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A B S T R A C T

Background: Adherence to the American Cancer Society (ACS) guidelines of avoiding obesity, maintaining physical activity, and consuming a diet rich
in fruits, vegetables, and whole grains is associated with longer survival in colorectal cancer (CRC) survivors. Dietary components of the ACS guidelines
may act in part by changing the microbiome, which is implicated in CRC outcomes.
Objectives: We conducted a pilot cross-sectional study to explore associations between ACS guidelines and the gut microbiome.
Methods: Stool samples and questionnaires were collected from 28 CRC survivors at the University of California, San Francisco from 2019 to 2020.
ACS scores were calculated based on validated questionnaires. Gut microbial community structure from 16S amplicons and gene/pathway abundances
from metagenomics were tested for associations with the ACS score and its components using ANOVA and general linear models.
Results: The overall ACS score was not significantly associated with variations in the fecal microbiota. However, fruit and vegetable intake and alcohol
intake accounted for 19% (P ¼ 0.005) and 13% (P ¼ 0.01) of variation in the microbiota, respectively. Fruit/vegetable consumption was associated with
increased microbial diversity, increased Firmicutes, decreased Bacteroidota, and changes to multiple genes and metabolic pathways, including enriched
pathways for amino acid and short-chain fatty acid biosynthesis and plant-associated sugar degradation. In contrast, alcohol consumption was positively
associated with overall microbial diversity, negatively associated with Bacteroidota abundance, and associated with changes to multiple genes and
metabolic pathways. The other components of the ACS score were not statistically significantly associated with the fecal microbiota in our sample.
Conclusions: These results guide future studies examining the impact of changes in the intake of fruits, vegetables, and alcoholic drinks on the gut
microbiome of CRC survivors.

Keywords: colorectal cancer, survivorship, nutrition, human gut microbiome, fruits and vegetables, alcohol
Introduction

Colorectal cancer (CRC) is the second-leading cause of cancer
death in the United States, with 52,580 deaths in 2022 [1]. Health
behaviors are associated with risk of CRC mortality [2,3]. For example,
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was associated with a 42% lower risk of death and longer 5-y survival
among stage III colon cancer patients [3]. However, the mechanisms
through which health behaviors may alter CRC survival are poorly
understood. Motivated by the rapidly expanding literature on the role of
the microbiome in cancer [4–7] and the key role diet plays in shaping
the gut microbiome [8–12], we hypothesized that dietary components
of the ACS guidelines act in part by changing the gut microbial
communities (microbiota) or their aggregate genomes and metabolic
activities (microbiome).

There is now a large and rigorous literature providing support for a
causal role of the microbiome in the etiology and treatment of CRC.
Multiple procarcinogenic bacteria have been identified, including
members of the Fusobacterium nucleatum [13], Escherichia coli [4],
and Bacteroides fragilis [4,5] species. Broadly speaking, the mecha-
nisms responsible include microbial effects on the host immune system
[6] and the production of genotoxic metabolites [14,15]. Furthermore,
the tremendous metabolic diversity found within the human gut and
tumor-associated microbial communities can alter the metabolism and
absorption of multiple anti-cancer drugs [16–19].

Diet is perhaps the most important modifiable factor that influences
the gut microbiome [8,9]. Short-term dietary interventions in healthy
individuals lead to significant shifts in gut bacterial abundance and
gene expression [10]. Dietary interventions in obese subjects have
revealed marked changes in the gut microbiome in response to caloric
restriction [11] and the consumption of a high-fat, low-carbohydrate
ketogenic diet [12]. As noted above, we and others have reported that
diets rich in whole grains and fruits and vegetables were associated
with a lower risk of recurrence and death in CRC survivors [3,20,21].
However, data on the links between diet and the gut microbiomes of
CRC patients remain lacking, especially in the context of survivorship.

Here, we report the results of a pilot study of 28 CRC survivors at
University of California, San Francisco (UCSF) to investigate whether
adherence to the ACS guidelines was associated with interindividual
variations in the gut microbiomes of CRC survivors.

Methods

Study participants
Participants for this pilot study were recruited from a single-center

open cohort of gastrointestinal cancer survivors, Lifestyle and Out-
comes after Gastrointestinal Cancer (LOGIC). This study was
approved by the UCSF institutional review board and conducted
accordingly. All participants provided informed consent.

The goal of the LOGIC study is to examine health behaviors, quality
of life, and clinical outcomes among gastrointestinal cancer survivors.
Adults (aged�18 y) who have been diagnosed with any gastrointestinal
cancer, can complete online surveys in English, and have been seen at
UCSF are eligible to enroll. Participants were recruited through the
Gastrointestinal Oncology Survivorship Clinic as well as through
MyChart invitations sent to UCSF patients with a diagnosis of any
gastrointestinal cancer in their medical record. For this feasibility study
focused on the gut microbiome, we sent 1 e-mail invitation in October
2019 to 152 active participants in LOGIC who had a diagnosis of colon
or rectal cancer and had consented to be contacted about future research
opportunities. The study staff also invited 4 participants who enrolled in
the LOGIC in October 2019 after the initial e-mail invitation. In
February 2020, we sent a second invitation to 56 people who had been
invited in October and had not replied, as well as 5 new participants, so
the total number invited was 161 (Figure 1A). The stool collection sub-
study was closed in March 2020 due to the onset of the COVID-19
519
pandemic, so no additional invitations were sent out. Response rates
are provided in the results section.

