IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 9, SEPTEMBER 2015

1467

Circuit Performance Classification With Active
Learning Guided Sampling for
Support Vector Machines

Honghuang Lin and Peng Li, Senior Member, IEEE

Abstract—Leveraging machine learning has been proven as a
promising avenue for addressing many practical circuit design
and verification challenges. We demonstrate a novel active learn-
ing guided machine learning approach for characterizing circuit
performance. When employed under the context of support vec-
tor machines (SVMs), the proposed probabilistically weighted
active learning approach is able to dramatically reduce the size
of the training data, leading to significant reduction of the overall
training cost. The proposed active learning approach is extended
to the training of asymmetric SVM classifiers, which is further
sped up by a global acceleration scheme. We demonstrate the
excellent performance of the proposed techniques using four case
studies: 1) dc/dc converter ripple noise analysis; 2) phase-locked
loop lock-time verification; 3) reliability analysis of a ring oscilla-
tor with respect to process variations and initial conditions; and
4) prediction of chip peak temperature using a limited number
of on-chip temperature sensors.

Index Terms—Active learning, circuit performance classifica-
tion, support vector machine (SVM).

I. INTRODUCTION

NDERSTANDING circuit performances’ dependencies
Uon key design, process, and operating condition param-
eters are a central issue in many phases of IC development.
For instance, design equations or circuit performance models
that capture specifications’ dependency on design parameters
are essential for guiding design optimization.

However, as a by-product of design complexity increase and
technology scaling, design, process parameters, and operat-
ing conditions interact with design performance and opera-
tion in an increasingly complex manner. Optimizing design
performance and safeguarding design robustness becomes a
significant challenge.

In this light, the ability in characterizing circuit performance
in the complex design/technology/operating parameter space is
key to design, verification, and test. In practice, performance

Manuscript received May 25, 2014; revised October 8, 2014 and
December 29, 2014; accepted February 16, 2015. Date of publication
March 16, 2015; date of current version August 18, 2015. This work was
supported in part by the National Science Foundation under Grant 1117660,
and in part by the Semiconductor Research Corporation (SRC) task # 1836.128
through The University of Texas at Dallas’ Texas Analog Center of Excellence
(TXACE). This paper was recommended by Associate Editor Y. Shin.

The authors are with the Department of Electrical and Computer
Engineering, Texas A&M University, College Station, TX 77843 USA (e-mail:
linhh@tamu.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2015.2413840

characterization process often entails collecting and process-
ing large volumes of simulation or measurement data, which
can be extremely costly and time consuming. To address the
above challenge, we leverage a specific type of machine learn-
ing techniques, support vector machines (SVMs) [1], [2], for
efficient characterization of design performance.

Machine learning has been adopted in electronic design
automation (EDA) research in the past. Voting-based meth-
ods are used in [3] and [4] to train analog performance
models parameterized in design parameters. In [4] and [5],
one-class SVM is adopted to represent analog circuit per-
formance and perform outlier analysis for cost reduction of
delay test. In [6] and [7], regression techniques are used
to analyze circuit reliability and rank design features that
contribute to unmodeled systematic timing effects. Focusing
on a somewhat different problem, Singhee and Rutenbar [§]
combined the extreme value theory and machine learning
(e.g., SVM) for yield estimation of static random access mem-
ories (SRAMs). The same problem is approached by several
other authors through fast Monte Carlo importance sampling
techniques or boundary searching based on non-Monte Carlo
methods [9]-[11].

SVM is well known for its capability of handling nonlinear
problems. Compared to other classification techniques in the
machine learning domain, SVM tends to generate a sparser
solution from an evenly sampled training data set. As a use-
ful toolbox in the EDA community, leveraging such sparsity
to reduce the intense need in sampling has been largely left
untouched, which is the key focus of this paper. We pro-
pose an optimized probabilistic active learning guided SVM
approach to train high-quality circuit performance classifiers
with significantly reduced cost. As shown in Fig. 1, active
learning is a class of powerful techniques that can be lever-
aged to build “intelligence” into the sampling step of classifier
training [12]-[14]: only promising instances that are expected
to improve the performance of the classifier are selected for
query (e.g., circuit simulation).

To select the optimal query instance at a time, we rank the
candidate instances according to a probabilistically weighted
goodness metric that is computed by rigorously evaluating
potential reduction of version space if the instance were
queried. As such, our active learning scheme intelligently
selects query instances which are expected to act as sup-
port vectors throughout the iterative classifier training process,
hence avoids to committing wasteful queries and significantly

0278-0070 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on January 20,2021 at 19:29:01 UTC from IEEE Xplore. Restrictions apply.

1468

N
Selected Query Instance \

A Large Instance Class Label !
Pool of ckt simulation !
Unlabeled ,
Data ’ Add :
Re-train — !

(Asymmetric) h Training :

SVM Classifier Data Set i

Fig. 1. Active-learning guided SVM.

reduces the required training data and the overall train-
ing cost.

For many binary classification problems in circuit design,
certain degree of asymmetry exists between the two classes.
For instance, in design verification, it is practically relevant to
answer the following question: how to ensure designs pass-
ing the verification are very likely to be actually acceptable,
while allowing some of the acceptable designs to be rejected.
To ensure the conservativeness in verification, the error on
predictions of acceptance shall be more heavily minimized to
avoid overly optimistic prediction of design robustness. To this
end, we extend the proposed probabilistic active learning to
the case of asymmetric SVMs by generalizing the concept of
version space reduction and evaluating the biased safety level.
Finally, we present a global acceleration scheme to further
improve the convergence of asymmetric SVMs.

The presented ideas are rather general. We demon-
strate their application by conducting four -classification
case studies: 1) ripple noise analysis of LC-based dc/dc
converters; 2) lock-time verification of charge-pump phase-
locked loops (PLLs); 3) reliability analysis of ring oscillators;
and 4) prediction of peak chip temperature based on a limited
number of on-chip temperature sensors. For these applications,
our techniques have led to one order of magnitude of efficiency
improvement.

II. SVM

SVM [1], [2] is a useful supervised learning algorithm in
solving binary classification problems. Given a set of training
samples, the technique constructs a discriminant function as a
classifying hyperplane in the input space. Its training process
can be solved as a quadratic programming optimization prob-
lem. The objective of the optimization is to find the structural
optimal hyperplane that separates the training data with largest
margin. Such objective is called structural risk minimization
and provides promising performance in many situations.

In practice, training samples are often not linearly separable,
especially in circuit related applications. To achieve a
nonlinear classifier, SVM projects the input data into a higher
dimensional space, which is called feature space, and then
tries to linearly separate the samples in the feature space.
The higher dimensional hyperplane may have a nonlinear pro-
jection in the input space, serving as a nonlinear classifier for
the input data.

Denote the ith sample in the training data set as

(i, yi),yi € (=L, +1},i=1,2,3,....n (D

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 9, SEPTEMBER 2015

(@ (b)

Fig. 2. (a) Hard margin SVM. Circles and squares are instances of the two
classes. f(x) = 0 is the separating hyperplane. (b) Differences between soft
and hard margins SVM. The dotted line is the hyperplane of hard margin
SVM with margin m’. The solid line is the hyperplane of soft margin SVM
with larger margin m. The solid circle and square violate the margin m with
slack variable &, and &, respectively.

which consists of the input vector x; and the corresponding
class label y;. Let ¢ (x) be the mapping function that maps any
input vector x from R” to R™. SVM defines the discriminant
function of the classifier as

J@) =w-¢@) +Db 2

where w is a vector with m entries. An unlabeled x will be
classified as a positive or negative instance if f(x) > 0 or
f(x) < 0, respectively. The separating hyperplane in the fea-
ture space is defined by f(x) = 0. Instances closest to the
hyperplane are defined as support vectors. The distance from
any support vector to the hyperplane is called margin, which
should be maximized during the training process.

The primal form of SVM is defined as follows:

llwll®

3)
“)

w,b
subject to y;(w - ¢(x;) + b) > 1.

Equality of (4) holds when x; is a support vector. Based on
the definition and constraints described in (4), the margin can
be computed by

m=——)
wll
and thus minimizing the objective function is actually
maximizing the margin [see Fig. 2(a)].
To solve the equivalent optimization problem of the SVM
model, Lagrange multipliers are often employed, and the dual
form of the SVM problem is derived as

n

) 1

Hélin E o — 5 E a;a)yiyj - ¢ (xi) - ¢(xj) (6)
i=1 ij

subject to «; > 0

@)

and

®)

n
Zaiyi =0
i1

where Lagrange multipliers «; are the new model parameters.
The support vectors can then be defined as training vectors

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on January 20,2021 at 19:29:01 UTC from IEEE Xplore. Restrictions apply.

