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ABSTRACT OF THE DISSERTATION

Behavioral Health Intervention Effectiveness and Multiple Testing

by

Teresa Dianne Bufford

Doctor of Philosophy in Biostatistics

University of California, Los Angeles, 2022

Professor Hilary Aralis, Chair

Behavioral health interventions (BHI) have unique features that pose statistical challenges,

both in the controlled trial and implementation stages. Family and school-based preven-

tive BHI involve skill-building modules delivered by trained individuals which aim to im-

prove well-being by promoting resiliency, empathy, communication, emotional regulation,

and other related skills. Outcomes are measured through validated questionnaires given

before and after the intervention. When establishing and evidence-base, researchers often

conduct a randomized controlled trial of the BHI, through which they measure many, po-

tentially correlated, outcomes. If the investigator hypothesizes that the intervention impacts

each outcome measured, one must consider the problem of multiple testing when determining

the overall efficacy of the intervention. It would be remiss to treat these tests as indepen-

dent and existing methods for dependent outcomes require specification of the unknown

correlation structure. To address this situation, we propose use of a permutation method

to determine statistical evidence of an overall intervention effect. Two possible versions of

a permutation test are presented, one that focuses on the number of significant individual

hypothesis tests needed to indicate overall efficacy, and one that uses the magnitudes of the

p-values for the individual tests to calculate an overall p-value for intervention efficacy.

Once efficacy has been demonstrated in an initial randomized trial, BHIs are often broadly

implemented in real-world settings where adaptations to intervention protocol naturally arise.
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Prevention scientists have recognized the need for ongoing evaluation of intervention adap-

tations. Again, we must consider the problem of multiple testing because the total number

of hypothesis tests is unknown (and potentially unlimited) as data is continually collected.

Existing statistical methods fall short when using continuously-generated real-world evi-

dence to compare concurrent intervention versions. We propose combining methods used

for observational data with methods for adaptive platform clinical trials. Since the data are

observational, we use a pre-processing step to account for differences in covariate distribu-

tions among intervention groups. This allows us to more accurately estimate intervention

effectiveness and make comparisons. We have developed a Bayesian analysis framework for

interim decision making throughout the platform trial which allows us to determine the su-

periority or futility of concurrent intervention versions when compared to the current best

version. Performance of the analysis framework is examined using simulations. Since type I

error rate and power are not well defined in this context, we develop new metrics with which

to evaluate the method. We demonstrate the potential utility of the combined framework

using BHI data collected from a classroom-based resilience curriculum administered to Los

Angeles Unified School District (LAUSD) high school students.
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CHAPTER 1

Introduction

1.1 Assessing Intervention Efficacy in the Trial Stage with Corre-

lated Outcomes

A behavioral health intervention (BHI) is a program that aims to improve well-being by

promoting skills such as problem solving, resiliency, empathy, communication, and emotional

regulation. These programs often take place over multiple sessions, and may be delivered

in group settings. Outcomes are typically measured through validated questionnaires given

before and after the intervention. Statistical challenges arise both in the trial stage, when

the efficacy of a new intervention is tested in a randomized, controlled setting, and in the

implementation stage, when an intervention is delivered on a large scale to various groups

of people in real world situations.

In the trial stage, the main goal is to make a decision whether the intervention, overall,

has a statistically significant benefit to the well-being of the participants. However there

are usually a host of outcomes that are of interest to the researchers, rather than a single

primary outcome. This is especially true in the case of family based BHI which often include

measurements for more than one family member. For instance, researchers may want to track

changes in mother’s mental health, father’s mental health, measures of dyadic relationships

and family functioning, child developmental measures, and child behavioral measures.

An example of one such intervention is Families Overcoming Under Stress – Early Child-

hood (FOCUS-EC). FOCUS-EC is a multi-session trauma-informed and family-centered

preventive intervention designed for military-connected families with young children and the
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aim is to promote family resilience thereby reducing stress and adversity (Hajal et al., 2020;

Mogil et al., 2010, 2015). With each family member completing a questionnaire consist-

ing of multiple validated measures, each measure consisting of multiple sub-scales, we end

up with 24 primary outcomes that we wish to analyze when assessing intervention impact.

These outcomes include measures for PTSD symptoms, depression, anxiety, parental stress,

parent-child interactions, and child behavior. Moreover, it is very reasonable to conclude

that these measures are correlated with one another, but likely have a complex correlation

structure. Figure 1.1 shows an empirically-estimated correlation matrix for the 24 FOCUS-

EC outcomes. We note that this data appears to have smaller groups of measures that are

highly correlated, and lower levels of correlation outside of these ”clusters.”

Figure 1.1: FOCUS EC Data Correlation Matrix.

The FOCUS-EC intervention is not unique in this predicament of wishing to assess multi-

ple correlated outcomes, with a complex correlation structure, and draw a conclusion about

overall intervention efficacy. Examples of similar BHI include The Special Education for

Early Childhood Success - Reflective Parenting Program (SEEDS-RPP) which had 16 mea-

sures, Cultivating Awareness and Resilience in Education (CARE) which had 24 measures,
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a resilience-oriented treatment for post-traumatic stress disorder which had 14 measures,

interventions to reduce behavioral problems in children with cerebral palsy which had 11

measures, Strengthening Family Coping Resources (SFCR) which had 20 measures, a novel

early intervention for preschool depression which had 18 measures, and PLAY Project Home

Consultation intervention program for young children with autism spectrum disorders which

had 20 measures (Jennings and et al, 2013; Kent and et al, 2011; Whittingham and et al,

2014; Kiser and et al, 2015; Luby et al., 2012; Solomon and et al, 2014).

In these and many other published studies, researchers are typically interested in com-

paring the changes from baseline to follow-up between groups, whether it is treatment vs.

control or comparing specific sub-groups, and using the results of these comparisons to assess

intervention efficacy. Efficacy can theoretically be assessed at the individual measure-level

or overall with either approach necessitating the consideration of statistical issues arising

from multiple testing and correlation among measures. While methodologies abound for

addressing multiple testing when assessing the significance of individual measures, many of

these approaches do not take into account clustered correlation and methods for determining

overall efficacy, which often depend on the results of individual measure-level comparisons,

are similarly limited.

To address the issue of multiple testing with many correlated outcomes, we propose a

permutation test that provides a simple way of determining the number of significant results

needed to provide sufficient evidence of an overall intervention effect. We then extend this

permutation method to provide an single overall-pvalue for intervention efficacy that takes

into account the magnitude of the p-values associated with each outcome. We posit that

these methods are both valid for data with any underlying correlation structure and that

the structure need not be known a priori.

Furthermore the proposed methods can help diminish publication bias among the body of

work related to BHI. In the current state, researchers can claim significance of an intervention

based only on a few significant findings, without accounting for multiple testing, or sometimes

without fully acknowledging the large number of non-significant outcomes. We have no

3



measure of whether these claims are firmly supported or whether they are statistical artifacts

resulting from the improper treatment of multiple testing. Adopting a convenient and widely

applicable standard for assessing multiple testing among correlated outcomes would help

prevent bias in this field of research. Our method could provide that standard.

1.2 Assessing Relative Effectiveness of Intervention Adaptations

using Real-World Data

Once an intervention has been successfully vetted through a controlled randomized trial,

service providers endeavor to deliver this evidence-based intervention to members of the

intended population through widespread implementation. The intervention is delivered to

groups with varying characteristics, and for practical reasons or due to perceived benefit,

changes are often made to the intervention during the implementation process.

This is precisely what has taken place within Los Angeles Unified School District (LAUSD)

with the intervention Families OverComing Under Stress (FOCUS). The FOCUS interven-

tion was originally developed for military service members and their families but was then

adapted for public school students to be administered in a classroom setting. Figure1.2

shows how the FOCUS intervention was adapted over the years. Our analysis in the com-

ing chapters focuses on the implementation of the FOCUS Resilience Curriculum (FRC) at

high schools. Psychiatric social workers employed by LAUSD were trained on the FOCUS

intervention, referred to as the FRC, but were also given immense flexibility in implementing

the program in order to meet the diverse needs of the students. FRC facilitators also varied

greatly in their experience and available resources, leading to markedly different choices in

implementation strategy.
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Widespread implementation of evidence-based interventions has historically prioritized

fidelity to the original intervention when analyzing intervention outcomes (Carroll et al.,

2007; Ibrahim and Sidani, 2015). Adaptations to interventions naturally arise through the

practical necessities of widespread implementation. However, any adaptation to the original

intervention is typically viewed as inferior, having lower fidelity, unless a separate random-

ized controlled trial has been conducted to establish the efficacy of the new adaptation.

This ignores the fact that some intervention adaptations may actually be beneficial, thereby

demonstrating decreased fidelity but increased effectiveness.

A wealth of real-world evidence is generated through the process of intervention im-

plementation, and it ought to be utilized to determine whether advantageous adaptations

have arisen. Chambers and Norton describe the current lack of methodological development

in this area as a major hindrance to attainment of population-level benefits (Chambers and

Norton, 2016). Successful identification of the most beneficial intervention adaptations along

with discontinuation of less advantageous adaptations can lead to improved outcomes in the

long run. For this reason, we want to be able to continuously analyze outcomes of different

intervention adaptations as data is collected over time. Once again we must address the

issue of multiple testing as we repeatedly compare intervention versions after more data has

been collected and when new adaptations arise.

We also have the added challenge that the data are observational, and issues of covariate

imbalances among intervention groups must be addressed. Continuously comparing out-

comes using real-world data requires the development of a new statistical framework. To

address this challenge we combine an existing covariate balancing method called entropy

balancing with a Bayesian platform clinical trial framework. A platform clinical trial is one

in which multiple treatments are assessed simultaneously, and treatments can be added or

dropped for futility at interim analyses. In combination with entropy balancing, the plat-

form trial framework provides a way to compare intervention versions over time as data is

continuously collected, while accounting for covariate imbalances.

This method can potentially be applied, not only to BHI, but more broadly to real-world
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healthcare data. The need for continued learning from real-world data has been recognized

in many fields, such as oncology treatment (Anatchkova et al., 2018), diabetes treatment

(Schneeweiss and Patorno, 2021), generally in the world of biopharmaceutical development

(Corrigan-Curay et al., 2018; Wang et al., 2021; Wise et al., 2018), and even for the purposes

of regulatory decision-making (Franklin et al., 2020).

This dissertation is organized as follows. In Chapter 2 we introduce existing methods

for multiple comparisons and uses of permutation tests. Then we define the first proposed

permutation test, demonstrate its properties, and discuss it’s uses and limitations. In Chap-

ter 3 we introduce an extension to the permutation test described in the previous chapter,

assess methodological properties of the test through simulation, and apply the method to

the FOCUS EC data. In Chapter 4 we describe the development of a Bayesian statistical

framework for ongoing comparisons with real-world data. We call it the ’Adaptome’ frame-

work, following the terminology used by Chambers and Norton. We explore ways to measure

its performance, and demonstrate feasibility using simulations. Chapter 5 gives more infor-

mation on the FOCUS Resilience Curriculum implemented at schools within LAUSD and

illustrate how the Adaptome framework can potentially improve student outcomes. Further

simulations give an example of how to use the existing school data for future implementation

planning. Finally in Chapter6 we discuss limitations and possible extensions of the methods

described in the previous chapters.
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CHAPTER 2

Correlated Outcomes: Permutation Test

2.1 Introduction

2.1.1 Existing Methods for Controlling Type I Error

Conducting many statistical tests to determine the result of a single experiment warrants

an adjustment or accommodation for multiple testing to control the experiment-wise Type I

error rate. This is necessary when looking at the efficacy of the intervention as a whole. The

Type I error rate, often denoted as α, is defined as the probability of wrongly concluding

that there is an association or an effect, when in fact the null hypothesis of no effect is true.

Experiment-wise error is defined as the overall probability of at least one Type I error for all of

the statistical tests performed in evaluating an experiment or an intervention. Historically,

0.05 has been the accepted threshold for Type I error. Many forms of multiple testing

adjustments, such as the popular Bonferroni correction or False Discovery Rate method,

exist for independent tests (Aickin and Gensler, 1996; Benjamini and Hochberg, 1995).

For our purposes, these methods fall short in two ways. One, they assume each hypothesis

test is independent. This would mean each outcome measured by the intervention would

need to be independent of the others. It is important to account for the correlation in the

data because, when compared to a series of independent tests, higher correlation will tend

to increase the probability of a Type I error when conducting multiple tests (Harwood et al.,

2017). Two, the methods focus on creating a new threshold for determining whether each

individual test should be considered statistically significant, rather than making a conclusion

about overall efficacy based on the information from multiple tests.
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There has also been development of methods that adjust for multiple testing in the

case of correlated hypothesis tests, especially in the statistical genetics literature since this

is a common concern in genetic association studies. An example of one such method is

the estimation of the effective number of independent tests, Meff , developed by several

researchers (Cheverud, 2001; Nyholt, 2004; Li and Ji, 2005; Gao et al., 2008). While these

approaches accurately account for correlation in the data and are useful in the field of

genetics, they still focus on drawing inference for individual hypothesis tests. We, instead,

wish to use the information from all the hypothesis tests to draw inference at the experiment

level, and determine if there was an overall intervention effect. While our problem falls

under the umbrella term of “multiple comparisons” the underlying question that we wish to

address is distinct from that of most existing multiple comparison methods.

Harwood et al begin to address the issue of drawing an overall conclusion from multiple

correlated outcomes through a simulation study. For a fixed number of outcomes, Harwood

et al simulated test statistics from a multivariate normal distribution with varying levels

of correlation, from 0 to 0.9 with the assumed level of correlation being equal between all

outcomes (Harwood et al., 2017). For a fixed number of outcomes and assumed correlation,

they determine the minimum number (cut-point) of statistically significant one-sided tests in

favor of the intervention that are needed in order to conclude there is an overall intervention

effect while maintaining Type I error rate, α ¡ 0.05. A table is provided where one could

potentially look up the cut-point needed, depending on the number of outcomes and the level

of correlation. The limitation here is that in order to determine the correct cut-point for the

number of significant tests, one would need to know, or at least be able to estimate the level

of correlation among the test statistics. Additionally, one would also need to assume that

the test statistics are all equally correlated. In practice, information about the correlation

among test statistics for a given population and set of outcomes is unavailable and though

the correlations can be estimated in many circumstances, the estimation can have high

uncertainty. The assumption of equal correlation is likely a considerable oversimplification,

particularly in contexts such as family-centered interventions and other BHI.
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Thus, our objective is to develop and evaluate a statistical method allowing for control

of Type I error when assessing multiple correlated outcomes where the level of correlation

is unknown and may vary between pairs of outcomes. We also desire a method that is also

non-parametric, and does not require the measured outcomes to have a Gaussian or other

specified distribution. In order to have maximal benefit for determining efficacy of BHI, we

require a test that can be applied to sets of outcomes that have various outcome models or

modes of comparison. This additional flexibility is necessary for typical BHI outcomes.

