
registered with AMReX, and AMReX performs allocation
for these major data structures automatically through a
memory pool allocator that can leverage a “managed”
memory model supplied by the device vendor, for example,
unified virtual memory (UVM) from NVIDIA. Therefore,
the equivalent of a “view,” which exists in Kokkos and
RAJA, and are managed by the developer, is not necessary
in AMReX. Parallel loops, denoted by ParallelFor, are
generally of a single variant operating over all FAB cells.
This programming model simplifies development and has
allowed AMReX to quickly produce back ends for NVIDIA
GPUs using CUDA, AMD GPUs using HIP (Advanced
Micro Devices, 2022), and Intel GPUs using DPC++ (The
Khronos Group Inc, 2022).

In contrast to the OpenMP model, execution on the GPU
foregoes tiling and targets one thread per cell when pro-
cessing a FAB to maximize parallelism (though this pattern
can inhibit vectorization). Since a single FAB might not be
large enough to saturate a GPU device by itself, asyn-
chronous behavior is necessary to calculate multiple FABs
simultaneously on a single device. To obtain concurrent
kernel execution on a device, “streams” are employed.
Streams allow concurrency in execution for multiple kernels
and guarantee that the order of execution for kernels within
a stream is preserved. By AMReX placing each iteration of
the MFIter loop on a separate stream, multiple iterations

Figure 3. Comparison of weak scaling for different programming
models on Summit for the PMF problem, defined in Section
4.2.1. 223 cells per (218 million DoF) node and no AMR.

6 The International Journal of High Performance Computing Applications 0(0)

can run simultaneously to maximize GPU utilization, il-
lustrated in Figure 4. At the end of each MFIter, an
implicit device synchronization is performed. A code ex-
ample of a kernel using this model within a lambda function
is given in Listing 3. Note that this method is also able to
preserve the OpenMP model on the CPU if desired.

Listing 3. Example PeleC kernel using AMReX C++
framework.

#pragma omp parallel if (amrex::Gpu::
-notInLaunchRegion())

for (amrex::MFIter mfi(mf,Ti-
lingIfNotGPU()); mfi.

-isValid(); ++mfi) {
const amrex::Box& bx = mfi.tilebox();
amrex::Array4<amrex::Real> const&

fab = mf.
-array(mfi);

amrex::ParallelFor(bx, ncomp,
[=] AMREX_GPU_DEVICE (int i, int j,

int k, int
-n) {
fab(i,j,k,n) += 1.0;
});

}

Moving entirely to C++ has overcome many of the pitfalls
experienced using mixed languages. Most notably, compilers
for new computing architectures are generally not developed
with Fortran support as a primary objective. Before the im-
plementation of the AMReX C++ framework, PeleC was
comprised of roughly 50k lines of code: 12k lines of C++ and

38k lines of Fortran. After conversion, PeleC became 20k lines
of C++ code, achieved mainly through reducing duplicate
dimensional code and removing Fortran preprocessor macros.
Kernels are more compact, easier to read, and easier to debug.
Compiler choice and available GPU back ends has also ex-
panded through these efforts. After adopting the AMReX
single language programming model, the only modification to
PeleC necessary to support all three GPU vendors previously
listed was the removal of “global managed” variables. This
work has further enabled subsequent code refactors that have
simplified PeleC’s organization. For example, the use of C++
templating for abstracting equation of state calls has provided a
clean interface for including more complex equations of state.

The code development effort for migrating to this new
programming paradigm was facilitated through a straightfor-
ward mapping between Fortran loops and Fortran arrays, with
the ParallelFor lambda loop statements and theArray4C++ data
structures, respectively. Approximately 140 Fortran loops were
converted to the C++ lambda formulation, most of which re-
quired minimal changes between C++ and Fortran. Beyond
minor language-specific local adaptations, the most common
issues that arose when performing such migrations revolved
around custom data structures, data locality, CPU-to-GPU
synchronization, device thread synchronization, and verifica-
tion of correctness. Additionally, arrays used in the ParallelFor
loops were carefully analyzed to determine whether they were
needed only on the device, had a fixed size, or required data to
be transferred back to the CPU. This was particularly necessary
for user-defined data structures involved in initial condition
specifications, for example, arrays associated with time-
dependent turbulent inflow boundary condition data. Particu-
lar care was paid to data locality and ensuring the required data
was present where needed. Synchronization steps were also
necessary, particularly for the EB sparse data structures which

Figure 4. A schematic on how MFIter loop iterations are executed in parallel using multiple GPU streams. This figure is reproduced
from AMReX Team (2022).

Henry de Frahan et al. 7

must be accessed simultaneously by multiple threads, requiring
atomic operations in order to avoid race conditions.

We found that a successful migration depends critically on
the definition of a test suite that can be used to derive adequate
differences between outputs of specific kernels to isolate
software bugs, race conditions, and data synchronizations
issues. The test suite incorporates several design goals: (i)
Rapid evaluation to reduce development time; (ii) exercise the
entire application to identify issues with data races, syn-
chronization, communication patterns, and performance; and
(iii) targeted testing to enable rapid detection of a problematic
kernel. The test suite encompasses tests for reactions and
chemistry integrators (i.e., tests with no flow physics, e.g.,
auto-ignition); hydrodynamic tests (pure advection, no dif-
fusion or reactions, e.g., a canonical shock tube problem);
diffusion tests (e.g., heat conduction in a fluid); and geometry
tests (i.e., the previous tests with the addition of geometry, e.g.,
a canonical shock tube problem in a cylinder at an angle with
respect to the grid). Varying the dimensionality of the test case,
that is, two dimensions versus three, enabled the identification
of dimension-specific issues (e.g., narrowing searches for code
bugs in dimension specific code) or increased speed in the test
evaluation procedure (e.g., running cases in two dimensions
is significantly faster than in three dimensions). Tests with
symmetrical features, for example, heat conduction around
a sphere, were particularly important to identify
dimension-specific issues such as misplaced indices and
increments. It is also particularly important to run a subset
of these tests at scale to identify issues in tiling or data
races arising from specific dispositions of grid decom-
position across ranks and threads. Ensuring correctness when
comparing simulations on different architectures was particu-
larly challenging, especially sinceGPU simulations exhibit non-
deterministic differences in results due to order-of-operations
randomness. Straightforward comparisons of simulation out-
puts, for example, pressure and velocity fields, while useful, are
not sufficient to ensure correctness because of differences
arising fromnon-identical hardware and compilers. The value of
a verification test suite based on physical problems and the
method of manufactured solutions was of paramount impor-
tance as it enabled physical quantities of interests, for example,
shock location, diffusive transport, auto-ignition, or order-of-
accuracy studies, to be compared to reference values on any
given hardware. Compiler-based flags for warning checks and
linting tools for static analysis such as cppcheck (Marjamaki,
2022) and clang-tidy (The Clang Team, 2022) helped identify
erroneous programming, duplicate variables, code simplifica-
tions, and performance improvements. The majority of the tests
used for the successful code migration of PeleC were made part
of our regression test suite, which is evaluated on several dif-
ferent machines and a variety of compilers on a nightly basis.