LIN AND LI: CIRCUIT PERFORMANCE CLASSIFICATION WITH ACTIVE LEARNING GUIDED SAMPLING FOR SVM

whose corresponding «; is nonzero. And the original w in (2)
can be expressed as

W=y i $x). ©)
i=1

From the dual problem, we can find that only inner products
of vectors in the feature space are involved in computation.
Thus, we can simply define a kernel function K(x,xp) =
¢ (x1) - ¢(x2) to implicitly describe the mapping toward the
feature space while solving the optimization problem instead
of finding an exact mapping function ¢ (x).

One of the widely used kernel functions is called radial
basis functions (also known as Gaussian kernel) [2]

2
K(xi, %) = e 7 =l (10)

The usage of kernel functions, the form of the discrimi-
nant function, and the structural risk minimization make SVM
distinguished from other classification techniques, since the
optimal solution may be sparse in the context that it can be
represented by just a small portion of the samples, i.e., support
vectors.

Leveraging the kernel (10), the biasing term b in the dis-
criminant function is often set to be zero for simplicity. With
b = 0, the constraint (8) will be freed, leaving (7) be the only
constraints of the dual problem. In this paper, we use (10) as
the default kernel and adopt the unbiased hyperplane by set-
ting b = 0 in order to facilitate active learning [13] (details in
later sections).

Overfitting is one of the common obstacles in supervised
learning techniques. The fact is that the “strictly learned” dis-
criminant function from a large amount of training data is often
outperformed by well regularized discriminant functions with
some extent of relaxation. To balance the overfitting and under-
fitting, a modified SVM called soft margin SVM is proposed
in [1] and [2].

Rather than satisfying all the constraints defined by the
training data set, soft margin SVM uses slack variables and
a cost factor to tradeoff the training error and margin. The
primal form of soft margin SVM can be posed as follows:

min +c§n:s-
wE 2 —
=

subject to y;(w-p(x;) >1—-§.,& >0

(1)
(12)

where C is the constant cost coefficient defined before the

training and &; is the slack variable representing the mar-

gin violation of the ith training example. And the margin

[as shown in Fig. 2(b)] is defined as

yif () + & 1

m=mn——m—- = —.
Iwll

13
i wll (1

Similarly, by applying Lagrange multipliers to the primal
problem, one can derive the dual problem with exactly the
same objective function as (6) but with different constraints

0<a; <C. (14)

1469

In this case, support vectors can still be defined as vec-
tors with «; > 0. For those vectors with «; < C, they locate
right on the boundaries of the margin. For those vectors with
a; = C, they are outliers that violates the margin, sometimes
may even be misclassified samples.

III. ACTIVE LEARNING GUIDED SVM

The goal of circuit performance classification is to predict
if a circuit with uncertain parameters (i.e., design parameters,
process variations, or working conditions) will meet the per-
formance specification or not. Given sufficient training data,
an SVM classifier can be trained for accurate prediction.
However, expensive circuit simulation usually makes it infea-
sible to obtain a large volume of samples to train an
accurate SVM.

To reduce the intense need of training data, a group of
techniques called semi-supervised active learning [15] is devel-
oped by leveraging the spatial information (e.g., clustering
based on [16]) or the sampling history (e.g., significance space
construction in [17]). It only works for problems with finite
candidates and thus is not applicable to analog circuits whose
sampling space is usually infinite. Supervised active learning
uses a clearer strategy to select samples: hypothesis space
reduction (e.g., agnostic active learning [18]) or SVM ori-
ented version space reduction [13], [19]. In this domain, the
concern lies on the efficiency of the algorithm. However, in
circuit application, since simulations can be extremely expen-
sive, we need to optimize the quality of the selected sample
as well. Therefore, in this section, we propose active learning
for high quality and fast convergence. Another active learn-
ing scheme for conservative prediction is proposed in the next
section.

A. Version Space

Pool-based active learning [12] is a method that starts with
an initial training data set and a pool of unlabeled data. The
learner can query the class labels of instances in the pool and
add them to the training data set.

Different active learning strategies have been developed in
different scenarios for the selection of candidates from the
pool. In the EDA domain, for example, [4] employs active
learning to generate a balanced, in terms of the number of
different types of samples, training data set. Another method
proposed in [6] develops active learning strategy to reduce
the need of expensive aging simulations in building regression
models for circuit reliability analysis.

A querying strategy based on version space introduced
by Tong and Koller [13] is an effective method for active learn-
ing with SVM. With this strategy, active learner would start
with a set of all the possible separating hyperplanes, i.e., the
version space, and then choose the next query to shrink this set
as much as possible until the size of the set is small enough.
Then, the optimal hyperplane of this small set could be used
as an accurate approximation of the real-separating hyperplane
(more details in the next section).

Version space V is defined as the set of all the hyper-
planes in the form of f(x) = w - ¢(x) = 0 that completely

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on January 20,2021 at 19:29:01 UTC from IEEE Xplore. Restrictions apply.

1470

(@ (b)

Fig. 3. Version space in 2-D W space. (a) x;—x3 are cutting hyperplane
associated with training data. x; and x, are support vectors. The solid arc is
the version space. (b) w* and version space between x| and x corresponds to
hard margin SVM. In soft margin SVM, hyperplane of x, is shift to x/2 with
a vertical offset of & /|w||. The version space is enlarged by the arc between
xp and x3. W* corresponds to the optimal classifier of soft margin SVM.
x3 becomes the support vector as well.

separate the training data in the feature space. Since the
normalization of w
N w
w=— (15)
lwll
will not change the hyperplane, we can define the version

space as

V={weW||W| =1Ly ¢wx)) > 0Vi} (16)

where the parameter space W has the same dimension of the
feature space F. According to the duality between the param-
eter space W and feature space F [2], every training sample x;
has a corresponding hyperplane ¢ (x;) - w = 0 in W that cuts
off a part of the hypersphere ||[Ww| = 1. An example in a
2-D parameter space is shown in Fig. 3(a). Each training data
is actually a constraint in the optimization problem, partially
defining the set of all the feasible solutions. As a result, all the
infeasible w will be cutoff by any training sample they violate
and the surface on the hypersphere that remains at last will be
the version space.

Due to the structural risk minimization in the SVM model,
the corresponding w* € V of the optimal classifier produced
by the hard margin SVM will be the center of a sphere which
is tangent to the cutting hyperplanes in W associated with
support vectors [see Fig. 3(a)]

w* = arg max min{y; (W - ¢ (x;)) }. (17)
wew !

Here, ||w|| is normalized instead of the normalization
of |f(x;)| for support vectors in the hard margin SVM
problem (3), (4). Therefore, w* is the normalization of
the optimal separating hyperplane represented by w*, and the
distance between support vectors and this hyperplane is the
margin m in (5).

Note that (16) is defined under the condition that all
the training data are linearly separable in the feature
space. However, since most circuit variables (i.e., voltage,
current, etc.) are continuous and the characteristics are often
nonlinear, samples in circuit application are usually not com-
pletely separable. Thus, we employ soft margin SVMs instead

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 9, SEPTEMBER 2015

of hard margin SVMs in our applications and propose another
definition of version space V for the soft margin SVM

_ & w} (18)

V= {w e Wl|w] = 1yi(W- o) > o
where w and &; are constants produced by the training process
of soft margin SVM (11), (12) with given cost coefficient C.
As mentioned in the previous section, the cost coefficient C
provide a tradeoff mechanism between the structural risk and
constraint slackness. In practice, such mechanism often pro-
vides much better regularization, hence it is reasonable to
assume that the slackness &; can also make the version space
more resistant to the overfitting problem.

As shown in Fig. 3(b), a nonzero slack variable & moves
the corresponding cutting hyperplane vertically, relaxing the
constraint defined by x;. Therefore, compared to the version
space of hard margin with the same training data, soft margin
SVM enlarges the size of the version space as well as the
margin of the classifier.

Alternatively, from the perspective of the dual problem and
the kernel method, if we define &; = «;y;, by substituting (9)
into (2), the form of all the possible discriminant function can
be defined as

fa@) =i K(xi, x). (19)
i=1

Then, the equivalent hard margin version space can be
redefined as

n
Y & K(xix) > 0Vt (20)

i=1

V=1 aer|a] = o

where n denotes the total number of training samples x; and &
is an n-entry vector. The a™ corresponds to the output of the
SVM training, constraining the version space to a hypersphere
again.

