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Lanthanides are a series of critical elements widely used in multiple
industries, such as optoelectronics and healthcare. Although initially
considered to be of low toxicity, concerns have emerged during the
last few decades over their impact on human health. The toxico-
logical profile of these metals, however, has been incompletely
characterized, with most studies to date solely focusing on one or
two elements within the group. In the current study, we assessed
potential toxicity mechanisms in the lanthanide series using a
functional toxicogenomics approach in baker’s yeast, which shares
many cellular pathways and functions with humans. We screened
the homozygous deletion pool of 4,291 Saccharomyces cerevisiae
strains with the lanthanides and identified both common and
unique functional effects of these metals. Three very different
trends were observed within the lanthanide series, where dele-
tions of certain proteins on membranes and organelles had no
effect on the cellular response to early lanthanides while inducing
yeast sensitivity and resistance to middle and late lanthanides,
respectively. Vesicle-mediated transport (primarily endocytosis) was
highlighted by both gene ontology and pathway enrichment analyses
as one of the main functions disturbed by the majority of the metals.
Protein–protein network analysis indicated that yeast response to
lanthanides relied on proteins that participate in regulatory paths
used for calcium (and other biologically relevant cations), and lan-
thanide toxicity included disruption of biosynthetic pathways by
enzyme inhibition. Last, multiple genes and proteins identified in
the network analysis have human orthologs, suggesting that
those may also be targeted by lanthanides in humans.

toxicogenomics | lanthanides | endocytosis | endosomes |
Saccharomyces cerevisiae

Since their discovery, lanthanides have presented both diffi-
culty and opportunity for researchers. As a series, these elements

behave rather similarly: most of them form +3 ions in aqueous so-
lution (1), prefer highly electronegative anionic ligands (2), and form
insoluble hydroxide precipitates at neutral pH if not otherwise
complexed (3). Although the chemical similarities between these
elements made their initial isolation and characterization a sig-
nificant challenge, they now have unique applications in industry
and medicine. Several lanthanides have become critical materials
for many clean and sustainable energy technologies that will drive
the future of our societies and are used, for example, in the pro-
duction of batteries, magnets, motors, and other electronic com-
ponents (4); low-concentration mixtures of lanthanides are used in
Chinese agriculture to increase body weight gain among livestock
(5, 6); lanthanum carbonate (sold under the commercial name of
Fosrenol) is a noncalcium phosphate binder used to control hyper-
phosphataemia (7); and gadolinium is employed in diagnostic medi-
cine, as an essential component of MRI contrast agents (8, 9).
The growing use of lanthanides has increased the potential for

human exposure to large concentrations of these metals, requiring

more detailed investigations into their toxicological properties.
For instance, administration of gadolinium-based contrast agents
has been associated with the development of nephrogenic systemic
fibrosis in patients with compromised renal function (10–12).
Moreover, accumulation of gadolinium in the brains of patients
who received repeated doses of gadolinium-based contrast agents
has also been reported (13). Despite the current ubiquity of lan-
thanides, their toxicological profile has been incompletely char-
acterized because until recently they were considered to be of low
toxicological concern (14, 15). Previous toxicity studies primarily
focused on lanthanum or cerium (and, to a lesser extent, neo-
dymium and gadolinium), with the notion that these metals were
representative of the series (14, 16–18). However, to our knowl-
edge, no comprehensive mechanistic assay has been conducted to
evaluate metal toxicity across the series, and little is known about
what toxicological mechanisms may be shared by the different
lanthanides.
Saccharomyces cerevisiae is one of the best-characterized model

organisms (19, 20), and there are many tools available for analyzing
its genomic data (21–23). For example, yeast functional toxicogenomic
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screening is a powerful tool for investigating cellular mechanisms
of cytotoxicity (24, 25). This method makes use of the yeast de-
letion libraries generated by the Yeast Deletion Project (26), a
consortium of researchers across the United States and Canada, to
establish relationships between genes and chemical exposures.
Researchers used heterozygous and homozygous deletion pools of
barcoded yeast strains to derive mechanistic toxicological infor-
mation about a wide array of chemicals, pharmaceuticals, metals,
and biological compounds (27, 28). As eukaryotes, yeast and hu-
mans share many cellular pathways and functions, and many com-
ponents of cell biology identified in S. cerevisiae have homologs in

human biology (29–31). Consequently, functional toxicogenomic
screening offers unique opportunities to evaluate the mechanisms
of cytotoxicity and general biological activity across the lanthanide
series in yeast and explore potentially conserved mechanisms
in humans.
Here, we identify fundamental cellular functions disrupted by

lanthanides using functional toxicogenomics in S. cerevisiae. The
metals studied had distinct behaviors: early lanthanides showed
limited unique functional effects, while middle and late lantha-
nides had prominent and distinct ones. Although the functional
effects of each lanthanide were different and suggested some