In the next section, we discuss how implementation of
the C++ framework has allowed PeleC to perform and scale
on current pre-exascale systems.

4. Performance on pre-exascale systems

This section is organized as follows: We present the ma-
chines used for benchmarking PeleC in 4.1, benchmark
cases in 4.2, single node performance metrics in 4.3, and
finally strong and weak scaling analysis in 4.4.

4.1. Description of HPC systems used for
performance analysis

4.1.1. Summit, Oak Ridge National Laboratory
(ORNL). Summit (Oak Ridge Leadership Computing
Facility, 2022), which follows the GPU paradigm, con-
sists of 4608 nodes each containing two IBM Power9
processors with 22 CPU cores, and 512 GiB of RAM per
node. Each node houses six NVIDIA Tesla V100 GPUs
connected with NVLINK. Nodes are interconnected
with a Non-blocking Fat Tree topology utilizing dual-
rail EDR InfiniBand, providing node injection band-
width of 23 GB/s. Each node on Summit provides a
theoretical limit of 42 teraflops, for a total of roughly
200 petaflops of computational power. The approximate
power utilization of Summit is 10,000 kW, leading to a
power efficiency of approximately 14.7 GFlops/Watt
(using the Linpack performance rating of 148 peta-
flops) (TOP500, 2022b.)

4.2.1. Eagle, National Renewable Energy Laboratory
(NREL). Eagle (National Renewable Energy Laboratory,
2022) is a cluster comprised of 2186 compute nodes with
a theoretical peak performance of 8 petaflops. Eagle has a
total of 76,104 Intel Xeon-Gold Skylake-6154 processor
cores (36 cores per compute node). Each node provides a
theoretical limit of three teraflops. The nodes that com-
prise Eagle are connected using a 100 Gb/sec EDR In-
finiBand network. All nodes and storage are connected
using an enhanced 8-dimensional hypercube topology
that provides a bisection bandwidth of 26.4 TB/s. The
approximate power utilization of Eagle is 1000 kW,
leading to a power efficiency of approximately 4.7
GFlops/Watt (based on Linpack performance rating of 4.8
petaflops). (TOP500, 2022a) This is approximately 3×
lower than Summit’s power efficiency.

4.1.3. Theta, Argonne National Laboratory (ANL). Theta
(Argonne Leadership Computing Facility, 2022) is a Cray
XC40, 11.7 petaflops system based on the second-generation
Intel Xeon Phi processor. It has 4392 compute nodes with 64
core Intel Knights Landing 7230, 16 GiB of MCDRAM, and
192 GiB of DDR4. Each node provides a theoretical limit of
three teraflops. Nodes are connected via the high-speed Cray
Aries network utilizing a 3-level Dragonfly topology. Recent
power utilization numbers for Theta were not found. However,
in 2017, the approximate power utilization of Theta was

8 The International Journal of High Performance Computing Applications 0(0)

1000 kW, leading to a power efficiency of approximately 5.8
GFlops/Watt (based on Linpack performance rating of 5.8
petaflops). (TOP500, 2022c) This is approximately 2.5× lower
than Summit’s power efficiency.

Also in regard to machines used in this work, AMReX
contains a database of compiler optimizations organized by
compiler and specialized further by “site” or machine. The
default optimizations provided within the AMReX build system
were used to compile/link all tests performed here. For themajor
Intel compiler flags, we use -O2 with inter-procedural optimi-
zation (-ip) enabled. For the Eagle machine, specific optimi-
zation for AVX-512 vectorization (-xSKYLAKE-AVX512) is
also enabled. The corresponding flag for Xeon Phi processors
(-xMIC-AVX512)was activated through the compilers provided
in the craype-mic-knl module on Theta. For the nvcc compiler
on Summit, we use GNU Compiler Collection (GCC) as the
host compiler with -O3 and the specific compute architecture for
the Summit V100s enabled (sm_70) in nvcc with fast math
operations enabled and register counts set to 255.

4.2. Description of performance test cases

4.2.1. Pre-mixed flame (PMF). As shown in Figure 5, the case
is defined on a rectangular domain. It is initialized with a
thin methane–air flame structure. A mean flow is imposed
along the positive z direction. The species and temperature
profiles are taken from a pre-computed solution that represents
a freely propagating one-dimensional flame featuring an inlet
velocity that is adjusted so that the profiles remain steady over
time. In this setup however, the velocity field in the flame
region is modified by adding small periodic perturbations that
result in the development of corrugations on the flame surface.
We use the DRM19 chemistry (21 species, 84 reactions) (Bell
et al., 2007), coupled with an ideal gas model, a configuration
typically used in PeleC’s regression tests. Throughout this
article, the number of cells is the metric used to describe the

size of the problem. The number of DoF is achieved by
multiplying the number of cells by 26, corresponding to the
number of state components in each cell: density, 3momentum
components, energy, and 21 species.

