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Abstract

Polygenic scores (PGS) combine the effects of common genetic variants1,2 to predict risk or 

treatment strategies for complex diseases3–7. Adding rare variation to PGS has largely unknown 
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benefit and is methodically challenging. Here we developed a method for constructing rare variant 

PGS and applied it to calculate genetically modified hemoglobin A1C (HbA1C) thresholds for 

type 2 diabetes (T2D) diagnosis7–10. The resultant rare variant PGS is highly polygenic (21,293 

variants across 154 genes), depends on ultra-rare variants (72.7% observed in <3 people), and 

identifies significantly more undiagnosed T2D cases than expected by chance (OR = 2.71, P = 

1.51 × 10−6). A PGS combining common and rare variants is expected to identify 4.9 million 

misdiagnosed T2D cases in the USA, nearly 1.5-fold more than the common variant PGS alone. 

These results provide a method for constructing complex trait PGS from rare variants and suggest 

that rare variants will augment common variants in precision medicine approaches for common 

disease.

HbA1C, which measures average blood glucose levels over 2-3 months11, is a widely used 

T2D diagnostic biomarker. Meeting the diagnostic threshold of 47.53 mmol/mol (6.5% 

glycated hemoglobin)12 – as opposed to a milder sub-threshold diagnosis of pre-diabetes13 – 

unlocks a larger therapeutic armamentarium with insurance and treatment implications14,15. 

HbA1C is influenced by common genetic variants that affect both pathways central to 

glycemic control7,9,10 and pathways that influence erythrocytic properties such as cell 

lifespan16. Erythrocytic variants do not affect risk of T2D and can in fact cause diabetes 

misdiagnoses by altering the expected relationship between measured HbA1C and true 

blood glucose levels7,9,10,17,18. A PGS of common erythrocytic variants7 identifies a 

substantial number of undiagnosed T2D cases in the USA – most notably, ~11% of African-

Americans carry a G6PD variant (rs1050828)7,19 that shortens erythrocyte lifespan and 

potentially causes ~0.65 million misdiagnoses7,10.

The identification of common variants that affect HbA1C through erythrocytic pathways 

advances the accuracy of diabetes diagnosis across people of all genetic backgrounds. Most 

variants in a population, however, are rare20 and have unknown impacts on HbA1C or 

the T2D diagnostic threshold. Furthermore, while rare variants have been used to predict21 

and diagnose22 Mendelian diseases, it remains unknown whether they could meaningfully 

contribute to PGS for complex traits such as T2D or HbA1C. Current methodologies for 

common variant PGS, which rely on effect size estimates for variants from a “discovery” 

study1–3, do not obviously extend to rare variants, because (a) most individual rare variant 

effect sizes cannot be accurately estimated23,24 and (b) most rare variants carried by a 

patient are absent from even large discovery studies20.

To include and evaluate the utility of rare coding variants in a PGS for the HbA1C-based 

T2D diagnostic threshold, we conducted single-variant and (using burden tests across 

seven nested variant “masks”; Methods) gene-level association analyses for HbA1C in 

87,735 whole exome sequenced (WES) individuals (Supplementary Table 1) from the UK 

Biobank25,26 (UKB; n ≤ 45,650 Europeans (EU)) and AMP-T2D-GENES study (n ≤ 12,132 

EU; 12,369 Hispanics (HS); 6,234 African-Americans (AA); 5,931 East Asians (EA); 5,419 

South Asians (SA))27. Thirty-seven predicted high or moderate impact variants and three 

genes (PIEZO1, GCK, G6PD) produced associations reaching study-specific exome-wide 

significance thresholds (P ≤ 1.8 × 10−8 and P ≤ 1.0 × 10−7, respectively; Methods), a 

substantial number relative to expectations from 23 other metabolic phenotypes analyzed 
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(for comparison) in the same samples (Fig. 1a,b, Extended Data Fig. 1, and Supplementary 

Tables 2–4). Only four of these variants could be considered rare (maximum MAF < 0.01 

across all ancestries), and these collectively had a minimal impact on the previous common 

variant HbA1C PGS (R2 = 0.995 between the augmented and original PGS; Supplementary 

Note).

Among the three genes with significant associations, PIEZO1 (effect = −0.66 mmol/mol 

HbA1C; P = 2.8 × 10−23) and G6PD (−2.40 mmol/mol; P = 3.2 × 10−10) encode proteins 

with known roles in erythrocyte function28–33. Both associations had smaller aggregate 

effect sizes than the common G6PD rs1050828 variant (−4.15 mmol/mol)7 but larger 

effect sizes than typical common variant HbA1C associations (~0.26 mmol/mol; Fig. 1c,d 

and Supplementary Table 5)7. In fact, the PIEZO1 gene-level association explained more 

HbA1C phenotypic variance than a nearby GWAS association7 (Extended Data Fig. 2, 

Supplementary Table 6, and Supplementary Note), in contrast to properties of rare variant 

gene-level associations previously reported for T2D27.

Given their association strength (Fig. 1c,d) and the known erythrocytic roles of their 

encoded proteins, we hypothesized that PIEZO1 and G6PD might carry rare variants that 

alter the appropriate HbA1C diagnostic threshold for T2D. To test this hypothesis, we 

identified individuals in AMP-T2D-GENES (our “test sample”) who (a) had HbA1C levels 

below 47.53 mmol/mol without antihyperglycemic medication, and (b) carried PIEZO1 or 

G6PD variants with effect sizes (Methods) sufficient to adjust their HbA1C levels above 

47.53 mmol/mol (“reclassify” them). Following previous work7, we then evaluated the 

proportion of “true” T2D cases (defined by non-HbA1C measurements; Methods) among 

the reclassified carriers and compared this to the proportion of true cases among individuals 

matched on cohort and HbA1C level (Methods). To first validate this approach, we applied 

it to the published common variant HbA1C PGS7 (Extended Data Fig. 3 and Methods) and 

found that, in our test sample, the common variant PGS reclassified 1.0% of individuals and 

a greater proportion of true cases than expected by chance (OR = 3.42; P = 3.3 × 10−8). By 

contrast, the PIEZO1 and G6PD variants reclassified 0.2% of samples and only marginally 

more true cases than expected by chance (OR = 1.67; P = 0.29).