In this chapter we describe the proposed permutation test and demonstrate a simulation-

based approach for determining the power one can expect under different correlation scenar-

ios. This can inform researchers who are designing a study to assess intervention effects using

multiple correlated outcomes where they may have a range of plausible values for the correla-

tion. This can potentially allow researchers to evaluate if there is an advantage to including

an additional outcome measure based on its possible correlation with other measures.

2.1.2 Historical Use of Permutation Tests

A permutation test is a method for determining the sampling distribution of a test statis-

tic by repeatedly permuting the covariate of interest and calculating the test statistic for each

permutation, thereby creating a random sample of test statistics. Permutation tests have

been used for decades as a way of simulating the null hypothesis in order to draw inference

(Oden and Wedel, 1975; Berry and Mielke, 1985; Ludbrook and Dudley, 1998; Anderson,

2001; Hothorn et al., 2008). These methods can be computationally intensive due to the large

number of permutations required to describe an entire distribution, and are typically used in

situations when concise mathematical formulas for the desired statistical calculation do not

exist. In that regard, permutation tests have a flavor similar to bootstrap methods. In the

past, researchers have avoided permutation tests when possible, despite their robust nature,

because conducting the test required significant computing resources and would often take

inordinate amounts of time (Gao et al., 2008). With today’s technology and availability of

computing power, permutation tests are easier and faster to implement, giving the method
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a renewed appeal (Pesarin and Salmaso, 2012).

Gao et al (2008) cite the use of a permutation test as a robust and well-established way

to correct for multiple testing when dealing with many correlated outcomes, and use the

permutation test as a standard of comparison for their proposed method. In their work,

however, the interest is in developing a threshold for significance for individual hypothesis

tests, similar to the Bonferroni and False Discovery Rate tests mentioned previously. There-

fore the steps of the permutation method Gao et al describe are distinct from the method we

propose because they do not assess overall efficacy by considering results across all outcomes.

2.2 Proposed Permutation Test

We propose a permutation test as a method for determining a threshold for the number

of statistically significant hypothesis tests needed to give enough evidence to infer an overall

intervention effect when the intervention has many correlated outcomes. We define S as

the random variable that represents the number of significant findings that occur due to

random chance, given we have performed M correlated hypothesis tests and there is no

difference between intervention and control groups. We assume the empirical distribution of

the observed data can be used to accurately approximate the true underlying distribution

of S among the population of data we could have sampled. This is a standard assumption

for all permutation tests. Based on the empirical distribution of S found through repeated

sampling, we compute C, the estimated cut-point for number of significant findings needed.

Let s0 be the true number of significant findings, then our null hypothesis is that there

is no underlying intervention effect (s0 < C) and the alternative hypotheses is that the

intervention caused differences in outcomes (s0 ≥ C).

The permutation test finds a unique cut-point for a given data set, without assuming a

correlation structure but allowing the correlation present in the data to drive the result. To

perform the permutation test, we randomly shuffle, or permute the intervention and control

group assignments. For this new set of intervention and control groups, we calculate the
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test statistics T1, ..., TM for each of the M outcome measures being considered. For each

permutation, the methods of data analysis and corresponding statistical hypothesis tests

implemented for each outcome should be equivalent to the methods which will be used to

analyze and draw inference using the original (un-permuted) data. These methods can be as

simple as a t-test, as seen in the simulation study, or as complex as a longitudinal regression

analysis, as seen in the example. The analysis model may even vary among different outcomes

for the same intervention, lending great flexibility to the proposed permutation test..

Once the new set of test statistics, T1, ..., TM have been calculated, we compare the

associated p-values to the desired significance threshold. For our purposes, we do not want

to allow the possibility for a significant effect in the opposite direction of what we would

expect (i.e. the control group having a better outcome than the intervention group) to count

positively towards an overall intervention effect. For this reason, we limit ourselves to one-

sided hypothesis tests when implementing the permutation method. This leads us to define

a statistically significant test as one that yields a one-sided p-value of p < 0.025. A one-sided

p-value that meets the criteria above would yield the same critical value for the test statistic

as a two-sided hypothesis test that controls the Type I error rate at α = 0.05. If we define

this rejection region corresponding to α for the mth hypothesis test as Rm,α, then the total

number of significant tests is

s(i) =
M∑

m=1

1Rm,α

(
T (i)
m

)
Where 1A(x) is the standard notation for an indicator function, defined as:

1A(x) =


1 if x ∈ A

0 if x /∈ A)

We have used the superscript (i) to denote results from the ith permutation. This procedure

is repeated many times to create a distribution for S, the number of statistically significant

findings among M correlated outcomes under the null hypothesis. Each permutation has

provided one sample from the distribution.
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In order to find our cut-point for the number of significant findings needed to demonstrate

an overall intervention effect, we find the 95th percentile of this simulated distribution of

S. By increasing the number of permutations, we increase the precision of the estimated

percentile. Manly (1997) recommends using at least 1,000 permutations for tests that require

95% confidence and at least 5,000 permutations for tests that require 99% confidence. For

G permutations, the 95th percentile, P95, is calculated as

P95 = (1− γ)s(j) + γs(j+1)

Where

j = floor(0.95G+ 0.05)

γ = 0.95G+ 0.05− j

Essentially, P95 is a weighted average of two consecutive order statistics and we note that

this can be either an integer or a decimal value (R Core Team, 2020; Hyndman and Fan,

1996). Finally we define our cut-point, C, as the smallest integer that is greater than or

equal to P95.

C = floor(P95) + 1

As an example of determining the cut-point, suppose we have 30 outcomes measured

and we perform a permutation test for overall intervention efficacy with 5,000 permutations.

From looking at the distribution of s(1), ..., s(5,000) we find that P95 = 4.25. In this case we

require 5 or more of the outcomes to show statistically significant results in favor of the

intervention (s0 ≥ C = 5) in order to conclude there was an overall intervention effect.

Specifically, if s0 = 5, we conclude that the intervention had a positive effect on those 5

outcomes, but naturally we do not conclude that the intervention has affected the remaining

25 outcomes, and we are at least 95% confident that these significant findings were not

a result of random chance due to multiple testing. A flow chart with the steps for the

permutation test are shown in Figure 2.1.
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Figure 2.1: Permutation Test for Correlated Outcomes - Flow Chart
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2.3 Simulation Study

2.3.1 Simulation Design

A simulation study was designed to evaluate the properties of this permutation method

when used with correlated outcomes. Data was generated from a multivariate normal dis-

tribution, using 20 different correlation matrices, Σ1, ...,Σ20. We will describe these cho-

sen correlation structures in further detail in the following paragraph. The simulated

scenarios were labeled 1-20 based on the correlation matrix used. For each correlation

structure, the required cut-points were evaluated for numbers of outcomes, M, such that

M ∈ 10, 15, 20, 25, 30, 35, 40. Varying M allowed us to assess how the permutation method

performed as the number of outcomes from the experiment grew. For each correlation struc-

ture and each possible value of M , we simulated data under both H0, no difference between

intervention (tx) and control (c) (µtx = µc = 0), and H1, an intervention effect with Cohen’s

d of 0.3 (µc = 0,µtx = 0.3). This is a viewed as a moderate, but reasonable effect size that

is within the realm of possibility for the effect size a clinician may expect to see. We as-

sumed that researchers are not measuring outcomes in which they do not expect to see any

intervention effect, so we simulated an effect across all outcome measures. For simplicity, we

kept the effect size uniform across measures, however this assumption will be relaxed in the

following chapter. We used a sample size of 200 subjects with equal proportions assigned

to intervention and control groups, such that ntx = nc = 100. Each individual represents

an independent sample drawn from a multivariate normal distribution with M correlated

outcomes. Thus the data generation can be summarized by

Control: Yc ∼ MVN(0,Σi)

intervention: Ytx ∼


MVN(0,Σi) under H0

MVN(0.3,Σi) under H1

Simulations under H0 allowed us to estimate the probability of an experiment-wise Type
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I error, α, and evaluate the permutation method as a way of controlling Type I error. Since

we knew the true distribution of the data, simulations under H1 allowed us to estimate β,

the probability of a Type II error. A Type II error is made when one wrongly concludes there

is no difference between the two groups, when in fact there is a difference. The power of a

study is defined as 1−β. Using the simulations, we estimated the power of the permutation

method in testing the hypothesis of an overall intervention effect. Comparisons of power

across scenarios can be helpful at the study design phase where researchers may have an

idea of the correlation among potential outcome measures.

The 20 correlation matrices used in the simulations were separated into two general cat-

egories, equicorrelation, and what we call “clustered correlation.” The clustered correlation

structure had groups, or clusters, of measures with high intra-cluster correlation, and a lower

level of inter-cluster correlation. While the simulations with a constant correlation matrix

were useful for comparisons to existing results from Harwood et al, the simulations with

a clustered correlation matrix were the main interest of this study because we believe this

to be a realistic representation of the correlation between measures often observed in BHI,

particularly when the intervention is family-based. One could imagine that several measures

related to the mother’s mental health may be highly correlated, and that measures related

to communication and family functioning may also be highly correlated, forming two “clus-

ters” of measures. There may also be a lower level of correlation between these two clusters

because the mother’s mental health could impact her manner of communication with family

members. Since there are many possibilities for the exact correlation structure of data that

falls into the “clustered correlation” category, 10 different versions of a correlation matrix

with correlated clusters were simulated. The specific clustered correlation structures were

chosen, not as an exhaustive set, but to give a variety of possibilities with which to demon-

strate the general performance of the permutation method. Details of the simulated data

structures for constant correlation are given in Table 2.1 and for clustered correlation in

Table 2.2. A sample clustered correlation matrix is given in Figure 2.2.

For each correlation scenario described in Tables 1 and 2 and each value of M outcome
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Table 2.1: Simulated data structures for constant correlation among outcomes

Σ Correlation (ρ)

Σ1 0
Σ2 0.1
Σ3 0.2
Σ4 0.3
Σ5 0.4
Σ6 0.5
Σ7 0.6
Σ8 0.7
Σ9 0.8
Σ10 0.9

Figure 2.2: Example Clustered Correlation Matrix (Σ18).

measures, 500 datasets were simulated with no intervention effect and 500 more datasets

were simulated with an intervention effect present. For each simulated dataset, a t-test was

used to compare intervention and control groups for each of the M outcomes. We emphasize

that the permutation method can be used with any test statistic, however the t-test provided

a simple example and was beneficial for computing speed. For each simulated dataset the

permutation method described in Figure 2.1 was implemented and the results recorded.

Results consisted of the true number of significant outcomes, the estimated cut-point, C,

and an indicator of whether a Type I or Type II error was made. From the 500 simulations,

an average cut-point and either α or 1− β, respectively, are estimated.
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Table 2.2: Simulated data structures for clustered correlation among outcomes.

Σ
ρ within Structure ρ between Custer

Size
Outcomes

Cluster within cluster Clusters per Cluster

Σ11 0.4-0.8 Constant 0.2 Equal 5
Σ12 0.3-0.6 Constant 0.1 Equal 5
Σ13 0.4-0.5 Varying 0.2 Equal 5
Σ14 0.5-0.6 Varying 0.2 Equal 5
Σ15 0.6-0.7 Varying 0.2 Equal 5
Σ16 0.7-0.8 Varying 0.2 Equal 5
Σ17 0.4-0.8 Varying 0.2 Equal 5
Σ18 0.4-0.8 Varying* 0.2 Varying 2-8
Σ19 0.3-0.6 Varying 0.1 Varying 2-8
Σ20 0.6-0.8 Varying 0.2 Varying 2-8

*Higher correlation for smaller clusters and lower correlation for larger clusters

2.3.2 Simulation Results

The average cut-point for each scenario is shown in Figure 2.3. As expected, the cut-

points for Scenarios 1-10 with constant correlation follow the general pattern shown by

Harwood et al. The number of significant tests needed increases with number of outcomes,

and also increases as correlation increases until we reach correlation of about 0.6 or 0.7, after

which we see a drop off in the cut-point. This likely occurs because when the correlation

gets too high, we are not gaining very much new information from the additional measures,

so it’s analogous to having fewer outcome measures with lower correlation. For the clustered

correlation, we see that the average cut-point increases as the number of outcomes increases,

and the trend is roughly linear.

The estimated values of α̂ and 1− β̂ from the simulation study are found in Figure 2.4.

We expect the permutation method to hold the Type I error rate for the hypothesis of an

overall intervention effect at α = 0.05. However each value of α̂ plotted is an estimate based

on 500 simulated datasets, and when estimating a proportion of 0.05 using a sample of 500,

there will be some variation in the exact estimate. If the true proportion is 0.05, then 95%
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Figure 2.3: Each point represents the estimated number of significant findings needed to
provide evidence for an overall intervention effect (ie. the cut-point), averaged over 1,000

simulations using the permutation method. For equi-correlated data, the correlation
structures have a natural ordering, so we provide a line graph to display the pattern as
correlation increases. Since the various clustered correlation structures do not have a

defined order, we provide a scatterplot distribution of point estimates, one point estimate
for each simulated data structure.

of estimates will fall between 0.033 and 0.073. Looking at the simulation results, we see that

no estimates of α exceed this upper bound, but several estimates fall below the lower bound.

For scenarios with constant correlation, 10 out of 70 estimates of α are above 0.05, with the

maximum of 0.066 and minimum of 0.014. The average of these 70 estimated values using

datasets with constant correlation is ¯̂α = 0.038. For scenarios with clustered correlation, 8

out of 70 estimates of α are above 0.05, with a maximum of 0.066 and a minimum of 0.012.

The average of the 70 estimated values using datasets with clustered correlation is ¯̂α = 0.039.

This suggests that the permutation method is generally on the conservative side, controlling

α to be slightly lower than 0.05. The conservative nature of the permutation method comes

from always rounding up from the 95th percentile to get the cut-point. Having to select an

integer value by rounding is less impactful when the number of outcomes is higher compared

to when the number of outcomes is lower. For lower numbers of outcomes, the permutation
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test errs on the conservative side to a greater extent.

Figure 2.4: For each simulation, a cut point for the number of significant p-values is
estimated, and a conclusion is drawn about whether or not the intervention was effective.
We used 500 repetitions of each simulated scenario to estimate the type I error rate (alpha)
for the permutation method when H0 is true and the power for the permutation method

when H1 is true. For equi-correlated data, the correlation structures have a natural
ordering, so we provide a line graph to display the pattern as correlation increases. Since
the various clustered correlation structures do not have a defined order, we provide a
scatterplot distribution of point estimates, one point estimate for each simulated data

structure.

