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Competitive effects between stationary chemical reaction centres: A theory
based on off-center monopoles

Joseph A. Biello1,a) and René Samson2,b)
1Department of Mathematics, University of California, Davis, California 95616, USA
2ex-Shell Research and Technology Center, Amsterdam, The Netherlands

(Received 28 August 2014; accepted 9 February 2015; published online 3 March 2015)

The subject of this paper is competitive effects between multiple reaction sinks. A theory based on off-
center monopoles is developed for the steady-state diffusion equation and for the convection-diffusion
equation with a constant flow field. The dipolar approximation for the diffusion equation with two
equal reaction centres is compared with the exact solution. The former turns out to be remarkably
accurate, even for two touching spheres. Numerical evidence is presented to show that the same holds
for larger clusters (with more than two spheres). The theory is extended to the convection-diffusion
equation with a constant flow field. As one increases the convective velocity, the competitive effects
between the reactive centres gradually become less significant. This is demonstrated for a number
of cluster configurations. At high flow velocities, the current methodology breaks down. Fixing this
problem will be the subject of future research. The current method is useful as an easy-to-use tool for
the calibration of other more complicated models in mass and/or heat transfer. C 2015 Author(s). All
article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0
Unported License. [http://dx.doi.org/10.1063/1.4913216]

I. INTRODUCTION

In this paper, chemical reaction systems are studied in
which one reacting component (or a catalytic site) is immo-
bilized on a stationary macroscopic object, while a second
molecular component moves—by diffusion and/or by some
non-stochastic form of motion—towards the static object.
This is a good model for many chemical reaction systems
in industrial practice (e.g., heterogeneous catalysis in fixed
and fluidized beds, combustion of liquid and solid fuels,
polymerization reactions, crystal growth) and in biological
systems (enzyme-substrate reactions). An interesting special
case is the evaporation and subsequent combustion of a spray
of finely dispersed liquid fuel droplets, a process in which the
transfer of both heat and mass is involved.1–4

In systems where multiple stationary reaction centres are
in close proximity to each other, the reactive centres compete
for the diffusing molecular agent. As a result, the reaction rate
per site is lower than in the case of single sites. Much of the
work on this subject has been limited to systems in which
only diffusive flows are taken into account (e.g., Refs. 3 and
4). Papers on this subject in which non-stochastic flows are
included (e.g., Refs. 1 and 2) depend on numerical simulations
rather than on analytical or approximate-analytical methods,
on account of the complexity of the equations involved. In
the current paper, we consider a simple case of constant
flow which is amenable to analytical treatment, albeit at the
expense of physical realism.

The stationary macroscopic reaction centres are assumed
to be spheres for which the spatial coordinates are known

a)biello@math.ucdavis.edu
b)Author to whom correspondence should be addressed. Electronic mail:

rsamsonjvlk@gmail.com

and fixed. The theory is developed for an arbitrary but finite
number of spheres. The discussion will focus on examples
with a relatively small number of spheres.

In the current paper, the solution of the diffusion and the
convection-diffusion equation is approximated by introducing
fictitious image charges inside the spherical reaction centres,
expanding the charge distribution in terms of multipoles and
truncating the expansion at the dipolar level. This method
has a long history in mathematical physics (see Ref. 17).
In recent years, it has again become the subject of intense
research activity following the seminal work of Greengard and
co-workers on so-called fast multipole moments. This theory
has now been developed for conductors,11,26–28 for dielectric
media,29–32 for the steady-state33 and the time-dependent heat
equation,34 for molecular dynamics,26,35 and in numerous
other applications. It is remarkable that the recent flurry
of activity in applying image-charge concepts to dielectric
media29–32 comes more than 130 years after the basic ideas
were originally published.36 In Appendix A, some remarks
will be made concerning the relation between our work and
the method of images (MOIs) and fast multipoles.

II. DESCRIPTION OF THE MODEL FOR THE LAPLACE
EQUATION

We start with the case of purely diffusive flows. In the
steady state, the concentration c of the mobile species satisfies
the time-independent diffusion equation

∇2c = 0, (1)

for r⃗ ∈ R3, with the decay condition at large distances,

c → c0, |r⃗ | → ∞, (2)

0021-9606/2015/142(9)/094109/15 142, 094109-1 © Author(s) 2015
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and an additional internal boundary condition, such as

c (Si) = 0, for i = 1, . . . ,N, (3)

where {Si |i = 1, . . . ,N} are N identical spheres of radius a
centred at locations r⃗i. Equation (3) represents the case of
fully absorbing boundaries.

Local angle coordinates are introduced on each sphere so
that the position vector on the surface of a sphere is given by

r⃗ = r⃗i + ar̂i(θ,ϕ), (4)

where r̂i is a unit radial vector of sphere i. A familiar strategy
in meeting the surface boundary condition—Eq. (3)—consists
of the introduction of fictitious source terms in the Laplace
equation, leading to the Poisson equation

∇2c = 4πq (r⃗) = 4π
∞
j=1

qjδ
(
r⃗ − R⃗j

)
. (5)

In the terminology of electrostatics, the qj are charges located
at positions R⃗j, which are all within the boundaries of one
of the spheres. The strengths and the locations of the charges
are so chosen that the boundary conditions are satisfied. This
approach is related to the well-known method of images
(see Refs. 11 and 17, and Appendix A). In general, an
infinite number of charges are needed to satisfy boundary
condition equation (3) exactly. The crucial finding of the
current method is that, in the linear approximation which is
outlined below, a consistent (and accurate) solution arises by
limiting the charges to one single, off-center charge per sphere
(or, equivalently, as we show in Appendix C, to the zeroth
and first moments of the charge distribution). The off-center
location of the charge gives rise to associated higher-order
multipoles. It will be shown that a multipolar expansion that
is truncated at the linear (dipolar) level is sufficient to give
very accurate results.

The infinite sum in Eq. (5) is replaced by a finite sum
with one charge per sphere,

q (r⃗) =
N
j=1

qjδ
(
r⃗ − R⃗j

)
, (6)

where, in general, R⃗j , r⃗ j. Using the Green’s function, we
find the concentration field as

c (r⃗) = c0 −
N
j=1

qjG
(
r⃗ − R⃗j

)
, (7)

where

G
(
d⃗
)
=
���d⃗
���
−1
, (8)

is the [1/distance] Green’s function of the Laplace operator.
A solution of Poisson equation (5) with source term (6)
consists of a set of charges and their coordinates


qj, R⃗j



( j = 1, . . . ,N), such that the concentration field vanishes
everywhere on the surface of each sphere, i.e.,

c (r⃗i + ar̂i (θ,ϕ)) = 0, ∀θ,ϕ, i = 1, . . . ,N. (9)

In an exact theory, this equation would be satisfied exactly. In
an approximate theory, such as the present one, it is a priori
clear that this requirement cannot be satisfied exactly but only

approximately. An explicit demonstration of this statement is
given in Appendix A (see Eq. (A4)), where it is shown that
the surface integral of the concentration is not exactly zero for
the special case of two touching spheres.

Defining

d⃗ij = r⃗i − r⃗ j, s⃗ j = R⃗j − r⃗ j, (10)

dij =
���d⃗ij

��� being the center-to-center distance between spheres
i and j, and s j =

�
s⃗ j
�

being the off-center shift of charge qj

within sphere j, we find

0 = c0 −
qi

|ar̂i − s⃗i | −
N
j=1

qj

�
1 − δij

�

���d⃗ij + ar̂i − s⃗ j
���
,

∀θ,ϕ, i = 1, . . . ,N.

(11)

III. SOLUTION STRATEGY

The denominators in Eq. (11) can be expanded using the
familiar multipolar expansion

1
|r⃗1 − r⃗2| =

1
R

∞
l=0

( r
R

) l
Pl(cos θ)

=
1
R

(
1 +

r
R

r̂ · R̂ +O
(( r

R

)2
))

, (12)

where

r = min (r1,r2) , R = max (r1,r2) , (13)

and Pl (x) are Legendre polynomials. We shall drop terms of
quadrupolar and higher order (terms with l ≥ 2).