To explore rare variant associations beyond those reaching exome-wide significance, we 

conducted two enrichment analyses. First, following previous HbA1C GWAS7, we observed 

the strongest gene-level HbA1C associations to be moderately enriched for rare variant 

erythrocyte count (RBC) associations (lowest q-value = 0.04; Methods and Extended Data 

Fig. 4). Second, following a previous T2D WES study27, we observed P < 0.05 enrichments 

within 6 of 25 gene sets curated from glycemic effects in mice and 4 of 10 gene sets curated 

from erythrocytic effects in mice (Fig. 2a and Methods). Moreover, the P < 0.05 gene-level 

associations within the four enriched erythrocytic gene sets had effect sizes biased toward 

decreased HbA1C (16/23, binomial P = 0.04; Fig. 2b), consistent with expectations from the 

gene set annotation and observations in humans16. These results suggest that HbA1C levels 

are affected by many rare alleles across many genes, in many cases through erythrocytic 

pathways and thus independently of T2D pathophysiology7,9,10,17,19.
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To evaluate whether this broader collection of rare variants might lead to T2D misdiagnoses, 

we sought to add them to the existing HbA1C common variant PGS. Existing PGS 

methods1,3–5,34,35, however, are designed for common variants and do not address how to (a) 

select genes to include in a rare variant PGS or (b) assign weights to rare variants within the 

selected genes (including those not seen in the discovery sample). We therefore developed 

a novel framework for rare coding variant HbA1C PGS that (a) includes genes based on 

their aggregate P-values and publicly available annotations36–40 (e.g. from knockout mice; 

Extended Data Fig. 5a) and (b) assigns variant weights based on aggregate effect sizes for 

the bioinformatically defined23,41,42 masks that contain the variant (Extended Data Fig. 5b 

and Methods) – for our particular PGS application, we based both gene and weight selection 

not only on HbA1C association strength but also (to include only variants that might 

contribute to a T2D misdiagnosis) on evidence of involvement in erythrocytic pathways. 

We explored nine models with varying criteria for gene and weight selection (Extended 

Data Figs. 5 and 6 and Supplementary Table 7), selecting weights (or, secondarily, genes 

and weights; Methods and Supplementary Table 8) using the UKB samples and testing the 

models in the independent AMP-T2D-GENES samples.

Five (56%) of the PGS models reclassified a significantly greater (OR > 1, P ≤ 5.6 × 

10−3 (0.05/9 models)) proportion of true cases than expected by chance (Extended Data 

Fig. 6 and Supplementary Table 9), with the most significant excess (OR = 2.71, P = 1.5 

× 10−6; Fig. 3a) achieved by a model with a “loose” criterion for gene selection and a 

“nested” method for variant weights. The “loose” criterion requires genes to achieve HbA1C 

rare variant P < 0.05 and then further filters for evidence of action through erythrocytic 

pathways according to one of three gene annotations (Methods and Extended Data Fig. 5). 

The “nested” method assigns each variant a weight equal to the aggregate HbA1C effect size 

(in the UKB discovery sample) of variants with annotations at least as severe as the variant 

(i.e. in the most severe nested mask containing the variant; Methods). This “loose, nested” 

model (Methods) contains 154 genes (Supplementary Table 7) and, across individuals in the 

AMP-T2D-GENES test sample, 21,293 variants – 21,016 (98.7%) of which have MAF < 

0.005 and 15,473 (72.7%) of which are observed in <3 people. The model assigns non-zero 

weights to 99.7% of individuals in the AMP-T2D-GENES study, 13,573 (64.6%) of whom 

carry a variant absent from the discovery study (Methods). As a test of model over-fitting, 

the model reclassified an excess of true cases even when both genes and weights were 

selected using only the UKB samples (OR = 1.73, P = 0.0056; Extended Data Fig. 7, 

Supplementary Table 9, and Supplementary Note). As negative controls, models that omitted 

genes passing the erythrocytic pathway filters (Methods) did not reclassify significantly 

more true cases than expected by chance, regardless of whether they did (OR = 1.38, P = 

0.16; Fig. 3a) or did not (OR = 1.43, P = 0.17) filter for genes annotated as involved in 

mouse glucose homeostasis.

Next, we evaluated whether the “loose, nested” rare variant PGS could augment the previous 

common variant HbA1C PGS7 (Supplementary Table 10 and Methods). A combined PGS 

summing the ancestry-appropriate common variant PGS with the rare variant PGS (with 

additivity justified by the independence of variants in the rare and common variant PGS; 

Extended Data Fig. 8 and Methods) produced a greater reclassification accuracy in our test 

sample (OR = 4.4, P = 8.0 × 10−26) than either the rare or common PGS alone. Scaling 
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the ancestry proportions in our test sample to the estimated ancestry proportions of the US 

population (Methods), the combined PGS is expected to re-classify 4.9 million T2D cases in 

the US population, nearly 1.5-fold more than the common variant PGS alone (3.4 million) 

and 2-fold more than the rare variant PGS alone (2.4 million; Fig. 3b). The estimated 

increase in reclassified cases varies across ancestries and is lower but still substantial 

for ancestries with high-performing common variant scores (1.2-fold increase for African 

Americans, 1.25-fold increase for Asians; Supplementary Table 10).

