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Generalized Pencil-of-Function Method for
Extracting Poles of an EM System from
Its Transient Response

YINGBO HUA, MEMBER, IEEE, AND TAPAN K. SARKAR, SENIOR MEMBER, IEEE

Abstract—A generalized pencil-of-function (GPOF) method for ex-
tracting the poles of an EM system from its transient response is
developed. The GPOF method needs the solution of a generalized
eigenvalue problem to find the poles. This is in contrast to the
conventional Prony and pencil-of-function methods which yield the
solution in two steps, namely, the solution of an ill-conditioned matrix
equation and finding the roots of a polynomial. Subspace decomposition
is also used to optimize the performance of the GPOF method. The
GPOF method has advantages over the Prony method in both computa-
tion and noise sensitivity, and approaches the Cramer-Rao bound when
the signal-to-noise ratio (SNR) is above threshold. An application of the
GPOF method to a thin-wire target is also presented.

I. INTRODUCTION

IT IS KNOWN [1]-[8] that in target identification extracting
various features of the target from its transient response is
desired. The target poles that contain the information of the
decay factors and the resonant frequencies should be estimated
with high accuracy while the residues can be computed by
solving a linear least squares problem [1] after the poles are
obtained.

The Prony method [1]-[3] has been a very popular
technique for pole retrieval. There are also many versions of
the Prony method, which include the least square (LS) Prony
method, the total least square (TLS) Prony method, and the
SVD Prony method. An alternative method is the pencil-of-
function (POF) method [4], [9]. Very recently, the idea of the
POF method has been' explored along with ESPRIT [10], and
this has resulted in improved and generalized versions [11]-
[14]. This paper, which is a result of this exploration, presents
a generalized pencil-of-function (GPOF) method. The GPOF
method finds poles by solving a generalized eigenvalue
problem instead of the conventional two-step process where
the first step involves the solution of a matrix equation, and the
second step entails finding the roots of a polynomial, as is
required by the Prony method. We develop the GPOF method
and discuss it§ computational aspects in Section II. The noise
sensitivity of the GPOF method is addressed in Section III. In
Section IV, an application of the GPOF method to a thin-wire
target is presented.
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II. GENERALIZED PENCIL-OF-FUNCTION METHOD

It is known that an EM transient signal can be described by

w=3 biexp (s:btk) )

i=1M

where k = 0,1, +--, N — 1, b; are the complex residues, s;
are the complex poles, and 8¢ is the sampling interval. For
notational brevity, we can let z; = exp (s;6¢) which are the
poles in the Z-plane. It is clear that b, and s; should,
respectively, be in complex conjugate pairs for real valued y;.
Following the idea of the pencil-of-function method, we
consider the following set of ‘‘information”’ [9] vectors:

Yo, Y1, =5 YL

where
)

The superscript T denotes transpose of a matrix. Based on
these vectors, we define the matrices Y, and Y, as

Yi=[i Yiet, s Yien-r-117-

) YL—I] (3)
5yl @

To look into the underlying structure of the two matrices, one
can write

Y =[yo, ¥i, -

Yo=[y, y2 -

Y,=Z,BZ, )
Y,=Z,BZ,Z, ©
where
1 1 R |
S o
ZIIV-L—] ZQI_L_I zz—L—l
1 z zp!
Z,= ®)
1 2y 5!
Zy=diag [z, z2, *"*, Zuml ©)
B=diag [by, by, -, bpl. (10)

Based on the above decomposition of Y; and Y, one can show
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thatif M < L < N — Mthe poles {z;;i = 1, ---, M} are
the generalized eigenvalues [10], [17] of the matrix pencil Y,
— zY,. Namely, if M < L < N — M, z = gz is a rank-
reducing number of Y, — zY,. If L = M, this method is the
same as the basic POF method as in [12] and equivalent to a
version of Ibrahim time-domain (ITD) method [16]. However,
in the GPOF method, we are more interested in different
values of L for M < L < N — M. The significance of this
will be shown later.