4.2.2. Piston bowl. Production and research engines use
pistons with varying geometry, ranging from flat to complex
re-entrant bowls that concentrate and enhance the flow
structures. We used a piston bowl configuration resembling
a production turbocharged diesel engine for this study; a
schematic can be seen in Figure 6. In compression ignition
engines, fuel is typically added toward the end of the
compression stroke through a multi-hole injector, with the
details of the injector design specific to the fuels and op-
erating mode under study. For our case, we inject gas-phase
fuel (methane) through seven discrete jets into high tem-
perature air as a generic configuration. The DRM19
chemistry is also used for this case. A rendering of the jets
spreading in the domain from a high resolution simulation
of the piston bowl after several thousand time steps is also
shown in Figure 6. For the purposes of performance
measurements, these tests were devised to be close to real-
world simulation configurations with appropriate surface to
volume ratios, cell counts, and chemistry complexity. The
PMF case has an unbalanced load in space due to reactions
in the flame sheet and does not exercise complex geometry.
The piston bowl case has a realistic geometry and exercises
the EB algorithms and reactions in the jets.

Figure 5. Volume rendering of vorticity magnitude and contour
of 1250K temperature (orange) for the PMF case showing the
perturbations added to the flow field to introduce flame surface
corrugations.

Figure 6. Schematic of the piston bowl simulation configuration
and simulation snapshot.

Henry de Frahan et al. 9

4.3. On-node profiling analysis

In this section, we run and profile the performance test cases
on a single node on Eagle. We begin by profiling on a single
node to ignore factors in performance that are dominant
using the distributed MPI model and to focus on measuring
runtimes for core PeleC routines.

For this analysis, the PMF problem was run using 963

cells (23 million DoF) and the piston bowl case was run with
64 × 64 × 24 cells (2.5 million DoF) with one level of AMR.
Both of these cases use the DRM19 reaction mechanism and
the RK64 integrator for chemistry integration. The simu-
lations were profiled using AMReX’s built-in tools (Gott
2022). We do not provide the profile tables in order to
maintain brevity.

In both cases, computing the source term from the
chemical reactions is the most time-consuming operation,
87.4% of the runtime for the PMF and 94.40% for the piston
bowl. The computation of the hydrodynamic and diffusion
fluxes never exceeds 6% of the runtime. EB-specific rou-
tines for the piston bowl are negligible, remaining below 2%
of the runtime. By ignoring large-scale MPI bottlenecks, we
observe that most of PeleC’s runtime is in the chemistry
routines, and even with EB in a significant area of the
domain, we find the EB routines to be mostly insignificant
during runtime.

4.3.1. Chemical reaction routine and the chemical mechanism
size. The fuel type and chemical mechanism play an im-
portant role in a combustion simulation and the chemistry
calculation with the RK64 integrator is the most time-
consuming routine. Therefore, we analyze how the com-
plexity of the chemical mechanism affects PeleC’s runtime.
These tests used the RK64 integrator and an ideal equation
of state.

In Figure 7, we compare a single node piston bowl
simulation on Summit, Eagle, and Theta.1 We observe a
speedup of approximately 10× from a Theta node to a
Summit node across a range of chemical mechanism sizes
(horizontal purple line). Based on approximate power uti-
lization, Section 4.1, this translates to a 1.25× power re-
duction on Summit. Figure 7 shows that the number of
species in a mechanism has a linear effect on runtime. In
Figure 7, the solid green line is our observed increase in
runtime, and the dashed green line is the linear extrapolation
based on number of species. These results indicate that a
priori runtime estimates can be obtained for other mecha-
nisms by scaling for the number of species, though this
estimate is subject to the relative stiffness of the different
mechanisms.

By understanding the performance implications of
chemistry, it is clear that the ODE integrator solving these
equations is paramount to reducing the time per time step in
PeleC. Therefore, SUNDIALS (Hindmarsh et al., 2005), a

well-established library of ODE integrators, was interfaced
into PeleC as an optimization. Replacing the built-in RK64
integrator with SUNDIALS for our test cases led to a
speedup of 6× as shown in Figure 11.

To understand GPU utilization after this optimization, we
performed a roofline analysis of the top three time-
consuming CUDA GPU kernels in the application using
Nvidia’s Nsight Compute tool, shown in Figure 8. The most
expensive kernels are fKernelSpec (54% of the total run-
time), which is responsible for computing the right hand
side of the reaction ODEs, and linearSumKernel (10% of the
total runtime) and scaleKernel (7% of the total runtime) are
part of SUNDIALS which perform vector operations. These
three kernels are major parts of chemistry integration
computation. A V100 GPU has a theoretical maximum
double precision performance of 7 TFLOP/s and 900 GB/s
memory bandwidth. The most time-consuming kernel,

Figure 7. Performance comparison of different chemistry
mechanisms on a single node of Summit, Eagle, and Theta for the
piston bowl case with 0.6M cells (15.6 million DoF), and one level
of AMR.

Figure 8. Roofline analysis of the top three time-consuming GPU
kernels on a single V100 for the piston bowl case with DRM19
chemistry.

10 The International Journal of High Performance Computing Applications 0(0)

fKernelSpec is achieving an arithmetic intensity of 1.63 and
memory rate of 625 GFLOP/s, which equates to 9% of peak
performance. The linearSumKernel and scaleKernel
achieve an arithmetic intensity of 0.13 and 0.07, respec-
tively. They also achieve a rate of 106 GFLOP/s and 50
GFLOP/s, respectively. Though these two kernels are in
SUNDIALS, the Pele developers collaborate with the
SUNDIALS developers with further improvements ex-
pected in the future.

We also include a roofline analysis using an Intel Skylake
CPU on Eagle, shown in Figure 9. The top three time-
consuming routines are shown from data collected using
Intel Advisor. The most time-consuming routine, dvode, is
responsible for computing the right hand side of the reaction
ODEs and accounts for 32% of the runtime. This routine
achieves an arithmetic intensity of 0.038 and a memory rate
of 12 GFLOP/s. The other two routines, dvjac (Jacobian of
the ODE system) is responsible for 8% of the total appli-
cation runtime, while umeth3d (hydrodynamics) is re-
sponsible for 8% of the total application runtime as well.
The dvjac and umeth3d routine achieve an arithmetic in-
tensity of 0.083 and 0.071, respectively. They also achieve a
rate of 4.49 GFLOP/s and 11.02 GFLOP/s, respectively.
This indicates the original CPU baseline does not suffer
from obvious inefficiencies.