One notable difference between the rare and common variant PGS is that the common 

variant PGS is undefined for ancestries without GWAS effect size estimates (e.g. 
Hispanics7), while the rare variant PGS is defined independent of ancestry. While further 

work is needed to fully justify fixed rare variant weights across ancestries, we observe 

that (a) our rare variant PGS has comparable accuracy across ancestries in our test sample 

(Fig. 3b) and (b) within our PGS, rare variant gene-level effect sizes are more homogenous 

across ancestries than are common variant-level effect sizes (λ = 3.1 for common variant 

Q statistic vs. λ ≤ 1.6 for gene-level Q statistics; Extended Data Fig. 9 and Methods). This 

observation does not conflict with the known population-specificity of rare variants20,43: 

most (68%) variants in the rare variant PGS are ancestry-specific, and the average number of 

rare variants per individual varies by ancestry (Supplementary Table 11).

These results suggest that rare variants, despite a comparatively modest impact on complex 

traits27,44, may meaningfully contribute to genetic-based diagnostic strategies for complex 

disease. They do not suggest, however, that this contribution will be primarily through 

population-specific large-effect variants20,43,45. The average aggregate effect size for genes 

in the rare variant PGS is indeed larger than the average effect size of variants in the 

common variant PGS (0.72 vs. 0.38 mmol/mol; Supplementary Table 12). However, the 

average rare variant PGS adjustment per individual is smaller than that from the common 

variant model (0.61 vs. 1.09 mmol/mol; Supplementary Table 13), because individuals 

tend to carry fewer variants in the rare variant PGS than they do in the common variant 

PGS (4.7 vs. 8.4) – despite the much larger number of variants in the rare variant PGS 

(21,293 vs. 22; Supplementary Table 11). These observations are natural consequences 

of rare variant properties individually (large-effect, ancestry specific) versus in aggregate 

(polygenic, relatively ancestry non-specific; Fig. 3c–f).

While in a strict sense our study is limited to HbA1C adjustments for diabetes diagnosis, it 

demonstrates the utility of a rare variant PGS that does not require individual variant effect 

size estimates but rather assumes that all variants within a mask have the same effect size – 

this assumption will not hold for all genes but allows the PGS to incorporate variants private 

to an individual and hold variant weights constant across ancestries. The combined PGS we 

present could also no doubt be improved, most obviously through methodological advances 

to include suggestive associations in the common variant PGS (Methods) and optimize the 

selection of genes and weights in the rare variant PGS – potentially by better using gene 

annotations (which are more readily available46 than are noncoding variant annotations47) 

to filter variants included in the model. More broadly, our results suggest that adding rare 

variants to complex trait PGS will be valuable, albeit through polygenic effects quite distinct 
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from those that might have been expected from early predictions of rare variants with a 

“high impact” on common disease23,48.

Methods

Additional information about the methods used in this study is available as a Supplementary 

Note.

AMP-T2D-GENES.

The AMP-T2D-GENES dataset was the focus of a previous T2D exome sequence 

analysis27. It includes samples from five ancestries (African American, East Asian, 

European, Hispanic, and South Asian) and six consortia (Supplementary Table 14). We used 

previously described27 sequence data and SNP array data passing extensive quality control 

filters (see Supplementary Note), consisting of 6.33 million variants in 45,231 sequenced 

individuals, 34,974 of which had SNP array data.

In the present study, we analyzed 23 quantitative phenotypes in these samples 

(Supplementary Table 1). For glycemic traits, we included only T2D control individuals 

in association analyses (T2D cases were defined as previously described27). All individuals 

in the AMP-T2D-GENES study provided informed consent, and all samples were approved 

for use at the respective institution20,27,44,51,52.

UK Biobank.

We obtained data from the UK Biobank26 (UKB) under Project 27892: “Genetic studies of 

type 2 diabetes, related metabolic traits, and their complications (PI Florez)”. We analyzed 

10 quantitative phenotypes (Supplementary Tables 1 and 15), removing T2D cases from 

glycemic trait analyses with T2D case status determined using a previously published 

algorithm53. We analyzed UKB exome sequence data from the first release of ~50,000 

samples25 – specifically, the PLINK binary file set produced by the functionally equivalent 

(FE) pipeline. We conducted sample and variant quality control of these data following a 

similar procedure as for the AMP-T2D-GENES dataset. Full details of this procedure are 

presented in the Supplementary Note; briefly, it included ancestry and kinship inference 

using genotype principal components (PCs), exclusion of samples that were outliers on one 

or more genotype-derived metrics, and exclusion of variants that failed Hardy-Weinberg 

equilibrium or call rate filters.

Phenotype transformations.

Prior to association analyses, we transformed phenotypes through (a) log-transformations 

of phenotypes with skewed distributions; (b) adjustment for age, age squared, and sex 

using residuals from linear regression54; (c) inverse-normal transformations of the calculated 

residuals for each phenotype; and (d) multiplication of the resulting values by the 

standard deviation of the original phenotype distribution. UKB phenotypes were additionally 

(prior to transformations) winsorized to remove extreme values falling outside of five 

standard deviations from the mean. Transformations for AMP-T2D-GENES were performed 

separately within each cohort.
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We used transformed phenotypes to determine association P-values, but we used raw 

HbA1C values to determine effect sizes for inclusion in the PGS.

Single variant association analysis.

Within AMP-T2D-GENES, we conducted single variant association analysis following a 

previously described procedure27 (see Supplementary Note for more details). Within the 

UKB, we conducted single variant association analysis using linear regression, including 

covariates for the first nine PCs of ancestry. All coding variants with P ≤ 4.3 × 10−7 and 

non-coding variants with P ≤ 5 × 10−8 for any phenotype in either dataset are listed in 

Supplementary Tables 16 and 17.