The term in Eq. (11) under the summation sign (which
represents the potential on the ith sphere due to the charges
in each of the other spheres) will be expanded in terms of�
ar̂i − s⃗ j

�
/dij which is clearly <1.

Regarding the second term in Eq. (11) (which represents
the potential on the ith sphere due to the single charge within
it), it is clear that si is always <a, therefore we will expand
this term in the ratio si/a. However, we cannot guarantee “a
priori” that si/a is very small. Therefore, we would expect the
Taylor series expansion of this term to converge more slowly
than that due to the charges in the other spheres.

Substituting the series expansions (12) in (11) to linear
order in r̂i and using the following definitions:

Qi =
qi

ac0
, M⃗i =

qi s⃗i
a2c0

,

αij =
a
dij

�
1 − δij

�
, A⃗ij =

(
a
dij

)2

d̂ij
�
1 − δij

�
,

(14)

we obtain the following equality:

0 = −1 +Qi +

N
j=1


αijQ j + A⃗ij · M⃗j



+




M⃗i −
N
j=1

A⃗ijQ j



· r̂i,

∀i = 1 . . . N. (15)
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Here, Qi is the (non-dimensionalized) charge in sphere i,
M⃗i is the dipole moment associated with charge Qi and the
off-center shift s⃗i, δij is the Kronecker delta, and αij and A⃗ij are,
respectively, a purely symmetric and a purely anti-symmetric
matrix. In Eq. (15), Qi and M⃗i are the unknowns, while αij

and A⃗ij are known variables, which depend on the coordinates
of the spheres.

Since Eq. (15) must be approximately true for every point
r̂i(θ,ϕ) on the surface of sphere i, it follows that terms that are
independent of and linear in r̂i must equate to zero separately.
In other words, we have a system of equations

1 =
N
j=1


TijQ j + A⃗ij · M⃗j


,

0 = M⃗i −
N
j=1

A⃗ijQ j,

(16)

(∀i = 1 . . . N), where

Tij = δij + αij. (17)

A solution of Eq. (16) consists of the set

Qi, M⃗i |i = 1, . . . ,N


.

Solving for M⃗ from the second equation of Eq. (16) and
substituting in the first equation of Eq. (16), we obtain

Ui = 1 =

Tij + Aν

ik Aν
k j


Q j ≡ LijQ j,

for ∀i = 1, . . . ,N. (18)

Here, U is the vector (1,1, . . . ,1) ∈ RN , all components of
which are equal to unity. Furthermore, the convention of
implied summation over repeated indices has been used;
superscripts ν = 1,2,3 refer to spatial coordinates; subscripts
i, j, k = 1, . . . ,N refer to sphere labels. L is a symmetric matrix
and therefore has real eigenvalues and can be diagonalized by
a rotation. Explicitly it can be written as

Lij =


1 −

N
k=1

(
a

dik

)4

(1 − δik)

δij

+



a
dij
+

N
k=1

*
,

(
a2

dikdk j

)2

d̂ik · d̂k j (1 − δik) �1 − δk j
�+
-


×
�
1 − δij

�
. (19)

From Eq. (18), we find the charges Q j by inverting the matrix
L.

For practical applications (in, for example, mass- or heat-
transfer problems), this is the most important result so far.
In order to find the absorption rate of a system of absorbing
objects (e.g., N spheres), we should consider the surface
integral of the normal gradient of the concentration of mobile
species over all the reactive centres. Applying the Gauss
divergence theorem to Poisson equation (5), we find a relation
between the integrated normal gradient of the concentration
and the average source strength,

Q̃ =
1
N

N
j=1

Q j =
1

4πN

	
S

n̂ · ∇⃗cdA

=
1
N

N
j=1

N
k=1

Pjk, (20)

where

P = L−1. (21)

Here, S denotes a surface integral over all the spheres and Q̃
is an average source strength (averaged over all N absorption
centres). In general, Q̃ will turn out to be <1 (as will be
demonstrated further on), reflecting the fact that each reactive
site competes for the diffusing species and thereby diminishes
the absorbing power of all the other centres in the assembly.

IV. THE LAPLACE EQUATION FOR TWO SPHERES

Consider two spheres with their centers along the x-axis
at a center-to-center distance equal to d12. Assume that sphere
#1 lies to the right of sphere #2, i.e., d̂12 = +êx (the unit vector
along the positive x-axis). Let ∆ ≡ d12/ (2a), i.e., ∆ ≥ 1, and
let β ≡ 1/(2∆), then

L =


1 − β4 β

β 1 − β4


(22)

so that

L−1 =
1

Det [L]


1 − β4 −β
−β 1 − β4


, (23)

where

Det [L] = �
1 − β4�2 − β2. (24)

We also need the antisymmetric matrix A. From Eq. (14)
follows

−→
Aij = β2êx



0 1
−1 0


. (25)

The average charge is the same for both spheres (as it must be
for reasons of symmetry),

Q = L−1


1
1


=

1 − β4 − β

(1 − β4)2 − β2



1
1


=

1
1 + β − β4



1
1


, (26)

the dipole moments are

M⃗ = A⃗Q =
β2êx

1 + β − β4



1
−1


(27)

and the locations of the centers of charge are

−→s
a
=

M⃗
Q̃
= β2êx



1
−1


. (28)

This means that the charges are shifted away from the centers
of the spheres in the direction opposite of the other sphere.

A. Comparison of the model with the exact solution
for two spheres

The Laplace equation for two spheres is a rare case
where an exact solution exists, thanks to the separability of
the Laplace operator in so-called bispherical coordinates.5

This solution has been known for over a century;6 there is
a considerable body of literature on this subject.7–11 With
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FIG. 1. Fractional deviation between the dipole approximation and the exact
solution for the doublet configuration at very small intersphere separations. ∆
is the intersphere distance, divided by the sphere diameter.

the same boundary conditions as in Eqs. (2) and (3), the
surface-integral of the normal gradient of the concentration
is12

Q̃exact = 1 −
∞

m=2

(−1)m sinh (µ)
sinh (mµ) , (29)

where µ is defined by cosh (µ) = ∆. Figures 1 and 2 compare
exact result (29) with the result obtained in Sec. III,

Q̃model =
�
1 + β − β4�−1

, (30)

where β ≡ 1/(2∆). Plotted is the fractional deviation between
these two functions (on the y-axis) as a function of ∆ (on the
x-axis) for two almost touching spheres (Figure 1) and for
two more widely separated spheres (Figure 2).

For two exactly touching spheres (∆ = 1), Q̃exact = ln(2)
= 0.6931 . . ., while Q̃model = 16/23 = 0.6957 . . ., i.e., a frac-
tional difference of 0.0036. It is seen that the dipolar result
is a remarkably good approximation of the exact value, up to
the smallest distances between the spheres, where the test is
at its harshest.

Another way of testing the relation between current model
(30) and exact result (29) is the following. One would expect
that a Taylor expansion of 1/Q̃exact in terms of 1/∆ must
give the same first three terms as the analogous expansion of
1/Q̃model, namely, non-vanishing constant, linear, and quartic
terms, but no contributions from the quadratic and cubic terms.
This is proven in the following.

FIG. 2. Fractional deviation between the dipole approximation and the exact
solution for the doublet configuration at relatively large intersphere separa-
tions.

Consider the equalities
∞

m=2

(−1)m
sinh (mµ) = 2

∞
n=0

∞
m=2

xm(2n+1) = 2
∞
n=0

x4n+2

1 + x2n+1 , (31)

where

x = exp (−µ) . (32)

Using Eq. (31), it is straightforward (although rather tedious)
to show that 1/Q̃exact has the following expansion in powers
of x:

�
Q̃exact

�−1
= 1 + x − x3 − x4 + x5 + 3x6 +O

�
x7� . (33)

However, what we are after is an expansion in powers of 1/∆.
From Eq. (32) and cosh (µ) = ∆, it follows that

x = ∆ *
,
1 −


1 − 1
∆2

+
-
. (34)

x can be expanded in powers of 1/∆. Substituting that
expansion in Eq. (33), we obtain

�
Q̃exact

�−1
= 1 + (2∆)−1 − (2∆)−4 − (2∆)−6

+ 2(2∆)−7 +O
(2∆)−8


, (35)

i.e., through order ∆−4, the dipolar model and the exact result
coincide. The deviation between the two expressions is of
order ∆−6.