In the case of constant correlation, we see a slight increasing trend in the estimated Type

I error rate as the level of correlation increases. This unanticipated result is explained by the
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shape of the estimated distribution of S, the number of significant tests, under low versus

high correlation and the fact that this distribution is discrete, taking only integer values. As

seen in Figure 2.5, when correlation is zero, the distribution of S has a shorter right tail.

Since the value of S can only be integers, this leads to multiple percentiles of the distribution

having the same estimated value. For example, in one simulation with 25 outcomes and

correlation of 0.0, the 87th percentile and the 96th percentile, and all percentiles in between,

were all estimated to be 2. In this case, controlling the Type I error rate at 0.05 by using

the 95th percentile to find the cut-point is equivalent to using the 87th percentile. This leads

to lower estimated α for scenarios with low equi-correlation. Contrastingly, the distribution

of S under high correlation has a longer, thinner right tail. This leads to distinct estimates

for each percentile in the upper end of the distribution, allowing us to more precisely control

the Type I error rate at 0.05.

In studies with multiple endpoints, it is typical to calculate the power for the study

based on a chosen single endpoint. If we were to do this with our simulation, where δ is the

difference in means, the power calculation would be as follows:

Power = P (reject H0|H1 true)

= P (Test Statistic > 1.96|δ = 0.3)

= P

(
ȳT − ȳc
σ̂/

√
n

> 1.96|µT − µC = 0.3

)
...

= 0.56

Using this as a point of comparison, we can easily see that considering multiple outcomes and

then using the permutation method to adjust for multiple comparisons increases the overall

power of the study. In the simulated scenarios of clustered correlation, the permutation

method maintains high power, above 80% for every estimate, while simultaneously controlling

the Type I error rate at or below 0.05. It is important for a study to have high power so that

a clinician can accurately detect any real effect that the intervention or intervention may
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Figure 2.5: Distribution of the number of significant findings under permutation with 25
outcomes with no correlation vs. high correlation

have on the target population. Now that we have a method for assessing whether there is

an overall intervention effect, researchers may be able to avoid choosing a single outcome as

the primary endpoint, and opt for a study design that has multiple outcomes and therefore

higher power, while also controlling Type I error rate.

When designing future studies, it is useful to know which scenarios have higher or lower

power in relation to each other. The estimated power is higher overall in the clustered

correlation simulations than in the equi-correlation simulations. The correlation structure
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defined by scenario 16 in Table 2.2 had the lowest power and correlation structure defined

by scenario 19 had the highest power. This is consistent with our finding that correlation

level among outcomes and overall study power are inversely related.

2.4 Discussion

A major benefit of the proposed permutation method is that there is no distributional

assumption made for the number of significant findings or the level of correlation of the

test statistics. The method is non-parametric, utilizing an empirical distribution estimated

through repeated sampling from the permutation distribution. We posit that this method

is valid for data with any underlying correlation structure and have conducted simulations

that support this conclusion.

This method also differs from conventional multiple testing methods because it focuses

on the question of whether there is an underlying intervention effect that causes the ob-

served differences between intervention and control groups for various outcome measures.

In contrast, conventional multiple comparison methods focus on drawing inference for indi-

vidual measures. The permutation method allows multiple findings that meet the standard

significance threshold to increase our confidence in the efficacy of the intervention, rather

than having to adjust the threshold for each p-value. In behavioral health we may have a

relatively small sample size and many measured outcomes which show results that favored

the intervention but are just barely below the traditional 0.05 threshold. If we were to use

a multiple comparison method that adjusts the necessary threshold for each p-value, we

may be left with no statistically significant findings, leading to the conclusion of no notable

intervention effect. More realistically, we would want to recognize that the p-values are tied

to sample size and impacted by correlation among outcome measures, therefore the number

of findings that all show improvement as a result of the intervention can collectively give

evidence of an intervention effect.

In addition, the application of this method is not limited to t-tests. While t-tests were
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used in the simulation study as a simple illustration and were the basis of the previous

work conducted by Harwood et al, the proposed permutation method hinges on counting

the number of significant p-values at each iteration, which can easily be extended to any type

of hypothesis test. It can accommodate not only normally distributed outcomes, but also

binary outcomes, count data, survival data, or a mixture of these. We could perform linear

regression, ANOVA, logistic regression, or use any combination of analysis models, perform

hypothesis tests on the model coefficients, and then re-compute these test statistics under

permutation. The extension of permutation methods, in general, to ANOVA, regression, and

other common models is described in detail by Anderson (Anderson, 2001). One practical

application of the permutation method as a test for overall efficacy in the presence of a

mixture of outcomes, is in a drug trial. As stated by Davidson et al, it may be useful in

early stages of a clinical trial to measure a variety of outcomes related to the new drug in

question, and look for a minimum number of positive results in order to justify continuing

the drug development and testing (Davidson and et al, 2011).

Finally we wish to address the issue of dichotomizing p-values. This method relies on

the ability to determine whether or not the differences between two groups are statistically

significant based on a p-value threshold. Recently there has been talk among the statistical

community that recommends against dichotomizing p-values based on the traditional 0.05

threshold, and instead supports greater use of confidence intervals (Wasserstein and Lazar,

2020). Proponents of this idea typically argue that a p-value alone does not determine

whether or not a finding is scientifically meaningful, but rather effect size must also be

considered. Studies with large sample sizes are more likely to result in many statistically

significant findings, even if the differences between groups are small, thus it will be prudent

in these cases to look at both effect sizes and p-values. The above permutation method can

easily be extended to include a check of effect size for each test statistic before determining

whether a finding is significant. The researchers would simply specify in advance a minimum

effect size needed for each hypothesis test.

The following chapter describes an alternative permutation test that similarly allows the
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researcher to make a decision about overall intervention efficacy, but instead incorporates

the magnitude of the p-values for each outcome into the determination of efficacy. A main

difference in these two approaches is the null hypothesis used. In this chapter we explore a

way to quantify the number of significant individual hypotheses needed to give evidence of

an overall intervention effect, and in the following chapter we assume a strict null hypothesis

such that any individual test can give evidence of an intervention effect. This distinction is

necessary in order to compare performance of our proposed method to existing methods for

controlling Type I error rates.
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CHAPTER 3

Correlated Outcomes Extension:

Permutation-Rank-Sum Test

3.1 Introduction

The permutation test described in the previous chapter provides researchers with a sim-

ple and valid method for determining whether there is an overall intervention effect when

numerous correlated outcomes are measured and comparisons between groups are conducted

using any of a flexible range of different statistical hypothesis testing procedures/models.

However, the results of the previous chapter gave rise to several questions which we propose

to address in this chapter with an extension in the form of a rank-sum-style permutation

test. These questions include:

• Can we increase power by considering the magnitude of the p-values rather than di-

chotomizing them (significant/non-significant)?

• Can we determine when it is advantageous to use the proposed permutation test relative

to other potential testing procedures?

Using the actual p-values may be advantageous relative to the method presented in the

previous chapter. Specifically, we may be able to glean more power by using more information

while still having the benefits described with the prior test: minimal assumptions, flexible for

use with any test, test based on the null hypothesis of exchangeability. To answer the second

question, we need to define our alternative hypothesis more explicitly than was done in the

previous chapter. To make our method more comparable to alternative tests an analyst
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might select, such as Hotelling’s T2 or Bonferroni, we adopt an alternative hypothesis of at

least one outcome for which the two groups are not equivalent.

As in the previous chapter, we wish to conduct overall inference on intervention effec-

tiveness when the intervention has potentially many primary outcomes which are correlated.

Going forward we define a strict null hypothesis of: H0 : µ = 0 for all M outcomes. Thus

our alternative hypothesis is: HA : µ ̸= 0. Therefore a departure from mean zero for any one

of the M outcomes results in rejecting the null hypothesis. An example of a test that uses

this type of null and alternative hypothesis is Hotelling’s T 2 test, which is a multivariate

extension of a simple t-test for a difference in means between two samples. We will use

Hotelling’s T 2 test as a point of comparison for our proposed method. A notable difference

between the two methods is that Hotelling’s T 2 is a parametric test, which assumes the data

are multivariate normal and that a covariance matrix can be estimated, while the proposed

method is non-parametric, drawing on existing non-parametric methodologies. Specifically,

we combine the idea of a permutation test with that of a rank-sum test, where the observa-

tions being ranked are the p-values from the many permuted datasets. In this manner, by

ranking the independently generated p-values, we can compare the magnitude of the p-value

for each outcome in the original data with the distribution of p-values generated through

permutation.

3.2 Method

Suppose we have M outcomes. Let P denote the set of M p-values P = {p1, ..., pM}

from the hypothesis test associated with each respective outcome. Then suppose we have K

random permutations of intervention group assignment and perform the hypothesis tests for

each outcome for each permuted data set. Including the set of p-values from the outcome

analysis with the allocation intervention groups (the unpermuted data), we together have

K + 1 sets of M p-values. Let Pk denote the set of p-values corresponding to the kth

permutation for k = 1, ..., K and P0 denote the set of p-values from the unpermuted (original)

data. Without loss of generality, let P0, P1, ..., PK be row vectors, that can be stacked to
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form a (K + 1)xM matrix. Thus column m of this matrix contains the p-value for outcome

m derived from the original data along with K p-values for outcome m derived from data

with permuted intervention group assignments.

Rank the p-values associated with each outcome, i.e. the values in each column, such that

we create a corresponding (K + 1)xM matrix with each column containing ranks 1 through

(K + 1). Assume the smallest p-value receives rank 1 and the largest p-value receives rank

K+1. For each permutation, and for the original data, sum the ranks across theM outcomes.

Let R0 denote the sum of the ranks of P0, and let Rk denote the sum of the ranks of Pk. The

overall p-value for the permutation-rank-sum test can then be calculated analytically as:

p = 1−
∑K

k=1 1(R0 < Rk)

K
.

The overall p-value thus reflects the proportion of instances in which the p-value ranks from

the unpermuted data summed across outcomes is less than the equivalent rank-sum statistic

calculated under a random permutation of the group labels.

3.3 Simulation Design

A simulation study was designed to evaluate the properties of this permutation-rank-

sum test when used with correlated outcomes. Data was generated from a multivariate

normal distribution, using 6 different correlation matrices, a subset of those used in the

previous chapter. Going forward we re-label the correlation matrices Σ1, ...,Σ6, as defined

in Table 3.1. The correlation matrices were separated into two general categories, constant

correlation, and what we call “clustered correlation.” The clustered correlation structure is

characterized by groups, or clusters, of outcomes with high intra-cluster correlation, and

a lower level of inter-cluster correlation. The simulations which use a clustered correlation

matrix are of particular interest because this correlation structure is a realistic representation

of the correlation between measures in a family based BHI.

For each correlation structure, the data was simulated using several values of M (M ∈
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Table 3.1: Correlation matrices for simulations.

Σ Category Description

Σ1 No correlation Identity matrix

Σ2 Constant correlation All outcomes have correlation 0.3

Σ3 Constant correlation All outcomes have correlation 0.6

Σ4 Clustered correlation • clusters of varying size
• intra-cluster correlation 0.3-0.6 (varies within cluster)
• inter-cluster correlation 0.1

Σ5 Clustered correlation • clusters of varying size
• intra-cluster correlation 0.4-0.8 (varies within cluster)
• inter-cluster correlation 0.2
• smaller clusters have higher correlation

Σ6 Clustered correlation • clusters of varying size
• intra-cluster correlation 0.6-0.8 (varies within cluster)
• inter-cluster correlation 0.2

10, 20, 30) and several alternative hypotheses (Table 3.2). The alternative hypotheses varied

in both magnitude of the difference in means between intervention and control groups, and

the proportion of the M outcomes that had a mean difference. Data was also simulated

under the null hypothesis to evaluate the Type I error rate. The number of observations

in the intervention and control groups was kept constant at 100 per group. In addition to

the simulations with multivariate normal data, simulations were also run with non-normal

data. A skew of 1.5 and kurtosis of 4 for was induced for all outcomes. The simulations

were limited to M = 10 outcomes and correlation matrices Σ1,Σ2,Σ4, and Σ5 because

it is computationally nontrivial to generate non-normal data with high levels of specified

correlation and large numbers of outcomes.

For each combination of correlation matrix, hypothesis and data shape, 200 datasets were

generated and assessed. When performing the permutation-rank-sum test, the intervention

and control groups were compared using a t-test, and thus p-values were calculated for each

of the M outcomes. The number of permutations used was 5,000. As a mode of comparison,

each dataset was also assessed using a Bonferroni adjustment for each of the p-values, using

Hotelling’s T 2 test and using a sign test. The sign test was implemented using the set of
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Table 3.2: Set of hypotheses for simulations.

Hypothesis Proportion of outcomes
with a mean difference

Magnitude of mean
difference

Alternative 1 1.0 0.2
Alternative 2 1.0 0.225
Alternative 3 1.0 0.25
Alternative 4 1.0 0.275
Alternative 5 1.0 0.3
Alternative 6 0.75 0.3
Alternative 7 0.5 0.3
Alternative 8 0.25 0.3
Null 0 0

M estimated mean differences testing whether the set of mean differences had a median

greater than zero. This is consistent with the common practice described by Harwood et.

al. When using Bonferroni, an overall conclusion about the efficacy of the intervention was

determined by assuming that if one or more of the individual tests showed significance after

adjusting the significance threshold, then the intervention as a whole was deemed effective.

This is a rather generous assumption and the conclusions about statistical significance of

individual hypothesis tests do not truly answer our question of overall intervention efficacy.

Nevertheless, we use this as a comparison because it is an approach often implemented in

BHI research.

3.4 Simulation Results

3.4.1 Multivariate Normal Data

Estimated type I error rates for each method are shown in Table 3.3. The sign test

does not adequately control type I error, when using correlated test statistics to perform

the sign test. In instances when the data has constant correlation of 0.3, the type one error

rate using the sign test peaks at 0.41. For this correlation structure and others, the sign test

gives type I error rates well above the standard 0.05 threshold. Contrastingly, the Bonferroni
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and Hotelling’s T 2 methods both successfully control type I error rates strictly below the

common 0.05 threshold for all correlation structures assessed. Hotelling’s T 2 test appears to

be the most conservative, with consistently low type I error rates. Estimates for type I error

rates using the permutation-rank-sum test do not remain strictly below 0.05, but generally

hover near the threshold.