We combined single variant association results across AMP-T2D-GENES and UKB via a 

sample size weighted meta-analysis. For coding variants, we used a significance threshold 

of P ≤ 1.8 × 10−8 (P ≤ 4.3 × 10−7 with Bonferroni correction for 24 phenotypes49); for 

noncoding variants, we used a significance threshold of P ≤ 2.1 × 10−9 (P ≤ 5 × 10−8 with 

Bonferroni correction for 24 phenotypes). All variants with significant associations across 

all phenotypes are listed in Supplementary Table 2.

Variant annotation.

We used the Variant Effect Predictor (VEP)55,56 to annotate variants using the 

LofTee plugin57, which predicts loss-of-function variants, and the dbNSFP plugin 

(version 3.2)58, which produces annotations from 15 bioinformatic algorithms. 

Variant annotations were produced across all ENSEMBL transcripts; for annotating 

results from the single variant analysis, we used the “--flag-pick-allele” option59 

with a previously described ordering criteria for transcripts27. Throughout the text, 

we use “predicted high or moderate impact variants” to refer to both missense 

variants and other variants in or near the coding region of a gene that are not 

synonymous; specifically, these variants are those predicted by VEP to have HIGH 

or MODERATE impact, spanning the following consequences: transcript_ablation, 

splice_acceptor_variant, splice_donor_variant, stop_gained, frameshift_variant, stop_lost, 

start_lost, transcript_amplification, inframe_insertion, inframe_deletion, missense_variant, 

protein_altering_variant.

Gene-level association analysis.

We used these annotations to, as previously27, group variants into seven nested “variant 

masks”. These were (in increasing order of variant deleteriousness): (a) “LoFTee”, 

high confidence variants according to the LoFTee plugin; (b) “16/16”, variants in the 

LoFTee mask and variants predicted as deleterious by 16 bioinformatic algorithms (see 

Supplementary Note); (c) “11/11”, variants in the 16/16 mask and variants predicted as 

deleterious by 11 bioinformatic algorithms; (d) “5/5”, variants in the 11/11 mask and 

variants predicted as deleterious by 5 bioinformatic algorithms; (e) “5/5 LoFTee LC 1%”, 

variants in the 5/5 mask and MAF < 1% low-confidence variants according to the LoFTee 

plugin; (f) “1/5 1%”, variants in the 5/5 LoFTee LC 1% mask and MAF < 1% variants 

predicted as deleterious by one bioinformatic algorithms; and (g) “0/5 1%” variants in the 

1/5 1% mask and all missense variants with MAF < 1%.
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For both AMP-T2D-GENES and the UKB, we conducted gene-level association analysis 

following a previously described procedure27. For each gene, we used the EPACTS software 

package to perform burden tests across each variant mask, analyzing only unrelated samples. 

Within AMP-T2D-GENES, we included 10 trans-ancestry PCs, sample subgroup, and 

sequencing technology as covariates. Within the UKB, we included the first 9 ancestry-

specific PCs as model covariates. For genes on the X chromosome, we analyzed males 

and females separately before combining results via a fixed-effect inverse-variance weighted 

meta-analysis (implemented via METAL60). All genes with P ≤ 2.5 × 10−6 associations (i.e. 
threshold not adjusted for multiple hypothesis testing) for any phenotype and mask are listed 

in Supplementary Table 18 (AMP-T2D-GENES) and Supplementary Table 19 (UKB).

We meta-analyzed the gene-level association results from AMP-T2D-GENES and UKB for 

each of the seven aforementioned masks by conducting sample-size weighted meta-analyses 

using the METAL60 software package (Supplementary Table 20). We then used a previously 

published strategy27 to consolidate P-values for each gene across masks by (a) assigning 

the gene the lowest P-value across masks; (b) calculating the effective number of gene-level 

tests for the gene according to the independence of the variants across its masks; and (c) 

correcting the P-value for the effective number of tests. QQ plots and genomic inflation 

factors (λ) of the consolidated P-values showed that the tests were, if anything, conservative 

(all λ < 1). We considered genes with P ≤ 1.0 × 10−7 (P ≤ 2.5 × 10−6 with Bonferroni 

correction for 24 phenotypes) to be exome-wide significant. All gene-level associations that 

reach this threshold are listed in Supplementary Table 4.

Proportion of variance explained calculations.

The proportion of variance explained (PVE) by either a SNP or gene-level association was 

calculated using a previously derived formula61:

PVE = 2β2 ∗ MAF (1 − MAF )
(2β2 ∗ MAF 1 − MAF ) + (se β 2 ∗ 2N ∗ MAF (1 − MAF ))

where β is the effect size of the genetic association, se(β) is the standard error of β, 

MAF is minor allele frequency, and N is sample size. For MAF values for gene-level 

associations, we used the aggregate minor allele frequency across all rare variants included 

in the associations. For variants and/or genes found on the X chromosome, we treated males 

as haploid.

Gene set analyses.

We conducted enrichment analyses following a previously described procedure27. For a 

given set of genes, we (a) calculated the exome-wide percentile for each gene according 

to its gene-level association P-value; (b) matched each gene to a set of background genes 

with similar properties (e.g. number of variants, combined allele count); and (c) conducted 

a one-sided Wilcoxon rank sum test. We analyzed two types of gene sets. First, we 

searched the mouse genome informatics (MGI) database for genes annotated with terms 

including ‘erythrocyte’, ‘erythropoiesis’, ‘hematocrit’, ‘glucose’, ‘insulin’, or ‘diabetes’ (see 

Supplementary Note for the resulting list of 35 gene sets). Second, to test whether genes 

Dornbos et al. Page 8

Nat Genet. Author manuscript; available in PMC 2023 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



associated with HbA1C were likewise associated with RBC, or vice versa, we constructed 

gene sets from the n smallest P-value HbA1C (or RBC) gene-level associations, with 

n ranging from 1 to 1,000. For each n, we then tested for enrichment either for (a) 

stronger RBC associations (among the top HbA1C-associated genes) or (b) stronger HbA1C 

associations (among the top RBC-associated genes). We used the Benjamini and Hochberg 

method62 to correct for multiple hypothesis testing.