V. LARGER ASSEMBLIES OF SPHERES

A. Assemblies with full permutational symmetry

In this section, we consider groups of more than two
spheres. Symmetric clusters with full permutational symmetry
are interesting special cases. In such clusters, every member
can be interchanged with any other member without any effect
on the absorptive properties of either member. Examples of
such symmetric arrangements are the equilateral triangle, the
tetrahedron, the planar square, and the cube. A counterexample
is the body-centered cube. In the latter case, the sphere in the
center of the cube is much more shielded off from the mobile
species at close packing conditions than a sphere at one of
the vertices of the cube; hence, the central sphere and one
of the peripheral spheres cannot be interchanged without
affecting their individual absorptive fluxes. In Sec. V C, some
body-centered configurations will be considered.

For the assemblies with full permutational symmetry, the
interaction matrix L (see Eq. (19)) has interesting special
properties. The ith row of L represents the “interactions” of
the sphere labelled i with all the other spheres in the assembly.
The property of mutual interchangeability implies that rows
only differ by a permutation. Consequently, all row-sums of
L are equal. Since L is symmetric, also its column-sums
are all equal. A matrix with this property is called “semi-
magical.” Such matrices have a very useful property: if L is
semi-magical with row-sum Λ, then the inverse of L is also
semi-magical with row-sum 1/Λ.13 Consequently, to find the
non-dimensional absorption flux Q̃ for such permutationally
symmetric configurations, we do not even have to invert L
explicitly: it is sufficient to calculate its row-sum.
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In Appendix B, we list the relation between Q̃ and the
intersphere distance ∆ for a number of symmetric assemblies
that have semi-magical interaction matrices.

B. Comparison of model results with numerical
simulations

For the two-sphere system, an exact solution was available
with which the model result could be compared. For the larger
multi-sphere clusters considered here, this is not the case and
we have to rely on other methods to judge the accuracy of the
model results.

For this purpose, we have used a commercially available
software package: COMSOL multiphysics, a general-purpose
finite-element solver. The Laplace equation was solved in a
domain consisting of a cluster of N small spheres near the
origin of the domain, all of which are enclosed by a much
larger sphere. The large sphere is a necessary artefact, because
the software cannot deal with an infinitely large domain.

The presence of the large sphere is a complicating factor.
Without it the integrated flux for a single small sphere at the
origin would simply be 4π. With a large concentric sphere
of radius R2 around the central small sphere (of radius R1),
the integrated flux is 4π/(1 − R1/R2); i.e., fluxes calculated
in this setup are systematically larger than fluxes calculated
in an infinite medium by a factor equal to approximately
(1 + R1/R2). The question which ratio R2/R1 to use in the
numerical simulations is a dilemma. On the one hand, one
would like to have R2 as large as possible; however, this
choice is in conflict with the requirement to have a sufficiently
fine mesh on the surface of the small sphere. By trial and
error, we found that a ratio R2/R1 = 100 is a reasonable
compromise between these conflicting requirements. At this
ratio, the results were better than for smaller ratios; at larger
ratios, the software often would not run stably at fine grid
sizes.

In a comparative test between the numerical scheme and
the dipole method, the most sensible test condition is to pack
the spheres in the cluster very densely. Under this condition,
the artificial gradient-enlarging tendency in the numerical
method due to the presence of the large sphere is as small
as possible (R1/R2 being as small as possible), while the
dipole approximation is being tested under the most severe
conditions.

In Table I, calculated results for the dipolar model (see
Appendix B) and numerical results (COMSOL calculated data)
are compared for various cluster geometries at ∆ = 1.25, i.e.,
for a very crowded cluster geometry.

As can be seen from Table I, the fractional deviations
between the dipole model and the numerical scheme are of
the same order as for the doublet system (<0.01).

Calculations were also carried out at larger ∆-values. The
deviations were usually not more than a few percent at most.
The numerical fluxes were consistently larger than the dipolar
fluxes and the deviations were very often roughly in line
with the error estimate based on the “enclosing sphere effect”
discussed before. We conclude from this that the discrepancy
in those runs is mostly attributable to errors in the numerical
method rather than in the dipolar method. Hence, we conclude
that the runs at larger ∆-values are not very useful for testing
the validity of the dipole method.

Summarizing, this comparison confirms that—just as in
the case of two spheres—also for larger assemblies, the dipolar
approximation is remarkably accurate: at small intersphere
separations, the fractional error is probably <0.01; at relatively
large intersphere separations, the fractional error is probably
≪0.01.

C. Assemblies with less symmetry

The validity of the dipolar model is completely
independent of the degree of symmetry of the assembly.
Consider the addition of one extra sphere to the center of
one of the previously discussed permutationally symmetric
clusters. For example, instead of the doublet, consider now
three spheres in a row. In this assembly, the terminal spheres
are of course not interchangeable with the central sphere.
Inserting a central sphere in increasingly larger clusters, e.g.,
a tetrahedron or a cube, the sphere in the centre will be ever
more sterically hindered by its surroundings, leading to lower
and lower diffusive fluxes to the central sphere. We cannot use
the simplifying feature anymore of semi-magical matrices, but
this is not essential for the applicability of the dipolar method.

Body-centered clusters were considered in a recent
paper22 by Eun, Kekenes-Huskey, and McCammon. These
authors used numerical methods (finite elements) to solve
the Laplace equation and calculate diffusive flux rates to
the central sphere. In Table II, results of our dipolar model
are compared with those of Eun et al. The configurations
considered are

(a) three spheres in a row,
(b) a cluster of four spheres with one sphere at the center of

an equilateral triangle,
(c) a cluster of five spheres with one sphere at the center of a

regular tetrahedron.

TABLE I. Normalized flux rates Q̃: comparison between the dipole method and numerical results.

Q̃b

∆a Dipolar model Numerical results Fractional deviation

3 spheres (equilateral triangle) 1.25 0.580 0.582 −0.0029
4 spheres (tetrahedron) 1.25 0.489 0.485 +0.0076
4 spheres (square) 1.25 0.503 0.505 −0.0044
8 spheres (cube) 1.25 0.333 0.331 +0.0062

a∆ is the center-to-center separation between nearest-neighbour spheres divided by the sphere diameter (i.e., ∆ ≥ 1).
bQ̃ is the non-dimensional flux rate of the mobile species to an arbitrarily chosen sphere in the cluster.
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TABLE II. Normalized flux rates Q̃a for a number of body-centered clusters.

Three spheres in a row
Four spheres: Body-centered

equilateral triangle
Five spheres: Body-centered

regular tetrahedron

Peripheral Central sphere Peripheral Central sphere Peripheral Central sphere
spheres spheres spheres

∆b Dipolar model Reference 22 Dipolar model Reference 22 Dipolar model Reference 22

1 0.629 0.447 0.424 0.563 0.266 0.245 0.499 0.155 0.122
1.5 0.702 0.550 0.541 0.630 0.398 0.384 0.567 0.283 0.264
2 0.749 0.632 0.624 0.681 0.500 0.485 0.620 0.395 0.376
2.5 0.784 0.689 0.684 0.720 0.573 0.562 0.663 0.477 0.457
3 0.811 0.731 0.727 0.751 0.627 0.618 0.697 0.539 0.523
3.5 0.832 0.763 0.767 0.777 0.669 0.657 0.726 0.587 0.576
4 0.848 0.788 0.786 0.797 0.702 0.695 0.750 0.626 0.613
4.5 0.862 0.809 0.808 0.815 0.729 0.724 0.770 0.659 0.644
5 0.874 0.825 0.821 0.829 0.752 0.750 0.787 0.686 0.681

aQ̃ is the non-dimensional flux rate of the mobile species to the pertinent sphere; either to one of the peripheral spheres or to the central sphere.
b∆ is the center-to-center separation between nearest-neighbour spheres divided by the sphere diameter (i.e., ∆ ≥ 1).