Table 3.3: Type I error rates estimated from 200 simulations

Proportion of datasets where null hypothesis is rejected

Covariance M Bonferroni Sign Test Hotelling’s T2 Permutation-
Rank-Sum

M
u
lt
iv
ar
ia
te

N
or
m
al

D
at
a

Σ1 10 0.02 0.05 0.015 0.055
20 0.04 0.065 0.005 0.035
30 0.045 0.065 0.02 0.04

Σ2 10 0.02 0.21 0.03 0.03
20 0.035 0.255 0.04 0.03
30 0.04 0.295 0.02 0.07

Σ3 10 0.045 0.31 0.01 0.06
20 0.035 0.41 0.02 0.06
30 0.01 0.38 0.02 0.04

Σ4 10 0.04 0.165 0.025 0.06
20 0.03 0.22 0.02 0.04
30 0.04 0.27 0.01 0.045

Σ5 10 0.045 0.23 0.03 0.055
20 0.035 0.28 0.015 0.06
30 0.04 0.365 0.035 0.045

Σ6 10 0.025 0.235 0.035 0.04
20 0.015 0.255 0.01 0.035
30 0.02 0.325 0.01 0.04

S
ke
w
ed

D
at
a Σ1 10 0.045 0.045 0.01 0.03

Σ2 10 0.04 0.165 0.03 0.05

Σ4 10 0.05 0.135 0.025 0.07

Σ5 10 0.035 0.215 0.02 0.06

When data is simulated under one of the alternative hypotheses, we use the proportion

of datasets that successfully identify an overall intervention effect as an estimate of power.

As expected, power increases as the proportion of outcomes that have a true mean differ-
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ence increases (Figure 3.1). This is true for the permutation-rank-sum test, the Bonferroni

method, and the sign test. However Hotelling’s T 2 shows an unexpected drop in power when

all of the outcomes have a true mean difference between intervention and control groups,

and the outcomes are correlated. When 25% to 75% of the outcomes have a true difference

in means, Hotelling’s T 2 and Bonferroni have higher power than the permutation-rank-sum

test. The difference between the power curves of the various tests increases as the level

of correlation between outcomes increases. When more than 75% of the outcomes have a

true mean difference, the power curves cross, and the permutation-rank-sum test becomes

more powerful. This occurs for all correlation structures assessed when correlation among

outcomes is indeed present.

In instances where all outcomes in the data are simulated with a true mean difference

between intervention and control groups, the permutation-rank-sum test consistently has

higher power than either the Bonferroni method or Hotelling’s T 2 test (Figure 3.2). This

holds for all assessed magnitudes of the mean difference, from 0.2 to 0.3. The sign test has

even higher power than the permutation-rank-sum test in these scenarios, however recall

that the sign test does not adequately control type I error. When the data have clustered

correlation, these differences in power between tests are greater when the mean differences

are smaller. As is anticipated, power increases as the magnitude of the difference in means

increases. We also note that the choice of statistical test has a greater impact on power than

the number of outcomes in the data (M).

3.4.2 Non-normal (Skewed) Data

The patterns in type I error rates discussed above hold true for the data simulated with

induced skew and kurtosis (Table 3.3). The differences in power between the permutation-

rank-sum test and both Hotelling’s T 2 and Bonferroni are attenuated when the data are not

normally distributed, particularly when 25% to 75% of the outcomes have a mean difference,

as shown in Figure 3.3. Hotelling’s 2 test performs more similarly to the Bonferroni method

when the normality assumption is violated. One may infer that further departures from the

32



Figure 3.1: Estimated power for multivariate normal data with a mean difference of 0.3
across varying proportions of outcomes.
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Figure 3.2: Estimated power for multivariate normal data with varying magnitudes of
mean differences across all outcomes.
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Figure 3.3: Estimated power for skewed data with a mean difference of 0.3 across varying
proportions of outcomes.

normal distribution, such as a bimodal distribution, may further shift the power curves in

the observed direction. When all outcomes have a mean shift, we again see a larger difference

in power between tests when the mean difference is 0.2 than when the mean difference is 0.3

(Figure 3.4). And as seen with the multivariate normal data, when all of the outcomes are

simulated with a mean difference the non-normal data show that the permutation-rank-sum

test retains higher power than either Hotelling’s T 2 or Bonferroni. In fact, the permutation-

rank-sum test has higher power with non-normal data than with normally distributed data in

this instance. Even with an effect size (cohen’s d) as small as 0.2, the permutation-rank-sum

test has approximately 80% chance of successfully identifying the intervention effect.

Overall, the permutation-rank-sum test controlled type 1 error and was reasonably pow-
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Figure 3.4: Estimated power for skewed data with varying magnitudes of mean differences
across all outcomes.
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erful across a range of different outcome numbers and correlation structures. Importantly,

the permutation-rank-sum test was more powerful than alternative tests like Hotelling’s T 2

and Bonferroni when a relatively high proportion of outcomes had relatively smaller effect

sizes.

3.5 Application to FOCUS-EC data

To further demonstrate the usefulness of the permutation method, we apply it to data

from a behavioral health intervention called FOCUS-EC, described previously. A randomized

controlled trial was conducted to ascertain the benefits of the intervention, and 12 distinct

measures were included in the primary outcome analysis (Hajal et al., 2020). Each of the 12

measures of parental wellbeing were assessed for both the mother and father, leading to 24

total outcomes. The measures consisted of 2 subscales from the Brief Symptom Inventory

which measure depression and anxiety, 3 subscales from the Parental Stress Index, 4 subscales

from the Posttraumatic Diagnostic Scale, 1 scale measuring sensitivity of parenting from

the Parental Behavior with Preschooler Q-Sort, and 2 codes from an observed parent-child

interaction. There were 4 time points at which surveys could be administered; baseline, 3-,

6-, and 12-month follow up, however some measures were only assessed at 2 or 3 of the time

points. The outcomes were assessed using longitudinal models to detect differences over

time. Of main interest was the difference between baseline and last available follow up.

Following the model structure as described by Mogil et al, we implemented linear mixed

effects models in R to estimate intervention effects. The models included time point as a

repeated, within-subject factor, as well as intervention group and child gender as between

subject factors, and an interaction between intervention group and time point. A compound

symmetry covariance structure was used. We calculated one-sided p-values for each outcome

using the test statistic and degrees of freedom of the estimated model coefficients. This en-

sures that intervention and control group differences with directionality opposite of expected,

i.e. showing greater improvement in the control group than the intervention group, do not

contribute towards our overall determination of a successful intervention effect.
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As seen in Table 3.4, which details the results of the FOCUS EC intervention including

the one-sided p-values estimated from the longitudinal models, 11 of the 24 estimates are

statistically significant at the 0.05 α level. If we use the Bonferroni threshold of 0.05/24 ≈

0.0021, then only 2 estimates retain statistical significance, namely the decrease in PTSD

total score reported by mothers and the increase in the mothers’ observed affective behavior.

Using the Bonferroni method to adjust for multiple testing still leaves us questioning whether

we can claim overall efficacy of the FOCUS EC intervention based on changes observed for

2 of the 24 measured outcomes. Furthermore, we do not have a good way of estimating

the correlation between the test statistics from the various longitudinal models in order to

utilize Hotelling’s T 2 test. And as discussed previously, conducting a sign test using the

model estimates to make an overall conclusion about intervention efficacy does not control

the type I error rate.

To determine overall intervention efficacy, we apply the permutation-rank-sum test to

the FOCUS-EC data, using the longitudinal models described above to estimate intervention

effects for each of 5,000 permuted datasets. The overall p-value calculated using this method

was 0.002, leading us to conclude that the intervention did improve parental psychological

health, parent-child relationships, and child behavior when compared to the control group.

3.6 Discussion

As demonstrated with the FOCUS EC example, the permutation-rank-sum test is flexible

enough to use with any type of outcome model, including the ability to use differing models

for the various outcomes of interest. We also do not need to determine the structure of the

correlation among the test statistics, as is required for Hotelling’s T 2 test. Estimating the

correlation of the test statistics may be unreliable, especially when fitting various outcome

models. This flexibility arises from the permutation-rank-sum’s reliance on ranking sets

of p-values with indifference to the method of p-value generation. We recommend using

one-sided p-values when performing the permutation-rank-sum test, so that one can ensure

the directionality of the outcome estimates are in line the expected directionality of the
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intervention effect. If this is not done, a small p-value that gives evidence of the intervention

adversely affecting an individual outcome could misleadingly add to the collective evidence

of an overall, positive intervention effect when looking at the collection of outcomes. In

general one should inspect the directionality of the intervention effects for all outcomes and

the anticipated direction corresponding to a positive intervention effect should be determined

a priori during study planning.

The permutation-rank-sum test is somewhat unique in the way evidence towards reject-

ing the null hypothesis is accumulated. In multiple testing methods such as Bonferroni

and False Discovery Rate, adjustment for multiple hypothesis tests is made by requiring

stronger evidence for each individual hypothesis test in order to demonstrate significance.

The permutation-rank-sum test however allows a small amount of evidence of a mean differ-

ence for many outcomes to collectively suggest an overall intervention effect. That is to say,

the larger the proportion of outcomes that show a difference between treatment and con-

trol group, the more confident we are that the intervention is the cause of the difference in

means. We believe that this aligns with our intuition as researchers when examining results

from a study assessing BHI effectiveness. Experts in this area have often questioned whether

the conclusion of a non-significant overall intervention effect is actually warranted despite

observing a relatively high proportion of outcomes in the expected direction - higher than

might reasonably be anticipated by chance alone. The permutation-rank-sum test gives us

a valid method for operationalizing this intuition in the form of a statistical hypothesis test.

When designing BHI, researchers will choose outcomes measures that they expect the

intervention to affect, even if the effect size may be small relative to the within-subject

variability of the measure. Furthermore it is advisable when designing BHI not to measure

additional outcomes that are unlikely to be affected by the intervention, as this is similar to

a “fishing” expedition. This set up is in contrast to genetic studies, which also have many

correlated outcomes, but only a few of the outcomes are expected to show a significant result.

The permutation-rank-sum test is most useful in detecting an intervention effect when there

are many outcomes which display differences between intervention and control groups, as is
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the case with a well-designed BHI. In fact, these are the exact instances in which many BHI

researchers would mistakenly conclude no intervention effect. This also has repercussions for

how many subjects are needed to power your study. One could propose a powerful study with

fewer subjects if it is suspected that the intervention has a small effect on many outcomes

that can be measured and the proposed permutation-rank-sum test were used to determine

overall intervention efficacy.
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Table 3.4: FOCUS EC Outcomes estimated using linear mixed effect (longitudinal) model
for Fathers (F) and Mothers (M) comparing the difference in baseline measure and last

available follow up between intervention and control groups.

Outcome Expected
sign1

Estimate One-
sided
p-value

Signif
at
0.05

Signif
using
BF

Anxiety (F) (-) 0.08 0.810
Depression (F) (-) 0.14 0.905
Parental Distress (F) (-) -1.39 0.187
Parent-Child Dysfunctional Interaction (F) (-) -0.29 0.405
Difficult Child (F) (-) -0.60 0.316
Sensitive Parenting (F) (+) 0.88 0.227
Anxiety (M) (-) -0.06 0.204
Depression (M) (-) -0.09 0.139
Parental Distress (M) (-) -1.55 0.090
Parent-Child Dysfunctional Interaction (M) (-) -1.81 0.022 *
Difficult Child (M) (-) -2.09 0.013 *
Sensitive Parenting (M) (+) 1.61 0.018 *
PTSD Total Score (F) (-) -0.75 0.358
PTSD: Re-Experiencing (F) (-) -0.15 0.404
PTSD: Avoidance (F) (-) -0.38 0.339
PTSD: Arousal (F) (-) -0.52 0.249
PTSD Total Score (M) (-) -4.40 <0.001 * *
PTSD: Re-Experiencing (M) (-) -1.30 0.004 *
PTSD: Avoidance (M) (-) -1.17 0.023 *
PTSD: Arousal (M) (-) -1.41 0.009 *
Observed Child Affective Behavior (F) (+) 0.29 0.041 *
Observed Parent Affective Behavior (F) (+) 0.38 0.014 *
Observed Child Affective Behavior (M) (+) 0.37 0.004 *
Observed Parent Affective Behavior (M) (+) 0.37 0.001 * *

1 Expected sign refers to the sign of the estimated coefficient that would indicate
improvement in the outcome as a result of the intervention
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CHAPTER 4

Adaptome Framework: Development and Performance

4.1 Introduction

Our goal is to develop a statistical framework to provide feedback and guide decisions

for ongoing intervention implementation, therefore improving population-level outcomes.

Chambers and Norton call this hypothetical framework the ”adaptome” (pronounced ”adapt-

ohm”), and here we adopt his phraseology. Statistical advancements are needed in the uti-

lization of real-world data. Not only must we take into account the covariate imbalances

among intervention groups that arise from non-randomized intervention participation, we

must also consider statistical error rates when conducting multiple comparisons across inter-

vention versions and repeatedly comparing intervention versions as data accumulates over

time.

In creating an adaptome framework for statistical analysis, we consider a few key features.

A Bayesian approach is chosen as an easy way to seamlessly incorporate historical data, using

it to inform prior distributions for estimated parameters. Importantly, we want to be able to

identify which version of the treatment/intervention produces best results for the population

targeted by the intervention. We also want to avoid bias in estimated outcomes that are

caused by confounders and maintain low overall statistical error rates. To address this

challenge we propose combining an existing method for covariate balancing, called entropy

balancing, with a Bayesian adaptive platform clinical trial framework.

Covariate balancing is an umbrella term that includes a variety of statistical methods

used when analyzing real-world data to account for group differences that may lead to biased

estimates when comparing outcomes among groups. Common covariate balancing methods
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include matching, propensity scores, and more recently, entropy balancing (Stuart, 2010;

Austin, 2011; Hainmueller, 2012).

Historically, matching and propensity score methods have been widely used, however

they come with a few drawbacks. Matching methods often result in omitting data from

the analysis when individuals in the intervention group do not have an exact covariate

match in the control group (Stuart, 2010). Propensity score methods involve estimating

an individual’s probability of receiving an intervention based on the measured covariates,

and subsequently conditioning on these probabilities (Austin, 2011). However, propensity

score methods do not directly match covariate distributions between groups, and require the

analyst to manually check covariate distributions and then iteratively update the propensity

score model accordingly(Hainmueller, 2012). Furthermore, there is no consensus in the

literature on how to validate propensity score model specification (Austin, 2011; Lee et al.,

2010) and a misspecified propensity score model can lead to biased outcomes(Drake, 1993).

For these reasons, we have chosen entropy balancing as our preferred method of covariate

balancing, although alternative methods could be considered with minimal modifications to

the broader framework being proposed.

The previously described methods for observational data typically focus on a single com-

parison. Extensions exist for comparing multiple groups at once, but only at a single time

point (Feng et al., 2012; McCaffrey et al., 2013). We seek to combine methods for balanc-

ing covariates in real-world data with methods for repeatedly comparing multiple outcomes

across an indefinite amount of time.