To test whether the direction of effect on HbA1C was consistent across gene-level 

associations within a gene set, we identified genes in the set with HbA1C association (P 
≤ 0.05), assigned a direction of effect to each gene according to the sign of the effect size 

from the most significant mask, and tested for directional concordance via a binomial test. 

We used a t-test to evaluate whether the mean proportion of genes with negative effect 

sizes was greater in erythrocytic vs. glycemic gene sets. We also repeated this analysis for 

individual variants within each mask, by evaluating (via a t-test) whether there were different 

proportions of variants with negative effect sizes in the erythrocytic gene sets as compared 

to the glycemic gene sets (Extended Data Fig. 10). In each case we considered P ≤ 0.05 as 

significant.

Common variant polygenic adjustment score methodology for HbA1C.

For the common variant PGS, we used a set of variants and effect sizes from a previous 

GWAS publication (downloaded from www.magicinvestigators.org; Extended Data Fig. 3)7. 

We calculated a PGS for each AMP-T2D-GENES sample, using available SNP array data, 

as

yic = ∑
v

βv(div − (E dv ))

where yic is the common variant adjustment for individual i, βv is the estimated effect of the 

effect allele of a particular variant (v) included in the PGS, div is the dosage of the effect 

allele for variant v for individual i, and E dv  is the effect allele frequency of v. To obtain the 

adjusted HbA1C value for individual i, we subtracted the calculated PGS value yic from the 

individual’s reported HbA1C.

Rare variant polygenic adjustment score methodology for HbA1C.

For the rare variant PGS, the key distinction relative to the common variant PGS is the set of 

variants in the summation, which can vary across individuals and is potentially unbounded – 

the summation is (in principle) taken over all rare variants that could ever be observed in a 

population. We resolve this issue by assigning rare variants to a set of pre-defined groups g, 

for each of which the needed parameters are constant and estimable when the model is built. 

The rare variant PGS then becomes
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yir = ∑
g

∑
v ∈ g

βg div − E dv

= ∑
g

βg ∑
v ∈ g

div − E dv

= ∑
g

βg dig − E dg

where βg is the estimated effect of variant effect alleles within group g, dig is the combined 

effect allelic dosage for all variants in the group, and E dg  is the combined effect allele 

frequency of variants in g. As discussed below, we define each variant group within the 

context of a gene. As for the common variant PGS, to obtain the adjusted HbA1C value for 

individual i, we subtract the calculated PGS value yir from the individual’s reported HbA1C.

Genes included in the rare variant polygenic score.

To determine genes to be included in the rare variant PGS, we filtered genes according to (a) 

their likelihood of harboring a true HbA1C association and (b) their likelihood of impacting 

HbA1C through erythrocytic pathways. We considered genes to have evidence of impacting 

HbA1C through erythrocytic pathways if they satisfied at least one of three criteria: they 

either (a) were included in an erythrocytic mouse gene set nominally (P < 0.05) enriched for 

HbA1C associations; (b) had a nominal (P ≤ 0.05) rare variant gene-level association with 

RBC; or (c) were located within an RBC GWAS locus.

We explored five strategies for determining genes (Extended Data Fig. 5a):

1. Strict gene set. These genes demonstrated evidence of impacting HbA1C 

through erythrocytic pathways (as defined above) and, as evidence of HbA1C 

association, demonstrated exome-wide significant gene-level rare variant HbA1C 

associations.

2. Relaxed gene set. These genes demonstrated evidence of impacting HbA1C 

through erythrocytic pathways (as defined above) and, as evidence of HbA1C 

association, demonstrated nominally-significant (P ≤ 0.05) HbA1C gene-level 

rare variant associations and at least one further line of evidence supporting their 

association with HbA1C: (a) presence in a glycemic mouse gene set with P < 

0.05 HbA1C enrichment or (b) proximity to an HbA1C GWAS association.

3. Loose gene set. These genes demonstrated evidence of impacting HbA1C 

through erythrocytic pathways (as defined above) and, as evidence of HbA1C 

association, demonstrated nominally significant (P ≤ 0.05) HbA1C gene-level 

rare variant associations.

4. Negative control gene set. These genes demonstrated nominally significant (P 
≤ 0.05) HbA1C rare variant gene-level associations (analogous to the “Loose” 

gene set). Genes that had evidence of impacting HbA1C through erythrocytic 

pathways were omitted.

5. Negative control gene set with glycemic filter (Glycemic gene set). These genes 

demonstrated nominally significant (P ≤ 0.05) HbA1C gene-level rare variant 
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associations and were (a) included in a glycemic gene set that showed nominally 

significant (P < 0.05) enrichment for HbA1C associations or (b) were located 

within a fasting glucose or fasting insulin GWAS locus (analogous to the 

“Relaxed” gene set). Genes that had evidence of impacting HbA1C through 

erythrocytic pathways were omitted.

Variant weights in the rare variant polygenic score.

After we define a set of genes for the rare variant PGS, we then define a set of variant 

groups g e  for each gene e, estimated effect sizes βg e  for each group g e , and the estimated 

combined allele frequency in the population of variants in g e . We tested three different 

methods for determining these parameters (Extended Data Fig. 5b). Each method defines 

groups based on the seven nested masks we analyzed.