4.4. Scaling results

In this section, we perform strong and weak scaling studies
of PeleC for GPUs on Summit and CPUs on Eagle in order
to observe PeleC’s performance in its intended setting for
large-scale simulations. For brevity, scaling results on Intel
Xeon Phi machines are not discussed here. Scaling studies
using a legacy version of the PMF case were performed in
2018 on the NERSC Cori machine and showed excellent
weak scaling to 4096 nodes, using four threads per rank on

the Xeon Phi hardware. This corresponded to approximately
525k concurrent threads. Over this range of scaling, we
observed a 12% drop in parallel efficiency compared to a
single node. In the following section, we focus instead on
scaling and performance of PeleC on emerging GPU-based
architectures.

4.4.1. Strong scaling results. We run three scaling cases: (i)
Strong scaling the PMF problem on Eagle and Summit
using the RK64 chemistry integrator, (ii) strong scaling
the PMF problem on Eagle and Summit using all
available chemistry integrators, and (iii) strong scaling
the PMF problem using 4096 Summit nodes while per-
forming reductions in the number of cells. In the third
study, we use the SUNDIALS for chemistry integration.
We omit a strong scaling study of the piston bowl as the
results are similar to the PMF case with negligible costs
associated with EB.

First, we compare the performance and scaling of the
PMF problem using a 3843 coarse grid with two levels of
AMR, for a total of around 360 million cells or 9.4 billion
DoF. This case was run on the Eagle machine at NREL and
the Summit machine at ORNL to compare and understand
the initial capabilities of our full GPU port. We use PeleC’s
built-in RK64 integrator for chemistry so that we are only
comparing changes in the programming model and hard-
ware in which it is running, essentially using the same code
path on each device.

Figure 10 shows the results from this study. From these
results, we first notice that the CPU runs have deficiencies
around one million cells per node on both Summit and
Eagle. Note that this effect is not present on the GPU.
Second, we observed that the C++ kernels are around 2×
faster than the Fortran kernels with GCC on Summit. Al-
though the Fortran case is not tested with other compilers in
this plot, nor was it investigated further, we have found the

Figure 9. Roofline analysis of the top three time-consuming CPU
routines on a single Intel Xeon-Gold Skylake core for the piston
bowl case with DRM19 chemistry, using the Intel 2018 compiler
for the F90 and DVODE code pathway.

Figure 10. Strong scaling of PMF case with DRM19 chemistry and
built-in RK64 integrator for chemistry on the Summit and Eagle
machines. 360M cells (9.3 billion DoF) with 2 levels of AMR. Using
the Intel 2018.4 compiler on Eagle.

Henry de Frahan et al. 11

C++ kernels to be 2× faster than the Fortran kernels in
general on the CPU, as is also the case on Eagle in Figure 11.
We hypothesize that this speedup is due to removing the
multiple language barrier which simplified compiler opti-
mizations. Function calls are also forcibly inlined in the
kernels for reduced register usage on the GPU. However,
further investigation into this phenomenon was not per-
formed as the focus of this work was the switch to the C++
ParallelFor framework for GPU performance. Third, we
note the performance speedup of the application running on
the Summit GPUs. Using the 128 node runs as an example,
the GPU performance node-for-node is approximately 14×
faster than the Eagle Skylake nodes using the Intel compiler,
56× faster than running with GCC on the Summit CPUs,
and 125× faster than running on the Summit CPUs using
GCC with the original Fortran kernels. We note that a
Summit node is 14× faster in C++ than an Eagle and Theta
node in terms of theoretical FLOP/s. Therefore, the ob-
served 14× speedup for the same code pathway between
Summit and Eagle can be expected. A Summit node is
comprised of two IBM Power9 processors, each one
achieving 0.56 teraflops (Sorokin et al., 2020), leading to a
42× speedup from using the CPUs to using the GPUs. The
additional speedup observed in the GPU run is most likely
due to using GCC for the IBM Power9 CPU run which may
not be the optimal choice.

We see that as strong scaling continues on the CPUs, the
GPUs exhibit less ability to strong scale mostly due to the
increase in weight of data transfers between CPU and GPU
for communication of halo-exchanges (ghost cell data)
across MPI ranks.2

Next, we compare the performance and scaling of the
PMF problem using a 2563 coarse grid with two levels of
AMR. We use this experiment to compare the different
chemistry integrators available. Performing strong scaling
gives us a better overview of the performance of PeleC, as

well as illustrating the performance of each ODE integrator.
Different locations on the plot can experience varying
amounts of speedup, so testing more cases gives us a more
general survey of performance gains. The plot for this
experiment is in Figure 11. Again, we use the Intel compiler
on Eagle which we know to be the best compiler choice
when running on its Skylake processors.

Reviewing our results for this experiment, we again
notice a performance deficiency on the CPU, now at 2.5
million cells per node. A speedup of 2× is again observed
between Fortran and C++ with the explicit RK64 chemistry
integrator. The C++ case with SUNDIALS achieves a 2×
speedup over the explicit RK64 integrator on the CPU. The
last CPU case is our original programming model with
Fortran and DVODE, which we see to be the highest
performing configuration for the CPU. This case actually
performs similarly to our GPU version of the code on
Summit using the explicit RK64 integrator and begins to
perform even better at smaller cell counts per node. These
two cases are arguably the truest comparisons between our
initial GPU port and the previous Fortran kernels, where we
compare the highest performing CPU configuration known
against our highest performing GPU configuration known,
allowing for using the machine best suited for each nu-
merical scheme. We find that our Fortran version of PeleC
using DVODE seems quite competitive with our initial
GPU port, which is what one might expect during a first pass
at porting an application to the GPU. However, with the
interface to SUNDIALS on the GPU, the GPU im-
plementation on Summit is notably faster (about 6× in this
case) than the fastest configuration we have on the CPU, that
is, Fortran with DVODE on Skylake with the Intel compiler.
The 14× speedup between a Summit and Eagle node is again
observed in the C++ comparison where SUNDIALS is used
for both. For each case both on the CPU and GPU, we see
strong scaling continue to provide speedup when given
more resources even at 9k cells (234k DoF) per core on the
CPU and 53k cells (1.3 million DoF) per GPU. Again, we
find the GPU speedup to fall off at a faster rate than the CPU
cases with fewer cells. Running on a large amount of CPUs
on Eagle, for example, can provide a smaller time per time
step than running on the GPUs on Summit at an equivalent
node count. The plot also shows that the same simulation
running on 256 Eagle nodes achieves roughly an equivalent
time per time step as running on 32 Summit nodes.3 This
offers at least an 8× reduction in node count required for
such simulations from Eagle to Summit, which translates to
a 1.8× reduction in power utilization.