Survey data
Participants in LOGIC are asked to complete surveys online using

Research Electronic Data Capture [22] at enrollment and every 6 mo
thereafter for 5 y. The survey sent at enrollment includes sociodemo-
graphics (for example, self-reported gender, race, ethnicity, education),
medical history (for example, height, weight), a validated food fre-
quency questionnaire (FFQ) [23–25], and a validated physical activity
questionnaire [26]. Self-reported medical history (including weight) is
updated every 12 mo; the FFQ is repeated once at 18 mo; and the
baseline physical activity questionnaire is repeated at 24 and 48 mo.

Participants who consented to the optional stool sub-study were
asked to complete an additional survey at the time of stool collection
that asked about antibiotic, prebiotic, and probiotic use. They were also
asked to complete an FFQ and a physical activity survey at the time of
stool collection if they had not completed one within the past 12 mo as
part of the parent study. Most recent survey data were used for all
analyses reported in this manuscript.

Dietary assessment
We used a semiquantitative FFQ available to external investigators

from the Nutrition Department of the Harvard T.H. Chan School of
Public Health. This FFQ is based on the extensively validated FFQs
used in the Nurses’ Health Study and Health Professionals' Follow-up
Study [24,25]. The FFQ includes ~150 items. For each item, portion
size is specified, and participants are asked how often, on average, they
consumed that amount of each food over the past year. Nine response
options range from never or less than once per month to 6 or more times
per day. The FFQs were processed for nutrient analyses by the Harvard
School of Public Health Nutrition Department. To calculate nutrient
intake (for example, grams/day of fiber), the amount of a given nutrient
in the specific serving size of each food item is determined based on
data from the United States Department of Agriculture and other
sources. These nutrient amounts are then multiplied by the frequency of
intake and summed across all food items.

ACS guideline score
We used a standardized score to estimate adherence to the ACS

guidelines that has been previously described (Figure 1B) [27,28].
Briefly, participants were assigned 0–2 points for body mass index
(BMI), total physical activity metabolic equivalent task-hours per week
(MET-h/wk), and dietary habits. For BMI, 0 points were assigned to
BMI <18.5 kg/m2 or �30 kg/m2, 1 point for a BMI of 25.0–29.9
kg/m2, and 2 points for a BMI of 18.5–24.9 kg/m2. For physical ac-
tivity, 0 points were assigned for <8.75 MET-h/wk, 1 point for 8.75 to
<17.5 MET-h/wk, and 2 points for 17.5 MET-h/wk or more.

To assign the 0–2 points for diet, a diet sub-score was first calcu-
lated based on intake of fruits and vegetables (1 point for �5 servings/
d, 0 points if <5 servings/d), the number of unique fruits and vegeta-
bles (0–2 points assigned to sex-specific tertiles; Figure 2A), percent of
total grains that are whole grains (0–3 points assigned to sex-specific
quartiles), and intake of red and processed meat (3–0 points assigned
to sex-specific quartiles with the highest score given to the lowest
quartile). Fruit and vegetable intake represents the combined points for
quantity (0 or 1) and variety (0–2) for a total range of 0–3 (Figure 2A).
The total diet score summed points from fruits and vegetables, grain,
and meat (possible range of 0–9), and then was reweighted to 0–2
points as follows: 0–2 ¼ 0 points, 3–6 ¼ 1 point, and 7–9 ¼ 2 points.
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FIGURE 1. Components of American Cancer Society (ACS) scores significantly account for variations in the microbiota of colorectal cancer survivors. (A)
Derivation of our study population (Table 1). (B) A schematic for calculating the ACS score. Fruit/veg points include the sum of points for amount (5þ servings/
d ¼ 1 point; <5 servings/d ¼ 0 points) and tertiles of variety (0, 1, 2 points). When examining the ACS score with alcohol, the alcohol points (0–2) are added to
the ACS score for a total range of 0–8. (C) Permutational multivariate analysis of variance (PERMANOVA) testing of ACS score and component points, clinical
history, demographics, other health behavior variables, and continuous variables used to calculate ACS scores. Nominal P values were reported from the
PERMANOVA test (ADONIS function in the Vegan package in R) using the weighted-UniFrac beta diversity metric of bacterial community composition, and
false discovery rates q were calculated with Benjamini-Hochberg multiple-testing corrections (Supplementary Table 2). A PERMANOVA test with a different
beta diversity metric (Bray-Curtis) is shown in Supplementary Fig. 2a. N ¼ 27 participants. BMI, body mass index.
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The points for BMI, physical activity, and diet were summed for a total
score ranging from 0 to 6 points.

We also explored a secondary score that included alcohol. This
score assigned 0 points to excessive drinkers (>1 drink/d for
women, >2 drinks/d for men), 1 point to nondrinkers, and 2 points
to low-to-moderate drinkers (1 drink/d or fewer for women, 2 drinks/
d or fewer for men). We chose this scoring system because it was
previously shown to be associated with colon cancer survival [3].
Points for alcohol were added to the standard ACS score, creating a
score that ranged from 0 to 8 points.