1. The nested variant method assigns an effect to v equal to the aggregate effect size 

for the most stringent mask including v. The nested method uses one group g e
for each gene and each mask, each consisting of the variants within that gene and 

mask but not within any more stringent masks. E dg e  and βg e  are calculated 

using all variants in the gene and mask – notably, this includes variants also in 

more stringent masks and therefore not in g e .

2. The unique variant method is similar to the nested variant method but attempts to 

correct for the potential overestimation of effects resulting from variants within 

more stringent masks. The unique variant method uses the same groups as the 

nested variant method; however, E dg e  and βg e  are calculated using only 

variants in g e .

3. The weighted variant method attempts to estimate variant weights using data 

from all masks. Following a previous study27, we assigned each mask a weight 

ranging from 0 to 1 and then for each gene conducted a weighted burden test 

in which HbA1C was regressed on all coding variants, each weighted by the 

value of the most stringent mask that contained it. The weighted variant method 

then uses the same groups as the nested and unique variant method, with E dg e
equal to the fraction of individuals that carry variants in g e . The effect size βg e
is equal to the weight of the mask multiplied by the weighted effect size estimate 

for the gene.

Combined polygenic score.

To construct a combined PGS, we first used conditional analysis to evaluate independence 

between the variants used in the rare and common variant PGS. To do so, we repeated 

the gene-level analysis for each variant mask used in the rare variant PGS, but conditional 

upon the variants included in the common variant PGS. This analysis demonstrated that the 

variants included in the rare variant PGS are (almost entirely) independent of the variants 

included in the common variant PGS (Extended Data Fig. 8). Therefore, we constructed a 

combined PGS assuming an additive model where we summed the separate scores for each 

individual.
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Assessing accuracy of the polygenic scores.

To evaluate each PGS, we identified individuals who (a) had reported HbA1C < 47.53 

mmol/mol; (b) were not using antihyperglycemic medication; and (c) had PGS-adjusted 

HbA1C >47.53 mmol/mol. The total number of such “reclassified” individuals was taken 

as a measure of PGS sensitivity. To measure PGS specificity, we then calculated, of the 

reclassified individuals, how many were “true” T2D cases that either had (a) a 2-hour 

glucose measure ≥ 11.1 mmol/L or (b) fasting glucose levels ≥ 7 mmol. We compared the 

fraction of true T2D cases among those reclassified to the fraction of true cases among 

individuals matched (10 per reclassified case) on HbA1C level, cohort, and ancestry. We 

used a Fisher’s exact test to calculate P-values and odds ratios, both within each ancestry 

and across ancestries; trans-ancestry odds ratios were then calculated via meta-analysis. A 

P-value ≤ 0.05 was considered significant.

For the rare variant PGS, to avoid over-fitting, we estimated genetic effect sizes using 

only the UKB samples, and we used AMP-T2D-GENES samples to evaluate the score. 

As a further exploration of over-fitting, we also evaluated the performance of the models 

in the more restrictive case in which we used UKB samples to both select the genes and 

weights in each model. This analysis (Supplementary Tables 8 and 9, and Extended Data 

Fig. 7) suggested that the results and conclusions from our main models are unlikely to be 

substantially affected by over-fitting (see Supplementary Note).

Scaling ancestral proportions using NHANES.

To estimate how many true T2D cases in the US population would be reclassified by 

the various PGS, we estimated US ancestral proportions using the most recent release 

(2017-2018) of the National Health and Nutrition Examination Survey (NHANES) data, 

after adjusting for the survey design using the “survey” R package63. We then scaled the 

ancestry proportions in the AMP-T2D-GENES samples to match the estimated US ancestral 

proportions, assuming that the total US population size is ~330 million (based on the 2018 

US Census Bureau estimates). As NHANES reports an “Asian American” sub-group, but 

does not further classify individuals as South or East Asian, we combined South and East 

Asian results from our rare and common variant PGS analysis into a single “Asian” ancestry 

via an inverse-weighted meta-analysis via METAL60.

Testing for ancestral heterogeneity.

To assess heterogeneity of common or rare variant effect sizes across ancestries, we used 

a Cochran’s Q test as implemented in the METAL software package60. For the common 

variant PGS, we downloaded (from www.magicinvestigators.org) previously published 

ancestry-specific summary statistics7. For the rare variant PGS, we computed ancestry-

specific gene-level summary statistics by repeating our analysis procedure specific to each 

ancestry. We assessed the resulting Q test P-values via QQ-plots and by calculating λ values 

(Extended Data Fig. 9).
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Extended Data

Extended Data Figure 1 |. Single variant HbA1C associations.
Manhattan plot of the single variant associations identified by our meta-analysis. Horizontal 

lines indicate the threshold used for exome-wide significance for coding variants (red: 

p≤1.8×10−8 as derived from a previous determined threshold49 p≤4.3×10−7 and Bonferroni 

correction for 24 phenotypes) and genome-wide significance for non-coding variants (green: 

p≤2.1×10−9 as derived from the traditional genome-wide significance threshold p≤5×10−8 
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and Bonferroni correction for 24 phenotypes). Single variant associations were determined 

via the efficient mixed-model association expedited (EMMAX) method50

Extended Data Figure 2 |. Effect sizes and proportion of variance explained for rare variant 
HbA1C gene-level associations.
Results are displayed for a, G6PD (N=1,382 for AA; N=1,930 for EA; N=41,689 for EU; 

N=1,861 for SA; N=892 for HS), b, GCK (N=551 for EA; N=40,241 for EU; N=487 for 

HS), and (c) PIEZO1 (N=905 for AA; N=1,340 for EA; N=42,061 for EU; N=789 for 

SA; N=484 for HS). We calculated effect sizes (mmol/mol) and liability variance explained 

separately for each ancestry and then combined these via a meta-analysis. We performed the 

calculations for the strongest associated gene-level mask and for the strongest associated 
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common variant within 125kb of the gene as previously reported7 (N=7,564 for AA; 

N=20,838 for EA; N=123,665 for EU; N=8,874 for SA). Proportion of variance explained is 

displayed as the proportion of total liability variance. Abbreviations: AA, African-American; 

EA, East Asian; EU, European; HS, Hispanic; SA, South Asian; M-A, meta-analysis. Error 

bars indicate 95% confidence intervals.