The tabulated data in Table II were kindly provided to us
by Ref. 37.

For all but the closest packings, as the distances within
the cluster increase, the fractional deviation between the two
methods quickly drops off to less than 0.01, which is quite
satisfactory. At or near closest packing however, especially in
the larger clusters, the fractional deviation between the two
methods is considerable (0.1 to 0.2). It is quite likely that this
is related to mesh resolution issues in the numerical method.
At close packing conditions, it is very difficult to have a fine
enough resolution of the mesh near the surface of the central
sphere. Dr. Eun and Dr. Kekenes-Huskey communicated to us
that trials to refine their mesh at these close packing conditions
led to intractable problems. In view of these problems, the
disagreement between the two methods under close packing
conditions is not surprising.

Generally speaking, it appears that our approach is both
more efficient (in terms of computational speed) and more
accurate than the most commonly used numerical methods
(e.g., finite-elements).

VI. THE CONVECTION-DIFFUSION EQUATION

In this section, we discuss the situation where there is a
non-stochastic flow superimposed on diffusive (i.e., stochastic)
motion of the mobile species. Traditionally, this is modelled by
the so-called convection-diffusion equation. In this equation,
the macroscopic flow is governed by a given velocity field
u⃗ (r⃗). The relevant Poisson-type equation in the presence of a
continuous source field q (r⃗) is(

D∇2 − u⃗ (r⃗) · ∇⃗) c (r⃗) = 4πDq(r⃗). (36)

Here, D is the diffusion constant of the mobile species in
the flow medium. The same boundary conditions are assumed
as before (Eqs. (2) and (3)). If the Green’s function for this
equation is known, we can—at least in principle—apply the
same procedure as before. Although the Green’s function is
not known for a general flow field, in the special case of a
uniform (constant and unidirectional) flow, a Green’s function

can be constructed, as shown below. In Sec. VII B, we discuss
the consequences of the assumption of constancy of the flow
field.

With the trial function

c (r⃗) = exp (γz) ϕ (r⃗) , γ =
|u⃗|
2D

, (37)

ϕ (r⃗) satisfies the modified Helmholtz equation

�
∇2 − γ2� ϕ (r⃗) = 0. (38)

The spatial z-coordinate has been chosen parallel to the flow
direction. The Green’s function for the modified Helmholtz
equation is well known.14 Collecting factors, we find the follow-
ing Green’s function for Eq. (36) (see also Refs. 15 and 16):

G (r⃗ , r⃗ ′) = exp [−γ {|r⃗ − r⃗ ′| − (z − z′)}]
|r⃗ − r⃗ ′| . (39)

This Green’s function is not symmetric in its variables, i.e.,
G (r⃗ , r⃗ ′) , G (r⃗ ′, r⃗). This lack of symmetry is a consequence
of the nonequivalence of up- and downstream. A source
at point r⃗ ′ does not have the same effect at field point
r⃗ as the reverse situation (source at r⃗ , field point at r⃗ ′).
Upstream of a boundary, the flow forces the solute close to the
boundary, causing a relatively steep concentration gradient at
the boundary; downstream, we have the reverse situation. This
lack of symmetry of the Green’s function does not necessarily
cause any problems.

Due to the vanishing of the concentration on the spherical
surfaces (Eq. (3)), relation (20) between the integrated surface-
gradient of the concentration and the source strength continues
to hold in the presence of a convection term

Q̃ =
1
N

N
j=1

Q j =
1

4πN

	
S

n̂ ·
(
∇⃗ − u⃗

)
cdA

=
1

4πN

	
S

n̂ · ∇⃗cdA. (40)
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(This equality would still hold for a non-zero surface
concentration, if the normal component of the velocity at
the boundaries were zero.)

A. Dipolar expansion for the convection-diffusion
equation in the case of relatively weak flows (i.e., low
Péclet numbers)

The treatment of Secs. II and III is now extended to the
convection-diffusion equation. This development will turn out
to be valid for weakly advective flows only.

As before (see Eq. (11)), we aim to satisfy approximately
a complete-absorption boundary condition on the surface of
each single one of the N spheres,

c0 =

N
j=1

qjG
�
r⃗i + ar̂i (θ,ϕ) , r⃗ j + s⃗ j

�
(41)

for ∀i = 1, . . . ,N and ∀ (θ,ϕ). The set {r⃗i} denotes the centers
of the N spheres; the set

�
qj, s⃗ j

	
denotes the charges qj

and the locations (off-center shifts s⃗ j) within each sphere
of those charges. The Green’s function G, although not
symmetrical in its variables, is translationally invariant, i.e.,
G (r⃗ , r⃗ ′) = Φ (r⃗ − r⃗ ′), where

Φ (r⃗) = exp {−γ [r − û · r⃗]}
r

(42)

and r = |r⃗ |.
As before, we separate the term j = i from the sum in

Eq. (41). Defining d⃗ij = r⃗i − r⃗ j, dij =
���d⃗ij

���, and d̂ij = d⃗ij/dij,
emphasizing that d⃗ j i = −d⃗ij and d j i = dij, we find

c0 = qiΦ (ar̂i − s⃗i) +
N

j=1, j,i

qjΦ
(
d⃗ij + ar̂i − s⃗ j

)
. (43)

A Taylor-expansion of Φ
(
R⃗ + S⃗

)
, where S⃗ and R⃗ are two

vectors such that S ≡ ���S⃗
��� < R ≡ ���R⃗

���, leads to

Φ
(
R⃗ + S⃗

)
≈ Φ

(
R⃗
) 

1 −

γ
�
R̂ − û

�
+

R̂
R


· S⃗


+

1
2

∂2Φ

∂RiRj
SiSj + . . . . (44)

Taking S⃗ = −s⃗i and R⃗ = ar̂i in the first term on the right-hand
side of Eq. (43), and S⃗ = ar̂i − s⃗ j and R⃗ = d⃗ij in the second
term, and neglecting second- and higher-order derivatives, we
obtain

c0 ≈ qiΦ (ar̂i)


1 +

γ (r̂i − û) + r̂i

a


· s⃗i


+

N
j=1, j,i

qjΦ
(
d⃗ij

) 

1−


γ

(
d̂ij − û

)
+

d̂ij

dij


·
�
ar̂i − s⃗ j

�

.

(45)

Defining the (non-dimensional) charge and the dipole moment
in the sphere labelled i,

Qi =
1

ac0
qi, M⃗i =

1
a2c0

qi s⃗i, (46)

Eq. (45) becomes

1 ≈ aΦ (ar̂i)Qi + aΦ (ar̂i) M⃗i · [(aγ) (r̂i − û) + r̂i]
+

N
j=1, j,i

aΦ
(
d⃗ij

)
Q j


1 − *

,
(aγ) (d̂ij − û

)
+

d̂ij�
dij/a

� +
-
· r̂i



+

N
j=1, j,i

aΦ
(
d⃗ij

)
M⃗j · *

,
(aγ) (d̂ij − û

)
+

d̂ij�
dij/a

� +
-
. (47)

We now switch to non-dimensional variables

η = aγ =
au
2D

, σ⃗ij =
d⃗ij

a
, (48)

noting that σ̂ij = d̂ij, defining furthermore

Γ⃗ij =


η
�
σ̂ij − û

�
+
σ̂ij

σij

 �
1 − δij

�
,

∆ij =
exp

�
η − ησij

�
1 − û · σ̂ij

��

σij

�
1 − δij

�
,

(49)

approximating

exp [η (û · r̂)] ≈ 1 + η (û · r̂) , (50)

and neglecting all terms of order (r̂)2 and higher, we rewrite
Eq. (47) as follows:

eη ≈ Qi [1 + η (û · r̂i)]+M⃗i · [(1 + η) r̂i−ηû (1 + η (û · r̂i))]

+

N
j=1, j,i

∆ij


Q j +


M⃗j −Q jr̂i


· Γ⃗ij


. (51)

Notice that in the limit that η → 0 (the diffusive limit),
Γ⃗ij → σ̂ij/σij and ∆ij → 1/σij.