Given a distinct form of discriminant functions, the cardi-
nality of V; is different from V. However, the optimal member
in both version spaces that corresponds to the solution of the
SVM should be the same due to the duality.

Similarly, for the dual problem of the soft margin SVM, if
we follow the same adjustment performed in (18), i.e., using
a soft margin SVM with given cost factor C to determine
the relaxation &; on all the training data x;, the proposed soft
margin version space can be redefined as:

Vy= {& el-c.crfa] = e*]. Y & K(xi.x) > —& Vit
i=1

21

Compared to the hard margin version space, the soft margin
one is constrained within a smaller space [— C, C]" instead
of the whole n-dimensional space R". If C = oo, all the &;
will be zero and thus the soft margin version space should be
equivalent to the hard margin one.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on January 20,2021 at 19:29:01 UTC from IEEE Xplore. Restrictions apply.

LIN AND LI: CIRCUIT PERFORMANCE CLASSIFICATION WITH ACTIVE LEARNING GUIDED SAMPLING FOR SVM

B. Proposed Accelerated Active Learning With
Probabilistic Version Space

Suppose that there is a pool of unlabeled data with a size
of n, V, is the resulting version space if we query all the
instances in the pool and W is the corresponding optimal
separating hyperplane, then W’ lies in version space V; after i
queries.

In case that the pool is of a huge size, it is too expensive
to query the labels for all the instances in the pool. Since

w* is determined only by support vectors, a limited num-

n
ber of queries that include all the support vectors will also
produce the same optimal hyperplane w. Thus, W} can be
approximated with much lower expense.

Version space-based active learning tends to find a smart
way of querying and finally has an accurate approximation of
w} with limited number of queries. For hard margin SVM,
according to the definition of version space, V; 2 Vi for
i =0,1,2,..., which means the size of the version space
is reduced as more and more instances are queried. For soft
margin SVM, as every query adds a cutting hyperplane in W,
the version space would be reduced by more queries as well.
If the size of Vj is small enough, any w € V is close to W}
and we can use wj to approximate the optimal classifier of the
whole pool. The upper error bound of this approximation will
be smaller if V is shrinking. Therefore, to make W} converge
to w’ as fast as possible, we can select query that shrink the
version space as much as possible in every step.

Let Area(Vy) denote the surface area of the version space Vj
which is defined by k queried samples. Since the shape of the
version space could be very complicate in high-dimensional
space, it is impractical to compute Area(Vy) explicitly.
In general, W; may be located near the center of the ver-
sion space, thus the distance between W} and support vectors,
which corresponds to the margin of the unnormalized wj}
in feature space, can be used to represent the surface area
of the version space. We assume that Area(Vj) is propor-
tional to the margin of wy and, for simplicity, the constant of
proportionality is 1

Area(V) = L
il

Tong and Koller [13] tried to have the version space with
every query as far as possible. They select such an instance
in the pool in every step that has equal or most approximate
size of version space no matter which class it is labeled. This
method requires twice retraining of SVM for every instance in
the pool, which is very expensive when it comes to cases that
the pool is often of a huge size. And the reduction of version
space in every step is likely to be not more than one half.

In this paper, we propose an accelerated active learning
method with probabilistic version space. It reduces the retrain-
ing cost by pool size shrinking and tends to have a more
aggressive reduction in version space.

In active learning process, version space described in the
previous section is used to measure the resulting benefit of
any candidate query. To compute the resulting reduction in
version space of any candidate instance, we need to get its
label and retrain an SVM by adding it into the training data set.

(22)

1471

We avoid querying the real label of the candidate instance by
assuming its label as +1 and —1 and perform SVM retraining,
respectively (no simulation is committed yet at this point). In
every single step of active learning, if the pool has 7 instances,
we should train 2n SVMs to find the optimal query. It is
too expensive especially when it comes to our applications
of circuit performance classifications.

Since most circuit parameters are of analog value, the pool
consists of infinite unlabeled instances, which makes it impos-
sible to calculate the expected size of resulting version space
for every instance. One simple way is to randomly sample a
certain number of instances in the input space to form a pool
of finite size in every step. However, for a high-dimensional
input space, it requires a huge number of samples for the algo-
rithm to reach certain accuracy. It would be far too expensive
to find an optimal query out of the pool.

In the SVM model, based on the definition of the con-
straints (4) and (12), for samples x; right on the margin
(i.e., support vectors in the hard margin SVM or support vec-
tors with & = 0), we have |f(x;)| = 1. According to (17),
a new query of x will reduce the size of version space if and
only if

lf)l <1 (23)

which means x should be closer to the hyperplane than support
vectors with zero &;. Therefore, in every step of active learning,
we can sample a certain number of instances that satisfy (23)
to form a pool with acceptable size instead of sampling in
the whole input space and then perform previously mentioned
active learning algorithm after that. Whichever instance in the
pool is chosen to be queried, part of the version space will be
cutoff, and hence, we can guarantee that the version space is
reduced in every step.

In addition to the above acceleration, in every step of active
learning, we try to find such an instance x in the pool that
has the largest expectation of size reduction in version space.
In other words, after we add x into the training data set,
the expectation of the resulting version space should be the
smallest. Let V; denotes the version space after i queries and
X;y1 denotes the (i + 1)th query, define

Vf:Viﬂ{vAveW|+v?/~¢(xi+1)> —”571”} (24)

Vi =Vin {\Rz eW|l—w-d(xiy1) > _”S_,”} (25)
w
Obviously, Vi+ and V;~ denote the version spaces that x;; 1 is
labeled as 41 or —1, respectively. A more aggressive strategy
is to find an instance x;4; in the (i + 1)th step with smallest
value of

E = P(y = llxjp)Area(V;") + P(y = —1|xip1)Area(V;")
(26)

where P(y = l1|xi+1) and P(y = —ll|xj+1) denote the
probability of x;41 being labeled as +1 and —1, respectively.

We use an intuitive function for the conversion between
SVM output f(x) and the probability in our algorithm

1

PO = = e G

27)

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on January 20,2021 at 19:29:01 UTC from IEEE Xplore. Restrictions apply.

1472

Algorithm 1 Accelerated Active Learning With Probabilistic
Version Space
1. Find an initial training data set S which includes both
positive and negative examples
2. Train a soft margin SVM classifier f(x) with S
3. Randomly pick up a huge set 7 from the input space
4. Classify T with f(x)
5. Pick up a certain number of instances with small enough
|[f(x)| in T, form a subset T
6. For every x; € f,
(a) Assign P(y = 1]x;) and P(y = —1]x;) to x;
(b) Label x; as positive, add it to S temporarily
(c) Train an SVM to compute its resulting size of version
space Area.
(d) Label x; as negative, add it to S temporarily, and train
another SVM to get Area_
(e) E=P(y = l|x)Areasr + P(y = —1|x;)Area_
7. Query the real label of the instance with smallest £, add
it into §
8. Repeat steps 2—7 until E is small enough
9. Train a final SVM with §

With a tuned parameter «, it provides symmetric probability
results for computing the expectation of version space.

The algorithm flow of active learning combined by all the
above steps is demonstrated in Algorithm 1.

It should be aware that the pool is randomly regenerated
in each iteration, making it unique to the others in the other
iterations. As the process iterates, the granularity of the super-
position of all the pools in the previous iterations, which can
be viewed as the discretization of the continuous input space,
gets finer and finer. This can be used to capture the con-
tinuity of analog systems and makes the proposed method
distinguished from the traditional active learning algorithms
(such as [13]-[15]) for finite discrete applications.

C. Error Bound

An error bound estimation of the SVM classifiers based on
leave-one-out cross validation is proposed in [2], providing
a method to approximate the upper bound of the misclassifi-
cation from a given training data set. However, such method
is based on the assumption that all the training samples are
selected independently. In the context of active learning, such
assumption is always not true since new samples are always
evaluated and selected by the current SVM classifier trained
from the current training samples.

As mentioned in the previous section, standard SVM models
with sufficient training data often produce good classifiers
with promising performance. Therefore, rather than analyze
the upper bound of the misclassification of the actively learned
model, we treat the SVM classifier learned from sufficient data
as the desired “golden” classifier and explore the maximum
difference between such classifier and any other solutions in
the reduced version space.