Extended Data Figure 3 |. Calculating and evaluating common variant polygenic scores.
We calculated common polygenic scores based on effect sizes and results from a previously 

published multi-ethnic HbA1C GWAS7. We calculated polygenic scores separately for each 

of the four ancestries in our test sample with available GWAS data, evaluated ancestry-

specific odds ratios via a Fisher’s exact tests, and then combined these odds ratios via a 

fixed-effects meta-analysis to produce a transethnic odds ratio.
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Extended Data Figure 4 |. Enrichment analyses of HbA1C and RBC rare variant gene-level 
associations.
We ranked genes by their HbA1C gene-level p-value and tested the degree to which the 

top n associations (with n ranging from 1 to 1,000) were enriched for red blood cell count 

(RBC) gene-level associations. Enrichments were calculated using a one-sided Wilcoxon 

rank-sum test, comparing the RBC gene-level p-values of the top n HbA1C associations to 

the RBC gene-level p-values of background genes matched on the number of variants and 

total allele count; the solid blue line in the plot shows the one-sided Wilcoxon p-values as a 

function of n. As a negative control, we also conducted the reciprocal analysis in which we 

tested the top i RBC associations for enrichment for HbA1C associations; the solid yellow 

shows the one-sided Wilcoxon p-values.
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Extended Data Figure 5 |. A framework for constructing polygenic scores that include rare 
variants.
The framework consists of two steps: a, choosing genes to include in the polygenic 

score, based on their association p-value and annotation, and b, defining weights for rare 

variants, based on the masks that include them and the aggregate effect sizes observed 

for the masks. a, We explored three methods for choosing genes, based on their strength 

of HbA1C association (blue boxes) and evidence of acting through erythrocytic pathways 

(red). “GLYCEMIC set” indicates genes located within a glycemic gene set enriched (at 

p≤0.05) for HbA1C rare variant associations, while “RBC set” indicates genes located 

within an erythrocytic gene set enriched (at p≤0.05) for HbA1C rare variant associations (the 

specific gene sets are shown in Figure 2). “HbA1C LOCUS” and “RBC LOCUS” indicates 

genes located within 125kb of a common variant HbA1C or RBC association, respectively. 
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The two negative controls included only genes that failed the erythrocytic pathway filters 

(“Excluded”) and applied either the HbA1C association strength filters for the loose gene 

set (control 1) or the association strength filters for the relaxed gene set (control 2). b, We 

explored three methods for weighting variants (Methods): the aggregate effect size of the 

strictest mask that contained the variant (nested), the aggregate effect size of variants unique 

to the strictest mask that contained the variant (unique), or the aggregate effect size of a 

weighted burden test for the gene multiplied by the specific weight of the variant (weighted).

Extended Data Figure 6 |. Testing the accuracy of the rare variant polygenic score.
As described in Figure 3 and Methods, for each of the nine rare variant polygenic scores 

(three variant weighting schemes for each of three gene set definitions; Extended Data 

Figure 5), we calculated Fisher’s odds ratios and 95% confidence intervals for the fraction 

of true T2D cases reclassified by the model as compared to the null expectation. The area of 

the diamond for each odds ratio is proportional to the total number of reclassified individuals 

in the AMP-T2D-GENES test sample (total N assessed=17,206; see Supplementary Table 

9 for model-specific reclassification sample sizes). Error bars indicate 95% confidence 

intervals of the odds ratios.

Extended Data Figure 7 |. Secondary analysis of rare variant polygenic scores for UKB samples 
only.
To ensure that the ability of the rare variant polygenic score to reclassify an excess of true 

cases was not due to over-fitting, we built nine risk scores as in Extended Data Figure 
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6 but with genes selected from an analysis of only UKB samples (Methods). For each 

of the nine resulting rare variant polygenic scores, we calculated Fisher’s odds ratios and 

95% confidence intervals for the fraction of true T2D cases reclassified by the model as 

compared to the null expectation. The area of the diamond for each odds ratio is proportional 

to the total number of reclassified individuals in the AMP-T2D-GENES test sample (total 

N assessed=17,206; see Supplementary Table 9 for model-specific reclassification sample 

sizes). Error bars indicate 95% confidence intervals of the odds ratios.

Extended Data Figure 8 |. Impact of adjusting rare variant effects for common variants included 
in the polygenic score.
Scatterplots indicate HbA1C gene-level effect sizes (mmol/mol) as estimated by burden 

tests with and without variants from the common variant PGS included as covariates in 

the test. a-g, Results are shown for each of the seven rare variant masks. We analyzed 

genes with nominal (p≤0.05) rare variant associations and within 125kb of a variant in the 

common variant PGS. Results indicate that, on average, rare variant effects remain roughly 

the same when adjusting for common variants. Spearman’s rank correlation coefficients (i.e. 
rho) and associated two-sided p-values are indicated on plots, as are the slopes (i.e. beta) 

and two-sided p-values from linear regression. Blue dotted lines show the linear regression 

slopes; red lines indicate a slope of 1.
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Extended Data Figure 9 |. Testing for heterogeneity across ancestry for variants included in 
common variant and rare variant polygenic scores.
We used a Cochran’s Q test to evaluate heterogeneity across ancestry-level single-variant 

and gene-level association results. QQ plots are shown for p-values from a, single-variant 