As before, we require that terms that do not depend on r̂i
and terms that are linear in r̂i approximately satisfy Eq. (51)
separately. This leads to the following system of equations:

eη =
�
δij + ∆ij

�
Q j +


Λ⃗ij − ηûδij


· M⃗j,

0 =

Λ⃗ij − ηûδij


Q j −

�
1 + η − η2ûû ·

�
M⃗i

(52)

(∀i = 1 . . . N), where summation over the repeated index j is
implied and where

Λ⃗ij = ∆ijΓ⃗ij (53)

without summation over repeated indices.
Equation (52) is the analogon in the convection-diffusion

case of Eq. (16) for the purely diffusive case. As before, we
have found a closed system of equations relating the charges
and associated dipole moments among the set of N spheres. In
contrast to the diffusive case however, the coefficient matrices
in Eq. (52) do not have the property of being either purely
symmetric or purely anti-symmetric; however, that does not
stand in the way of the system being solvable, at least in
principle.

We are principally interested in calculating the charges
Q j since they are needed to calculate the mass flux to the
reactive centers, see Eq. (40). The charges are obtained from
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FIG. 3. Relative error in the method developed in Sec. VI A. The variable on
the x-axis is the Péclet number η.

Eq. (52) as follows:

Qi = exp (η)
N
j=1

Pij, P = L−1,

Lij = Aij +

N
k,l=1

3
µ,ν=1

Bµ
ik

Eµν
kl

Bν
l j,

Aij = δij + ∆ij, Bµ
ij = Λ

µ
ij − ηδ

µ3δij,

Eµν
ij =


1

1 + η
δµν +

(
−1

1 + η
+

1
1 + η − η2

)
δµ3δν3


δij.

(54)

Here, the subscripts i, j, k, l are sphere labels; the superscripts
µ, ν are Cartesian indices; the index µ = 3 is along the flow
direction û.

In the limit that η → 0, the L-matrix in Eq. (58) is
identical to the L-matrix in Eq. (19).

It is useful to rescale the charges such that isolated charges
(for the case that all intersphere separations σij tend to infinity)
are equal to unity. With the current definition of the charges,
this is not the case. When σij → ∞, ∆ij → 0, and it follows
that

Qi → Q0 = exp (η) 1 + η − η2

1 + η
, (55)

where Q0 denotes the charge strength of an isolated sphere.
Defining

Q̃i ≡ Qi/Q0, (56)

we now have properly rescaled charges so that Q̃i = 1 for
isolated spheres.

In the development above, expressions were linearised in
terms of the parameter η. The question arises: at which value
of η is the error still acceptable? We can make a qualitative
estimate of the error by plotting the relative error in Eq. (50)
in the downflow direction (i.e., for û · r̂ = −1) as a function
of η; see Figure 3. Between η = 0.05 and 0.15, the fractional
error increases from 0.001 to 0.01. Clearly, at values of η
larger than, say, 0.3, the error becomes unacceptable.

B. Model results (low-η case)

Normalized flux rates were calculated for a number of
different cluster configurations (see Table III),

1. a pair of spheres aligned along the flow direction;

2. a pair of spheres at right angles to the flow direction;
3. three spheres arranged in an equilateral triangle in a plane

of the flow (e.g., base line of the triangle perpendicular to
the flow; altitude line to the base of the triangle along the
flow);

4. the same as item 3, with all sides of the triangle
perpendicular to the flow;

5. four spheres arranged in a square in a plane of the flow
(e.g., one side perpendicular to the flow; a second side
along the flow);

6. the same as item 5, all sides of the square perpendicular to
the flow;

7. a regular tetrahedron (four spheres) with one of its planes
perpendicular to the flow;

8. a cube (eight spheres) with one of its planes perpendicular
to the flow.

Two parameters were varied: ∆ and η.
In contrast to our previous calculations in Secs. V A and V

B, the centers in a cluster are not necessarily interchangeable.
We have to distinguish carefully between centers at up- and
downstream locations. In general, downstream sites have
lower absorption rates than upstream sites, since their feed
stream may be depleted to a serious extent by sites that are
further upstream. We shall call this phenomenon the “wake
depletion” effect.

From Table III, the following qualitative trends are
inferred.

1. At fixed η, Q̃ is a monotonically increasing function of
∆; in other words: the larger the distances between the
reactive sites, the more they behave like isolated centres
(no interference effects). There are a few isolated entries
in Table III where this is not the case; see the italicized
entries with question marks. In these cases, the entry at
∆ = 1.5 is smaller than the one at ∆ = 1. This may be due
to the fact that at ∆ = 1.5, the upper hemisphere of the
downstream centers is even more starved of solute than at
∆ = 1, without proper compensation from a richer supply
to the lower hemisphere. Conversely, these results may
also be influenced by numerical errors due to truncation of
higher powers of η in the model.

2. At fixed ∆, for upstream centers, Q̃ is a monotonically
increasing function of η: as the flow becomes more
intense, the upstream centres become less and less sensitive
to mutual interference. If the flow is strong enough,
it will carry the solute straight up to the surface of
an upstream center, regardless of the absorbing pull of
laterally displaced neighbouring sites. This rule may or
may not apply to downstream centers. More often than not,
the reverse tendency holds for downstream centers. This is
due to “wake depletion.”

3. A cluster that is oriented perpendicularly to the flow suffers
less from interference effects than the same cluster in
an orientation along the flow direction. This is logical:
the flow streamlines have more direct access to the
absorbing surfaces in the former orientation. Conversely, in
orientations parallel to the flow, the downstream centers are
strongly influenced by “wake depletion.” In general, within
a cluster, the centers that are located further upstream
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TABLE III. Normalized flux rates Q̃a—dipole results. The accuracy of the italicized entries with question marks
is somewhat dubious. For more details, please refer to the body of the paper.

∆b = 1 1.5 3 10 100

Configuration #1: two spheres along the flow direction

ηc= 0 0.696 0.757 0.858 0.952 0.995

η = 0.1
Upstream 0.779 0.853 0.952 0.999 1
Downstream 0.655 0.716 0.832 0.946 0.995

η = 0.3
Upstream 0.867 0.939 0.994 1 1
Downstream 0.627 0.677 0.809 0.939 0.994

Configuration #2: two spheres perpendicular to the flow direction

η = 0.1 0.718 0.791 0.908 0.993 1
η = 0.3 0.745 0.842 0.962 1 1

Configuration #3: three spheres (equilateral triangle) in the plane of the flow

η = 0 0.552 0.614 0.751 0.909 0.990

η = 0.1
Upstream 0.608 0.702 0.867 0.991 1
Downstream 0.530 0.561 0.717 0.917 0.999

η = 0.3
Upstream 0.662 0.801 0.955 1 1
Downstream 0.541?? 0.510?? 0.703 0.944 1

Configuration #4: three spheres (equilateral triangle) perpendicular to the plane of the flow

η = 0.1 0.581 0.660 0.832 0.985 1
η = 0.3 0.609 0.729 0.927 1 1

Configuration #5: four spheres (square) in the plane of the flow

η = 0 0.471 0.538 0.690 0.881 0.987

η = 0.1
Upstream 0.546 0.659 0.851 0.991 1
Downstream 0.464 0.516 0.696 0.922 0.995

η = 0.3
Upstream 0.626 0.785 0.955 1 1
Downstream 0.478 0.505 0.722 0.935 0.994

Configuration #6: four spheres (square) perpendicular to the plane of the flow

η = 0.1 0.505 0.595 0.795 0.983 1
η = 0.3 0.539 0.681 0.915 1 1

Configuration #7: four spheres (tetrahedron)

η = 0 0.471 0.519 0.669 0.870 0.985

η = 0.1
Upstream 0.509 0.601 0.799 0.984 1
Downstream 0.494 0.460 0.621 0.889 1

η = 0.3
Upstream 0.535 0.702 0.921 1 1
Downstream 0.575?? 0.399?? 0.604 0.937 1

Configuration #8: eight spheres (cube)

η = 0 0.315 0.362 0.515 0.778 0.972

η = 0.1
Upstream 0.364 0.486 0.734 0.981 1
Downstream 0.346 0.350 0.539 0.891 0.995

η = 0.3
Upstream 0.419 0.634 0.907 1 1
Downstream 0.387?? 0.351?? 0.614 0.930 0.994

aQ̃ is the non-dimensional flux rate of the mobile species to the pertinent sphere.
b∆ is the center-to-center separation between nearest-neighbour spheres divided by the sphere diameter.
cη = au/2D is the Péclet number (apart from a factor 1/4) for a sphere of radius a in a flow of velocity u; D being the diffusion
constant.

have larger flux rates than their downstream neighbors.
(Strangely, this is not the case for the entries in Table III
pertaining to the tetrahedron at ∆ = 1 and η = 0.3.)