Fig. 1. Sensitive and resistant deletion strains identified by DSSA. (A) Total number of strains identified after being exposed to concentrations of lanthanides
equivalent to IC20 for 15 generations. (B) Venn diagrams of lanthanides with the most sensitive and resistant strains. (C) Genes most affected by exposure to
lanthanides and corresponding growth variation in log2 scale. These genes include the top 10 whose deletion induced sensitive strains and the top 10 whose
deletion promoted resistance to lanthanides at IC20.
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very efficient element discrimination by endogenous molecules,
we observed a few common trends. In particular, vesicle-mediated
transport (primarily endocytosis) was perturbed by the majority of
the lanthanides tested. Moreover, protein–protein network anal-
ysis suggested that lanthanides mimic calcium ions, interacting
with calcium-binding proteins and disrupting processes regulated
by this cation. Finally, several of the highly interconnected pro-
teins targeted by multiple lanthanides in the network analysis are
conserved in humans, suggesting their roles in the origin of the
human health issues associated with lanthanide exposure and
opening many directions for the determination of mechanisms
associated with toxicity.

Results and Discussion
Identification of Genes Required for Sensitivity and Tolerance to
Lanthanides by Functional Profiling. The concentration at which
wild-type yeast growth is inhibited by 20% (IC20) was initially
determined for each lanthanide (SI Appendix, Fig. S1). IC20 is
frequently used in functional toxicogenomics because it allows
the identification of subtle, compound-specific biological effects
rather than general, nonspecific cell-death pathways (27, 28). All
IC20 values were found between 70 and 170 μM, which corre-
sponds to the same concentration range as that of lanthanides in
other biologically relevant systems, such as gadolinium in the
blood of patients with kidney disfunction after the administration
of gadolinium-based contrast agents (32). All lanthanides were
screened in our study except for cerium, which is the only lantha-
nide with a +4 stable oxidation state under physiological conditions,
and promethium, whose isotopes are all radioactive. Pools of yeast
homozygous diploid deletion mutants (n = 4,291) were grown with
IC20 concentrations of lanthanides (one treatment per lanthanide,
13 different treatments in total) for 15 generations. Differential
strain sensitivity analysis (DSSA) (33) was used to identify the
strains whose growth was inhibited (sensitive strains) or increased
(resistant strains) in the presence of metal. Three clear trends
(Fig. 1A) were observed when classifying the number of strains
affected by each lanthanide: 1) Eu affected the growth profiles of
2,686 out of 4,291 strains (more than 60% of all strains); 2) Dy,
Ho, Tm, and Lu showed moderate effects, affecting between 545
and 1,602 mutants (∼13 to 37% of all strains); and 3) the rest of
the metals had relatively lower biological impact, since each of
them altered growth in fewer than 200 strains (<5% of the pool).
We considered both sensitive and resistant strains in our analysis.
Although the growth of many strains was affected by at least one
metal, only a few were altered by multiple lanthanides as observed
in the Venn diagrams of the lanthanides with the most sensitive
and resistant strains (Fig. 1B). SI Appendix, Dataset S1 lists all the
pooled strains and their log2-fold growth change in the presence of
the individual lanthanide metals compared to controls. Fig. 1C
shows the top 20 deletion mutants that displayed sensitivity
(negative log2 value) or resistance (positive log2 value) to the
greatest number of lanthanides. Although these genes regulate a
wide range of processes, 5 (of the 20) were involved in vesicle-
mediated transport, and 7 were related to enzymes.