Lastly, we show a static scaling plot (Chang et al.,
2018a,b) for 4096 Summit nodes in Figure 12 where the
number of cells in the problem is reduced as opposed to
increasing the number of nodes. SUNDIALS is used as the
chemistry integrator and two levels of AMR. Results are
shown in this manner mainly to illustrate PeleC’s ability to

Figure 11. Strong scaling of PMF case with DRM19 chemistry on
the Summit and Eagle machines. 164M cells (4.2 billion DoF)
with 2 levels of AMR. Using the Intel 2018.4 compiler on Eagle.

12 The International Journal of High Performance Computing Applications 0(0)

utilize 90% of the Summit machine to run an extremely
large 160 billion cell problem with 6.5 million cells (169
million DoF) per GPU (which is the limit for the Summit
V100 GPU memory for the PMF DRM19 case), while also
scaling down to an 11 million cell problem using 3k cells
per GPU. We see PeleC continue to provide speed gains
over a very large span of problem sizes. When profiling the
small cell count cases, we find that runtime is dominated
by the halo-exchange communication in MPI. The halo-
exchange scales poorly while computing the right hand
side of the reaction ODEs, fKernelSpec, scales down to
104 cells per GPU. The fall-off in scaling beyond this may
be due to kernel launch latency and requires further
investigation.

4.4.2. Weak scaling results. To understand PeleC’s ability to
scale the problem size along with computational resources,
we perform a weak scaling study. The PMF case is again
used with SUNDIALS, with two levels of AMR. The
problem domain size is scaled in both the x and y dimen-
sions, leaving the z dimension fixed, and keeping the
fraction of cells in the reacting zone constant. Around 750k
cells per Summit, GPU is used, which provides a time per
time step of less than 10 s on a single node. The number of
cells in this problem is scaled along with the number of
nodes, moving from one node to all 4608 nodes available on
Summit. The number of cells involved is approximately 20
billion in the 4608 node case. Results for this weak scaling
experiment are shown in Figure 13.

As expected, parallel efficiency is lost when moving
from a single node to multiple nodes. However, this loss is
very respectable at approximately 34% when transitioning
from a single Summit node to every node on the machine. In
this sense, we see that PeleC is very capable of running
massive simulations efficiently utilizing 100% of the
world’s second most capable supercomputer (according to

the top500.org list at the time of writing (TOP500, 2020)).
Again, when observing the profile breakdown for PeleC on
the largest simulations, we find that runtime is dominated by
the halo-exchange communication in MPI which also re-
quires the extra step of data transfer between the CPU and
GPU.

4.5. Performance summary

There are numerous ways to attempt a comparison of
performance and tuning activities for a given HPC appli-
cation. We ran three strong scaling studies and a weak
scaling study in order to get a general overview of per-
formance for our most significant development work in
PeleC. These have been porting kernels from Fortran to
AMReX’s C++ framework to enable PeleC on the GPU and
implementing an interface to ODE integrators in the
SUNDIALS library as our ODE solver of choice on the
GPU. After developing these capabilities, we find that, at the
time of this writing, running on Summit’s V100 GPUs is
faster and more power efficient to obtain simulation results
using PeleC than using a CPU-based machine such as Eagle.
The power efficiency gains are approximately a factor of
two between Summit and Eagle. It is also clear that, in the
strong scaling limit, CPU-based machines such as Eagle
may lead to faster solution times. However, the machines
used in this study do not have enough CPUs to be able to
demonstrate this hypothesis. We are also able to run
problems at resolutions well in excess of what is typical for
today’s combustion research codes, enabling new science
cases for combustion researchers.

Our approach to implementing EB has shown to be fairly
insignificant in computation time for our test problems. We
know that calculating the reaction source term requires the
greatest amount of runtime in PeleC itself. Therefore,

Figure 12. Static scaling (Chang et al., 2018b,a) of PMF case with
DRM19 chemistry on 4096 Summit nodes. Varying number of
cells with 2 levels of AMR.

Figure 13. Weak scaling of PMF case with DRM19 chemistry.
Approximately 750k cells (19.5 million DoF) per GPU with 2
levels of AMR. The baseline is the average time per time step for
the single node case.

Henry de Frahan et al. 13

http://top500.org

implementing the third party library, SUNDIALS, has given
speedups of around 6× over the built-in RK64 integrator for
calculating reactions. Other than the chemistry integration
algorithms, there does not seem to be a significant platform
dependence on the algorithms chosen for transport (hy-
perbolic and diffusion operator treatment). Explicit chem-
istry integration within SUNDIALS was observed to be the
faster option on the GPU in some reacting cases compared
to implicit methods that require matrix solves, which tend to
be faster on the CPU.

5. Conclusions and outlook

In this article, we provided a summary of PeleC’s capabilities
and the chronology of programming models that were im-
plemented for execution on shifting HPC architecture targets.
Though an effort wasmade to preserve the original Fortran code
and enable execution on the GPU, it was ultimately abandoned.
In doing this, we have shown that using a pragma-based model
like OpenACC allows for similar GPU performance to modern
C++ lambda-style abstractions. After prototyping PeleC in C++,
it became obvious that maintaining a mixed C++/Fortran code
base was not desirable. PeleC has benefited from AMReX’s
latest programming framework and the SUNDIALS library,
including (i) a significant reduction in the number of lines of
code, (ii) a simpler programming model which is performance
portable across multiple architectures, and (iii) demonstration of
massive simulations on 90%–100% of Summit. We demon-
strated the efficacy of this programming framework through
simulations that experienced speedups on one of the largest
supercomputers currently available.