Q tests for common variants and b-h, gene-level Q tests for different rare variant masks; 

included in each analysis were the variants (or genes) included in the corresponding 

polygenic score. Departures above the diagonal red line suggest heterogeneity beyond the 

null expectation (blue lines indicate 90% confidence intervals for the null expectation), 

while lambda values indicate the ratio of the median observed chi square statistic to the 

median of the expected chi square statistic under the null; larger lambda values indicate 

larger deviations from the null.
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Extended Data Figure 10 |. Fraction of variants found in enriched erythrocytic glycemic gene 
sets with negative effects on HbA1C levels.
Reported is the fraction of variants with negative HbA1C effect sizes (based on the single 

variant meta-analysis) within genes (i) with HbA1C gene-level p≤0.05 and (ii) within a 

significantly enriched (p≤0.05) erythrocytic (N=4) or glycemic (N=5) gene set. a-g, Results 

are shown for variants within each mask. The bars represent the fractions observed for 

variants across all gene sets, while the dots represent the fractions observed for variants 

within each individual gene set. A two-sided t-test was used to assess potentially significant 

differences; p-values are shown above each plot. Error bars indicate standard error.
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Figure 1 |. Rare variant associations for HbA1C are comparatively strong.
a, The number of exome-wide significant predicted high or moderate impact variant 

associations across 24 quantitative phenotypes. Single variant associations were determined 

using the efficient mixed-model association expedited (EMMAX) method50, and gene-level 

associations were determined using burden testing. Yellow: P ≤ 1.8 × 10−8 (as derived 

from a previously determined threshold49 of P ≤ 4.3 × 10−7 and Bonferroni correction 

for 24 phenotypes) and exome-wide significant gene-level associations. Blue: P ≤ 1.0 × 

10−7 (as derived from the traditional exome-wide significance threshold of P ≤ 2.5 × 10−6 

and Bonferroni correction for 24 phenotypes). b, Manhattan plot of all gene-level HbA1C 

associations determined via burden testing. Those reaching exome-wide significance (P ≤ 

1.0 × 10−7; red line) are labeled. c,d, Effect sizes (mmol/mol) for rare variant gene-level 

associations for G6PD (c) (n = 1,382 for AA; n = 1,930 for EA; n = 41,689 for EU; 

n = 1,861 for SA; n = 892 for HS) and PIEZO1 (d) (n = 905 for AA; n = 1,340 for 

EA; n = 42,061 for EU; n = 789 for SA; n = 484 for HS). Previously reported7 nearby 

common variant associations (n = 7,564 for AA; n = 20,838 for EA; n = 123,665 for EU; 

n = 8,874 for SA) are shown for comparison. Gene-level effects are displayed from the 
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strongest associated variant mask. AA, African-American; EA, East Asian; EU, European; 

HS, Hispanic; SA, South Asian; M-A, meta-analysis. Error bars indicate 95% confidence 

intervals.
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Figure 2 |. Rare variant gene-level HbA1C associations show enrichment for genes involved in 
glycemic control and erythrocytic pathways in mice.
a, Boxplots displaying the percentile of gene-level P-values (relative to matched genes; 

grey) for genes thought to impact erythrocyte pathways (blue) and glycemic control (green) 

in mice. The horizontal dotted line at the 50th percentile indicates the expected median 

percentile under the null distribution. We used a one-sided Wilcoxon rank sum test to assess 

significant deviation of percentiles from matched genes; Wilcoxon P-values are displayed 

for each gene set. The numbers of genes in each gene set are indicated in the Supplementary 

Note. b, The fraction of genes with a negative effect on HbA1C levels among those (i) with 

HbA1C gene-level P ≤ 0.05 and (ii) within a significantly enriched (P ≤ 0.05) erythrocytic (n 
= 4) or glycemic (n = 5) gene set. The bars represent the fractions of genes observed across 

all gene sets, while the dots represent the fractions of genes observed for each individual 

gene set. We used a binomial test to assess deviation from the expected fraction of 50%. In 

a, the box plot indicates minimum, lower quartile, median, upper quartile, and maximum. In 

b, the error bars indicate standard error.
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Figure 3 |. Accuracy and properties of rare and common variant polygenic scores.
We identified “reclassified” individuals with adjusted (but not unadjusted) HbA1C above 

the T2D diagnostic threshold (47.53 mmol/mol) and compared (via a two-tailed Fisher’s 

exact test) the fraction of “true” cases among such individuals to the number expected by 

chance (Methods). a, From top, the forest plot shows Fisher’s exact test odds ratios and 

95% confidence intervals for polygenic scores constructed from two exome-wide significant 

rare variant gene-level associations (PIEZO1/G6PD), the best performing (“loose, nested”) 

rare variant polygenic score (Erythrocytic Genes), a negative control polygenic score that 

excludes known erythrocytic genes (Glycemic Genes), a previously published common 
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variant polygenic score7 (Common Erythrocytic Variants), and a polygenic score that 

combines rare and common variants (Combined Erythrocytic PGS). The area of each 

diamond is proportional to the number of individuals in our test sample reclassified by 

the score. b, Fisher’s exact test odds ratios stratified by ancestry. The area of each diamond 

is now proportional to the number of individuals in the US population that would be 

reclassified by the score after scaling the ancestral proportions in our test sample to those 

estimated for the US (Methods). Due to inadequate data regarding East Asian and South 

Asian percentages of the US population, “Asian” represents a meta-analysis of the South 

Asian and East Asian results; Supplementary Table 10 shows PGS performance within 

each ancestry. Europeans are not displayed due to insufficient data in our test sample. 

c-f, Histograms display the distribution (in mmol/mol HbA1C) of rare variant (gray) and 

common variant (colored) polygenic scores for each ancestry.
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