Due to the duality between the primal and dual forms of
the SVM model, the optimal solution w* € V is equivalent

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 9, SEPTEMBER 2015

to the optimal solution @* € V;. Although V and V,; might
have different cardinality, considering the powerful expressive
capability of kernel method with (10), we make the assump-
tion that w = Y "', &;¢(x;) for arbitrary w, which guarantees
the trends or convergence of applying active learning version
space reduction in both version space definitions should be
consistent.

As a result, the error between the golden classifier repre-
sented by &* and any solution & in the version space can be
formulated as

A = |ff @ -fiw| = Ylar - alk@. v, @8)
i=1

If the Gaussian kernel (10) is applied here, since 0 <
K(x,y) < 1, we have A(&@) < Y1, & — &]. Taking all
the training data into account, the upper bound of the dif-
ference between the golden classifier and any solution in the
version space is the optimal solution of the following linear
programming problem:

n
max Z|&f — &
=

n
subject to Z&iK(xi,xj) >0Vj=1,2,...,n (30)

i=1

(29)

where x; and x; denote arbitrary training samples.

The procedure of active learning in the context of the error
bound defined above is not as explicit as version space reduc-
tion. The reason is that adding a new sample x,4] into the
training data set might reduce the current set of the feasible
solutions defined by (30), but a new variable &,+; will also
be introduced. Nevertheless, since it suffices to consider only
the feasible solutions on the boundary to find out the opti-
mal solution (i.e., the error bound) of a linear programming
problem, a new sample may help to lower the error bound if it
cuts off a part of the boundary of the set of feasible solutions.

IV. ASYMMETRIC ACTIVE LEARNING

Compared to related active learning methods developed in
the machine learning domain [13]-[15], the proposed method
mainly focuses on continuous problems rather than finite dis-
crete space. In traditional discrete applications, the imbalance
between the number of positive and negative samples is usu-
ally a challenging problem. While in circuit scenarios, since
the continuous space can be infinitely discretized, meaning
infinite number of different types of samples can be obtained,
such problem may not be a concern any more. However, the
need of safe prediction occurs as a new challenge in the circuit
domain.

For example, in applications like circuit verification, we are
much more concerned about the class of failure than the class
of success. Misclassifying acceptable circuits into the class
of failure may be allowed, while misclassifying flawed cir-
cuits into the class of success should be strictly restricted. In
this light, we expect that the prediction on the failure class is
conservative while the classifier still has high global accuracy.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on January 20,2021 at 19:29:01 UTC from IEEE Xplore. Restrictions apply.

LIN AND LI: CIRCUIT PERFORMANCE CLASSIFICATION WITH ACTIVE LEARNING GUIDED SAMPLING FOR SVM

Some adaptive sampling techniques such as [20]-[22] are
developed to generate balanced training set from imbalanced
data in the machine learning domain, and similar algo-
rithms [9], [10] designed for circuit problems are adopted in
the EDA community to solve the sampling problem of rare
events (e.g., SRAM yield analysis). In this paper, the objec-
tive problem is different. Instead of dealing with imbalanced
data density, we adjust our active learning algorithm to meet
different safety requirements on the two classes.

A. Cost Asymmetric SVM

To reduce misclassifications in one class, one frequently
used method is to assign a higher cost or penalty coefficient
to that class [23], [24]. The previous soft margin SVM model
will be further modified into the following cost asymmetric
SVM model (also known as 2C-SVM):

nin 2214 c, Z Gre. Y & 0D
' Lyi= iryi=—1
abject 1 30w () = 1~ &2 0 (32)

Without any loss of generality, assume that C; > C_. As a
result, rather than assigning a nonzero slack variable to a pos-
itive training sample, the 2C-SVM model tends to increase
the slackness of one or more negative samples. Therefore,
after the training process of 2C-SVM, fewer relaxation will be
assigned to the positive training samples compared to the neg-
ative samples. The resulting classifier should be more accurate
for positive instances.

The dual problem of the 2C-SVM shares the same objective
function (6) while the constraints will be modified as

0<a,<:C+, yi >0
— =

(33)

Cc_, yi<O.

By defining the class of failure as positive and the class of
success as negative, if C1 > C_, then errors that misclas-
sifying a positive instance as a negative one, also known as
false negative, will be much fewer than misclassifications on
negative instances, also known as false positive.

B. Safety Level Evaluation

It is hard to evaluate the safety level of a classifier on posi-
tive class explicitly, but apparently, a classifier with few false
negatives and large margin on positive class is more conser-
vative than those with more false negatives or smaller margin
on positive class.

Hinge loss [25] is the loss function for soft margin SVM.
For a training example (x, y), it is defined as

I(x,y) = max(0, I —y - f(x)). (34)

It is widely used in SVM to penalize if (x,y) violates the
margin, which is already implicitly included in the standard
soft margin SVM and 2-C SVM. Recalling the definition of
soft margin SVM, [(x,y) is in fact & in (11) and (12). If
0 < I(x,y) <1, then (x, y) is the instance with distance to the

1473

hyperplane smaller than the margin. If /(x, y) > 1, then (x, y)
is a misclassification.

In order to evaluate the conservation of the positive class,
we sum up all the hinge loss in the positive class only

L= Z I(x,y).

yi=+1

(35)

The smaller L is, the more conservative the classifier is.
If L =0, since there is no misclassification or margin viola-
tion, we believe that it is the most conservative case.

C. Asymmetric Active Learning and
Performance Optimization

To get a conservative classifier, we employ the 2C-SVM and
the newly-defined hinge loss metric in the previous strategy
to achieve a conservative active learning algorithm. In every
step, we query an instance that may reduce the version space
largely and maintain a small L at the same time. For every
instance in the pool, we compute its expected loss as

Loss = P(y = lxiy)L™ + P(y = —1lxiy)L™ (36)

where LT and L™ denote the resulting hinge loss on the pos-
itive class if the instance is labeled as positive or negative,
respectively. Then, we perform the following calculation for
every instance:

D=E+n-Loss 37

where n is the tradeoff coefficient and the instance with
smallest D will be selected to be queried. This strategy may
not shrink the version space the fastest, but it can make the
classifier more conservative.

Since instance with smallest D is less likely to have a
smallest E at the same time, the version space reduction in
every step will be smaller and hence the convergence will
be slower. In order to improve the efficiency, we propose
the following global strategy for improving the convergence.
Considering two 2C-SVMs with different cost coefficient but
trained by the same training data set

min —+c+ Z §i+Cie Z 5068

" iryi=+1 iyi=—

min —+C2+ Z &+ Cr Z & (39
ity;=+1 iyi=—1

We know that ||w|| and)" &; are conflict notions that rep-
resent the margin and violation of the margin, respectively.
Thus, ||w| will increase if) "&; decreases and vice versa.
For the two 2C-SVMs, if Ci+ > Ca, respectively, then we
will have ||wi] > |[wz||. According to (22), it means that the
size of the resulting version space of (38) will be smaller than
that of (39). Assumes that C and C* are the two cost coef-
ficients that could achieve a conservative classifier in the final
step, we may start the active learning from larger cost coeffi-
cients Cy and C_ and gradually reduce them to C} and C*,
respectively. By this strategy, we can achieve a faster conver-
gence than the strategy that use C% and C* from the very
beginning.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on January 20,2021 at 19:29:01 UTC from IEEE Xplore. Restrictions apply.

1474

The algorithm flow of the asymmetric active learning is
shown in Algorithm 2.

D. Dynamic Model Selection

According to the earlier discussions, the selection of the
SVM model or, more specifically, the selection of the cost
parameters (i.e., the C in the soft margin SVM and the
C; and C_ in the 2C-SVM) plays an important role in the
active learning procedure.

A popular choice of the algorithms on model selection is
based on cross validation. Models with different parameters
are trained and tested by cross validation and the one with
the best average performance will be picked. However, in
active learning, the number of training samples is limited and,
again, samples are not independent with each other. Therefore,
methods based on cross validation are not applicable in the
procedure of active learning.

A simple yet practical analytic method for model selection
is proposed in [26] to determine the appropriate parameters
for the SVM regression. We adopt the similar reasoning here
to determine the model parameter in each iteration during the
active learning procedure.