In the clinical trial world, methods exist for controlling type I errors when making re-

peated comparisons over time. These are called group sequential methods and were first in-

troduced by Pocock in 1977, then expanded upon by O’Brien and Fleming in 1979 (Pocock,

1977; O’Brien and Fleming, 1979). Over the following decades, extensive literature on the

subject has been developed including contributions by many others (Müller and Schäfer,

2001). These methods are instrumental in reducing the overall cost of clinical trials by opti-

mizing power while reducing sample size. A more recent extension of these group sequential
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methods, which has been gaining popularity, is the adaptive platform trial.

An adaptive platform trial is one in which multiple treatments are assessed simultane-

ously, and treatments can be added or dropped for futility at interim analyses. A more

extensive introduction to adaptive platform trials is given by Angus et al (Angus et al.,

2019). Multiple authors have established the benefits of using adaptive platform trials in the

clinical setting (Lin and Bunn, 2017; Madariaga et al., 2021; Saville and Berry, 2016). The

process of adding and dropping treatments over time and comparing multiple treatments at

a given point in time, as is done in the platform trial, resembles the natural way in which

data collection and analysis would occur during real-world implementation of behavioral

health interventions. Instead of comparing different treatments, we compare adaptations of

the intervention to determine which adaptation(s) might be most advantageous.

By combining the statistical methods used in an adaptive platform trial with covariate

balancing methods, we can extend the analysis framework to accommodate real-world data.

Another adjustment to the platform trial framework that we must make in order to use it

for our real-world data is to consider a platform trial with no defined stopping point. Data

must be allowed to accumulate in perpetuity. However, group sequential methods rely on

having a defined trial stopping point and a pre-set number of interim analyses at defined time

points. Using this information, the critical boundaries for hypothesis testing are adjusted

accordingly. Without a defined stopping point, and with an unknown number of ongoing

interim analyses, a new approach is needed to ensure we are making good decisions along

the way, and not being misguided by frequent type I statistical errors. Instead of focusing

on type I error, we consider alternative measures of performance including the conditional

probability that an action taken throughout the course of the platform trial is beneficial.

Using these extensions to the platform trial analysis framework, we create what we call an

adaptome framework, which provides a way to compare intervention adaptations over time

as data are continuously collected, while accounting for group differences that are inherent

in the use of real-world data. Extensive simulations are often used to assess the properties

and performance of platform trial designs prior to implementation (Hummel et al., 2015;
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Saville et al., 2014). Similarly, we use simulations to examine our proposed methodology

and advocate for use of simulations to guide practical implementation of the framework.

4.2 Methods

We consider a vector Y of outcomes yi for a set of N individuals, i = 1, ..., N . This

will represent the data that are collected before an interim analysis. We assume these N

individuals all received some form of the intervention of interest, and that there are multiple

adaptations of this intervention. Let tik indicate whether individual i received intervention k

for k = 1, ..., K where K denotes the number of available intervention adaptations for which

there is sufficient data to be included in the analysis. Thus ti will represent the vector of K

indicators for a given individual who receives one of the possible intervention versions. We

refer to these intervention versions as the ‘active’ versions, to distinguish them from other

possible intervention adaptations for which data are not actively being collected. Denote the

sample size of each of the mutually exclusive intervention groups as Nk, k = 1, ..., K such

that N =
∑K

k=1Nk.

We also require information on individual characteristics or factors that may be associated

with receipt of the intervention and intervention outcomes. Call these measured covariates

x1, ...,xJ and let xij indicate the observed value of covariate j for individual i, j = 1, ..., J

and i = 1, ..., N . We assume that these J covariates will have different distributions among

each intervention group since the individuals were not randomized. The proposed analysis

method involves two steps implemented at each interim analysis: a covariate balancing step,

and an intervention effect estimation step.

4.2.1 Step 1: Entropy Balancing

In entropy balancing (EB), we estimate a set of weights for the individuals in the in-

tervention group of interest such that the covariate moments of the sample directly match

the covariate moments of the target population (Hainmueller, 2012). We define the target
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population as the entire population of individuals who could receive the intervention. This

could be a population of students within a school district, as in our example, or a population

of patients with a particular condition. We assume information about covariate distribu-

tions within this population is available. Let µj be the mean of covariate j in the target

population for, j = 1, ..., J . For this application, we match covariate means but it is possible

to match means in addition to higher covariate moments, such as variance. Choice of the

number of covariates and which, if any, to select for higher order covariate moments is up

to the analyst and requires consideration of parsimony in light of the limitations/richness

of the data available. The entropy balancing weights for intervention group k are estimated

such that:

∣∣∣∣∣ 1Nk

N∑
i=1

wixi11(tik = 1)− µ1

∣∣∣∣∣ ≤ δ∣∣∣∣∣ 1Nk

N∑
i=1

wixi21(tik = 1)− µ2

∣∣∣∣∣ ≤ δ

...∣∣∣∣∣ 1Nk

N∑
i=1

wixiJ1(tik = 1)− µJ

∣∣∣∣∣ ≤ δ

where wi denotes the estimated weight for individual i and δ represents some small amount

of tolerance for the constraint. One set of weights for the individuals in intervention group

k must simultaneously satisfy all of the above conditions. The chosen amount of tolerance

may depend on the application at hand, since an estimable set of weights is not guaranteed

for any arbitrarily small δ. Entropy balancing is performed separately for each intervention

group and a set of weights is estimated for the individuals in each group. The same set of

target means, µ1, ..., µJ , is used for each intervention group and at each interim analysis.

Once the entropy weights are estimated, the weighted observations are then used in analysis

of the outcome.
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4.2.2 Step 2: Intervention Effect Estimation

Estimating the relative intervention effectiveness is done through fitting a Bayesian sta-

tistical model. For demonstration, we assume the outcome is normally distributed, and use a

classic Normal-Inverse Gamma conjugate model. If the outcome is binary, a Beta-Binomial

conjugate model can be used in a similar fashion. The Normal-Inverse Gamma model we

implement is as follows:

yi ∼ N

(
tTi θ,

1

τwi

)
θk ∼ N

(
µ0,k,

1

σ2
0,k

)
τ ∼ Gamma (a, b)

Here tau is the precision, which is defined as the inverse of the variance, and is multiplied by

the weight estimated through entropy balancing. The parameter θ is a vector containing the

estimated mean outcomes for each intervention group, the elements of which are denoted θk,

for k = 1, ..., K available intervention adaptations. This model assumes a constant variance

for the outcomes across intervention versions.

Each element in θ has a Normal prior distribution. For new intervention adaptations

that have no prior data collected, we use a vague prior, and for others we calculate prior

parameters from the estimates in the previous interim analysis. Similarly for τ , we use a

vague prior for the first analysis, and subsequently use estimates of the population variance

to inform priors going forward. Posterior samples for the unknown parameters θ and τ in

the above model are generated using Markov Chain Monte Carlo (MCMC) estimation. The

estimated mean outcome for each intervention adaptation is simply the mean of the posterior

sample for each θk.

At an interim analysis, the active intervention adaptations are compared using a set of

pairwise comparisons. One intervention adaptation is deemed the ”preferred” version and

the remaining adaptations are compared to the preferred version. At the first analysis, the
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Figure 4.1: Diagram of platform trial flow.

original intervention, or the adaptation that most closely resembles the original, is deemed

the preferred version. Going forward, if any intervention adaptation is found to be superior

to the current preferred version based on meeting an established superiority criteria, to

be defined shortly, it becomes the new preferred version. If more than one intervention

adaptation meet the superiority criteria at the same interim analysis, then the one with the

most favorable estimated mean outcome is chosen as the new preferred version.

Intervention adaptations can also be dropped for futility at interim analyses if they meet

an established inferiority criteria, as defined below. If multiple intervention adaptations

simultaneously meet the inferiority criteria, all are dropped. New intervention adaptations

can be immediately added to replace the ones dropped, or as they naturally arise. Figure 4.1

diagrams how the process of adding and dropping intervention adaptations and switching

preferred versions can occur throughout the platform trial as a result of sequential interim

analyses.

The posterior sample is used to draw inference about intervention adaptation superiority

and futility. Without loss of generality, we assume going forward that higher mean outcomes

are better. Define ν as the probability that θk is larger than θpref the mean outcome of

the preferred version. Let θ̂m,k be the estimated mean outcome of intervention adaptation k

based on the mth sample from the posterior, and let M be the total number of samples from

the posterior. Then the estimated probability that intervention adaptation k is superior to
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the preferred version is calculated as

ν̂ =
1

M

M∑
m=1

1

(
θ̂m,k > θ̂m,pref

)

If ν̂ is higher than a specified threshold, such as 0.9, we say the superiority criteria has been

met. Contrastingly, if this probability is lower than a separate specified threshold, such as

0.1, we say that the inferiority criteria has been met. Preferred version switches and futility

drops are then made accordingly.

Finally the results of this interim analysis are used to inform priors for the next analysis

once more data have been collected. The prior parameters for the elements of θ are:

µ0,k = E
[
θ̂k

]
σ2
0,k =

1

Nk

V ar
[
θ̂k

]
We scale the variance prior so that as we accumulate more data for a given intervention

adaptation, we put more emphasis on the prior. However for practical purposes we put a

cap on the value of Nk used in this equation so that the prior variance does not eventually

become too close to zero as large amounts of data accumulate. To calculate prior parameters

for τ we use properties of the Gamma distribution that relate its shape parameters to the

mean and variance of the distribution.

a =
E [τ̂ ]2

V ar [τ̂ ]

b =
E [τ̂ ]

V ar [τ̂ ]

This method is meant to be carried out in perpetuity. Interim analyses are conducted

continuously as long as data continue to be collected.
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4.3 Simulation Study Design

To evaluate this method we simulate data in which the measured covariates influence

the individual’s probability of receiving each intervention adaptation and also influence the

outcome. After one set of data is simulated, we use the two-step framework detailed above

to assess the relative effectiveness of intervention adaptations. For simplicity, we allow up to

four active intervention adaptations at a time. If an intervention adaptation is found to be

superior to the current preferred version, then it becomes the new preferred version. If any

intervention adaptations for which data are being actively collected meet the futility criteria,

they are dropped and promptly replaced with new adaptations. A subsequent set of data are

then simulated. This cycle continues until either a maximum overall sample size is reached,

or there have been three analyses after the last available adaptation has been added. In

its entirety, we refer to this as one simulated trial. The architecture of the platform trial

simulation stems from an online clinical trial resource called the Highly Efficient Clinical

Trials Simulator (Thorlund et al., 2019).

The data are generated following a simulation design used by Hainmeuller, which builds

upon that of Markus Frolich (Hainmueller, 2012; Folich, 2007). There are six covariates with

the following distributions.


x1

x2

x3

 ∼ MVN



0

0

0

 ,


2 1 −1

1 1 −0.5

−1 −0.5 1




x4 ∼ Unif (−3, 3)

x5 ∼ χ2
1(0)

x6 ∼ Binom (1, 0.5)

Covariates x4, x5, and x6 are all independent from one another and from the multivariate

normal covariates. Following generation of a set of covariates, observations are binned into

intervention groups using a multinomial logit model. Let R be the number of possible
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intervention versions over the entire simulated trial. Note that the K active intervention

versions at a given interim analysis will be a subset of the R possible versions. And let ϵ1,...,

ϵR−1 be R−1 independent normally distributed random variables representing random noise

added to the system.

log

(
Pr(ti1 = 1)

Pr(tiR = 1)

)
= β.1xi. + ϵ1

log

(
Pr(ti2 = 1)

Pr(tiR = 1)

)
= β.2xi. + ϵ2

...

log

(
Pr(ti(R−1) = 1)

Pr(tiR = 1)

)
= β.(R−1)xi. + ϵ(R−1)

where xi. represents the vector of all 6 covariates for individual i and β.1 represents the first

column of the matrix β. Thus, the probability of observation i receiving each intervention

adaptation is calculated as:

Pr(ti1 = 1) =
e(β.1xi.+ϵ1)

ρ

Pr(ti2 = 1) =
e(β.2xi.+ϵ2)

ρ
...

Pr(ti(R−1) = 1) =
e(β.(R−1)xi.+ϵ(R−1))

ρ

Pr(tiR = 1) =
1

ρ

where ρ is defined:

ρ = 1 + e(β.1xi.+ϵ1) + e(β.2xi.+ϵ2) + · · ·+ e(β.(R−1)xi.+ϵ(R−1)).

The β coefficients represent the direction and degree to which each covariate affects the

probability of receiving a given intervention adaptation. These have been arbitrarily chosen

for the simulation study but can be based on prior knowledge or preliminary data analysis
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when using similar simulations for the purpose of developing an analysis plan for practical

application. The important aspect is inducing correlation between the covariates and receipt

of an intervention adaptation. We used the same set of β coefficients for each simulated trial,

but shuffle the order of the probabilities once per simulated trial in order to yield results

that are balanced, and do not depend on an arbitrary order of covariate distributions among

the intervention groups. The set of coefficients and parameters for generating the random

noise variables are detailed in the appendix. Note that the variance of ϵ1,..., ϵR−1 affects the

amount of covariate overlap among the intervention groups, and sufficient overlap is needed

in order to successfully estimate weights using entropy balancing.

Next it is necessary to induce correlation between the covariates and the intervention

outcome. We use two different outcome models, based on the simulation designs in (Hain-

mueller, 2012).

Linear: zi = xi1 + xi2 + xi3 − xi4 + xi5 + xi6 + ηi

Non-linear: zi = xi1 + xi2 + 0.2xi3xi4 −
√
xi5 + ηi

where ηi is another normally distributed random variable used to add random noise into the

system. The intervention effects are then added to these base outcomes, zi. Let the set of

intervention effects be denoted as α. We consider a range of possible intervention effects

spaced at regular intervals: α = (0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8). Thus we have differing

effects for nine possible intervention adaptations, and yi = zi + αti. Table 4.1 shows how

the outcome is calculated as a combination of the dependency on the covariates and the

intervention effect in the simulated data. It also displays how the raw, unweighted mean

outcome for each group, denoted ȳ differs from what the mean would be if the covariates were

perfectly balanced, θ∗. The true mean outcome, θ∗, is calculated by adding the fixed values

of 1.5 and 0.8 to the alpha component for linear and nonlinear outcome models, respectively.

θ∗ is the quantity we wish to estimate and draw inference on using our adaptome statistical

framework.
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Table 4.1: Outcome designs for simulations (increasing order of intervention
effectiveness).