For ACS score calculation, we included the most recent data and
data collected �6 mo after stool collection because we considered the
analysis cross-sectional, and the FFQ and physical activity survey both
asked participants to recall their usual behaviors over the past year.

Other dietary variables
In addition to examining the ACS score and its components, we

explored intake of calories, fiber [29], glycemic index [30], glycemic
load [30], long-chain omega-3 fatty acids [31], fish [31], vitamin D
[32], coffee [33,34], and tree nuts [35] in relation to the gut microbiome
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because these factors have been associated with CRCmortality [35] but
are not included in the ACS guideline score.

Clinical data
Clinical data, including date of diagnosis, cancer type, stage at

diagnosis, and treatment history, were abstracted from medical records
by trained staff at enrollment in LOGIC. The medical records of
LOGIC participants were reviewed annually to abstract information on
any treatments received in the past year as well as any diagnoses of
recurrence or metastasis.

Fecal sample and data collection
Participants were provided a commercially available OMNIgene-

GUT kit (DNA Genotek Inc), which contained a stool collection
tube with preservatives, user instructions, a spatula, 2 toilet accessories,
a biospecimen bag, a 2-way mailer prepaid shipping box, and a custom
label. Per user instruction, participants were asked to mix the fecal
sample with preservatives immediately upon collection and ship it at
room temperature to the Turnbaugh laboratory at UCSF. The samples
were stored at �80�C until further analysis.
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Amplicon sequencing and analysis
DNA was extracted from ethanol-preserved stool samples using

the International Human Microbiome Standard operating procedure
(Protocol Q) [36], and the 16S ribosomal RNA (rRNA) gene
sequencing library was constructed using dual error-correcting barc-
odes. Briefly, a quantitative primary polymerase chain reaction (PCR)
was performed using KAPA HiFi Hot Start Kit (KAPA KK2502) with
V4 515F/806R Nextera universal bacterial primers. The amplified
products were diluted 1:100 in UltraPure DNase/RNase-free water
and were indexed using unique dual indexing primers. The products
were quantified using a Quant-iT PicoGreen double-stranded DNA
assay kit (Invitrogen P11496) and pooled at equimolar concentrations.
The pooled library was quantified via quantitative PCR (qPCR) using
the KAPA Library Quantification kit (KAPA KK4824), and its
quantity was assessed on 1.5% agarose gel to check the predicted
product size. Once quality checks were complete, the library was
sequenced on the Illumina MiSeq platform at 270 x 12 x 12 x 270
cycles. Demultiplexed sequences were processed using our 16S rRNA
gene analysis pipeline [37]. High-quality reads were analyzed using
521
qiime2R [38] and phyloseq [39] packages in R. Alpha diversity was
assessed through the Shannon diversity index using reads subsampled
at 40,795 reads per sample (Supplementary Table 1). Analysis of
variance (ANOVA) with permutation test (ADONIS function in Vegan
package in R) was used to examine the associations between health
behavior, sociodemographic and clinical variables, and microbial
community structures [40]. Differentially abundant amplicon
sequence variants were determined using ANOVA and linear regres-
sion models in R.

In our preliminary analysis, we discovered that 1 participant’s
sample was different from the rest of the samples (Supplementary
Figure 1A). Specifically, this sample had lower alpha diversity (Sup-
plementary Figure 1B), with 80% of its community dominated by
facultative anaerobes, including Escherichia-Shigella, Streptococcus,
and Klebsiella (Supplementary Figure 1C, D). This participant was the
only one in the cohort who had an ileostomy (compared with co-
lostomy or no ostomy). Due to its distinct microbiome profile, we
excluded this outlier from the remaining analyses described in this
manuscript.
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qPCR quantification of Fusobacterium nucleatum
Extracted genomic DNA was used to quantify Fusobacterium

nucleatum using a previously published and validated primer pair (F-
CGGGTGAGTAACGCGTAAAG, R-GCCGTGTCTCAGTCCCCT)
that targets the 16S rRNA gene [41]. 4 μL of DNA, 1 μL of 3μM primer
stock, and 5 μL SYBR Select Master Mix for CFX (Thermo Fisher
Scientific) were mixed and amplified in triplicate using the following
cycling conditions: 50�C for 2 min, 95�C for 2 min, and 40 cycles of
95�C for 15 sec and 60�C for 1 min. DNA extracted from F. nucleatum
pure culture was used to develop a standard curve. A primer pair tar-
geting general 16S (F-TGGAGCATGTGGTTTAATTCGA, R-TGC
GGGACTTAACCCAACA) was also included to calculate the total
amount of bacteria present in the sample.

The quantity of DNA in nanogram from F. nucleatum culture used
to develop a standard curve was converted to copy numbers using the
following equation [42]: copy number ¼ (DNA quantity in ng * 6.022
* 1023 molecules/mol)/(length of amplicon * 660 g/mole * 109 ng/g).
The lengths of the amplicon for Fusobacterium primer and general 16S
primer were 228 bp and 163 bp, respectively. The Cq values from each
sample were converted to copy numbers using the semi-log equations
generated using the standard curves. Copy number was divided by ng
DNA input. Percent abundance was calculated using the following
equation: (Fusobacterium primer copy number/general 16S primer
copy number)*100. Each metric was then tested for associations be-
tween covariates using ANOVA for categorical variables and general
linear model (GLM) for continuous variables.