Gene-Ontology Enrichment Analysis Highlights Biological Attributes
Required for Lanthanide Resistance and Sensitivity. The strains high-
lighted by DSSA were analyzed using gene-ontology (GO) enrich-
ment analysis, which discriminates overrepresented gene groups,
identified by GO terms, based on their functional characteristics
(34). Based on the number of significantly overrepresented (P
value < 0.05) GO terms for each metal, the lanthanide series can
be separated into three major groups (Fig. 2): early lanthanides
(from La to Eu) that show a low number of enriched GO terms,
middle lanthanides (from Gd to Dy) that have a high number of
sensitive GO attributes, and late lanthanides (from Ho to Lu) that
have a high number of resistant GO groups. Within the late lantha-
nides, however, Er and Yb show a limited number of overrepresented

GO terms. Notably, Eu affects many strains (Fig. 1A), but these
deletion mutants include only a small number of overrepresented
GO terms, suggesting that at IC20 concentration, this metal af-
fects many aspects of cell biology in a nonspecific manner. Eu is
the lanthanide with the most accessible divalent chemistry (higher
standard reduction potential) (35), which may contribute to its
greater involvement in chemical bonding with biological receptors.
Although the exact reasons for the three different trends within
the lanthanide series are not fully understood, distinct behaviors
between lighter and heavier lanthanides had been previously
observed in other biological systems, including bacteria (36, 37).
The metal selectivity of endogenous receptors in bacteria has been
explained based on the balance between affinity (Lewis acidity of
lanthanides increases with atomic number) and coordination
chemistry (early lanthanides can accommodate higher coordination
numbers) (37); both properties are also likely participating in the
trends observed in our study. Furthermore, the transition from low
to high numbers of enriched GO terms occurred at Gd, which was
consistent with the “gadolinium break,” a discontinuity in the lan-
thanide series observed for multiple properties, including ionic radii,
stability constants, and solvent extraction equilibria (38, 39). Thus,
even though lanthanides have similar properties, their different

Fig. 2. GO enrichment analysis of strains identified by DSSA. Heat map of
different overrepresented GO terms based on their adjusted P value. BP, CC,
and MF refer to the three GO domains: biological process, cellular compo-
nent, and molecular function.
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chemistries and ionic radii (40) seem to affect their interaction
with yeast.
In total, 269 different overrepresented GO terms were iden-

tified (SI Appendix, Datasets S2 and S3), of which 92 were affected
by more than one lanthanide. Of those 92 terms, 41 (44.6%) were
transport or localization GO terms, and 11 (12.0%) were membrane
or endomembrane GO terms. Analysis of the overlapping groups
associated with yeast resistance to Ho, Tm, and Lu (the lanthanides
with the most resistant GO terms) confirmed the predominance of
transport and localization categories (Fig. 3A). That same category
(Fig. 3B) was also linked to yeast sensitivity to Gd, Dy, and Tb
(three of the four lanthanides with the most sensitive GO terms).
The behavior of Ho deviated from the other late lanthanides as its
sensitive GO terms were spread across multiple categories. The
three different trends for early, middle, and late lanthanides shown
in Fig. 2 were also observed among the 20 most-overrepresented
GO terms (Fig. 3C), which were within transport and localization,
membrane and endomembrane, and cytoplasm categories. Eight of
these GO terms were directly involved in vesicles and vesicle/
endosome-mediated transport.

Pathway Enrichment Analysis Identifies Endocytosis as Primary Path
Affected by Lanthanides. To further explore the biological interac-
tions between lanthanides and S. cerevisiae, we performed pathway
enrichment analysis based on the Kyoto Encyclopedia of Genes
and Genomes (KEGG) database (41). Unlike GO, which exam-
ines genes independently, pathway enrichment analysis considers
how genes interact with one another to form pathways, providing
additional mechanistic insights (42). Eight KEGG pathways were
significantly overrepresented (adjusted P value < 0.05, Fig. 4)
among the genes identified by DSSA. Endocytosis was enriched
for seven lanthanides (i.e., Eu, Gd, Tb, Dy, Ho, Tm, and Lu),
which was consistent with our GO analysis that highlighted
multiple overrepresented groups related to vesicle/endosome-

mediated transport. Moreover, the different behaviors of early,
middle, and late lanthanides were also observed in KEGG en-
docytosis pathway. These results were consistent with a previous
study that reported endocytosis being disrupted by lanthanides in
plants (43). Other pathways, such as ribosomal translation, mitogen-
activated protein kinase (MAPK) signaling, and n-glycan biosyn-
thesis, were also enriched for multiple lanthanides.