There are a number of opportunities to further enhance
the performance of PeleC on modern computing hardware,
including, but not limited to, adaptable choice of chemistry
integration method (explicit vs. implicit) with varying
coupled time step sizes and AMR levels, ODE solvers tuned
directly to each vendor’s hardware, low-level optimization
techniques which have not yet been exposed to the user
through AMReX such as shared memory on device, opti-
mizing data transfers and data locality, more informed load
balancing techniques, and equation of state routine opti-
mizations in the chemistry evaluations.

While porting from Fortran to AMReX’s C++ frame-
work has provided PeleC with clear performance im-
provements, it was also done with the goal of allowing
PeleC to run on the first US exascale machines: Aurora and
Frontier. Aurora is a machine due to arrive at ANL in 2022
with a GPU architecture from Intel, with the primary
programming model to be DPC++. Frontier is a machine
due to arrive at ORNL in 2022 with a GPU architecture from
AMD, with the primary programming model to be HIP.
AMReX’s C++ framework is able to support all of these
programming models. PeleC has been tested successfully
with the latest Intel OneAPI DPC++ compilers (The

Khronos Group Inc, 2022), as well as AMD’s latest HIP
compilers at the time of writing on pre-production hardware
for each machine. Given these results on pre-production
exascale hardware and PeleC’s ability to run a 160 billion
element simulation on 90% of Summit and to weak scale at
a reasonable time per timestep up to 20 billion elements on
all of Summit, it is clear that PeleC will be able to use
exascale supercomputers immediately and effectively to
expand combustion science capability far beyond our
current limits.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with re-
spect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the
research, authorship, and/or publication of this article: This work was
authored in part by the National Renewable Energy Laboratory, op-
erated by Alliance for Sustainable Energy, LLC, for the U.S. Depart-
ment of Energy (DOE) under Contract No. DE-AC36-08GO28308.
Fundingwas provided byU.S. Department of EnergyOffice of Science
and National Nuclear Security Administration. The views expressed in
the article do not necessarily represent the views of the DOE or the U.S.
Government. The U.S. Government retains and the publisher, by ac-
cepting the article for publication, acknowledges that the U.S. Gov-
ernment retains a nonexclusive, paid-up, irrevocable, worldwide license
to publish or reproduce the published form of this work, or allow others
to do so, forU.S.Government purposes. This researchwas supported by
the Exascale Computing Project (17-SC-20-SC), a collaborative effort
of the U.S. Department of Energy Office of Science and the National
Nuclear Security Administration. A portion of the research was per-
formed using computational resources sponsored by the Department of
Energy’s Office of Energy Efficiency and Renewable Energy and lo-
cated at the National Renewable Energy Laboratory. This research used
resources of the Oak Ridge Leadership Computing Facility, which is a
DOE Office of Science User Facility supported under Contract DE-
AC05-00OR22725.

ORCID iDs

Marc T Henry de Frahan https://orcid.org/0000-0001-7742-
1565
Jon S Rood https://orcid.org/0000-0002-7513-3225
Bruce A Perry https://orcid.org/0000-0002-9150-8103
Ann Almgren https://orcid.org/0000-0003-2103-312X
Weiqun Zhang https://orcid.org/0000-0001-8092-1974
John B Bell https://orcid.org/0000-0002-5749-334X

Notes

1. This comparison is also useful to illustrate the performance
improvements offered by each machine when using our latest
programming model, which provides performance portability
across these machines.

14 The International Journal of High Performance Computing Applications 0(0)

https://orcid.org/0000-0001-7742-1565
https://orcid.org/0000-0001-7742-1565
https://orcid.org/0000-0001-7742-1565
https://orcid.org/0000-0002-7513-3225
https://orcid.org/0000-0002-7513-3225
https://orcid.org/0000-0002-9150-8103
https://orcid.org/0000-0002-9150-8103
https://orcid.org/0000-0003-2103-312X
https://orcid.org/0000-0003-2103-312X
https://orcid.org/0000-0001-8092-1974
https://orcid.org/0000-0001-8092-1974
https://orcid.org/0000-0002-5749-334X
https://orcid.org/0000-0002-5749-334X

2. The downtick for the 4096 node Summit case is a behavior that
occurs when the problem is small enough that AMReX does not
distribute boxes to all MPI ranks and the problem runs on a
smaller set of ranks than available in the job.

3. For the piston bowl, we observed that 256 Eagle nodes give an
equivalent time per time step as 16 Summit nodes.

4. We are unable to disclose these results at the time of writing.

References

Advanced Micro Devices (2022) HIP programming guide. Santa
Clara, CA: Advanced Micro Devices. URL https://rocmdocs.
amd.com/en/latest/Programming_Guides/HIP-GUIDE.html

Almgren AS (2022) AMReX-Hydro. San Francisco, CA: GitHub.
URL https://github.com/AMReX-Codes/AMReX-Hydro

Almgren AS, Beckner VE, Bell JB, et al. (2010) CASTRO: A new
compressible astrophysical solver. I. Hydrodynamics and
self-gravity. The Astrophysical Journal 715: 1221–1238.

Almgren AS, Bell JB, Colella P, et al. (1998) A conservative
adaptive projection method for the variable density incom-
pressible Navier-Stokes equations. Journal of Computational
Physics 142: 1–46.

AMReX Team (2022) AMReX’s documentation. San Francisco,
CA: GitHub. URL https://amrex-codes.github.io/amrex/
docs_html/index.html

Argonne Leadership Computing Facility (2022) Theta. Lemont,
IL: Argonne National Laboratory. URL https://www.alcf.anl.
gov/alcf-resources/theta

Beckingsale DA, Burmark J, Hornung R, et al. (2019) RAJA:
Portable performance for large-scale scientific applications.
In: 2019 IEEE/ACM International Workshop on Perfor-
mance, Portability and Productivity in HPC (P3HPC). Pis-
cataway, NJ: IEEE, pp. 71–81.

Bell JB, Day MS, Grcar JF, et al. (2007) Numerical simulation of a
laboratory-scale turbulent slot flame. Proceedings of the
Combustion Institute 31(1): 1299–1307.

Berger M and Giuliani A (2021) A state redistribution algorithm
for finite volume schemes on cut cell meshes. Journal of
Computational Physics 428: 109820.