Metagenomic sequencing and analysis
300 ng of normalized DNA was used in the Nextera DNA Flex

library prep kit along with DNA UD Indexes Set A barcodes (Illumina)
to assemble the metagenomic library. ZymoBIOMICS synthetic mi-
crobial community standard containing 8 bacteria and 2 yeasts (Zymo
Research) was included as a positive control to assess bias and errors in
the library preparation. The actual taxonomic composition was corre-
lated with the theoretical composition (r ¼ 0.83, P ¼ 0.003, Pearson
correlation). Each sample was quantified with PicoGreen (Thermo-
Fisher) and checked for quality with TapeStation 4200 (Agilent). Once
every sample passed the quality checks, the samples were pooled to the
same concentration and sequenced using an S1 flow cell on NovaSeq
6000 system (Illumina) at the Chan Zuckerberg Biohub-San Francisco.
The demultiplexed sequences were processed through our meta-
genomic pipeline, which trims low-quality reads and removes adapters
with Fastp [43], removes human reads with Bowtie2 [44], determines
genome equivalents with Microbecensus [45], and assigns microbial
reads to taxonomic and functional profiles with HUMAnN3 [46].

Of 29.5 million raw sequencing reads per sample on average, 99.0%
of reads passed the quality filtering step, yielding 29.2 million high-
quality reads per sample (Supplementary Table 1). To account for
uneven sequencing depth, reads were normalized to genome equiva-
lents and converted to reads per kilobase per genome equivalent
(RPKG). Unstratified gene families and pathways assigned from the
HUMAnN3 package [46] were used to analyze the functional
composition of the microbiome. Gene or pathway distances were
calculated via the Vegan package [40] and visualized in a nonmetric
multidimensional scaling of variations format using the Bray-Curtis
distance metric. ADONIS permutation test was used to test for asso-
ciation between covariates and the functional composition of the
microbiome. Genes or pathways detected in <3 samples or with the
labels “unmapped” or “unintegrated” were removed. The abundances
were converted to z-scores. The top 2.5% (13,533 gene families) of the
522
most abundant gene families were analyzed for differential abundance
using ANOVA and generalized linear models in R.

Statistical analysis
We used descriptive statistics to describe the sociodemographic and

clinical characteristics of the study sample, including the median
(interquartile range, IQR) for continuous variables and N (%) for cat-
egorical variables. To examine the ACS score, its components, and
other dietary factors in relation to the microbiome, we modeled the
ACS score as a continuous variable; components of the ACS score
were examined categorically using the point cut-offs defined above as
well as continuously; and the other dietary factors were examined
continuously.

Permutational multivariate analysis of variance (PERMANOVA)
testing was used to evaluate the association between the health
behavior, sociodemographic, and clinical variables and microbial beta
diversity in R using the Vegan package [40]. A general linear univariate
model and 1-factor ANOVA were used to test univariate associations
between continuous variables (for example, number of unique fruit/-
veg, % whole grain, BMI, fruit/veg servings/d, alcohol g/d, physical
activity MET-h/wk, and meat servings/d) and categorical variables (for
example, ACS score, ACS score with alcohol, diet sub-score, fruit/veg
points, whole grain points, alcohol points, meat points, overall diet
points, physical activity points, and BMI points) with microbiome
features, respectively. The Benjamini-Hochberg test was used to
account for multiple testing [47].

Results

Study population
We contacted 161 CRC survivors by e-mail between 2019 and

2020. Of 45 (28%) individuals that expressed interest in participating in
our study, we collected stool samples from 28 patients (Figure 1A;
Table 1). One outlier sample was excluded, as described above (see
Methods and Supplementary Figure S1). The 28 participants had a
mean age of 52.7 � 10.9 y; 57% were male, 79% identified as White,
and 14% identified as Hispanic or Latino ethnicity. Nearly half of the
participants (n ¼ 13; 48%) had an ACS score of 3, with the other
participants having ACS scores ranging from 4 to 6; no participants had
ACS scores from 0 to 2 (Table 1). There were no significant differences
in the assessed demographic, clinical, or dietary factors between the
sampled population and the population that was originally invited to
participate in this study (Table 1).

For the 28 people who provided stool samples, the median time from
diagnosis to completion of the FFQ at stool collection was 4 y (IQR:
3.4–6.5 y). The median time from the FFQ used for analyses to stool
collection was 0 mo (IQR: 2 mo prior to 1 mo after stool collection).