Outcome Intervention z̄a Corresponding ȳ = θ∗

Design Version element in αb z̄ +αt

Linear

1 1.36 0.0 1.36 1.5
2 2.00 0.1 2.10 1.6
3 1.79 0.2 1.99 1.7
4 1.33 0.3 1.63 1.8
5 1.14 0.4 1.54 1.9
6 1.50 0.5 2.00 2.0
7 2.32 0.6 2.92 2.1
8 0.60 0.7 1.30 2.2
9 1.60 0.8 2.40 2.3

Non-linear

1 -1.23 0.0 -1.23 -0.8
2 -0.49 0.1 -0.39 -0.7
3 -1.30 0.2 -1.10 -0.6
4 -0.27 0.3 0.03 -0.5
5 -2.25 0.4 -1.85 -0.4
6 -0.31 0.5 0.19 -0.3
7 0.54 0.6 1.14 -0.2
8 -0.49 0.7 0.21 -0.1
9 -0.92 0.8 -0.12 0.0

a This shows one possible order of the covariate dependencies for different intervention
versions. The order is shuffled for each simulated trial.

b For trials with a random order of intervention effectiveness, this column is also
shuffled once per trial.

We also consider the order in which adaptations are added into the platform trial. We

conduct simulated trials with intervention adaptations added in increasing order of effec-

tiveness, and with random orders of effectiveness, where the elements in α are shuffled once

at the beginning of each trial. In some instances, it may be reasonable to assume that the

majority of adaptations introduced will confer greater benefit relative to the previously intro-

duced adaptations, thus our choice to simulate an increasing order of effectiveness. On the

other hand, the random ordering of the intervention effects allows us to break any arbitrary

relationship between the intervention order and the performance of the platform trial.

We simulate trials prospectively by starting with four active intervention groups, con-

ducting routine interim analyses, and adding new intervention groups as others are dropped
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for futility. For each interim analysis, we generate a new set of data then select only data for

the active intervention groups and analyze according to the methods enumerated above. We

use a constant sample size, 300, for the number of observations per intervention group, per

interim analysis. For the entropy balancing step, we match the covariate means to means

from a large external sample which is representative of known population-level covariate

distributions.

We also compare three variations of the Bayesian model in step 2. The first is exactly

the model described above, and is referred to as the model with “EB weights.” The second

includes the covariates in the Bayesian model as follows:

EB + covariates: yi ∼ N

(
tTi θ + xiγ,

1

τwi

)

where γ denotes the estimated residual effect of the covariates on the outcome, after balancing

the covariates. However θ is still the parameter of interest. The third model includes neither

the covariates nor the weights estimated through entropy balancing, and is simply:

Neither: yi ∼ N

(
tTi θ,

1

τ

)

This third model gives a point of comparison to determine the benefits of adding in entropy

balancing as a data pre-processing step. Meanwhile the second model allows us to determine

if there are any added benefits or drawbacks of increasing the model complexity by adjusting

for covariates in addition to balancing them in the pre-processing. Table 4.2 summarizes the

various set ups for the simulated trials.

We ran 500 simulated trials for each possible combination of the hyper-parameters. The

simulations were run in R, using JAGS for the Gibbs sampling (Plummer, 2003). Simulation

code that can be used as a guide in implementing the Adaptome framework is available for

interested readers at: https://github.com/tdbufford/Adaptome-Simulations.
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Table 4.2: Simulation set ups.

Hyper Parameter Possible Variations

Intervention effect order • Increasing
• Random

Bayesian model • EB weights
• EB weights + covariates
• Neither

Outcome design • Linear
• Non-linear

Nk • 300

Thresholds • Superiority = 0.9
• Futility = 0.1

Max # of active inter-
vention versions

• 4

4.4 Measuring Performance

The typical statistical measures of Type I error rate and power are not well defined for

our ongoing Bayesian platform trial. Calculation of these measures is dependent upon hav-

ing an established number of hypothesis tests, which we do not have because comparison

of adaptations is ongoing in response to real-world intervention implementation. To assess

performance of this analysis framework, we consider a variety of other measures that describe

the decision-making process throughout the trial. Many of these measures describe actions

taken, meaning switching which adaptation is the preferred version or dropping an interven-

tion adaptation for futility. For example, we define how a preferred version switch can be

sub-optimal, how a futility drop can be sub-optimal, and look at proportions of actions that

are sub-optimal. Table 4.3 defines these counts and proportions which help us understand

the ability of the Bayesian framework to distinguish between intervention versions. Many of

these are also very straightforward, but since we have multiple intervention groups evaluated

simultaneously and multiple interim analyses, exact definitions are required for clarity.

Based on these definitions of suboptimal actions, we calculate a Positive Action Proba-

bility. This probability is the proportion of actions, both superiority switches and futility
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Table 4.3: Measure definitions for Adaptome framework performance measures.

Measure Definition

Mean Sample Size Average total number of participants over the course of a single
trial (all treatment versions combined)

Mean # Analyses Average number of interim analyses conducted during a single
trial

Total # Analyses Total number of interim analyses conducted across all simulated
trials with the same set up

Percent Top One Percent of platform trials that successfully identified the interven-
tion version with the highest mean outcome as the preferred
version at the end of the trial

Percent Top Two Percent of platform trials that have identified one of the top two
intervention versions as the preferred version at the end of the
trial

# Superiority Switches Total number of times a new preferred version was chosen,
summed across all simulated trials with the same set up

Sub-optimal Switches Total number of superiority switches where the true mean outcome
of the new preferred version was lower than that of the current
preferred version, summed across all simulated trials with the
same set up

% Sub-optimal Switches Percent of superiority switches that are sub-optimal according to
above criteria

# Futility Drops Total number of times an intervention version was dropped for
futility, summed across all simulated trials with the same set
up

Best Dropped Number of trials in which the intervention version with the highest
mean outcome was dropped for futility

Futility Ties Total number of times that more than one intervention version
was dropped at the same time, summed across all simulated
trials with the same set up

Sub-optimal Futility Drops Total number of times an intervention version with a higher true
mean outcome than the current preferred version was dropped
for futility, summed across all simulated trials with the same
set up

% Sub-optimal Drops Percent of futility drops that met the above sub-optimality criteria

Sub-optimal Action Probability Proportion of total actions taken which resulted in either a sub-
optimal switch or sub-optimal futility drop.

Positive Action Probability 1−(Sub-optimal Action Probability)
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drops, that are in alignment with the true mean outcomes of the intervention versions, i.e.

not considered suboptimal. The denominator for this calculation is the total number of

actions taken, superiority switches plus futility drops.

1− Sub-optimal Superiority Switches + Sub-optimal Futility Drops

Total Superiority Switches + Total Futility Drops

In determining whether an action taken is sub-optimal we do not penalize type II sta-

tistical errors (failures to assign the optimal intervention version as the preferred version at

a given interim analysis), since we allow for additional data to be collected and subsequent

analyses to successfully identify true differences in adaptation effectiveness. Interim analyses

in which no action is taken are not accounted for in this summary measure. On the other

hand, a single interim analysis can result in more than one action taken, and each action

is considered separately. In calculating the Positive Action Probability, we combine results

from all simulated trial runs with identical set-up. Since the Positive Action Probability

conditions on an action being taken it does not require a defined number of interim analyses

or a set trial stopping point. It gives applied researchers an understanding of the probability

of an error each time they make a change to intervention implementation strategy (dropping

a version or making a preferred version switch). Of course, there should be an understanding

among researchers using this measure that the probability of taking at least one erroneous

action over any prolonged period of time is increased based as a function of the length of

time. The Positive Action Probability is to be interpreted at a discrete instant in time.

We also assess the percent of simulated trials that have successfully identified the inter-

vention version with the highest mean outcome as the preferred version by the last interim

analysis (Percent Top One). This can be considered a secondary measures of success because

it depends upon the arbitrary point at which we end the simulations. In some instances,

investigators may find value in being able to state that after some definitive amount of time,

the analysis plan can be expected to identify the best intervention version with some high

level of confidence. While the intention is to use this framework in an ongoing fashion,

this statement would provide added assurance that in the long-run preferable intervention
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adaptations are being identified.

As with typical simulation studies involving covariate balancing for observational data,

we also assess the bias of our estimates. The bias is defined as the difference between the

true mean outcome and the estimated mean outcome for each intervention group, using the

estimate with the largest sample size for a given trial.

Lastly, we consider the estimated average intervention effect received for a defined number

of individuals, assuming we can drop intervention versions for futility and add new ones as

data are collected. We call it the Average Effect Received. This number can vary depending

on the order in which new adaptations are added to the trial, in addition to random variation

in the data. Therefore, we look at the distribution of the Average Effect Received for a set

of simulated trials where the order of adaptations is varied for each simulation while other

parameters are held constant. This metric reflects the potential for short- and long-term

population-level benefits and is particularly useful for guiding selection of an optimal interim

analysis plans. This last metric will be assessed in the following chapter.

4.5 Simulation Results

Table 4.4 shows that in the simulated trials that include entropy balancing, whether or not

we include the covariates in the Bayesian model, the Positive Action Probability is at least

0.978. This means type I errors occur less than 2.2% of the time, which is an improvement

upon the standard 5% error rate. These results are especially promising considering we

used 0.9 and 0.1 as our superiority and futility thresholds, respectively, which a priori could

suggest the Positive Action Probability be no higher than 0.9. In this respect our Adaptome

framework out-performs expectations using simulated data, suggesting that it will perform

sufficiently well with real data which is likely to be more nuanced than simulated data and

may have unmeasured confounders.

Contrastingly, simulations that do not include entropy balancing yield decisions to drop

adaptations or switch the preferred version that are often not in alignment with the true
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Table 4.4: Simulation results demonstrating performance of Adaptome analysis framework.

Linear Outcome Design

Increasing Version Effectiveness Random Order Effectiveness

EB
weights

EB + Co-
variates

Neither EB
weights

EB + Co-
variates

Neither

Mean sample size 11,997 7,777 6,347 7,129 4,972 5,810
Mean # Analyses 11.2 7.2 6.1 6.9 4.7 5.5
Total # Analyses 5,598 3,622 3,044 3,447 2,361 2,728
Percent Top One 86.0% 94.6% 24.6% 95.6% 95.6% 25.6%
Percent Top Two 99.6% 100% 41.6% 100% 100% 42.8%

# Superiority Switches 1,657 1,754 983 621 671 706
Sub-optimal Switches 0 8 15 3 10 260
% Sub-optimal Switches 0% 0.5% 1.6% 0.5% 1.5% 36.8%

# Futility Drops 3,837 3,949 3,946 3,936 3,978 3,965
Best Dropped 2 10 365 8 9 365
Futility Ties 1,037 1,348 1,243 1,210 1,358 1,289
Sub-optimal Drops 8 74 2,427 9 19 1,294
% Sub-optimal Drops 0.2% 1.9% 61.5% 0.2% 0.5% 32.6%

Sub-optimal Action Probability 0.001 0.014 0.500 0.003 0.006 0.333
Positive Action Probability 0.999 0.986 0.500 0.997 0.994 0.667

Non-linear Outcome Design

Increasing Version Effectiveness Random Order Effectiveness

EB
weights

EB + Co-
variates

Neither EB
weights

EB + Co-
variates

Neither

Mean sample size 10,522 7,989 5,032 6,419 5,191 4,815
Mean # Analyses 9.9 7.4 4.6 6.3 5.0 4.4
Total # Analyses 4,942 3,720 2,297 3,134 2,482 2,195
Percent Top One 87.2% 92.4% 12.0% 92.4% 92.2% 13.6%
Percent Top Two 98.6% 99.6% 23.0% 100% 99.6% 24.4%

# Superiority Switches 1,703 1,770 755 651 695 703
Sub-optimal Switches 0 12 1 4 32 339
% Sub-optimal Switches 0% 0.7% 0.1% 0.6% 4.6% 48.2%

# Futility Drops 3,858 3,962 3,993 3,940 3,970 3,992
Best Dropped 4 20 434 11 28 431
Futility Ties 1,168 1,334 1,291 1,248 1,361 1,355
Sub-optimal Drops 42 113 2,708 13 39 1,641
% Sub-optimal Drops 1.1% 2.9% 67.8% 0.3% 1.0% 41.1%

Sub-optimal Action Probability 0.008 0.022 0.571 0.004 0.015 0.422
Positive Action Probability 0.992 0.978 0.429 0.996 0.985 0.578
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effectiveness of each intervention adaptation. The Positive Action Probability can be as

low as 0.429, slightly worse than a 50-50 chance. This point of comparison tells us that we

have indeed successfully designed the simulations in a way that induces correlation between

covariates, intervention groups, and outcomes such that the covariate differences cannot be

ignored in assessing outcomes. It also indicates that using the weights estimated through

entropy balancing in our Bayesian model is an effective method of adjusting for covariates

in this framework which mimics a platform clinical trial but uses real-world data.

Another indicative measure is the percent of trials that successfully identify the best

adaptation by the last interim analysis. Again we see a stark contrast between simulated

trials that use entropy balancing and those that do not. In simulations using the linear

outcome design without entropy balancing, about 25% of the trials successfully identify the

best adaptation. But with entropy balancing, the number increases to about 95%.

We notice that in the trials using just entropy balancing without covariates in the model

and with intervention versions added in increasing order of effectiveness, the percent of trials

that identify the best adaptation is lower, at 86%. These simulations also have a higher

mean number of analyses and mean sample size, but the number of trials that drop the best

adaptation for futility is low. This indicates that entropy balancing alone, without covariates

in the model, requires more data to successfully distinguish between intervention adaptations

with small differences in effectiveness. Interim analyses where no action is taken occur more

frequently. This is due to slightly greater variability in the estimated intervention effects

at interim analyses when the covariates are not included in the Bayesian model. We see

similar trends for the percent of trials that identify the best adaptation when looking at

simulations that used the non-linear outcome design. This suggests that adding covariates

to the Bayesian model results in more precise estimates of intervention effects and increases

the framework’s ability to distinguish between versions using smaller amounts of data, which

subsequently promotes a faster rate of action being taken.

The rate at which actions are taken is important because swifter discarding of inferior

intervention adaptations results in more participants receiving intervention versions with
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greater effectiveness. This subsequently results in an increase in the positive outcomes at

the population-level. For example, one could look at the average effectiveness of intervention

versions received by a population of individuals where different intervention adaptations

were implemented over a specified period of time. In order to maximize overall outcomes,

we would want the majority of the population to receive the intervention version with the

greatest effectiveness, and would want relatively few individuals to receive the less effective

adaptations.

On the other end of the spectrum, using solely a linear Bayesian model without entropy

balancing to estimate mean outcomes when the outcome design is non-linear results in about

1/9 trials successfully identifying the best adaptation out of 9 possibilities, so the analysis

framework performs no better than random chance in this case.