Protein–Protein Interaction Network Analysis Highlights Endosomal
Sorting Complexes Required for Transport in Yeast Response to
Lanthanides. Both GO and pathway enrichment analyses distin-
guished vesicle-mediated transport, particularly endocytosis, as
one of the main targets of lanthanides. These analyses, however,
did not identify the mechanism by which endocytosis and other
pathways were disrupted. Hence, we performed protein–protein
interaction network analysis to observe whether the effects of
lanthanides could be associated to specific protein interactions.
We mapped the products of knocked-out genes from the strains
identified by DSSA to the STRING database (44) of S. cerevisiae
protein–protein interactions and identified several protein clus-
ters. Because we wanted to study general trends across the lan-
thanide series rather than element-specific mechanisms, we initially
considered both sensitive and resistant strains that were affected by
five or more lanthanides (n = 200). The resulting protein–protein
interaction network presented one primary subnetwork made of
highly interconnected proteins with 8 to 15 degrees each (Fig. 5A).
The whole network was assessed for significantly overrepre-

sented KEGG pathways, and endocytosis was the most signifi-
cant (P value of 1.6 · 10−6), corroborating our previous GO and
pathway enrichment analyses. Furthermore, 12 out of 15 proteins
associated with endocytosis were in the primary subnetwork (Fig. 5B),
highlighting their importance in the yeast response to lanthanides. Of
these 12 proteins, 10 (i.e., VPS25, VPS36, VPS28, SNF7, SNF8,
VPS24, DID4, DID2, VTA1, and VPS60) are part of the endosomal

Fig. 3. Overlapping GO terms between different metal treatments. Venn diagrams for (A) resistance and (B) sensitive GO terms. The majority of overlapping
terms are within transport and localization (T&L), membrane and endomembrane system (M&ES), or cytoplasm GO groups. (C) Top 20 overrepresented GO
terms across the lanthanide series. The following abbreviations were used in the figure: O&B (cellular organization and biogenesis), CMP (cellular metabolic
process), Biosynt P (biosynthetic process), OSMP (organic substance metabolic process), and MBSP (multivesicular body sorting pathway).
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sorting complexes required for transport (ESCRT) machinery,
which is involved in the formation of multivesicular bodies (a
class of endosomes), and the sorting of certain proteins (45). The
ESCRT system is also responsible for activating multiple yeast
responses to high intracellular concentrations of calcium (46) and
copper (47). Previous studies have shown that yeast with deletion
mutations in some of the genes that code ESCRT proteins are
highly sensitive to calcium exposure (48). Part of ESCRT response
to calcium involves RIM101 activation (46), which was also a
highly interconnected node (14 connections) in our network
analysis. Besides endocytosis, the other overrepresented KEGG
pathway in the network was mitophagy (P value of 4.2 · 10−5), a
process that involves the selective degradation of mitochondria,
which reduces the amount of reactive oxygen species produced
by the yeast (49, 50). One of the main causes of heavy-metal
toxicity is oxidative stress, which originates from accumulation
of high levels of oxidizing species that damage intracellular com-
ponents (51). Thus, mitophagy is the yeast attempt to decrease
endogenous oxidizing species to compensate the metal-induced
oxidative stress (52). The proteins related to mitophagy, however,
were scattered rather than clustered throughout the network,
suggesting lower importance compared to endocytosis in the
yeast response to lanthanides. The other nodes with the most
connections outside the endocytosis subnetwork included YPT6
(10 degrees), a GTPase enzyme involved in endosome-to-Golgi,
intra-Golgi, and retrograde Golgi-to-endoplasmic reticulum
transport (53), and HOG1 (9 degrees), a protein within the
osmoregulation-related MAPK pathway that binds to the
calcium-binding protein calmodulin (54). These results were
consistent with previous in vitro studies that showed similarities
between the biological coordination chemistry of calcium and
lanthanides (37), with f-block elements competing for calcium
binding sites in transport proteins (55–57) and ion channels (58).
Next, we assessed why some mutations promoted yeast sensi-

tivity to lanthanides (highlighting genes involved in detoxifica-
tion pathways), while others induced tolerance (highlighting
genes being targeted by lanthanides that caused toxicity). We per-
formed protein–protein interaction network analysis of the top gene
deletions that promoted sensitivity and resistance separately. The
network associated with sensitive mutations contained proteins re-
lated to three different detoxification responses: vesicle-mediated
transport, cation homeostasis, and mitophagy (Fig. 5C). Vesicle-
mediated transport likely participated in the lanthanide discharge
path and included the following proteins: 1) ESCRT proteins
(SNF7, SNF8, VPS25, VPS28, and VPS36), which mediate in ves-
icle formation and calcium homeostasis (46); 2) GARP proteins