Dietary components of the ACS score predict variability
in the gut microbiota

16S rRNA sequencing was used to profile microbial community
compositions of stool from 27 CRC survivors after excluding 1 outlier
sample (Supplementary Figure 1). The overall ACS score was not
significantly associated with the gut microbial community structure
(Figure 1C). However, 2 components of the ACS score were statisti-
cally significant. This included (i) fruits and vegetables and (ii) alcohol,
accounting for 19% and 13% of the variation seen in the fecal micro-
biota, respectively (Figure 1C). The number of unique fruits and
vegetables consumed was also significantly associated with the
microbiota when modeled as a continuous variable (Figure 1C). Similar



TABLE 1
Characteristics of invited and sampled CRC survivors in a pilot study of the microbiome, overall and by the ACS Nutrition and Physical Activity Guideline score

Invited
population

Sampled
population

Invited vs.
sampled population
(P value)1

Sample population by ACS score

3–4 5–6

Clinical data
Number of participants (%) 161 (100) 28 (17) 18 (64) 10 (36)
Age at diagnosis, y; median (IQR) 53 (47, 61) 53 (46, 60) 0.97 52 (45, 60) 56 (48, 58)
Time since diagnosis, y; median (IQR)2 3.9 (2.6, 5.6) 4.1 (3.5, 6.5) 0.43 4.3 (3.1, 7.1) 4.1 (3.8, 5.8)
Sex, n (%) 0.31
Male 78 (48) 16 (57) 10 (56) 6 (60)
Female 83 (52) 12 (43) 8 (44) 4 (40)

Cancer site, n (%) 0.97
Colon 103 (64) 18 (64) 13 (72) 5 (50)
Rectum 58 (36) 10 (36) 5 (28) 5 (50)

Stage at diagnosis, n (%) 0.80
Stage I 17 (11) 4 (14) 4 (22) 0
Stage II 42 (26) 5 (18) 2 (11) 3 (30)
Stage III 91 (57) 17 (61) 10 (56) 7 (70)
Stage IV 7 (4) 1 (4) 1 (6) 0
Unknown 4 (2) 1 (4) 1 (6) 0

Treatment history, n (%)
Surgery 152 (94) 26 (93) 0.69 17 (94) 9 (90)
Chemotherapy 39 (24) 8 (29) 0.55 5 (28) 3 (30)
Radiation 112 (70) 21 (75) 0.49 13 (72) 8 (80)

Time since last treatment, y; median (IQR)3 3.1 (1.9, 4.8) 3.2 (2.5, 4.4) 0.43 2.9 (1.7, 4.3) 3.4 (3.1, 4.5)
Stoma bag present, n (%)2,3 0.49
No 112 (70) 24 (86) 15 (83) 9 (90)
Yes 17 (13) 4 (14) 3 (17) 1 (10)
Missing 5 (4) 0 0 0

Self-reported sociodemographic characteristics
Number of participants who completed
surveys querying demographic factors4

134 28 18 10

Race, n (%)3 0.17
African American or Black 2 (1) 1 (4) 1 (6) 0
American Indian or Alaskan Native 3 (2) 1 (4) 1 (6) 0
Asian 18 (13) 0 0 0
>1 race 8 (6) 3 (11) 2 (11) 1 (10)
White 96 (72) 22 (79) 13 (72) 9 (90)
Not reported 7 (5) 1 (4) 1 (6) 0

Ethnicity, n (%)3 0.37
Hispanic or Latino 11 (8) 4 (14) 3 (17) 1 (10)
Not Hispanic or Latino 122 (91) 24 (86) 15 (83) 9 (90)
Not reported 1 (1) 0 0 0

Education, n (%)3 0.41
Grade school 2 (1) 0 0 0
High school or equivalent 9 (7) 2 (7) 1 (6) 1 (10)
Some college 2 (1) 1 (4) 0 1 (10)
Associate’s degree 12 (9) 0 0 0
Bachelor’s degree 46 (34) 11 (39) 9 (50) 2 (20)
Graduate/professional degree 63 (47) 14 (50) 8 (44) 6 (60)

Smoking status, n (%)3 0.76
Never 90 (67) 19 (68) 13 (72) 6 (60)
Past 42 (31) 8 (29) 4 (22) 4 (40)
Current 2 (1) 1 (4) 1 (6) 0

ACS Nutrition and Physical Activity Guideline Score components
Number of participants who completed
surveys for ACS score4

124 28 18 10

ACS score, median (IQR) 4 (3, 5) 3.5 (3, 5) 0.30 3 (3, 3) 5 (5, 6)
Body mass index, kg/m2; median (IQR) 24.8 (21.8, 27.4) 24.4 (23.0, 27.9) 0.67 26.8 (24.0, 29.6) 23.0 (21.5, 23.8)
Total physical activity, MET-h/wk; median (IQR) 30.2 (12.6, 71.3) 27.4 (13.3, 50.2) 0.39 20.0 (6.3, 34.2) 44.7 (26.5, 75.3)
Fruits and vegetables, servings/d; median (IQR) 7.2 (4.8, 10.5) 7.6 (4.0, 11.0) 0.39 7.2 (3.7, 10.0) 9.4 (6.4, 11.6)
Number of unique fruits and vegetables typically
consumed in past year, median (IQR)

25 (21, 29) 25 (20, 30) 1.0 24 (18, 28) 28 (21, 30)

Percent of grains consumed that
are whole grains, median (IQR)

59 (40, 79) 66 (50, 83) 0.20 64 (47, 86) 68 (56, 79)

(continued on next page)
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TABLE 1 (continued )

Invited
population

Sampled
population

Invited vs.
sampled population
(P value)1

Sample population by ACS score

3–4 5–6

Red and processed meat intake,
servings/wk; median (IQR)

6.2 (3.4, 8.9) 6.4 (3.7, 9.7) 0.67 6.5 (5.0, 9.0) 4.4 (1.0, 10.4)