To develop and illustrate the use of an algorithm for
computing the generalized eigenvalues of the matrix pencil
problem we can write

Y;Y,=Z;B'Z;Z\BZZ,

=Z} 7,7, 1)

where the superscript + denotes the (Moore-Penrose)
pseudo-inverse [17], whereas we use ‘‘ — 1"’ for the (regular)
inverse. It can be seen from (11) that there exist vectors { p;; i
=1, -+-, M} such that

Y!Yipi=mi (12)

and
Y,Jr Yopi=zipi. 13)

The p; are called the generalized eigenvectors of ¥, — zY;.
To compute the pseudo-inverse Y, one can use the singular
value decomposition (SVD) [17] of Y; as follows:

Y=Y owyv]
i=1,M
=UDVH (14)
Y= VD-'UH (15)
where U = [uy, ** -, Uy, V = [vy, ***, V], and D = diag

[o1, *--, oum]. The superscript H denotes the conjugate
transpose of a matrix. U and ¥ are matrices of left and right
singular vectors, respectively. Note that for noisy data y, one
should choose gy, * * -, gs to be the M largest singular values
of Y,, and the resulting Y; is called the truncated pseudo-
inverse of Y,. Since Y;Y; = VV¥ and VHY = ],
substituting (15) into (13) and left multiplying (13) by Ve
yields

(Z-z1)z;=0 (16)
where i = 1, ---, M, and
Z=D"'U"Y,V, an
and
z;=VHp,. (18)

Note that Z is an M X M matrix, and z; and z; are,
respectively, eigenvalues and eigenvectors of Z. Now we have
completed the description of an algorithm of the GPOF
method.

It is important to mention that the number of poles, M, can
be estimated from the singular values, 0y = 0, = -+ = 0oy
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=t 2 Omin(N-L,L)» SINCE Opre1 = *°° = Omin(M-L.L) = 0
for noiseless data.

If L = M, the SVD of the Y, is not required, and {z;; i =
1, -++, M} are the eigenvalues of the M X M matrix
(Y#Y,)"1YHY, which is obtained by substituting Y/ =
(YY)~ YH into (13) for L = M. Furthermore, one can
verify that with or without noise,

0 -+ 0 —cu
(vryyyEy,= |t 0 T (19)
1 —:cl
which is the companion matrix of the polynomial
1+ 2 cz™i=0, (20)
i=1L,M
where
Cm
= - (YY) 'Y{ym @1
a

which is the solution of the least square Prony method. So for
L = M the GPOF method is equivalent to the LS Prony
method.

The total least square Prony method is to compute the
polynomial coefficients as follows:

c=arg min {¢¥ Y7 Yc; |c[ =1} (22)

where ¥ = [¥o, Y1, -, Yuland ¢ = [car, =+ °, €1, C) 7. A
perturbation analysis [12] has shown that the LS Prony method
and the TLS Prony method are equivalent to the first-order
perturbation approximation.

The SVD Prony method (for L > M) is to compute ¢, =
[c-1, ** "5 o] T by

e,=—(Y4Y) Yivo=-Y; Yo 23

and detect the M signal roots, i.e., {z;';i =1, -+, M},
from the L roots of the L-degree polynomial 1 + ;..
¢,z 1. But the detection is guaranteed (without noise) to be
successful only when all z; (z;”') are inside (outside) or on the
unit circle [21]. Computationally, solving for the roots of an
L-degree polynomial is also a disadvantage of the SVD Prony
method, compared to solving M eigenvalues of an M X M
matrix for the GPOF method.

III. Noise Sensitivity ofF GPOF METHOD

In this section, we illustrate the noise sensitivity of the
GPOF method through some numerical examples. Specifi-
cally, we let

Y=Y, Aisin (wk+ ;) exp (- oK)

i=1,J

@4

wherek = 0,1, -, N-1,N=30,J=2(M=2,J=4)
A=A, =1, w =021, w, = 0357, ¢y = ¢ =0, 01 =
0.027, and a; = 0.0357. Note that 2, = exp (s;6) = exp
(—o; + jw;), fori = land2,andz; = z¥ ,, fori = 3 and 4.
The superscript asterisk denotes the complex conjugation. It is
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Fig. 1. Inverted perturbation variances in dB of the estimated w; versus the
pencil parameter L.
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Fig. 2. Inverted perturbation variances in dB of the estimated o, versus the

pencil parameter L.

also important to note that o; and w; are, respectively, damping
factors and resonant frequencies normalized by the sampling
frequency f; = 1/6¢. (There is no need to specify the sampling
frequency for our numerical simulations. The sequence as in
(24) is the only sampled data sequence used in this section for
illustration purposes.) The first-order perturbation analysis of
the GPOF method is outlined in the Appendix. For the
analysis, it is assumed that the additive noise in y is white and
sufficiently weak so that the first-order approximation can be
carried out through the derivation. Fig. 1 shows the inverted
perturbation variance in dB of w; (imaginary part of the pole)
versus the pencil parameter L. The Cramer-Rao bound
provides the ‘‘absolute’” best result that any technique can
achieve in the present ‘‘noisy’’ environment. The GPOF
method approximately reached the Cramer-Rao bound. This
implies that ‘‘no”’ other theoretical technique can do any
better! Fig. 2 shows the same thing for «, (real part of the
pole). The plots for w, and o, are similar to the above two
figures, and hence are omitted from this paper. As one
observes, the optimal choice of L is around L = N/2.
Intuitively, this phenomenon can be explained as follows.
The noiseless Y, (or Y;) has a column subspace of
dimension M. (Note that the GPOF method requires L = M
and N — L > M.) This subspace is called the signal subspace,
denoted by Ss. But the noisy Y, (or Y,), which consists of
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Fig. 3. Simulation results (denoted by +) of the inverted sample variance