BoxLib Team (2018) BoxLib user’s guide. San Francisco, CA:
GitHub. URL https://github.com/BoxLib-Codes/BoxLib

Chang J, Fabien MS, Knepley MG, et al. (2018a) Comparative
study of finite element methods using the time-accuracy-size
(TAS) spectrum analysis. SIAM Journal on Scientific Com-
puting 40(6): C779–C802.

Chang J, Nakshatrala K, Knepley M, et al. (2018b) A performance
spectrum for parallel computational frameworks that solve
PDEs. Concurrency and Computation Practice and Experi-
ence 30(11): e4401.

Colella P and Woodward PR (1984) The piecewise parabolic
method (PPM) for gas-dynamical simulations. Journal of
Computational Physics 54(1): 174–201.

Day MS and Bell JB (2000) Numerical simulation of laminar
reacting flows with complex chemistry. Combustion Theory
and Modelling 4(4): 535–556.

Edwards HC, Trott CR and Sunderland D (2014) Kokkos: En-
abling manycore performance portability through polymor-
phic memory access patterns. Journal of Parallel and
Distributed Computing 74(12): 3202–3216.

Emmett M, ZhangWand Bell JB (2014) High-order algorithms for
compressible reacting flow with complex chemistry. Com-
bustion Theory and Modelling 18(3): 361–387.

ETH Zurich (2022) Gridtools. San Francisco, CA: GitHub. URL
https://github.com/GridTools/gridtools

Fryxell B, Olson K, Ricker P, et al. (2000) FLASH: An adaptive
mesh hydrodynamics code for modeling astrophysical ther-
monuclear flashes. The Astrophysical Journal Supplement
Series 131(1): 273–334.

Fujitsu (2022) Fugaku, RIKEN. Minato City, Tokyo: Fujitsu. URL
https://www.fujitsu.com/global/about/innovation/fugaku/
specifications/

Giuliani A, Almgren A, Bell J, et al. (2022) A weighted state
redistribution algorithm for embedded boundary grids.
Journal of Computational Physics 464: 111305.

Gott K (2022) AMReX profiling tutorial. Canada: CCSE. URL
https://ccse.lbl.gov/AMReX/AMReX_Profiling_Lecture1.
pdf

Henry de Frahan MT, Day MS, Bell JB, et al. (2017) Filtering in
large eddy simulations with adaptive mesh refinement In:
29th ParCFD Conference, Glasgow, Scotland, 15-17,
2017.

Hindmarsh AC (1983) ODEPACK, a systematized collection of
ode solvers. In: Scientific Computing. North-Holland, Am-
sterdam: IMACS, pp. 55–64.

Hindmarsh AC, Brown PN, Grant KE, et al. (2005) SUNDIALS:
Suite of nonlinear and differential/algebraic equation solvers.
ACM Transactions on Mathematical Software (TOMS) 31(3):
363–396.

Katz MP, Almgren A, Sazo MB, et al. (2020) Preparing nuclear
astrophysics for exascale. In: Proceedings of the Interna-
tional Conference for High Performance Computing, Net-
working, Storage and Analysis, SC ’20. Piscataway, NJ:
IEEE Press.

Kee RJ, Rupley FM and Miller JA (1989) Chemkin-II: A FOR-
TRAN Chemical Kinetics Package for the Analysis of Gas-
phase Chemical Kinetics. Livermore, CA, United States:
Sandia National Laboratory. Technical report.

Kennedy CA, Carpenter MH and Lewis RM (2000) Low-storage,
explicit Runge–Kutta schemes for the compressible Navier–
Stokes equations. Applied Numerical Mathematics 35(3):
177–219.

Larkin J (2018) OpenMP on GPUs, first experiences and best
practices. In: NVIDIA GPU Technology Conference. Santa
Clara, CA: Nvidia. URL https://on-demand.gputechconf.
com/gtc/2018/presentation/s8344-openmp-on-gpus-first-
experiences-and-best-practices.pdf

MacNeice P, Olson KM, Mobarry C, et al. (1999) PARAMESH: A
Parallel Adaptive Mesh Refinement Community Toolkit.
Technical report. Washington, DC: NASA.

Henry de Frahan et al. 15

https://rocmdocs.amd.com/en/latest/Programming_Guides/HIP-GUIDE.html
https://rocmdocs.amd.com/en/latest/Programming_Guides/HIP-GUIDE.html
https://github.com/AMReX-Codes/AMReX-Hydro
https://amrex-codes.github.io/amrex/docs_html/index.html
https://amrex-codes.github.io/amrex/docs_html/index.html
https://www.alcf.anl.gov/alcf-resources/theta
https://www.alcf.anl.gov/alcf-resources/theta
https://github.com/BoxLib-Codes/BoxLib
https://github.com/GridTools/gridtools
https://www.fujitsu.com/global/about/innovation/fugaku/specifications/
https://www.fujitsu.com/global/about/innovation/fugaku/specifications/
https://ccse.lbl.gov/AMReX/AMReX_Profiling_Lecture1.pdf
https://ccse.lbl.gov/AMReX/AMReX_Profiling_Lecture1.pdf
https://on-demand.gputechconf.com/gtc/2018/presentation/s8344-openmp-on-gpus-first-experiences-and-best-practices.pdf
https://on-demand.gputechconf.com/gtc/2018/presentation/s8344-openmp-on-gpus-first-experiences-and-best-practices.pdf
https://on-demand.gputechconf.com/gtc/2018/presentation/s8344-openmp-on-gpus-first-experiences-and-best-practices.pdf

Malaya N, Estacio-Hiroms KC, Stogner RH, et al. (2012) MASA:
a library for verification using manufactured and analytical
solutions. Engineering with Computers 1–10: 487–496.

Marjamaki D (2022) Cppcheck, a Static Analysis Tool for C/C++
Code. San Francisco, CA: GitHub. URL https://cppcheck.
sourceforge.io

Motheau E and Wakefield J (2020) Investigation of finite-volume
methods to capture shocks and turbulence spectra in com-
pressible flows. Communications in Applied Mathematics
and Computational Science 15(1): 1–36.

National Renewable Energy Laboratory (2022) Eagle. Golden,
CO: National Renewable Energy Laboratory. URL https://
www.nrel.gov/hpc/eagle-system.html

Nonaka A, Bell JB, Day MS, et al. (2012) A deferred correction
coupling strategy for low Mach number flow with complex
chemistry. Combustion Theory and Modelling 16(6): 1053–1088.