Alcohol, drinks/d; median (IQR) 0.4 (0.1, 1.0) 0.5 (0, 1.3) 0.66 0.1 (0, 1.3) 0.7 (0.4, 1.2)
Fiber, g/d; median (IQR)5 27.7 (19.0, 42.4) 31.5 (21.7, 45.2) 0.36 28.1 (21.5, 43.2) 39.3 (21.9, 49.2)

ACS, American Cancer Society; CRC, colorectal cancer; IQR, interquartile range; MET-h/wk, metabolic equivalent task-hours per week.
1 Chi-square test for categorical measure or nonparametric median comparison test for continuous measure, as appropriate.
2 For comparability between the invited and sample populations, ostomy status, time since diagnosis, and time since last treatment were measured at the start of

the microbiome sub-study (October 2019).
3 Data on self-reported ostomy status, race, ethnicity, and smoking status were available for 134 (83%) of the invited participants. N ¼ 27 (17%) of the invited

participants consented but did not complete enrollment in the parent study.
4 Data on ACS guideline score components are available for 124 (77%) of the invited participants. N ¼ 10 of the enrolled participants did not complete

components to calculate ACS.
5 Fiber is not a component in the ACS guideline score but was included here because of its potential impact on the gut microbiome and colorectal cancer.
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results were obtained using a different beta diversity metric (Bray-
Curtis), suggesting that these findings were robust and independent of
the distance metrics used (Supplementary Figure 2A and Supplemen-
tary Table 2). These variables were the largest predictors of variability
in the microbiome in our sample—more than clinical, demographic, or
other behavioral variables. Other components of the ACS score, such
as physical activity, BMI, red/processed meat intake, and whole grains
consumption, were not associated with the microbiota (Figure 1C).
Surprisingly, total fiber intake was not associated with microbial di-
versity (Figure 1C; Supplementary Figure 3A-B) or phylum-level
abundance (Supplementary Figure 3C). Total fiber intake was associ-
ated with a differential abundance of 9/171 (5.3%) genera (Supple-
mentary Figure 3D).
Fruit and vegetable consumption is associated with the
gut microbiome

Microbial community structure was significantly associated with
the total fruit and vegetable points (fruits/veg points) and variety of
fruits and vegetables consumed, but not the total quantity (servings/d)
(Figure 2B). Microbial diversity was positively correlated with all 3
metrics of fruit and vegetable consumption (fruits/veg points, serving
size, and variety; Figure 2C). At the phylum-level, the proportion of
Firmicutes increased with higher fruit and vegetable intake, whereas
Bacteroidota decreased with more intake (Figure 2D,E). Differences in
the abundance of 3 additional phyla were observed with respect to the
combined fruits/veg points (Figure 2D). At the genus level, the abun-
dances of 4 genera had a nonlinear association with fruits/veg points
(Figure 2F). A GLM testing the association between the variety of
fruits and vegetables consumed and the abundances of individual
genera revealed 2 positively correlated genera (Fusicatenibacter and
Erysipelotrichaceae) and 5 negatively correlated genera (Eggerthella,
Eubacterium, Actinomyces, Faecalitalea, Angelakisella; Figure 2G).

To test if fruit and vegetable intake also accounted for the observed
variations in the functional composition of the gut microbiome, PER-
MANOVA tests were used with the unstratified gene and pathway
abundances. Similar to the taxonomic composition, fruit and vegetable
intake accounted for 15% (P¼ 0.018; Figure 3A) and 26% (P¼ 0.011;
Figure 3B) of the variations seen in gene and pathway abundances,
respectively. Abundances of 21 gene families (q < 0.2; Figure 3C and
Supplementary Table 3) and 33/375 pathways (q < 0.2; Figure 3D and
Supplementary Table 4) were significantly associated with fruit and
vegetable consumption. The dTDP-N-acetylviosamine biosynthesis
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pathway was the only pathway with a clear linear relationship with the
fruit and vegetable points (Figure 3D).

Overall, fruit and vegetable consumption was associated with path-
ways for the biosynthesis of certain amino acids, nucleic acids, and
short-chain fatty acids (SCFAs) and the degradation of sugars
(Figure 3D). Seven out of 33 (21%) of the significant pathways were
involved in amino acid biosynthesis, such as arginine, ornithine, gluta-
mine, putrescine, and chorismate, a precursor of aromatic amino acids.
Four of the 33 (12%) pathways involved pyrimidine and adenosine
biosynthesis. Bifidobacterium shunt, a pathway that breaks down hexose
sugar to produce acetate and lactate [48], was significant. However, other
pathways involved in the production of SCFAs via fermentation of
L-lysine, pyruvate, or acetyl-CoA had no detectable association with
fruit and vegetable intake. Degradation of galactose and stachyose,
sugars found in avocados and numerous vegetables [49], was also
significantly associated with fruit and vegetable consumption.
Variety of fruit and vegetable consumption is associated
with lower Fusobacterium nucleatum