4. At the same value of ∆ and η, up to moderately large
values of η (η 6 0.3), large clusters generally have a lower
Q̃ than small clusters. This stands to reason: in larger
clusters, there is generally more steric hindrance than in

smaller clusters. At larger values of η however, this is not
necessarily the case, as will be shown in Sec. VI D.

C. The high-Péclet case

In Sec. VI A, it was pointed out that the development
there is only valid for low Péclet numbers (say, η ≤ 0.3). This
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makes the applicability of this theory to problems of practical
significance somewhat limited. In typical gas-phase problems,
η is often in the range 0.1–1; there, the low-Pe theory could be
applied, albeit with some reservations as regards the numerical
accuracy. However in typical liquid-phase problems, η is
usually in the range 10-100 and the low-Pe theory certainly
does not apply. Clearly, there is a need for a model that would
also cover the high end of the Pe-range, or better yet, a model
that is applicable for all values (small and large) of η.

In the high-Pe case, the solution of the convection-
diffusion equation with a constant flow field for one single
sphere with Dirichlet boundary conditions is, as far as we
know, an unsolved problem. The existing related papers on this
subject (e.g., Refs. 23–25) do not precisely cover the problem
of our interest, either because the flow obstacle considered is
not a sphere23,24 or because the boundary conditions are not of
the Dirichlet type24 or because the flow field is not constant.25

In principle, the high-Pe problem lends itself well to
a treatment with the well-known methods of perturbation
theory, using the inverse Péclet number as a small parameter.
However, obtaining a solution that is valid in all regions
around the sphere (both in the region of incidence of the flow
near the South Pole, in the wake zone extending upwards from
the North Pole and in the equatorial region) is not trivial. A
full treatment of this subject will be the subject of a future
publication.

If we are prepared to take a step back in terms of
mathematical rigor and numerical accuracy by considering
the monopole approximation (rather than the dipole approx-
imation that has been the focus of our attention thus far),
we are in the comfortable position of having a model that
applies across the entire Péclet range, as will be demonstrated
in Sec. VI D.

D. The monopole approximation
for the convection-diffusion equation

Without going into the details of the derivation (which
should be rather obvious from the earlier developments),
we shall simply state the central result for the monopolar
approximation to the convection-diffusion equation. In this
section, the monopoles are assumed to be located at the
centers of the spheres and are consequently not associated
with higher multipoles. In this approximation, the induced
charges on the N spheres are obtained as follows:

Qi =

N
j=1

Pij, P = L−1,

Lij = δij +
1
σij

exp
�
−ησij

�
1 + û · σ̂ij

�	 �
1 − δij

�
.

(57)

All symbols are as defined in Sec. VI A.
Some calculated results are collected in Table IV for

values of η ranging from 0 to 100 for three different
configurations:

1. configuration #1: a pair of spheres aligned along the flow
direction;

TABLE IV. Normalized flux rates Q̃a—monopole results.

∆b = 1 1.5 3 10 100

Configuration #1: two spheres along the flow direction

ηc= 0 0.667 0.750 0.857 0.952 0.995

η = 0.1
Upstream 0.799 0.870 0.958 0.999 1
Downstream 0.601 0.710 0.840 0.950 0.995

η = 1
Upstream 0.995 0.999 1 1 1
Downstream 0.502 0.667 0.833 0.950 0.995

η = 10
Upstream 1 1 1 1 1
Downstream 0.5 0.667 0.833 0.950 0.995

η = 100
Upstream 1 1 1 1 1
Downstream 0.5 0.667 0.833 0.950 0.995

Configuration #5: four spheres (square) in the plane of the flow

η = 0 0.425 0.526 0.689 0.881 0.987

η = 0.1
Upstream 0.560 0.681 0.865 0.992 1
Downstream 0.382 0.506 0.711 0.929 0.995

η = 1
Upstream 0.933 0.983 0.999 1 1
Downstream 0.365 0.596 0.823 0.950 0.995

η = 10
Upstream 1 1 1 1 1
Downstream 0.5 0.667 0.833 0.950 0.995

η = 100
Upstream 1 1 1 1 1
Downstream 0.5 0.667 0.833 0.950 0.995

Configuration #8: eight spheres (cube)

η = 0 0.260 0.345 0.513 0.778 0.972

η = 0.1
Upstream 0.378 0.508 0.754 0.983 1
Downstream 0.226 0.328 0.558 0.900 0.995

η = 1
Upstream 0.862 0.964 0.999 1 1
Downstream 0.212 0.508 0.812 0.950 0.995

η = 10
Upstream 1 1 1 1 1
Downstream 0.5 0.667 0.833 0.950 0.995

η = 100
Upstream 1 1 1 1 1
Downstream 0.5 0.667 0.833 0.950 0.995

aQ̃ is the non-dimensional flux rate of the mobile species to the pertinent sphere.
b∆ is the center-to-center separation between nearest-neighbour spheres divided by the
sphere diameter.
cη = au/2D is the Péclet number.

2. configuration #5: four spheres arranged in a square in a
plane of the flow (e.g., one side perpendicular to the flow;
a second side along the flow);

3. configuration #8: a cube (eight spheres) with one of its
planes perpendicular to the flow.

To a large extent, Table IV (monopole results) exhibits
the same general characteristics as Table III (dipole results).
Additional comments regarding Table IV are as follows.

At large values of η (η ≥ 10), the interference effects on
the upstream centers are negligible. The flow carrying solute
molecules to the absorbers is so strong that interference effects
due to neighboring spheres are negligible. This is not the case
for downstream centers that are located in the direct wake of
upstream centers. Their absorption is strongly affected by the
“wake depletion” effect.

Interestingly, at large η, the wake effect is so
strong that interference effects from laterally displaced
neighboring centers are negligible. This explains why the
three configurations considered here have identical absorption
rates at high flow rates (η ≥ 10). It is as if the cube (for
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example) is split up in four independent doublets along the
flow direction, with little or no mutual interference between
the four laterally displaced doublets.

VII. DISCUSSION

A. Comparison with the existing state-of-the-art

The solution of the Laplace equation with the help
of fictitious charges using multipole expansions is a time-
honoured subject in mathematical physics.11,17,26–34 At first
sight, it would seem highly improbable that anything novel
can be added to such a well-established subject. Indeed, strictly
speaking, we do not believe that we have added anything really
new to the subject that was not known already to experts in
the field, in the sense that everything that we have presented is
somehow implicitly contained in earlier work. As an example
of this, in Sec. VI A, we demonstrated that our dipolar result
for the doublet coincides to order ∆−4 with a series expansion
of the (known) exact result.

In spite of this, there are a few remarkable observations
regarding the current method:

1. in the existing literature, we have not come across any
explicit documentation of our results for the doublet and
the larger clusters (Eqs. (30) and (B1)-(B4));

2. For the doublet system, we have shown that the agreement
between the current model and the exact solution is
surprisingly good (fractional error lower than 0.004).
Moreover, we have presented numerical evidence that
for larger clusters, the results are of comparable quality as
those of the doublet, even at the closest packing conditions.