in dB of w, estimated by the GPOF method and the LS Prony method. The
straight lines are obtained from the perturbation analysis.
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Fig. 4. Simulation results (denoted by +) of the inverted sample variance
in dB of «, estimated by the GPOF method and the LS Prony method. The
straight lines are obtained from the perturbation analysis.

signal and noise, spans a column subspace, denoted by S, v,
of dimension equal to min (N — L, L). It is clear that we can
write Ss.y = Ss + Sy, where Sy contains all signal
components and the noise components projected onto the signal
subspace, and Sy contains noise only. As is seen in the GPOF
method, we perform subspace decomposition of Y; as in (14)
and throw away the noise component in Sy which is spanned
by u; for i > M. It seems, therefore, that the larger the noise
subspace Sy, the more noise can be filtered out by the GPOF
method. The dimension of Sy is the largest when N — L = L,
i.e., L = N/2. This is consistent with our perturbation
analysis. Note that around L = N/2 the performance of the
GPOF method is very close to the optimal bound, i.e., the
Cramer-Rao bound [14], [19]. A different interpretation of a
similar phenomenon with the ITD method was made in [16].

With the choice L = N/2 = 15, some simulation results
for the GPOF method are shown in Figs. 3 and 4. The (Monte-
Carlo) simulation was conducted with 200 runs. During each
run, we computed the estimated o; and w; from the data
contaminated by (pseudo) white Gaussian noise. (Note that o;
= —Re {log [z;]} and w; = Im {log [z;]}.) The noise used in
each run is independent of that used in others. Figs. 3 and 4
show the inverted sample variances (denoted by the plus signs)
in dB of the estimated w, and «; versus SNR which is defined
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DIPOLE CURRENT RESPONSE
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Fig. 5. Current response at the center of the 2-m dipole illuminated by a
short pulse.
by
SNR= Y |y|*/No? 25)
k=0,N-1
and
SNR (dB) =10 log;o (SNR). (26)

o2 is the noise variance. The straight lines are obtained from
the perturbation analysis. As one observes, for high SNR, the
simulation results agree with the analytical results. As a
reference, the simulation results of the LS Prony method are
also shown in the plots. The detailed perturbation analysis of
the Prony method is available in [14], [15]. The noisy data
used for the LS Prony method were the same as those used for
the GPOF method. We should mention that the SVD Prony
method as represented by (21) performs better than the LS
Prony method and the TLS Prony method [21]. In fact, the
SVD Prony method performs almost as well as the GPOF
method for this particular example. However, it can be shown,
in general, [12]-[14] that the GPOF method is less sensitive to
noise than the SVD Prony method.

IV. AN APPLICATION

Consider that a 2-m dipole antenna of radius 0.001m is
illuminated by a short EM pulse of the form

Eirc=q/(7'2co) exp [— (t — tp)*/0?]

from broadside where = 377 ohms, ¢ = 3 X 108 m/s, 0 =
0.5/c, and t; = 60. The current response at the center point of
the dipole was computed by the approach in [20] with
sampling time 8¢ = 0.5 ns, and is shown in Fig. 5. To get the
intrinsic poles of the dipole itself, we considered a segment of
the current for ¢ = 8.4 through 25.5 lightmeters, which
consists of 114 samples. Note that for ¢ > 8.4 lightmeters the
EM pulse E™ is almost zero. Fig. 6 shows the fast Fourier
transform (FFT) amplitude spectrum of the current. From the
spectrum, four resonant components are detected at 0.0684,
0.203, 0.391, and 0.414 GHz. The spectrum was computed
with resolution equal to f;/1024 = 0.00195 GHz.

Applying the GPOF method with L = N/2 = 57 tothe 114
sampled data, we observed that the ten largest singular values
of the data matrix Y, are 9.3, 7.7, 0.45, 0.42, 0.057, 0.056,
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Fig. 6. FFT amplitude spectrum of the current.