We examined the abundance of 12 CRC-associated bacterial species
[4,6,7,50,51]. Most (10/12) of these species, including members of the
Fusobacterium genus, were only detected in a minority of meta-
genomic data sets (0–3, Supplementary Figure 4A). Escherichia coli
and Bacteroides fragilis were more common but were not associated
with our clinical metadata (data not shown). Next, we sought to in-
crease our sensitivity to detect F. nucleatum by leveraging a published
qPCR assay [41]. F. nucleatum was detected by qPCR in every sample
but varied in relative abundance (Supplementary Figure 4B).
F. nucleatum levels were positively correlated with time since the
diagnosis (Supplementary Figure 4C) and time since the last treatment
(Supplementary Figure 4D). Interestingly, F. nucleatum abundance was
negatively correlated with the variety of unique fruits and vegetables
consumed (Supplementary Figure 4E).
Alcohol intake is associated with gut microbial species and
gene abundance

Intake of alcoholic drinks was associated with interindividual varia-
tions in gut microbial community structure (P ¼ 0.01; Figure 1C,
Figure 4A) and higher microbial diversity (P¼ 0.03; Figure 4B). Alcohol
intake negatively correlated with the abundance of the Bacteroidota
phylum (Figure 4C). Two other phyla (Thermoplasmatota and Proteo-
bacteria) and 1 species-level taxon (Clostridium innocuum) were also
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FIGURE 3. Fruit and vegetable intake is associated with microbial gene and pathway abundances. (A, B) Nonmetric multidimensional scaling (MDS) of
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significantly associated with alcohol use (Figure 4C, D). Notably, alcohol
use was not correlated to either the quantity or variety of fruit and vege-
table consumption (Supplementary Figure 2B), suggesting they represent
independent factors associated with variations in the microbiota.

To test whether alcohol consumption was linked to the observed
variations in the functional composition of the gut microbiome, we first
assessed microbial gene abundances. We used 2 statistical models: (i)
ANOVA testing for significant differences in gene abundances among
525
nondrinkers, light-to-moderate drinkers, and heavy drinkers, and (ii) a
GLM that tests for a linear association between alcohol consumption
and gene abundances. Of 13,533 gene families, 1,278 (9.5%) were
significant by ANOVA (qANOVA < 0.2), 2,812 (21%) were significant
by GLM (qGLM < 0.2), and 1,061 (7.8%) were significant by both
models (Figure 4E, Supplementary Table 5). Notably, >97% (1,031/
1,061) of the significant gene families had negative correlations with
alcohol consumption.



FIGURE 4. Alcohol consumption is associated with the gut microbiome of cancer survivors. (A) Principal coordinate (PC) analysis of weighted-UniFrac
distance matrices of bacterial community composition from 16S ribosomal RNA gene sequencing colored based on alcohol intake. Light drinking—defined
as >0 and �1 drink/d for women, >0 and �2 drinks/d for men; amounts above these cut-offs are labeled as heavy drinking. R2 and P values were extracted from
permutational multivariate analysis of variance (PERMANOVA) tests. (B) Alpha diversity analysis using Shannon diversity index of community composition
for alcohol intake. (C) The proportion of phylum-level abundances associated with alcohol intake. (D) Centered-log-ratio (CLR)-transformed abundance of a
species significantly associated with alcohol intake. (E) A volcano plot of gene families tested for association with alcohol intake using 2 statistical models - a
general linear model (GLM) and ANOVA (Supplementary Table 5). GLM tests for the linear associations between normalized gene family-level abundances and
alcohol intake. (F) Significant pathways associated with alcohol intake (Supplementary Table 6). Bolded pathways have a significant relationship based on
GLM. Significance is defined as false-discovery-rate q < 0.2 using Benjamini-Hochberg multiple-testing correction. N ¼ 27 participants.
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Similar analyses were conducted with the pathway abundances. Of
375 total pathways, 49 (13%) were significant by ANOVA (qANOVA <

0.2), of which 6/49 (12%) had significant associations by GLM
(qANOVA < 0.2; qGLM < 0.2; Figure 4F and Supplementary Table 6).
Two pathways, LPS biosynthesis, and 2-methylcitrate cycle, involved
in degrading a common food and drink additive propionate, were
positively associated with alcohol intake. In contrast, the abundances of
4 pathways involved in histidine degradation, cis-vacenate fatty acid
biosynthesis, and pyrimidine salvage were negatively associated with
alcohol use. Taken together, these results showed marked differences in
taxonomic and functional compositions of the gut microbiome among
CRC survivors linked to alcohol intake.

Discussion

In this pilot study, we explored whether the ACS score or its
components were associated with variations in the gut microbiome of
27 CRC survivors. Whereas the overall ACS score was not associated
with the microbiome in our sample, we found that fruit and vegetable
intake and alcohol consumption were significantly associated with
interindividual variations in fecal microbial diversity, community
composition, and gene and pathway abundances. In fact, these 2 dietary
components were the only factors among other variables, such as
clinical history, demographics, and other health behaviors, that reached
statistical significance in our data set.

This study supports the feasibility of studying the gut microbiomes
of CRC survivors. Despite exclusively recruiting via e-mail a few
months before the global COVID-19 pandemic began, we were able to
enroll and obtain stool samples remotely from 28 CRC survivors.
Importantly, these individuals did not differ from our invited popula-
tion of CRC survivors in terms of demographic or clinical factors
(Table 1). However, incorporating other strategies such as reminder
invitations, phone calls, and compensation in future studies may in-
crease the recruitment rate.