Due to the fact that 0 < K(x, y) < I for Gaussian kernel (10)
and the dual form definition of the soft margin SVM, we have
the following inequality:

nsv

fE] <D laiyiK (xi,)|

i=1

nsv
<) el
i=1
=ngv-C (40)
where x; denote the support vectors (i.e., those with

nonzero «;) and nsy denotes the total number of them. Then,
the model parameter C can be estimated by

max, | £()]

nsv

C>k (41)
where k is a parameter used to implement the adjustment in C
mentioned in the previous section. At the beginning of the
active learning procedure, we use a large k for fast conver-
gence, and then reduce it gradually toward 1 to get a better
regularized solution. Since the input space x is often bounded
in the circuit application, calculating max, |f(x)| should be
trivial once we obtain the form of f(x).

In the application of active learning, the given initial training
data set is often very small, and often easy to be completely
separable. Thus, applying an SVM model with a large C will
produce us the first approximation of the discriminant function
f(x) and the first group of support vectors. After that, in the
nth (n > 2) iteration, we use the f(x) and ngy gained from
the (n — 1)th iteration to estimate the parameter C.

Another important model parameter is the ratio of C/C_
in the asymmetric model. One way to determine such ratio is
to use the practical cost for the misclassification on different
classes. However, such ratio might be indefinite or indistinct.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 9, SEPTEMBER 2015

Algorithm 2 Asymmetric Active Learning

1. Find an initial training data set S which includes both
positive and negative examples
2. Train a soft margin SVM classifier f(x) with §
3. Randomly pick up a huge set 7' from the input space
4. Classify T with fi(x)
5. Pick up a certain number of instances with small enough
|fix)] in T, form a subset T
6. For every x; € T,
(a) Assign P(y = 1]x;) and P(y = —1|x;) to x;
(b) Label x; as positive, add it to S temporarily
(c) Train a 2C-SVM with parameter C4 and C_ to
compute its resulting size of version space Areay and
loss Ly
(d) Label x; as negative, add it to S temporarily, and train
another 2C-SVM with parameter C and C_ to get
Area_ and loss L_
() D = P(y = 1x)(Areay +aLy) + P(y = —1|x)
(Area_ + oL_)
7. Query the real label of the instance with smallest D, add
it into S
8. If Cy and C_ are larger than the given C% and C*,
reduce C_ and C4 accordingly
9. Repeat steps 2—-8 until D is small enough
10. Train a final 2C-SVM with S and the cost coefficients
C% and C*

In such cases, we can determine the ratio from the context of
the model.

According to the definition of the 2C-SVM, an outlier x; in
the positive class that violates the margin may have an impact
of C4K(x;, x) to the learned discriminant function, since its
corresponding «; = Cy. If it is in the negative class, then
the impact should be C_K(x;, x). The essence of the 2C-SVM
is to make the impact of the two kinds of outliers different.
Therefore, to ensure that outliers in the positive class always
have greater impacts on the discriminant function than the
negative outliers, we can select the ratio that satisfies

Cy _ maxyy K (x;, xj)

42
c_— minxl.,x_/.K(x,-,xj) (2

where x; and x; are arbitrary vectors in the input space. Again,
since the input space in circuit application is often bounded,
the maximum and minimum of the kernel function on the input
space should be computable.

V. EXPERIMENTAL RESULTS

In this section, our proposed method is applied as a
general flow to various circuit applications. Since the flow
mainly focuses on simulation need reduction, for very
high-dimensional system, the running of a single simulation
can still be expensive. Due to the limited scope, we illustrate
the effectiveness of the proposed method in four simplified
circuit systems.

Our proposed active learning approach employed in the fol-
lowing experiments is implemented in C++ on a Linux server.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on January 20,2021 at 19:29:01 UTC from IEEE Xplore. Restrictions apply.

LIN AND LI: CIRCUIT PERFORMANCE CLASSIFICATION WITH ACTIVE LEARNING GUIDED SAMPLING FOR SVM

Fig. 4. Simplified model of an LC-based dc/dc converter.

Our active learning scheme interface with the base-line SVM
package SVMUMeM [27]. And we use the default y = 1 in this
tool for SVM training. For the probability estimation in (27),
the tuning parameter is set to be a constant o = 3.

A. LC-Based DC/DC Converter Design Classification

A simplified model of an LC-based dc—dc converter is
shown in Fig. 4, where R; and Rc represent the parasitic
resistance of the inductor L and capacitor C, respectively. The
pulse width modulation (PWM) unit controls the power switch
to keep charging or discharging the LC filter repeatedly, and
hence generating both output voltage and inductor current rip-
ples. Ripple noise is one of the important specifications of a
dc/dc converter and, apparently, choices of design parameters
L and C may produce different levels of ripple noise on the
output voltage.

Assume that the switch, the voltage source, the PWM
control module, and the feedback mechanism are all ideal
components with perfect characteristics, and additionally the
resistance of Ry and the conductance of R¢ are proportional
to the value of L and C, respectively. In this case, the state
variables of the system can be defined as the current i on
the inductor and the output voltage v if the input voltage Vi,
and the load current [y 5aq are given. And the dynamics of the
system in the s-plane can be described by

b= (I +sCRE)[Vin — (SL + R¢)ILoad]
n 1 +sC(Rc + Ryp) + s2LC

(43)

and
_ SCVin + (1 + sCRC) 1 oad
" 14 5sCQRc+Rp) + 52

By assuming that both v and i are initially set to be zero, the
simulation is implemented using numerical methods to approx-
imate (43) and (44). In terms of efficiency, active learning is
not superior compared to passive learning due to the inex-
pensive simulations. This 2-D system is used as an example
to show the intuition of the convergence of active learning
and the predominant improvement in reducing the need of
samples/simulations.

The goal of our analysis here is to examine the depen-
dencies of the ripple on important design parameters under a
fixed working condition (i.e., with fixed input voltage and load
current). For this, an SVM model can be extracted by defin-
ing the input features as L and C and labeling each instance
according to its ripple noise. Given a threshold noise level,
if a circuit with a group of design parameters has a rip-
ple noise that exceeds the threshold, it will be labeled as a

(44)

1475

° ‘@
° ©
° 0
g g
S S
Z - Z o =
g o g °
@ o © o
S S °
)
o o © ‘.‘0 0* 8 o0 8
: * # %
Inductor(L) Inductor(L)
(@) (W)
- .
% >
.o Vo
—~ 2 1 "s
el 2l .
50 s ‘ig
S #5 ° a S HR o o
s -~ g w®e
I 0 © %
o %20 (&} @0
9 .
* a0 o & '*«%@ o @
sy o T o
Inductor(L) Inductor(L)
(© (@
g
S
‘©
[
Q
]
O
Inductor(L)
(e)
Fig. 5. Sampling procedure of active learning in the parameter space

L :[1 nH, 1 uH] x C : [10 nF, 10 uF] (red star denotes positive instances,
blue circle denotes negative instances, and square denotes initial training sam-
ples). (a) 20, (b) 50, (c) 100, and (d) 200 samples selected. (e) 10000 random
instances.

positive sample. Otherwise, the negative label meaning that
it meets the given threshold will be assigned to it. In this
experiment, we set the load current /1 pq = 0.1 A, the input
voltage as 1 V, and the threshold of ripple noise as 0.2 mV.

The objective of the classifier is to accurately predict
whether a combination of L and C within a given area will
meet the given ripple noise specification or not. Thus, the
proposed symmetric model is adopted. We evenly select nine
samples out of the input space as the initial training data set
and the procedure of active learning is shown in Fig. 5. In
the query process for an unknown pair of (L, C), a transient
simulation of (43) and (44) is invoked and the ripple noise is
measured after the system gets stable, i.e., the current on the
inductor and the output voltage settle down.

From Fig. 5(a)-(d), the convergence of the active learn-
ing sampling is clearly demonstrated. New samples tend to
be selected around the boundary between the positive and
negative classes and gradually cluster the accurate separating
hyperplane. The 200 samples selected by the active learn-
ing scheme in Fig. 5(d) already shows the outline of the
hyperplane. Compared to Fig. 5(e) that shows the hyperplane
with a large number of random instances, the approximated
hyperplane in Fig. 5(d) is very close.

The learned classifier can be exploited to quickly deter-
mine the performance of a certain design. Compared to SVM
training based on random sampling, the required number of

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on January 20,2021 at 19:29:01 UTC from IEEE Xplore. Restrictions apply.