The final measure we wish to discuss is the bias in the outcome estimates, pictured in

Figure 4.2 and Figure 4.3. The figures show that using entropy balancing to account for

covariate imbalances between groups greatly decreases the bias in the estimated outcomes,

whether or not we include covariates in the Bayesian model. When the outcome design is

linear, including covariates in the model further shrinks the bias towards zero. However when

the outcome design is non-linear, including covariates in the model creates bias in all the

estimates. In these simulated trials, the Positive Action Probability and the percent of trials

that identify the best adaptation remain high because the bias in the estimates is consistent

across adaptations, so comparing relative effectiveness still usually results favorable outcomes

even though the estimated magnitude of the intervention effect is incorrect. Researchers may

want to consider the linearity of the relationship between their outcome and their measured

covariates when deciding how to implement the Adaptome framework.

4.6 Discussion

These simulations demonstrate the adaptome framework’s ability to successfully reduce

bias by balancing confounding covariates while maintaining a high Positive Action Prob-
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ability in making decisions about comparative intervention version effectiveness. In these

simulations we assume, however, that all confounding covariates are known and measured,

which is a strong assumption, but necessary in observational data methods.

In order to implement the described statistical analysis in a real world setting, several

decisions need to be made before putting the analysis plan into action. These decisions

include determination of when to conduct interim analyses and specification of optimal su-

periority and futility thresholds. Similar to undertaking power calculations prior to conduct-

ing a randomized study, these decisions should be made in the design-stage and driven by

consideration of various possibilities and their resulting impact on established performance

benchmarks. Simulations similar to the ones described in this chapter may be used in the

planning of ongoing intervention implementation with interim analysis and feedback to in-

tervention providers. An example of how study design simulations might be approached and

implemented is detailed in the subsequent chapter for a specific BHI application.
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Figure 4.2: Bias in estimates for linear outcome design.
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Figure 4.3: Bias in estimates for non-linear outcome design.
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CHAPTER 5

Adaptome Framework: Application to School-based

Resilience Program

5.1 Description of School-Based Trauma-Informed Preventive In-

tervention

The preventive intervention called Families OverComing Under Stress (FOCUS) was

developed and implemented as a suite of resilience services for military-connected families

and youth (Beardslee et al., 2011; Lester et al., 2011; Lester et al., 2013). Subsequently, the

FOCUS Resilience Curriculum (FRC) was created using the core trauma-informed, family-

centered components of the FOCUS intervention, but adapted of for delivery as a school-

based curriculum. It aimed to promote resilience among students facing adversity through

modularized skill-building sessions delivered in small groups or classroom settings. Each

classroom module taught skills such as goal setting, problem solving, communication, and

emotional regulation. Initially, this intervention was delivered by trained school social work

interns to military-connected students (Garcia and et al, 2015). In 2015, the intervention

was further adapted to meet the needs of minoritized students living in under-resourced

communities, who were attending a large urban school district with a high prevalence of

trauma exposure. It featured a community-participatory methodology with youth, parent

and education stakeholders (Ijadi-Magshoodi et al., 2017).

An early evaluation of the FOCUS Resilience Curriculum (FRC) indicated that the

classroom-based intervention was associated with improved student internal resilience, par-

ticularly in the areas of problem solving and empathy (Ijadi-Maghsoodi et al., 2017). Fol-
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lowing this foundational study, the FRC was implemented on a large scale within the school

district. As of February 2022, over 17,000 students in grades 4-12 at over 200 elementary,

middle, and high schools had received some form of FRC and implementation is ongoing.

Following completion of the curriculum, high school students were electronically adminis-

tered a short questionnaire which has varied in content over the years but has consistently

asked the following set of self-reported learning and satisfaction items:

• I learned ways I can feel less stressed.

• I learned ways to communicate better with others.

• I learned how to set personal goals.

• I learned how to solve problems that come up in my life.

• I would recommend this curriculum to other students.

To each of the above items, students selected a response option ranging from Not At

All True (0) to Very Much True (3). Using these responses an Evaluation Score was then

calculated by summing the numeric values across all 5 items (range: 0-15). This Evaluation

Score, shown in Figure 5.1 demonstrated reasonable variability across students and is the

main outcome of interest for the purpose of evaluating intervention effects.

The FRC was delivered to students by facilitator teams, which were comprised of a psy-

chiatric social worker and optional support personnel such as social work interns. Facilitator

teams differed greatly in their experience, resources, relationship with students and schools,

and comfort administering a classroom-based curriculum. Customization of the intervention

occurred dynamically and was encouraged in order to meet the diverse needs of students.

Thus, for the currently available data, we consider each group of students who received the

FRC from a different facilitator team to have received a different version of the intervention.

Current records lack sufficient detail on exact modes of intervention customization that oc-

curred in the classroom to distinguish intervention versions based on the protocol used rather
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Figure 5.1: LAUSD Intervention Outcomes.

than the personnel who delivered the intervention. Nevertheless, we expect this information

will be recorded and made available to a greater extent going forward.

Broadly, our interest lies in using data that has already been collected to inform the

creation of an ongoing analysis plan using the two-step Bayesian analytical framework de-

scribed herein. This analysis plan could be used to guide future implementation decisions

as the FRC program continues to be delivered to students. Furthermore, the District plans

to drastically increase the number of students receiving some version of the intervention in

the years to come as part of a set of large state- and federally-funded initiatives to sup-

port students in recovering from mental health challenges and pandemic-associated learning

disruptions.
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5.2 Planning Future Analyses Using School-Based Data

5.2.1 Simulation Design

Our sample, used to inform future implementation planning, includes high school students

who received the FRC during the 2017-2018 or 2018-2019 school year (prior to the COVID-19

pandemic) and completed the post-intervention questionnaire such that an Evaluation Score

could be calculated. The sample was further limited to students who received an intervention

from one of 9 different facilitator teams corresponding to the 9 teams that served a minimum

of 75 students (Table 5.1). Intervention versions associated with facilitator teams have been

labeled ‘Version A’- ’Version I.’

Table 5.1: Mean Evaluation Score by intervention version using the retrospective
school-based data.

Intervention
Version

Number of
Students

Mean Evaluation
Score

Std. Dev.

Version A 348 10.22 3.53
Version B 129 8.02 4.75
Version C 123 10.07 3.79
Version D 121 11.40 3.29
Version E 95 9.96 3.35
Version F 95 10.99 3.43
Version G 86 10.58 3.13
Version H 90 9.79 3.56
Version I 75 10.93 3.29

Information on student characteristics was gathered from administrative data provided

by the school district as well as routinely administered electronic questionnaires. Student-

level characteristics that varied between student groups and which were associated with

Evaluation Scores included grade point average (GPA), a Primary Care Post Traumatic

Stress Disorder (PC-PTSD) screening result (Cameron and Gusman, 2003), an indicator

of whether the student was enrolled in special education, and gender. For the PC-PTSD

a verified cut point of ≥ 3 was used to identify a positive screen for PTSD (Vera et al.,

2012). In a preliminary analysis, we found several significant associations between student
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characteristics and the Evaluation Score. Students with higher GPA tended to report in-

creased Evaluation Scores (p < 0.001). Students who screened positive for PTSD tended to

report decreased Evaluation Scores (p < 0.01) and students in special education programs

also tended to report decreased Evaluation Scores (p = 0.068). These covariates, shown in

Figure 5.2, were chosen as relevant covariates to be balanced in statistical analyses.

An important practical question in putting the Adaptome framework into practice is

how often to conduct interim analyses. This parameter can be chosen to optimize statistical

performance, and ultimately student outcomes. To answer the question of how frequently

to conduct interim analyses we completed a series of simulations and calculated the perfor-

mance measures described above. We consider frequency to be determined by the number of

new participants (students) per intervention group needed before another statistical analysis

should take place. Thus, to assess analysis frequency we vary a single simulation input pa-

rameter corresponding to the sample size per intervention version per interim analysis with

possible options (40, 60, 80, 100, 120, 140, 160). We considered schools’ needs to determine

other simulation parameters. To allow sufficient speed and flexibility in implementation de-

cisions we use a superiority threshold of 0.8, and an inferiority threshold of 0.2. With school

resource constraints in mind, we set a maximum of 4 intervention versions actively enrolling

students at any given point in time. For practical purposes, any time an interim analysis re-

sults in dropping one or more intervention versions, they are replaced with new intervention

versions as long as more adaptations are available. In order to compare the possible values

of the Average (intervention) Effect Received for the next 2,000 students receiving the FRC,

we set a maximum sample size of 2,000 students for each simulated platform trial.

Simulation inputs corresponding to student characteristics, the distribution of Evalu-

ation Scores, and the relationships between these were derived from the available data.

Additionally, relationships between the aforementioned covariates and intervention groups

were estimated from the data, as were a set of intervention effects. Table 5.2 gives further

detail on how this was achieved. Once these relationships were estimated from the data, the

simulation proceeded as follows:
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Figure 5.2: Covariate distributions by intervention group in LAUSD.
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1. Generate covariates to match the distributions in the available data.

2. Assign intervention versions according to covariate-intervention group relationships.

3. Generate outcomes based on covariates and intervention version received.

4. Perform interim analysis using the data generated for active intervention versions.

5. Drop, add, or switch the preferred intervention version(s) according to the interim

analysis results.

6. Repeat until the stopping criteria (maximum total sample size) is reached.

We ran the Bayesian platform trial 100 times for each set of inputs and used the pre-

viously described performance measures to compare across different potential sample sizes

per intervention version per interim analysis (our metric for interim analysis frequency). We

found that for smaller sample sizes, it was sometimes computational infeasible to perform

entropy balancing on the generated data. In these instances, the interim analysis was com-

pleted without the entropy balancing step, and thus without weights in the Bayesian model.

Failing to balance covariate distributions among groups when data is observational is known

to produce biased estimates. For this reason, we also consider the proportion of interim

analyses that were successfully able to use entropy balancing as a measure for comparison.

Although we describe this issue as it arises when implementing entropy balancing, it is an

inherent limitation of the data that is likely to cause issues if attempting covariate balancing

by any means (matching, propensity scores). In practice, an analyst could address entropy

balancing failures by reducing the number of matching constraints, which again poses the

risk of increasing bias, or by waiting to perform an interim analysis until more data has been

collected.

5.2.2 Simulation Results

Simulated trials encountered no entropy balancing issues when the sample size per in-

tervention version per interim analysis was 100 or greater (Table 5.3). For lower interim

71



sample sizes, however, as few as 89% of interim analyses successfully used entropy balanc-

ing. Positive Action Probabilities increased as a function of interim sample size (range =

[0.868, 0.955]). The percent of simulated trials that identify the best intervention version

increases with increased interim sample size, reaches a maximum, and then decreases again.

The decrease occurs with larger sample sizes because of the set maximum total sample size

(2,000 students). With larger interim sample sizes, fewer interim analyses can occur before

the maximum is reached and thus there are fewer chances to successfully identify the top

intervention version, particularly if the best version is not one of the first versions introduced

into the trial.

Estimates of the Average (intervention) Effect Received by students were plotted across

simulation scenarios with different sample sizes per intervention version per interim analysis.

The Average Effect Received tended to be higher for trials with more frequent interim

analyses (Figure 5.3, range = [0.0, 1.2]). This suggests that expected population-level benefit

increases when intervention versions are dropped and added more frequently. Based on

examination of the three performance measures (Positive Action Probability, Percent Top

One, and Average Effect Received), in combination with our understanding of the importance

of successful of covariate balancing, we would propose creating an analysis plan that in which

interim analyses are conducted after the accrual of 100 students per active intervention

version. This analysis plan would require 4-5 interim analyses over the time period during

which 2,000 students receive the FRC.

5.3 Practical Steps for Creating an Analysis Plan

To facilitate application of the information presented, we describe a few practical steps

investigators and analysts can follow, as well as considerations that should be made through-

out the process. Ideally, the steps described below should be taken after an intervention has

been successfully developed and proven efficacious through a randomized control trial, as

it begins to be translated to real-world settings where effectiveness has yet to be deter-

mined. At this pivotal moment, investigators should ensure data collection systems are in
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Figure 5.3: Average (intervention) effect received by sample size per intervention version
per interim analysis for the application to school-based data.
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place such that necessary information will be collected from all intervention participants.

Necessary information includes not only intervention outcomes, but also relevant covariates,

information about how the intervention is being adapted and which participants receive each

adapted version. Collection of information in a timely fashion is also critical in order to con-

duct interim analyses that can guide implementation of the intervention for the next set of

participants. Lastly, investigators should establish a mechanism for routine dissemination

of interim results. To meaningfully impact populations targeted by the intervention, the

results of interim analyses need to be shared with stakeholders responsible for driving allo-

cation of new potential participants to available intervention versions and, ultimately, the

discontinuation of inferior versions.

Once these preliminary considerations have been addressed, an analyst in conjunction

with other stakeholders should take the following steps to set up a simulation study. The

results of the simulations should lead to creation of a statistical analysis plan with optimal

performance.

1. Establish which input parameters will be varied and what values are feasible for each.

These parameters may include: inferiority threshold, superiority threshold, or sample

size per intervention version per interim analysis.

2. Determine a reasonable plan for the introduction of intervention versions. Will the

number of active versions vary randomly according to some distribution? Will new

versions be added immediately upon the dropping versions for futility?

3. Determine one or more arbitrary end dates/stopping rules to dictate when to terminate

simulated trials and assess performance.

4. Use existing data or expert opinion to determine the following:

(a) Specific covariates that will need to balanced

(b) Anticipated covariate distributions
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(c) Correlation or another associational measure of the relationship between each

covariate and a hypothesized set of intervention versions

(d) Partial correlation or another adjusted associational measure of the relationship

between each covariate and the intervention outcome, controlling for other covari-

ates

(e) A series of feasible intervention effects, controlling for relevant covariates

5. Run simulations as described above while varying the input parameters specified in

(1). Results will include the set of performance measures described in Table 4.3. (R

code available at: https://github.com/tdbufford/Adaptome-Simulations)

6. Make an informed decision that best suits the particular application and relevant pri-

orities of stakeholders.

Conceptually, this process is similar to the way an investigator might vary input param-

eters used in a traditional power analysis and assess type I error rates in order to plan a

clinical trial. We are advocating for the use of similar techniques applied to the ongoing

collection of real-world data from intervention implementation. The framework should be in

place prior to the initiation of data collection. Accumulation of participant data will trigger

the first and all subsequent interim analyses, the results of which will be relayed back to

investigators/community partners/stakeholders to enact changes. In theory, this framework

can be used in perpetuity, although simulations should be re-run periodically to update per-

formance measure estimates in light of the reality of implementation and make any necessary

design changes.

5.4 Limitations

The proposed framework does not take into account differential intervention effects among

participants with different characteristics, sometimes referred to as heterogeneity of effects.