All samples, except 1, were primarily composed of Firmicutes and
Bacteroidota (Supplementary Figure 1C), which are typically the 2
most abundant phyla found in human gut microbiota [52]. One outlier
sample exhibiting a bloom of Proteobacteria and no Bacteroidota was
collected from the only patient who had an ileostomy, which is a sur-
gically created opening in the abdominal wall through which the ileum
is attached (Supplementary Figure 1C). Based on this data, combined
with prior data indicating that ileostomies markedly perturb the gut
microbiota [53], we opted to exclude this sample from subsequent
analyses.

We observed strong and significant associations between fruit and
vegetable consumption and multiple aspects of the gut microbiomes of
CRC survivors. Consistent with our previous intervention studies in
healthy individuals [10], we found a decreased abundance of Bacter-
oidota phylum in individuals that consume high concentrations of fruits
and vegetables. Surprisingly, it was the number of unique fruits and
vegetables consumed, not the quantity or fiber content of the diet, that
was linked to variations in the gut microbiota. Fruits and vegetable
intake was also linked to a lower abundance of Fusobacterium
nucleatum, a well-characterized organism with a strong CRC associ-
ation. These results emphasize the need to broadly consider compo-
nents of fruits and vegetables, in addition to dietary fiber [54], that may
play a role in shaping the gut microbiome [55]. Eating a variety of fruits
and vegetables provides diverse nutritional substrates that could in-
fluence the growth of many microorganisms; for example, dietary
lignans [56] or other polyphenols [57].
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The fruit and vegetable score, which factored in the quantity and
variety of fruits and vegetables consumed, was associated with amino
acids, nucleic acids, cofactor, and SCFA biosynthesis and sugar degra-
dations. Supported by the observation that herbivorous fecal micro-
biomes have enriched biosynthetic pathways for amino acids compared
with their carnivorous counterparts [58], this may suggest that the gut
microbes may not be able to extract sufficient amino acids and cofactors
from fruits and vegetables. Enriched abundance of pathways for sugar
degradations suggests the microbes can utilize galactose and stachyose
found in fruits and vegetables. Surprisingly, microbial pathway abun-
dances were nonlinear with respect to fruit and vegetable points, which
may suggest a certain combination of quantity and the number of unique
fruits and vegetables triggered the expansion of biosynthetic pathways.
Future intervention studies would be helpful to determine the repro-
ducibility and mechanistic basis for such nonlinear effects on the gut
microbiome, as we have recently demonstrated for ketogenic diets [12].

Heavy alcohol consumption is associated with a higher risk of
several cancers, including incident CRC, but the effect of moderate
drinking has conflicting reports [28]. Some studies considered mod-
erate drinking to be optimal compared to nondrinking or heavy
drinking in terms of CRC mortality, whereas other studies considered
nondrinking to be optimal [28]. In this exploratory study, we desig-
nated low-to-moderate intake as the reference level to be consistent
with our prior work. This scoring approach is also supported by a
meta-analysis that concluded low-to-moderate alcohol intake was
associated with longer CRC survival [59]. In our study, we found that
alcohol drinking was associated with multiple aspects of the gut
microbiome. The effect size of the observed associations is surprising,
given that ethanol is rapidly absorbed in the stomach and small intes-
tine [60]. We propose that the other components of alcohol-containing
drinks (for example, polyphenolic compounds in wine or hops in beer)
are a more likely source of the observed differences. However, it is also
possible that more indirect mechanisms due to changes in host physi-
ology in response to alcohol somehow impact the microbiome. Future
studies in mice aimed at understanding these various factors, coupled
with studies of the downstream health effects of alcohol-associated
differences in the gut microbiome in humans, are needed.

Our study has multiple limitations. We invited 161 individuals to
participate and obtained stool samples from 28 (17%). A strength of
our study is that the sampled individuals did not differ in terms of
demographic or clinical factors from those who did not provide stool
samples. However, the invited and sampled population had limited
racial, ethnic, and socioeconomic diversity. Additionally, none of our
participants had low ACS scores (0–2 points), which limits the
generalizability and may have prevented us from detecting differences
in the microbiome between CRC survivors who engage in few health
behaviors compared with people who are more adherent to the
guidelines. In addition, this was an observational, cross-sectional
analysis, and therefore, we cannot rule out the potential for con-
founding. Future studies will include repeated stool sample collections
and measures of health behaviors in more diverse populations of CRC
survivors. Due to our small sample size in this exploratory pilot study,
we lacked sufficient power to pursue multivariable approaches. Of
note, confounding by demographic factors is not likely to explain our
observed associations with the variety of fruits and vegetables or
alcohol intake given the homogeneity in our population (for example,
89% had a 4-y college degree) and lack of univariate association be-
tween these variables (education, race, ethnicity) and the structure of
the fecal microbiome in our sample. Nevertheless, as stated above,
future paired studies in mice and/or other model organisms will be
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critical to identify the causal relationships between the variables
assessed here, their mechanistic basis, and their potential relevance to
host health and disease.

Despite these limitations, we were able to detect significant asso-
ciations between components of the ACS score and interindividual
variations in human gut microbiome, which is linked to cancer path-
ogenesis and progression. Continued progress in this area could help to
tailor dietary guidelines to an individual’s microbiomes or to develop
microbiome-based interventions that could assist in the posttreatment
recovery and survival of CRC and other cancer patients.
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