1476

AL
LIRS

1000

Number of Simulations

0.9 0.95 0.96 0.97
Global Accuracy

Fig. 6. Comparison in the required number of simulations (AL, active learn-
ing; RS, random sampling) where the global accuracy is defined as the fraction
of the correct predictions on 10 K random test samples (e.g., 0.1 means 10%).

|
-HD |
Il aQ up P
ii—> I # Loop :
. | R
| [reset i lep _ Filter : R
| : .
. |
T4 -
o DQ down |; l
div i > !
T — . |

Divider

B

-

Fig. 7. Block diagram of PLL.

simulations is much fewer in active learning. Such compar-
ison with respect to the number of simulations is shown in
Fig. 6 and a large reduction in simulations is achieved by
active learning. For example, active learning only needs 10%
of the total number of simulations of the random sampling to
produce a classifier with 97% accuracy.

In general, the active learning flow can be extended to other
circuit design problems. We believe building an accurate clas-
sifier for circuits by taking various design parameters as its
input features is meaningful for quick performance prediction
in circuit design/debug. Once the classifier is given, designers
can directly tell whether a design with some new parameters
is going to work or the training cost to obtain such classifier
can be significantly reduced by our proposed active learning
scheme.

B. PLL Verification

The charge pump PLL being verified is shown in Fig. 7. If
the divided output signal is ahead of the reference clock, the
voltage on the node down will be logical 1 and up be logical 0,
controlling the charge pump to discharge the two capacitors in
the loop filter to lower the input voltage of voltage-controlled
oscillator (VCO), which will lower the frequency and reduce
the phase of the output signal, or vice versa. If the phase dif-
ference between the reference clock and divided output signal
is 0, both up and down are logical 0. Through such negative
feedback, the frequency of the output voltage should gradu-
ally converge and finally be locked to N times the reference
frequency.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 9, SEPTEMBER 2015

L
L

L

L — . —| =
[S
Ji I R —

|
|
T

w t
I 1T T
[[
down | T T I ﬂ ﬂ
[([([|
reset | T \ T \ T \T
[[[]
_ M M I I
o Lo I LI 1]
[| | I
e S ———
Fig. 8. Timing diagram of the PD and the resulting output of the charge

pump and loop filter.

Typically, the phase detector (PD) is implemented by two
D flip-flops and one AND gate. The behavior of the PD can
be described as: if the divided signal div takes the lead, a
rising edge will be generated at down, followed by a falling
edge triggered by the arrival of the rising edge of the reference
clock ref. A similar pulse will be generated at up if reference
clock ref takes the lead. A pulse at up makes the charge pump
to charge the loop filter and increase the input voltage of the
VCO, while a pulse at down reverses such impact. The timing
diagram of the PD and the resulting output of the charge pump
and loop filter is shown in Fig. 8.

We use Verilog-A to set up the behaviorial model of the
PLL and, similar with the PLL model built in [28], define
the state of the circuit with five variables: 1) voltages on two
capacitors v and v;; 2) phase difference ¢; and 3) two digital
variables up and down.

Our goal is to verify that PLL with various size of initial
state space will be locked within a certain time or not. To start
with some failures for the SVM training, we set a rather large
searching space for the state variables that is very likely to
break the PLL (which is a similar concept in stress-testing).
The searching space for the two initial voltages is the inter-
val [0, 0.8 V] and the phase difference has a range [0, 27).
There are only three combinations of up and down: {0, 0},
{0, 1}, {1, 0}.

In this case, we hope to have a conservative verification of
PLL lock-time over uncertain initial startup conditions. Thus
the asymmetric active learning algorithm is employed. The
class with positive label corresponds to meeting the speci-
fied lock time, and the class with negative label corresponds
to failing the lock-time specification. We compare the perfor-
mance of this method with another method that only trains a
2C-SVM with random samples to illustrate the improvement
in efficiency of the our method.

We use a set of 27 instances evenly distributed in the whole
state space as our initial training data set. To make the com-
parison more reasonable, we also add this set into the random
samples of the uniform sampling. The results of classifying
a randomly generated data set with a size of 100000 by two
methods are shown in Fig. 9. We can infer that much less sim-
ulations and runtime is needed for our active learning method

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on January 20,2021 at 19:29:01 UTC from IEEE Xplore. Restrictions apply.

LIN AND LI: CIRCUIT PERFORMANCE CLASSIFICATION WITH ACTIVE LEARNING GUIDED SAMPLING FOR SVM

1400

N
=
S

1000
800
600
400
200

Number of Simulations

00877091 0.95 0.94 0.95 0.960.965
Global Accuracy

()

10000

AL
8000 | T]RS

6000

4000

2000

Number of Simulations

HH.H---

0.15 0.1 0.05 0.02_Q.010.008].004
Error on Positive Class

(b)

5000

4000

3000

2000

Runtime(s)

1000

0 0.8770.91 0.93 0.94 0.95 0.96 0.965
Global Accuracy

(©)
x10°

WAL
2% RS

Runtime(s)

015 0.1 0.05 0.02 0.010.0080.004
Error on Positive Class

()

Fig. 9. Results of PLL experiments (AL, active learning; RS, random
sampling) where the global accuracy and the error on positive class are
defined as the fraction of the correct predictions, with a test set whose size
is 100 K (e.g., 0.1 means 10%). Number of simulations for (a) certain accu-
racy and (b) safe prediction. Runtime to achieve (c) certain accuracy and safe
prediction.

to achieve certain accuracy and prediction safety levels, the
latter of which is measured by the classification error on the
positive class (i.e., percentage of false negatives over the pos-
itive class). Consider achieving same accuracy, the number of
simulations is reduced by an average of 70% and a maximum
of 92%, the runtime is reduced by an average of 69% and a
maximum of 91%. Considering the safety, an average of 89%
and a maximum of 96% simulations are saved, with an average
of 72% and a maximum of 89% saving in runtime.

By neglecting the two digital state variables, the distri-
butions of instances sampled by active learning is shown
in Fig. 10(a). Again, the result shows that samples selected
by active learning tend to cluster the separating hyperplane.
A further projection into a 2-D space (V, V2) clearly shows

1477

(a)
. F 632@
Vi
(b)

Fig. 10. Samples selected by active learning. (a) Projection of the selected
samples in the continuous 3-D (V, V5, A¢) space, where V| and V, are the
initial voltages on the two capacitors, and A¢ is the initial phase difference.
(b) Projection of the selected samples in the (V1, V) space.

the trend. The projection also implies that the initial states
V1 and V> have more impacts on the lock time of the PLL.

Note that the verification problem defined in this experi-
ment is different from what is commonly approached as the
problem of formal verification, such as [28] and [29] based
on reachability analysis and [30] and [31] based on global
convergence analysis. Their identical concern is to explore the
problematic initial states in a fixed initial state space. However,
in our experiment, we aim at determining proper initial state
spaces for a design. Once an SVM classifier is trained for
a given PLL, if the actual initial state space is a subset of
the class of success, its confident to accept the design. If not,
certain suggestions can be fed back to designers to fix the
problem. For example, precharging mechanism before or dur-
ing the power-on process can be added to the PLL to shift the
original state space to the desired space. The model and the
flow are also reusable if the design is changed in the events
like redesigning the circuit, or embedding the circuit into a
larger system, and so on.

C. Ring Oscillator Reliability Analysis

As the third case study, we analyze the reliability for the
three-inverter ring oscillator with respect to its process vari-
ations and initial conditions. The experiment follows similar
methodology of yield analysis. We generalize the problem to
circuit reliability analysis since the system also takes initial
conditions into account in addition to process variations.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on January 20,2021 at 19:29:01 UTC from IEEE Xplore. Restrictions apply.

1478

VDD

1

1

Vss

Output

Fig. 11. Transistor level schematic of the three-inverter ring oscillator.

We use the proposed active learning scheme to train accurate
symmetric SVM classifiers (since the accuracy is often more
important than the conservativeness in reliability analysis) and
contrast with the standard SVM generated by uniform sam-
pling. While it is possible to combine our SVM classifiers
with a statistical sampling technique as in [8], due to the scope
limitation, we only demonstrate the improved performance of
our active-learning-based SVM approach.

The transistor level circuit for the ring oscillator is shown
in Fig. 11. Performances of the ring oscillator are affected by
both process variation of the six transistors and initial condi-
tions, i.e., the initial voltages on the three capacitors, of the
ring oscillator. For example, the settling time and the out-
put frequency of the oscillator is determined by each stage,
which involves the delay of the inverter (affected by process
variations) and the settling time of the RC filter (affected by
the initial conditions). Furthermore, the output swing is also
vulnerable to process variations due to the process varia-
tion sensitivity of the ON-state effective resistance and the
OFF-state current of the transistors.