The fact that such high accuracy can be achieved with a
multipolar expansion that stops at the second (dipolar) term
has surprised us. This situation is in stark contrast with the
method of images which is known to converge exceedingly
slowly for closely packed spheres (see, e.g., Ref. 11 and
Appendix A below).

Although our method has certain similarities with the
MOI, there are also some significant differences. The MOI
consists of an infinite, iterative procedure, where in each
iteration—painstakingly—one charge of a specified strength
is put at a specified position inside one of the spheres. In our
method, one single charge, representing a superposition of
all the charges within the sphere, is located at an off-center
position inside one of the spheres. This was shown to lead to
surprisingly accurate results for the integrated flux (=normal
gradient of the potential). We posit that this procedure is akin
to a type of renormalization procedure and that this is the
reason for the much faster rate of convergence of our results
than those of the conventional MOI (see Appendixes A and C
for more details on this point).

As a bonus, the extension of our method from two to N
spheres does not pose any special complications, while the
conventional MOI leads to very complicated nested iteration
schemes in which reflections of reflections of reflections (etc.)
have to be taken into account. These complications are simply
absent in our method. Here, the result for any number of
spheres to any desired multipolar order (monopolar, dipolar,

etc.) is found “in one hit” through straightforward matrix
methods.

B. Critical comments on the convection-diffusion
results

Section VI of this paper deals with the convection-
diffusion model where the flow field is a prescribed constant,
unidirectional field everywhere in space. There are two aspects
in which this model is lacking in realism.

1. The effect of the boundaries on the flow field is not taken
into account. In real life, inevitably some slowing-down of
the flow takes place near a solid boundary. Hence, in reality,
mass transfer will be more diffusion- and less flow-driven
than suggested by our convection-diffusion results. Since
the hydrodynamic boundary-layer thickness is almost
always larger than or about equal to (in liquids and gases,
respectively) the mass-transfer boundary-layer thickness,18

the current model almost certainly overestimates the effects
of forced flow.

On the other hand, if some form of forced convection is
at work, a purely diffusive model totally ignores the effects
of convection. In this sense, our two models, one with a
(constant) flow and the other without any flow at all, could
be regarded as an upper and a lower bound for the effect of a
realistic flow field (one with flow attenuation near the solid
boundaries) in mass or heat transfer problems. Verification
of this statement by numerical simulation studies is needed.
Clearly, this topic needs further work.

2. Very often in real-life systems, flow phenomena cannot
be described as forced-convection flows at all. A good
example is encountered in the combustion of finely
dispersed liquid fuel droplets. Evaporated fuel moves
radially outward from a liquid droplet, counteracting the
inward flow of oxygen (so-called Stefan flow; see Ref. 1).
Such flows are certainly not well modelled by the approach
considered in Sec. VI.

C. The monopolar approximation

Although the method exposed in this paper is based on
monopoles only, the off-center positioning of these charges
inside the sphere results in associated higher-order multipoles.

In the narrower sense intended in the current section, the
monopolar approximation refers to charges that are located at
the centre of each sphere. This leads to much simpler results
than in the treatment presented in Secs. I–VI of this paper.
For ease of reference, we list the most important monopolar
results below.

In Sec. VI D, we already discussed the monopolar
approximation for the convective-diffusion equation. The
results for the diffusive limit are simply obtained from Eq. (57)
by taking the limit η → 0. For the doublet (two spheres at
a center-to-center distance ∆), the average flux is equal to
(compare with the dipolar result Eq. (30))

Q̃ = [1 + β]−1. (58)

For the larger clusters studied in Sec. V and Appendix B,
the monopolar results are identical to the dipolar results (Eqs.
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(B1) through (B4)) when terms of order β4 are ignored (here,
β ≡ 1/(2∆)).

The fractional error of Eq. (58) versus the exact doublet
result (Eq. (29)) is 0.038 for touching spheres (2/3 versus
ln(2)) and < or ≪ 0.038 for more widely separated spheres.
We see that the dipolar result (fractional error ≤0.0036) is
about one order of magnitude better than the monopolar result.
For larger clusters, we expect the same relative error as for
the doublet.

D. Usefulness of the model

We believe that the primary usefulness of the current
model is as a tool for researchers doing numerical simulations
in heat and mass transfer. If any competitive effects
between nearby boundaries play a role in their computations,
researchers might find it handy to have a quick-and-dirty
method for estimating this competitive effect on the flux
of heat or a chemical species to two or more competing
absorbing bodies. The current method provides such a tool.
Most practitioners will probably find the current model far
easier to use than some of the more sophisticated theoretical
papers in the literature. In the current model, the math involved
is no more complicated than inverting a simple N-by-N
matrix, where N is the number of competing absorbers.

E. Extension of the method to other partial differential
equations (PDEs)

In principle, the methods of this paper can be extended
to any other linear partial differential equation for which
the Green’s function is known. Multipole expansions have
been used extensively in laminar-flow hydrodynamics (the
linearised Navier-Stokes equation). For this case, the Green’s
function (a tensor) is well known.19 A considerable amount of
work has been done in this field (see, e.g., Refs. 20 and 21).

VIII. CONCLUSIONS

For the steady-state diffusion equation and for the
convection-diffusion equation with a constant flow field, a
solution method was presented that is based on a multipolar
expansion in terms of fictitious source terms. The aim of this
work is to quantify the competitive effects among a set of
discrete absorbers, which are modelled as spherical bodies.
It was found that the inclusion of one single, off-centre
monopole per sphere yielded surprisingly accurate results. A
closed system of equations for the charges and their locations
within each sphere is attained by expanding the boundary
conditions on each sphere up to the dipolar term.

For the Laplace equation with two spherical absorbers, the
dipolar approximation was compared with the known exact
solution in terms of bispherical coordinates. The accuracy
of the dipolar model turns out to be remarkably good: the
fractional error is about 0.004 for two touching spheres and
< or≪ 0.004 for spheres that are more widely separated.

For the Laplace equation with three or more spherical
absorbers, the dipolar solution was compared to numerical

simulations. The accuracy of the dipolar model appears to be
comparable to the doublet case.

For both the Laplace equation and the convection-
diffusion equation, the use of this method only involves
straightforward matrix methods with matrices of dimension
N , where N is the number of absorbing macroscopic centres.

The convection-diffusion equation at high values of the
Péclet number has not yet been solved. This will be the subject
of future work.

The method is a simple tool that can be used by re-
searchers who want to calibrate complex (numerical) models
in which competitive effects among multiple absorbing
surfaces play a role.
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APPENDIX A: COMPARISON OF THE DIPOLAR
APPROXIMATION WITH THE METHOD OF IMAGES

In this appendix, the dipolar approximation is compared
with the MOI for two spheres that are just touching (i.e., the
center-to-center distance between the spheres is one diameter).
Specifically, we shall compare the surface-integral of the
concentration (the electric potential in the terminology of
electrostatics) of the two methods. If the methods were exact,
the surface-integral would be exactly zero, on account of
boundary condition (3), but of course this will turn out not to
be the case.

The formulation of the MOI to be employed here is the
conventional one, as described, e.g., in Ref. 17. At the end
of this appendix, we shall add a few words referring to a
more up-to-date formulation of the MOI based on the work
of Cheng,11 in which the concept of fast multipoles26–28 is
incorporated as well.