0.039, 0.0388, 0.0052, and 0.0049. With M = 8 (since there
is a large drop from the eighth singular value to the ninth), the
GPOF method yielded the following poles (i.e., s;6t = log
[z] = —a; + jw):

—0.0204+£,0.218 —0.0266 +j0.642

—0.0046+;1.17 0.0039+,1.27.

By least squares fitting [1], the corresponding residues
(absolute values) were computed to be

0.3835x 10° 0.2456x 10-! 0.9379 x 10~ 0.7506 x 10~3

From the first six stable poles, three estimated resonant
frequencies (f; = w;/2wdt) are obtained to be 0.0694, 0.204,
and 0.372 GHz. The unstable estimated poles with the
frequency 0.404 GHz appear to correspond to the *‘fourth™
resonant component as is shown in the FFT spectrum.
Applying the LS Prony method to the same data samples and
with the assumption M = 8, we found the following poles:

—0.0203+,0.218 —0.0261+,0.645

0.3x1073+1.251 0.611+,2.244.

It is seen that the first two pairs of poles are close to the
corresponding pairs obtained by the GPOF method while the
next two pairs differ from those obtained by the GPOF
method. In the following table, the resonant frequencies
estimated by different approaches are compared for the
identical data records.

Frequency (GHz) fi £ Ss Ja
By fi = ¢2i — 1)/2L 0.0750 0.225 0.375 *
By GPOF 0.0694 0.204 0.372 0.404
By FFT 0.0684 0.203 0.391 0.414
By LS Prony 0.0694 0.205 0.398 0.714

L is the length of the dipole and c is the light velocity. It is
clear that for the same data, the GPOF method provides a
stable solution.

V. CONCLUSION

We have presented the GPOF method which solves a
generalized eigenvalue problem to estimate poles of EM
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system. In this new approach, one finds the poles directly by
solving a generalized eigenvalue problem. This is in contrast
to the contemporary methods like Prony and pencil-of-
function methods, which are generally two step processes. In
the first step one solves a matrix equation followed by finding
the roots of a polynomial. Compared to the SVD Prony
method, the GPOF method is less restricted because it does not
require that all system poles must be either stable or nonstable,
and computationally more efficient because it does not solve
an Lth-degree polynomial. Compared to the LS or TLS Prony
method, the GPOF method is more robust to noise as has been
shown. An application of the GPOF method to a synthesized
dipole has been shown, with comparison to the FFT and the
LS Prony method.

APPENDIX

In this section, we give an outline of the first order
perturbation analysis of the GPOF method. For detailed
discussion, see [14].

First, it can be verified that the eigenvalues of Z are same as
the nonzero eigenvalues of Y Y, whether or not the data are
noisy. Then, it is known [18] that the first-order variation in
the poles is given by

0zi=q;6(Y} Yz)pi/(I,HDi @27

where 6 is the first-order differential operator and p; and q;
are, respectively, the right and the left eigenvectors of the
noiseless Y Y,. So p; (see (11)) is the ith column of Z;,and
q; is the ith column of Z#!. Therefore, q#p; = 1.

Secondly, it can be shown [13]-[14] that

Q78Y Fpi=—qi Y 8Y Y . 28)

Note that Y} is a truncated pseudoinverse of Y; in the noisy
data case. From (27) and (28), one can obtain the following
after some algebraic manipulations:

oz;= (l/bi)l',ﬂ(a Y,-ziéY)p; (29
where rf is the ith row of Z;", and

Ho n; hp_,
8Y,= (30)

An_p-1 NN_g Nn-2

n; n; e n;

oY, = 31

An_p Ny g4 An—y

Finally, it can be shown from (29)-(31) that if {n;; i = 0,
*» N — 1} are white with variance equal to o2, then the
first-order perturbation variances are

E{|6z:]*} =[%/|bi{%1 Y 1Cixk—zCixsil> (32)
k=1,N
E{|ba;|?} =02 E Re? {(Cix—2zCi g+ 1)/ bizi} (33)
k=1,N
E{|owi|*} =02 E Im? {(Cix~2.Ci 1)/ bizi} (34)
k=1,N
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where
F Sikm»  2<k=<min (L, N-L)
m=1,k-1
E Jikms L=<N-L and
meko LA L+1<k<N-L+1
Cik= 35)
Jie,m» N-L<L and
moLNeL N-L+lsk<L+1
Sikoms max (L, N—L)+2<ks<N
m=k~-LN-L
Sikm=r¥nPik-m (36)

in which r¥_is the mth element of the row vector rf and p;
is the mth element of the column vector p;.
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