In this experiment, we use 1 k€2 as the value of the resistors
and 10 pF as the value of the capacitors. We define that a ring
oscillator is reliable if its output cycle is smaller than 110 ns
and its output swing is greater than 0.7 V when we set Vpp
as 1 V. The reliability of the ring oscillator is the probability of
being reliable with respect to the given distributions of process
variations and initial conditions.

The employed transistor model is the Berkeley short-
channel IGFET model 4 model of IBMs 90 nm technology.
For every transistor in Fig. 11, its modeled process variations
include the gate oxide thickness 7,x, the channel length fluc-
tuation AL, and the threshold voltage Vino, each following a
Gaussian distribution with o = 14% (£42% for 30). For the
initial voltages on the three capacitors, they are modeled as
uniform random variables in the interval [Vss, Vpp]. These
parameters form a 21-dimensional input space. Symmetric
SVM classifiers are trained with different sampling methods
in this space to predict whether an input vector is reliable
or not. Once an accurate classifier is learned, a large volume
of input vectors that are randomly generated from the given
distributions can be quickly classified, leading to an efficient
approximation of the reliability.

At first, we run Monte Carlo simulations with 100 K
samples (i.e., 100 K circuit simulations in total) and calculate
the ratio of reliable instances. Such ratio is treated as the accu-
rate reliability. Then, we figure out the minimum number of
simulations and the minimum runtime needed in the two sam-
pling schemes to converge to the Monte Carlo reliability +1%

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 9, SEPTEMBER 2015

TABLE I
COMPARISON OF DIFFERENT SAMPLING SCHEMES

Monte Uniform Active
Carlo Sampling | Learning
Average Predicted || 81.91% 82.17% 81.54%
Reliability After
Convergence
Min # of Simula- 32k 9.55k 3.42k
tions
Min 86.4 25.8 18.1
Runtime(x 103s)
Overhead of 0 0 8.9
the Sampling
Algorithm(x 103s)
Reduction in Sim- - 70.2% 89.3%
ulations
Speedup in Run- - 3.35 4.77
time

with a fluctuation smaller than 3%. The active learning starts
with an initial training set of 100 random instances and picks
new samples with the proposed strategy, while uniform sam-
pling just keeps adding random samples into the training data
set. The results of the two method are shown in Table I
We also list the cost of the Monte Carlo simulations in the
table to show the benefit of SVM. The minimum cost of
the Monte Carlo method is defined as the moment when the
fluctuation of the prediction is smaller than 3%.

Compared with Monte Carlo simulation, building an SVM
classifier to approximate the reliability can significantly
reduces cost in terms of the number of simulations and the
runtime. And the proposed active learning scheme can further
reduce the need of circuit simulations and improve the overall
efficiency. Although there is overhead for the sampling algo-
rithm, the active learning flow provides a promising speedup
for the reliability analysis.

D. Prediction of Peak Chip Temperature Using Limited
Number of On-Chip Thermal Sensors

In this experiment, finite elements simulations are employed
to check whether the temperatures on a chip exceed the highest
allowable value or not via limited number of sensors integrated
on the chip. Fig. 12 shows the functional blocks placement
of a processor, similar to the simplified Digital Equipment
Corporation alpha chip model in [32]. We place five sensors
on top five blocks with highest possible power density (the
positions of the red squares in Fig. 12).

Full-chip thermal simulation is performed by running a
finite-difference based in-house thermal simulator. The sim-
ulator adopts the conjugate gradient iterative method with
an incomplete lower upper preconditioner. On a Linux-based
desktop, each thermal simulation takes about 65 s to complete.
This simulation runtime will grow if a finer thermal partial dif-
ferential equation discretization is adopted or finer details of
material inhomogeneity is considered along the lateral dimen-
sions of each material layer on the chip, producing a higher
demand for smart learning.

For every block, the parameter is the power consumption
that varies from O to its peak value. The parameters of all the

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on January 20,2021 at 19:29:01 UTC from IEEE Xplore. Restrictions apply.

LIN AND LI: CIRCUIT PERFORMANCE CLASSIFICATION WITH ACTIVE LEARNING GUIDED SAMPLING FOR SVM

Corresponding
Sensor Readings

=G>

Selected 4 Record
Active Instance
» Learning ‘ “ H
Y $ Add '
- Training Data of u
Power Distribution L 1

Fig. 12. Functional blocks placement and sensor positions and experi-
ment flow.

15 blocks form a 15-dimensional space. Our goal is to train
an accurate and conservative SVM classifier that can take the
readings from the five sensors and then predict the actual peak
chip temperature, which may not take place at any of these
sensor locations. To guarantee the safety of the chip, we use
asymmetric models in two steps.

In the first step of the flow, we train a 2C-SVM classifier that
maps from block level power consumptions to the actual peak
chip temperature. The classifier takes the power consumption
on all the blocks as the input features, and the label/prediction
is made according to the given temperature threshold. During
this step, if any simulation is invoked to query the real label of
a certain combination of the 15 parameters, the sensor readings
are also recorded and paired with the obtained label. Active
learning is invoked in this step to select samples with high
quality.

In the second step, we use the recorded sensor readings
and their corresponding labels to train another 2C-SVM clas-
sifier which makes the prediction of peak temperature directly
based on sensor readings. This step assembles the fine sam-
ples generated from the last step into a classifier with desired
format.

We use a set of 100 random instances as the initial training
data set for the active learning. To provide a comparison ref-
erence, we repeat the above two-step process based on passive
learning, i.e., training on a large set of random samples. Again,
we add this set into the random samples of the passive learn-
ing. The results of classifying a randomly generated data set
with a size of 100000 by two methods are shown in Fig. 13.
The active learning costs significantly less in terms of simu-
lation and runtime. In terms of accuracy, we save an average
of 51% and up to 67% in simulations as well as an average
of 38% and up to 54% in runtime. In terms of achieving the
same level of safety guarantee (e.g., false negatives), there is
an average of 71% and up to 84% reduction in the needed
number of simulations together with an average of 63% and
up to 87% reductions in runtime.

This experiment shows the potential application of the
proposed flow in monitoring complex systems. While imple-
menting a substantial number of sensors in the system is
beneficial to the safety, it may be costly for complex and
highly integrated systems. In this light, the active learning
guided sampling and SVM techniques can be applied to reduce
the required number of sensors while retaining high alert-
ness in the observation of the working conditions of the
systems.

1479

3000

AL
25001 | P pg

Number of Simulations

0 0.938 0.94 0.9430.9450.948 0.950.9525
Global Accuracy

(@)

10000

AL
8000 []RS

6000

4000

2000

Number of Simulations

0.2 0.18 0.15 0.12_ _0.1 0.08 0.06
Error on Positive Class

(b)

Runtime(s)

0.938 0.94 0.9430.9450.948 0.950.9525
Global Accuracy

©

x 10°
6

Runtime(s)
Now w

02 0.18 0.15 0.12 0.1 0.08 0.06
Error on Positive Class

(C)

Fig. 13. Results of chip thermal experiments (AL, active learning; RS,
random sampling) where the global accuracy and the error on positive class are
defined as the fractions of the correct predictions, using a test data set whose
size is 100 K (e.g., 0.1 means 10%). Number of simulations for (a) certain
accuracy and (b) safe prediction. Runtime to achieve (c) certain accuracy and
(d) safe prediction.

VI. CONCLUSION

In this paper, we presented an SVM-based active learning
method for circuit performance classification. We built up two
algorithm flows: 1) the symmetric one is for classifications
only considering the accuracy and 2) the asymmetric one con-
cerns about both safety and accuracy. We applied the proposed
method in dc/dc converter ripple noise analysis, PLL lock-time
verification, ring oscillator reliability analysis and chip ther-
mal checking, and provide significant efficiency improvement
in all the experiments.

REFERENCES

[1] C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn.,
vol. 20, no. 3, pp. 273-297, 1995.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on January 20,2021 at 19:29:01 UTC from IEEE Xplore. Restrictions apply.

1480

[2]
[3]

[4]

[5]

[6]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 9, SEPTEMBER 2015

V. N. Vapnik, Statistical Learning Theory. New York, NY, USA: Wiley,
1998.

H. Liu, A. Singhee, R. A. Rutenbar, and L. R. Carley, “Remembrance
of circuits past: Macromodeling by data mining in large analog
design spaces,” in Proc. 39th IEEE/ACM Design Autom. Conf. (DAC),
New Orleans, LA, USA, 2002, pp. 437-442.