In Sec. IV, we found a solution in terms of two source
terms Q1 and Q2 (given by Eq. (26)), located at R⃗1 and R⃗2
(given by Eq. (28)). These locations do not coincide with the
centers of the spheres but they do fall within the boundaries
of the spheres. In line with boundary conditions (2) and (3),
the concentration field is given by
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c (r⃗)
c0
= 1 − aQ1

���⃗r − R⃗1
���
− aQ2
���⃗r − R⃗2

���
. (A1)

We wish to calculate the integral norm

I =
1

4π

	
S1

dΩ1
c (r⃗1)

c0
, (A2)

where r⃗1 is on the surface of sphere S1 and the integral covers
the surface of the sphere. Using the well-known equality (see,
e.g., Ref. 17)

1
4π

	
S1



dΩ1
���⃗r1 − R⃗���


= 1/a if R < r1

= 1/R if R > r1, (A3)

it follows that

|I | =
�����
1 −Q

(
1 +

a
ρ2

) ����� = 1
207

, (A4)

where ρ2 is the distance from the charge in sphere #2 to the
center of sphere #1 and the values of Q and ρ2 found in
Sec. IV for ∆ = 1 were used (Q = 16/23 and ρ2/a = 9/4).

The MOI solution for two spheres is given as an infinite
sum over image charges in the two spheres,

c (r⃗)
c0
= 1 − a

∞
k=1

*.
,

Q(k)
1

���⃗r − R⃗1(k)���
+/
-
− a

∞
k=1

*.
,

Q(k)
2

���⃗r − R⃗2(k)���
+/
-
, (A5)

where Q(k)
i is an image charge situated at R⃗1(k) inside

sphere i (i = 1,2). The Q’s and R’s are defined through
an iterative algorithm, as specified, e.g., in Ref. 11. For two
touching spheres, the charges Q(k) are given by the series:
{+1,−1/2,+1/3,−1/4, . . .} (in units of ac0); the locations
R (k) are given by the series: {0,1/2,2/3,3/4, . . .} (in units
of the radius a, as measured from the centre of the sphere
along the radius to the touching point of the other sphere);
partial sums derived from the integral I form the series
{−1/2, +1/3, −1/4, +1/5, . . .}. In order to have the same
accuracy as dipolar solution (A4), we need to take 207 terms
into account.

The two methods are summarized graphically in Figures 4
and 5.

FIG. 4. Solution of the two-sphere problem according to the dipolar method.

FIG. 5. Solution of the two-sphere problem according to the MOI; the size
of the dots symbolically depicts the magnitude of the charges.

Note that in the MOI, successive charges are of alternating
sign. They are situated along the radius pointing towards the
touching point, while the two charges in the dipolar case
are along the radius pointing away from the touching point.
Notice also that the charge in the dipolar case is smaller (by
a factor equal to 16/23, in the case of touching spheres) than
the primary charge at the origin in the MOI.

It is striking that one single image charge (per sphere) in
the dipolar method produces the same result as 207 charges
(per sphere) in the MOI in the case of touching spheres. If the
spheres were further apart, the MOI would converge faster,
and consequently, the discrepancy between the two methods
would be less striking than in the case of touching spheres.
For example, for ∆ = 2, nine terms suffice to get an equivalent
result in the MOI expansion as in the dipolar case.

So far, we have compared our model to the conventional
version of the MOI, as developed by Lord Kelvin almost
150 years ago. Recent advances following the work of
Greengard et al.26–28 on fast multipoles have improved the
rate of convergence of MOI-like schemes by adding image
multipoles to the image charges. Cheng11 has developed the
theory for groups of spherical conductors, some of which
may be in close proximity to each other. He has found that
the inclusion of higher multipoles works best for spheres
that are not too close to other spheres. For spheres that
have one or several close neighbours, the inclusion of higher
multipoles is not very effective. In that case, convergence can
be achieved most effectively by including more image charges.
For configurations where some but not all of the spheres are
closely bunched together, this hybrid approach can lead to
significant computational gains.

Just like in the current paper, Cheng has also considered
the case of two spheres in close proximity. The comparison
of his results with our model shows pros and cons for both
methods. For two spheres at a separation of ∆ = 1.2, Cheng
needs to include 15 image charges per sphere to keep his error
level below 1.E-3. As ∆ → 1, the required number of images
in Cheng’s calculations increases dramatically. Our theory,
with only one image charge per sphere, gives convergent (and
remarkably accurate!) results down to ∆ = 1.

To be fair, there are aspects in which Cheng’s method
unquestionably is superior to ours. The great advantage of
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his method is that he has a systematic strategy for reducing
the numerical error in his computations, by either including
more image charges or by increasing the number of included
multipoles. In our model in its present form, this is an option
we do not have.

APPENDIX B: SPECIFIC FORMULAS FOR SOME
ASSEMBLIES WITH FULL PERMUTATIONAL
SYMMETRY

In this appendix, we list the relation between Q̃ and ∆
for a number of symmetric assemblies that have semi-magical
interaction matrices L (see Eq. (19) and Sec. V A). Here, Q̃ is
the average source strength (the non-dimensional flux rate), ∆
is the (non-dimensional) distance between nearest neighbours,
and β ≡ 1/(2∆).

Equilateral triangle:

Q̃ =
�
1 + 2β − 3β4�−1

. (B1)

Regular tetrahedron:

Q̃ =
�
1 + 3β − 6β4�−1

. (B2)

Planar square:

Q̃ =

1 +

(
2 +

1
√

2

)
β −

(
9
4
+
√

2
)
β4
−1

. (B3)

Cube:

Q̃ =
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3 +

3
√

2
+

1
√

3

)
β − *

,

83
18
+ 3
√

2 +
2 +
√

2
√

3
+
-
β4


−1

.

(B4)

APPENDIX C: DIGRESSION ON THE COMPRESSION
OF ALL THE CHARGES WITHIN A SPHERE TO ONE
SINGLE CHARGE PER SPHERE

An exact solution of the Poisson equation, Eq. (5),
requires a continuous charge distribution within each sphere.
As is standard in the literature, we have approximated the
continuous charge density function as an infinite sum of Dirac
delta functions.

Next, in going from Eq. (5) to Eq. (6), we replaced the
infinite sum by a finite sum (consisting of one single term).
Although the use of one single charge per sphere looks like
an additional approximation, it will be argued that it is not an
additional approximation but an exact result within the context
of a linear theory (i.e., a model that only contains terms up to
linear order in the Taylor expansion of the Green’s function).

Assuming an infinite number of charges per sphere,
boundary condition equation (11) can be written as a sum
over spheres j and a sum over charges within each sphere k,

0 = c0 −
N
j=1

∞
k=1

qjk

���d⃗ij + ar̂i − s⃗ jk
���
, ∀i = 1 . . . N, (C1)

where qjk and s⃗ jk are the magnitude and the location of the
kth charge in the jth sphere. Now, for each sphere, i = 1 . . .N

split the sum over spheres into the term with j = i and group
the other terms together,

0 = c0 −
∞
k=1

qik
|ar̂i − s⃗ik | −

N
j=1, j,i

∞
k=1

qjk

���d⃗ij + ar̂i − s⃗ jk
���
. (C2)

Then, following the main body of the paper, we now expand
the sums up to dipolar (i.e., linear) order. The appropriate
expansion parameters are, respectively, sik/a < 1 for the first
term and

�
ar̂i − s⃗ jk

� 
dij < 1 for the second term, yielding

0 = c0 −
∞
k=1

qik
a


1 +

sik · r⃗i
a
+ . . .



−
N

j=1, j,i

∞
k=1

qjk

dij


1 − (ar̂i − s⃗ jk) · d̂ij

dij
+ . . .


. (C3)

From this point onwards, it is clear that we can perform
the infinite sums, assuming they converge, which they do.
Defining

Qi =

∞
k=1

qik
ac0

and M⃗ =
∞
k=1

qik s⃗ik
a2c0

, (C4)

we find

1 = Qi + r̂i · M⃗i +

N
j=1


αijQ j − r̂i · A⃗ij Q j + M⃗j · A⃗ij


, (C5)

which is simply a rearrangement of Eq. (15). The matrices α
and A⃗ were defined in Eq. (14). This shows that the approx-
imation outlined in the main body of the paper can either
be seen as the consistent linear approximation describing
one off-center charge per sphere or—alternatively—as the
consistent linear approximation describing the total charge
and the first moment of the charge distribution within each
sphere.
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