This would make for a useful extension to further the applicability of the proposed method
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in real-world settings. Another limitation of this method is that the performance measures

do depend upon the relative effectiveness of the hypothetical new intervention adaptations,

the order in which they arise, and the number of different intervention versions that are

evaluated at a time. They also depend on the relationships between covariates and number

of covariates, which can be difficult to know a priori. Although we cannot predict exactly how

this will occur throughout future implementation, historical data can be used to approximate

a plausible scenario. If this is not available, we can test multiple scenarios. Regardless, we

should still be able to assess the general properties of the proposed analysis plan while

keeping potential dependencies in mind.

5.5 Discussion

This paper demonstrates that the proposed two-step Bayesian interim analysis plan can

be useful in driving the continuous adaptation process such that beneficial intervention adap-

tations are seamlessly transitioned into use and subsequent improvements can be introduced,

evaluated, and either retained or discarded for the purpose of improving individual outcomes

on average over time. This chapter also provides a detailed roadmap for investigators in-

terested in adopting such a framework and understanding its expected performance under

conditions relevant to their given setting. It is our hope that these robust methods, which

have become increasingly popular in the clinical trials realm, will be implemented to a greater

extent among behavioral and other health researchers interested in evaluating dynamically-

arising intervention adaptations. This paper serves to make these methods more accessible

and demonstrates their immense potential to improve population-level implementation of

health interventions without an expensive or logistically infeasible return to the randomized

controlled trial setting.
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Table 5.2: Additional details for simulations based on school data.

Step 1. Generate Covariates

Model or procedure for
school data

Estimates from school
data

Use in simulation

Mean(Gender) 0.53 Gender ∼ Binom(p = 0.53)
Mean(PTSD) 0.22 PTSD ∼ Binom(p = 0.22)
Mean(SpEdu) 0.09 SpEdu ∼ Binom(p = 0.09)
Mean(GPA) Mean = 2.5 GPA ∼ t(df = 1) + 2.5
Assess range and shape Range = [0.0, 4.0] Truncate to [0.0, 0.4]

Step 2. Assign Intervention Versions

Model or procedure for
school data

Estimates from school
data

Use in simulation

log Pr(B)
Pr(A) = β1,1(Gender)+ βT = Pr(A) = 1/ρ

β2,1(PTSD) + β3,1(SpEdu)+


0.0 1.3 −0.3 −0.1
−0.4 1.1 0.6 −0.1
−0.3 0.5 −0.3 −0.3
0.0 0.9 −0.1 −0.8
−0.3 0.5 −0.3 0.0
−0.3 1.1 −0.8 −0.4
−0.3 1.1 0.3 −0.6
−0.2 1.2 −1.1 0.2



Pr(B) = exp(β.1xi. + ϵ1)/ρ

β4,1(GPA)
...

... Pr(I) = exp(β.8xi. + ϵ8)/ρ

log Pr(I)
Pr(A) = β1,8(Gender)+

β2,8(PTSD) + β3,8(SpEdu)+ ρ = 1 + exp(β.1xi. + ϵ1)+
β4,8(GPA) ...+ exp(β.8xi. + ϵ8)

ϵ1, ..., ϵ8 ∼ N(0, 4)

T ∼Multinom(Pr(A), ...., P r(I))

Step 3. Generate Outcomes

Model or procedure for
school data

Estimates from school
data

Use in simulation

EvalScore = α2ti2 +α3ti3 + ...+ α = [0,−1.9, 0.07, 1.4, 0.4, EvalScore =Xψ + Tα+ η
α9ti9 + ψ1Gender + ψ2PTSD 0.85, 0.72, 0.11, 0.77] ηi ∼ N(0.3, 3.7)
+ψ3SpEdu+ ψ4GPA Truncate to [0, 15]

ψ = [0.2,−0.9, 0.1, 0.6] increase modes at 0, 5, & 10 using
additional random variables
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Table 5.3: Performance measures by sample size (per intervention version per interim
analysis) for the application to school-based data .

N per Intervention
Version per Interim
Analysis

Average No.
of Analyses

Successful
Use of EB
(%)

Percent
Top One

Positive
Action
Probability

40 6.5 89.2 60 0.868
60 6.2 96.9 88 0.913
80 5.2 99.6 88 0.933
100 4.6 100.0 88 0.947
120 3.9 100.0 74 0.956
140 3.1 100.0 71 0.953
160 3.0 100.0 68 0.955
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CHAPTER 6

Conclusion

6.1 Correlated Outcomes

In these chapters we have explored novel statistical methods that are well suited for

use in analyzing outcomes for Behavioral Health Interventions. The permutation methods

described in chapters 2 and 3 deal with the question of determining overall intervention

efficacy when analyzing the result of a randomized trial when many primary outcomes have

been measured and these outcomes, such as depression, anxiety, PTSD symptoms, and family

functioning, are all correlated. The exact correlation structure for the outcome measures

is often unknown and estimates may be unreliable. In addition, we require use of complex

modeling techniques to assess each individual outcome, and the possibility of different models

for different outcomes.

The two versions of permutation tests both aim to control experiment-wise Type I er-

ror rate in this situation, while allowing for the needed modeling flexibility and avoiding

distributional assumptions. The first permutation test finds a cut point for the number

of statistically significant hypothesis tests needed among the M outcomes in order to have

enough evidence of an overall intervention effect. The second permutation test takes into

account the magnitude of the p-values, rather than simply dichotomizing the p-values into

categories of significant or not significant, and calculates a single overall p-value for the in-

tervention. Both tests are successful at controlling Type I error around 0.05, and both are

most powerful when the majority of the outcomes have a true underlying difference between

intervention and control groups, even if the effect size is relatively small.

The benefits of the proposed permutation methods are that no distributional assumptions
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were made for the number of significant findings or the level of correlation between the test

statistics. The methods are non-parametric, utilizing an empirical distribution estimated

through repeated sampling. We posit that the permutation methods are both valid for data

with any underlying correlation structure. In addition, the proposed permutation methods

can easily be extended to any type of hypothesis test. They can accommodate not only

normally distributed outcomes, but also binary outcomes, count data, survival data, or a

mixture of these. This may have use in early stages of a clinical trial when measuring a variety

of outcomes related to the new drug/biologic in question, and deciding whether to continue

the drug development based on these correlated outcomes. However with any statistical test,

we recommend using one-sided p-values whenever possible to ensure the directionality of the

estimated outcomes are in line the expected directionality of the intervention effect.

The permutation methods also differs from conventional multiple testing methods because

they focus on the question of whether there is an underlying intervention effect that causes the

observed differences between intervention and control groups for various outcome measures,

rather than making inference on individual outcomes. In behavioral health we may have a

relatively small sample size, and thus p-values that are not far beyond the traditional 0.05

threshold when an intervention effect is present, but we may have many measured outcomes

which can collectively give evidence of an intervention effect. These methods are most useful

in detecting an intervention effect when there are many outcomes which display differences

between intervention and control groups, as is the case with a well-designed behavioral health

intervention.

A potential limitation to both permutation methods are the computational resources

required for implementation, which depends on the number of outcomes and the complexity

of the outcome models. In cases where we are using a simple statistical test, such as a

t-test, the test statistics can be recalculated for 5,000 permutations in under 30 seconds

on most machines. However when using more complex models, such as in the FOCUS-EC

example, the computation time is much longer. When performing the outcome analysis a

single time, or for tweaking and re-fitting the outcome models, the computation time is

80



usually not an issue, even for relatively complex models, unless the data size is very large.

However when multiplying that by the number of permutations, which needs to be at least

1,000 in order to calculate a p-value with 3 decimal points, then the computation time can

easily grow to a considerable length. For example, in the FOCUS-EC application, each

individual linear mixed effects model took about 30 milliseconds to fit in R. Multiplied by 24

outcomes, the FOCUS EC data models took about 720 milliseconds to produce all estimates

and associated p-values. Multiplied by 5,000 permutations, however, and the computation

time is approximately 1 hour.

Parallelization of the computation, using the R package “doParallel” (cite), is a relatively

simple way to minimize the computation time. Further effort to increase the computational

efficiency may not be worthwhile since the permutation test only needs to be run once for a

given analysis. The fitting, revising, and refitting of models is done before implementing the

permutation test, and the permutations only need to be run using the final statistical models

used in the analysis of the non-permuted data. This also helps mitigate the computation

time burden. Implementation in this manner does require some coding know-how, but should

be within the capability of a typical statistical programmer.

Future work may include streamlining use of the permutation methods through devel-

opment of R packages that can be easily installed and used by statistical programmers.

Development of such code will present a challenge in incorporating enough flexibility in

choice of statistical model for each outcome, including regression models, logistic models,

longitudinal models, and various others.

An underlying assumption that we have made in the course of these simulation studies

is that in the presence of a treatment effect, the effect size would be constant across mea-

sures. This may be an acceptable assumption if we believe that the various measures are

all attempting to quantify the same underlying quality of family functioning or emotional

wellbeing. We can imagine this as a latent variable. This assumption is important because

differing effect sizes for different measures, or different groups of measures, will affect our

power estimation.
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Future work may include further simulations that vary the effect sizes of each outcome

for a single alternative hypothesis. For example, we may want to consider that one cluster of

outcomes has effect size 0.3 while another cluster of outcomes has effect size 0.2. Simulations

can be used to estimate the power of a given study if we can estimate a reasonable effect size

for each outcome and have an idea of which outcomes may be clustered together, ie. strongly

correlated. We may also want to explore further the performance of these permutation

methods when the data have non-normal distributions. Simulating this type of data is

more challenging than simulating normal data, however it may be useful to assess estimated

power and Type I error rates when the data are, for example, bimodal. We may also wish to

compare these power estimates for the permutation test to power estimates for Hotelling’s T 2

test when the distributional assumption for the latter is violated. We may find additional use

cases for the permutation tests. Finally we could compare the permutation test in chapter

1 with the permutation test in chapter 2 to see if conclusions of overall intervention efficacy

are consistent and again compare the relative power of each method.

6.2 Adaptome

In addition to analyzing Behavioral Health Interventions in the controlled trial stage, we

also have developed novel methods to assess comparative effectiveness of intervention adap-

tations that occur afterwards during widespread intervention implementation. Adaptations

to intervention protocol naturally arise to meet the needs of various populations and to over-

come practical obstacles. In chapters 4 and 5 we have laid a path forward for strategically

evaluating interventions being implemented at the population level in a way that maximizes

benefit though identification of beneficial adaptations. This new statistical framework in-

volves regular analysis of intervention adaptations over time as new data is collected. These

are called interim analyses. We combine methods from platform trials with methods for

covariate balancing to make pairwise comparisons between intervention adaptations and es-

timate their relative effectiveness. We then make decisions to drop an adaptation for futility

or designate an adaptation as the current best version. In doing this, more members of the
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population receive intervention versions with greater effectiveness in the long run.

This is particularly useful in today’s world where large quantities of real-world data are

continuously collected over time. We find that by comparing intervention outcomes while

balancing covariates among intervention groups and dropping inferior intervention adapta-

tions we can improve overall outcomes. We also find that in implementing the adaptome

framework, when an action is taken such as switching which adaptation is the standard for

comparison or dropping an adaptation, the probability of making a good decision is very

high. Errors typically occur less than 5% of the time using simulated data where all possible

confounding factors are measured and balanced using entropy balancing. Stricter superiority

and futility thresholds can further reduce error rates, while looser thresholds will allow for

swifter action and more flexibility in implementation.

While this method may not account for every nuance in the data, we have shown that

implementing this framework for statistical analysis does improve upon population average

outcomes that are observed when there is not periodic statistical analysis or strategic deci-

sions made during intervention implementation. It is, unfortunately, too often the case that

no form of data analysis is used to guide widespread implementation following a successful

randomized controlled trial. In contrast to the randomized controlled trial, we have shown

that measurement and balancing of covariates that are related to receipt of the intervention

or intervention outcome is critical in being able conduct meaningful data analysis using real-

world data. Without accounting for these covariates, our implementation decisions are often

misguided. Another important aspect of the adaptome framework is the use of Bayesian

statistical techniques. Bayesian analysis provides us a natural way to use knowledge gained

from previously collected data at each interim analysis without explicitly re-using data.

A way to further enhance population level benefit may be to consider outcome-adaptive

intervention allocation, which increases the ratio of participants who are allocated to in-

tervention versions that produced better outcomes according to the latest interim analysis

(Sabo et al., 2013; Sim, 2019). This way more people would receive the best intervention

adaptation of those currently available. In doing so, however, we would not want to be
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completely deterministic in our approach to intervention group assignment because we still

want to allow for further data to be collected for other adaptations and for new adaptations

to arise. Future work can include a simulation study that uses a probability for adherence

to determine the level of outcome-adaptive intervention allocation. We could compare the

Average Effect Received by participants under different adherence probabilities.

Further exploration of the adaptome framework may include simulations that vary hyper-

parameters that we held fixed. This could be varying numbers of active intervention versions

at a given interim analysis, or using an indefinite number of potential intervention versions

where intervention effect sizes as well as outcomes and relationships between these and the

covariates all arise from probability distributions.

The framework can also be extended to account for additional structural elements in

the data, such as clustering, through typical statistical methods used in Bayesian model-

ing. In our example, the FRC was delivered at the classroom level, so we may choose to

add a random-effect estimate for modeling variability across classrooms if the classroom

information is available.

The adaptome framework can be applied not only to behavioral health interventions but

also more broadly to health services, in particular those in which extensive electronic health

record (EHR) data are available. This may include cancer treatments, diabetes treatments,

or other settings in which observational data are readily available and multiple treatment

options are currently utilized in clinical practice. If we applied the adaptome framework to

EHR data, we may want to similarly account for clustering by clinic or hospital. Future

work may also include further investigation into the feasibility of applying the adaptome

framework to EHR data.

Additionally, the proposed framework does not take into account differential intervention

effects among participants with different characteristics, sometimes referred to as heterogene-

ity of effects. Further extension of the adaptome framework to include intervention effect

heterogeneity could also be useful for the application of this method in real-world settings.

In the case of behavioral health interventions, a crucial aspect of successful implemen-
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tation of the adaptome framework is an working flow of communication between those who

deliver the intervention and those who assess the outcomes. This can take the form of

community-academic partnerships. These partnerships can support population- based data

collection, assessment, and quick reporting, including providing online data platforms to

community partners. Establishing these partnerships can be a first step in addressing the

issue of data analysis during widespread implementation in communities.

An important next step in the adaptome project is implementing the new statistical

framework within LAUSD. This will be done as data from the FRC is analyzed at interim

analyses over the coming years. We may also want to assess whether there are additional

covariates that can be measured and balanced that may affect intervention outcomes.
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