F. De Bernardinis, M. I. Jordan, and A. Sangiovanni-Vincentelli,
“Support vector machines for analog circuit performance representa-
tion,” in Proc. IEEE/ACM Design Autom. Conf. (DAC), Anaheim, CA,
USA, Jun. 2003, pp. 964-969.

D. Drmanac, B. Bolin, L.-C. Wang, and M. S. Abadir, “Minimizing
outlier delay test cost in the presence of systematic variability,”
in Proc. IEEE Int. Test Conf. (ITC), Austin, TX, USA, Nov. 2009,
pp. 1-10.

E. Maricau, D. De Jonghe, and G. Gielen, “Hierarchical analog circuit
reliability analysis using multivariate nonlinear regression and active
learning sample selection,” in Proc. IEEE Design Autom. Test Europe
Conf. Exhibit. (DATE), Dresden, Germany, 2012, pp. 745-750.

P. Bastani, N. Callegari, L.-C. Wang, and M. S. Abadir, “Statistical
diagnosis of unmodeled systematic timing effects,” in Proc. 45th
IEEE/ACM Design Autom. Conf. (DAC), Anaheim, CA, USA, Jun. 2008,
pp. 355-360.

A. Singhee and R. A. Rutenbar, “Statistical blockade: Very fast statistical
simulation and modeling of rare circuit events and its application to
memory design,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 28, no. 8, pp. 1176-1189, Aug. 2009.

C. Dong and X. Li, “Efficient SRAM failure rate prediction via Gibbs
sampling,” in Proc. 48th IEEE/ACM Design Autom. Conf. (DAC),
New York, NY, USA, Jun. 2011, pp. 200-205.

R. Kanj, R. Joshi, and S. Nassif, “Mixture importance sampling and
its application to the analysis of SRAM designs in the presence of rare
failure events,” in Proc. 43rd IEEE/ACM Design Autom. Conf. (DAC),
San Francisco, CA, USA, 2006, pp. 69-72.

J. Yao, Z. Ye, and Y. Wang, “Importance boundary sampling for SRAM
yield analysis with multiple failure regions,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 33, no. 3, pp. 384-396, Mar. 2014.
D. D. Lewis and J. Catlett, “Heterogeneous uncertainty sampling
for supervised learning,” in Proc. 11th Int. Conf. Mach. Learn.,
New Brunswick, NJ, USA, 1994, pp. 148-156.

S. Tong and D. Koller, “Support vector machine active learning
with applications to text classification,” J. Mach. Learn. Res., vol. 2,
pp. 45-66, Mar. 2002.

B. Settles, “Active learning,” Syn. Lect. Artif. Intell. Mach. Learn., vol. 6,
no. 1, pp. 1-114, 2012.

J. Kremer, K. S. Pedersen, and C. Igel, “Active learning with support
vector machines,” Wiley Interdiscipl. Rev. Data Min. Knowl. Disc., vol. 4,
no. 4, pp. 313-326, 2014.

S.-J. Huang, R. Jin, and Z.-H. Zhou, “Active learning by query-
ing informative and representative examples,” in Proc. Adv. Neural
Inf. Process. Syst. (NIPS), Vancouver, BC, Canada, 2010, pp. 892-900.
E. Pasolli, F. Melgani, and Y. Bazi, “Support vector machine active
learning through significance space construction,” IEEE Geosci. Remote
Sens. Lett., vol. 8, no. 3, pp. 431-435, May 2011.

A. Beygelzimer, J. Langford, Z. Tong, and D. J. Hsu, “Agnostic active
learning without constraints,” in Proc. Adv. Neural Inf. Process. Syst.,
Vancouver, BC, Canada, 2010, pp. 199-207.

S. Ertekin, J. Huang, L. Bottou, and L. Giles, “Learning on the border:
Active learning in imbalanced data classification,” in Proc. 16th ACM
Conf. Conf. Inf. Knowl. Manage., Lisbon, Portugal, 2007, pp. 127-136.
H. He, Y. Bai, E. A. Garcia, and S. Li, “ADASYN: Adaptive synthetic
sampling approach for imbalanced learning,” in Proc. IEEE Int. Joint
Conf. Neural Netw. (IJCNN) (IEEE World Congr. Comput. Intell.),
Hong Kong, 2008, pp. 1322-1328.

S. Chen, H. He, and E. A. Garcia, “RAMOBoost: Ranked minority
oversampling in boosting,” IEEE Trans. Neural Netw., vol. 21, no. 10,
pp. 1624-1642, Oct. 2010.

S. Wang, Z. Li, W. Chao, and Q. Cao, “Applying adaptive over-sampling
technique based on data density and cost-sensitive SVM to imbalanced
learning,” in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Brisbane,
QLD, Australia, 2012, pp. 1-8.

E. Osuna, R. Freund, and F. Girosi, “Support vector machines: Training
and applications,” Massachusetts Inst. Technol., Cambridge, MA, USA,
AI Memo 1602, 1997.

F. R. Bach, D. Heckerman, and E. Horvitz, “Considering cost asym-
metry in learning classifiers,” J. Mach. Learn. Res., vol. 7, no. 2,
pp. 1713-1741, 2007.

[25]

[26]

[27]

[28]

[29]

(30]

(31]

[32]

G. Wahba et al. “Support vector machines, reproducing kernel
Hilbert spaces and the randomized GACV,” in Advances in Kernel
Methods-Support Vector Learning, vol. 6. Cambridge, MA, USA: MIT
Press, 1999, pp. 69-88.

V. Cherkassky and Y. Ma, “Practical selection of SVM parameters and
noise estimation for SVM regression,” Neural Netw., vol. 17, no. 1,
pp. 113-126, 2004.

T. Joachims, “Making large scale SVM learning practical,” in Advances
in Kernel Methods. Cambridge, MA, USA: MIT Press, 1999.

L. Yin, Y. Deng, and P. Li, “Simulation-assisted formal verification
of nonlinear mixed-signal circuits with Bayesian inference guidance,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 32, no. 7,
pp- 977-990, Jul. 2013.

H. Lin and P. Li, “Parallel hierarchical reachability analysis for analog
verification,” in Proc. 51st Annu. Design Autom. Conf., San Francisco,
CA, USA, 2014, pp. 1-6.

S. Youn, J. Kim, and M. Horowitz, “Global convergence analysis of
mixed-signal systems,” in Proc. 48th Design Autom. Conf., New York,
NY, USA, 2011, pp. 498-503.

T. Kim et al., “Verifying start-up failures in coupled ring oscilla-
tors in presence of variability using predictive global optimization,”
in Proc. Int. Conf. Comput.-Aided Design, San Jose, CA, USA, 2013,
pp. 486—493.

P. Li, L. T. Pileggi, M. Asheghi, and R. Chandra, “IC thermal
simulation and modeling via efficient multigrid-based approaches,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 25, no. 9,
pp- 1763-1776, Sep. 2006.

Honghuang Lin received the B.S. degree in automa-
tion from Tsinghua University, Beijing, China,
in 2011. He is currently pursuing the Ph.D.
degree with the Department of Electrical and
Computer Engineering, Texas A&M University,
College Station, TX, USA.

His current research interests include analog and
mixed-signal circuit verification, machine learning-
based circuit analysis, statistical circuit modeling,
and physiological signal processing.

Peng Li (S’02-M’04-SM’09) received the Ph.D.
degree in electrical and computer engineering from
Carnegie Mellon University, Pittsburgh, PA, USA, in
2003.

He is currently an Associate Professor with the
Department of Electrical and Computer Engineering,
Texas A&M University, College Station, TX, USA.
His current research interests include the general
areas of circuits and systems, electronic design
automation, and computational neuroscience.

Prof. Li was a recipient of several awards, includ-

ing the IEEE/ACM William J. McCalla International Conference on Computer
Aided Design Best Paper Award, the IEEE/ACM Design Automation
Conference Best Paper Award thrice, the Semiconductor Research Corporation
Inventor Recognition Award twice, the Microelectronics Advanced Research
Corporation Inventor Recognition Award twice, and the National Science
Foundation CAREER Award, and the Electrical and Computer Engineering
Outstanding Professor Award from Texas A&M University and was named
as a TEES Fellow and William O. and Montine P. Head Faculty Fellow. He
was an Associate Editor of the IEEE TRANSACTIONS ON COMPUTER-AIDED
DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS from 2008 to 2013. He is
also an Associate Editor of the IEEE TRANSACTIONS ON CIRCUITS AND
SYSTEMS-II: EXPRESS BRIEFS. He has served on the committees of several
international conferences and workshops.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on January 20,2021 at 19:29:01 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