Nonaka A, Day MS and Bell JB (2018) A conservative, ther-
modynamically consistent numerical approach for low mach
number combustion. Part I: single-level integration. Com-
bustion Theory and Modelling 22(1): 156–184.

Oak Ridge Leadership Computing Facility (2022) Summit, Oak Ridge
National Laboratory. Oak Ridge, Tennessee: Oak Ridge Lead-
ershipComputingFacility.URLhttps://www.olcf.ornl.gov/summit

Pember RB, Bell JB, Colella P, et al. (1995) An adaptive Cartesian
grid method for unsteady compressible flow in irregular re-
gions. Journal of Computational Physics 120(2): 278–304.

Rendleman CA, Beckner VE, Lijewski M, et al. (1998) A parallel
adaptive mesh refinement algorithm for the simulation of
explosions. In: 8th Annual Users Group Conference: DoD
HPC Modernization Program. Houston TX: Rice University.

Roache PJ (2002) Code verification by the method of manufac-
tured solutions. Journal of Fluids Engineering 124(1): 4–10.

Sagaut P and Grohens R (1999) Discrete filters for large eddy
simulation. International Journal for Numerical Methods in
Fluids 31(8): 1195–1220.

Sitaraman H, Brunhart-Lupo N, Henry de Frahan MT, et al. (2021a)
Visualizations of direct fuel injection effects in a supersonic
cavity flameholder. Physical Review Fluids 6(11): 110504.

Sitaraman H and Grout R (2017) Optimizing performance of
combustion chemistry solvers on intel’s many integrated core
(mic) architectures. In: 23rd AIAA Computational Fluid
Dynamics Conference, Denver, CO, 2017, p. 4410.

Sitaraman H, Yellapantula S, Henry de Frahan MT, et al. (2021b)
Adaptive mesh based combustion simulations of direct fuel
injection effects in a supersonic cavity flame-holder. Com-
bustion and Flame 232: 111531.

Soave G (1972) Equilibrium constants from a modified Redlich-
Kwong equation of state. Chemical Engineering Science
27(6): 1197–1203.

Sorokin A, Malkovsky S, Tsoy G, et al. (2020) Comparative
performance evaluation of modern heterogeneous high-
performance computing systems CPUs. Electronics 9(6):
1035.

The Clang Team (2022)Clang-tidy, a clang-based C++ linter tool.
London: LLVM. URL https://clang.llvm.org/extra/clang-
tidy/.

The Khronos Group Inc (2022) DPC++ reference documentation.
Beaverton, OR: Khronos Group. URL https://docs.oneapi.
com/versions/latest/dpcpp/index.html

TOP500 (2020) TOP500 List November 2020. USA: TOP500.
URL https://top500.org/lists/top500/list/2020/11/

TOP500 (2022a) Eagle, TOP500. USA: TOP500. URL https://
www.top500.org/system/179598/

TOP500 (2022b) Summit, TOP500. USA: TOP500. URL https://
www.top500.org/system/179397/.

TOP500 (2022c) Theta, TOP500. USA: TOP500. URL https://
www.top500.org/system/178926/.

Unat D, Chan CP, Zhang W, et al. (2013) Tiling as a Durable
Abstraction for Parallelism and Data Locality. Berkeley, CA,
United States: Lawrence Berkeley National Laboratory.
Technical report.

Wissink AM, Hornung RD, Kohn SR, et al. (2001) Large scale
structured AMR calculations using the SAMRAI framework.
In: SC01, New York, NY, 2001.

Zhang W, Almgren A, Beckner V, et al. (2019) AMReX: a
framework for block-structured adaptive mesh refinement.
Journal of Open Source Software 4(37): 1370.

Zhang W, Almgren A, Day M, et al. (2016) BoxLib with tiling: An
adaptive mesh refinement software framework. SIAM Journal
on Scientific Computing 38(5): S156–S172.

Zhang W, Myers A, Gott K, et al. (2021) AMReX: Block-
structured adaptive mesh refinement for multiphysics appli-
cations. The International Journal of High Performance
Computing Applications 35(6): 508–526.

16 The International Journal of High Performance Computing Applications 0(0)

https://cppcheck.sourceforge.io
https://cppcheck.sourceforge.io
https://www.nrel.gov/hpc/eagle-system.html
https://www.nrel.gov/hpc/eagle-system.html
https://www.olcf.ornl.gov/summit
https://clang.llvm.org/extra/clang-tidy/
https://clang.llvm.org/extra/clang-tidy/
https://docs.oneapi.com/versions/latest/dpcpp/index.html
https://docs.oneapi.com/versions/latest/dpcpp/index.html
https://top500.org/lists/top500/list/2020/11/
https://www.top500.org/system/179598/
https://www.top500.org/system/179598/
https://www.top500.org/system/179397/
https://www.top500.org/system/179397/
https://www.top500.org/system/178926/
https://www.top500.org/system/178926/

	PeleC: An adaptive mesh refinement solver for compressible reacting flows
	1. Introduction
	2. Description of the PeleC software
	3. Software engineering for HPC performance portability
	3.1. Original PeleC programming model for CPUs
	3.2. OpenACC programming model for PeleC on CPUs and GPUs
	3.3. AMReX C++ programming model for PeleC on CPUs and GPUs

	4. Performance on pre-exascale systems
	4.1. Description of HPC systems used for performance analysis
	4.1.1. Summit, Oak Ridge National Laboratory (ORNL)
	4.2.1. Eagle, National Renewable Energy Laboratory (NREL)
	4.1.3. Theta, Argonne National Laboratory (ANL)

	4.2. Description of performance test cases
	4.2.1. Pre-mixed flame (PMF)
	4.2.2. Piston bowl

	4.3. On-node profiling analysis
	4.3.1. Chemical reaction routine and the chemical mechanism size

	4.4. Scaling results
	4.4.1. Strong scaling results
	4.4.2. Weak scaling results

	4.5. Performance summary

	5. Conclusions and outlook
	Declaration of Conflicting Interests
	Funding
	ORCID iDs
	Notes
	References