(VPS51 and VPS52) that participate in vesicle fusion to the
Golgi apparatus and vesicle formation in the cytoplasm to the
vacuole targeting pathway; and 3) COG proteins (COG5, COG6,
and COG8), which mediate in vesicle fusion to the Golgi appa-
ratus and intra-Golgi trafficking (59). Taken together, the net-
work analysis seemed to indicate that vesicle-mediated response
to lanthanides used the Golgi apparatus (and perhaps the vacuole)
as transient storage during metal discharge. It is worth noting
these two organelles serve as storage to other biologically relevant
metals, including calcium, manganese, and iron (60, 61). Re-
garding the proteins involved in preserving cation homeostasis,
these included the following: 1) calcium-binding proteins, such as
calcium channels (CCH1 and MID1) and calcium signaling path-
ways (CNB1 and CRZ1); 2) Nramp proteins (SMF1 and SMF2),
which transport divalent and trivalent cations (62, 63); and 3)
MAPK pathway-related proteins (HOG1, SSK1, SSK2, and PBS2)
that participate in yeast osmoregulation (64). These results were
consistent with previous studies that showed yeast repurposing os-
moregulatory paths (used to control the osmotic pressure of bio-
logically relevant cations) to respond to heavy-metal exposures (51).
The third response highlighted in the network was mitophagy, which
decreases the oxidative stress induced by the metal (52). Thus,
protein–protein network analysis indicated that yeast response to
lanthanides included proteins from three different paths, two re-
sponsible for controlling lanthanide levels in yeast (vesicle-mediated
transport and metal homeostasis) and one involved in decreasing
metal-induced damage (mitophagy).
Regarding the network of genes whose absence promoted

tolerance, it had two significantly overrepresented KEGG pathways
(Fig. 5D): N-glycan biosynthesis (P value of 3.9 · 10−4), which was
consistent with our previous KEGG pathway analysis (Fig. 4), and
endocytosis (P value of 1.2 · 10−3), which included VPS35 and PEP8
proteins, whose absence had also been reported to improve toler-
ance to other transition metals, such as nickel cations (65, 66).
Hence, although endocytosis was associated with both lanthanide
resistance and sensitivity, the specific proteins that participated in
each event were different. As to the proteins related to N-glycan
biosynthesis, they included transferases (ALG5, ALG6, ALG8, and
OST5) and a glucosidase (ROT2). Lanthanides targeting enzymes
and disrupting their activities was consistent with previous studies
that reported heavy metals directly binding to enzymes (primarily
through cysteines), causing function inhibition, which led to yeast
toxicity (51).
Lastly, 11 genes coding highly interconnected proteins (with 10

or more degrees) in the network map are conserved in humans
(Table 1). The majority of genes are endosome and endocytosis

Fig. 4. Pathway enrichment analysis of strains identified by DSSA. Endocytosis was the KEGG pathway significantly affected by more lanthanides.
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related, including nine encoding ESCRT components. Therefore,
it is possible that those gene products play a role in lanthanide
toxicity in humans.

Conclusions
In summary, we employed functional toxicogenomics to identify
the biological functions and mechanisms that are disrupted by

Fig. 5. Protein–protein interaction network analysis identifies mechanisms of lanthanide interaction with yeast. (A) Global network of proteins coded by the top
200 genes identified by DSSA. Proteins within the KEGG endocytosis pathway are highlighted in red. (B) Main subnetwork, which contains the majority of en-
docytosis pathway proteins. (C) Network of proteins coded by genes whose deletion promoted sensitivity to lanthanides. All genes affected by at least five
lanthanides were considered (n = 134). (D) Network of proteins coded by genes whose deletion promoted resistance to lanthanides. All genes affected by at least
four lanthanides were considered (n = 71). Some protein names, including those of proteins without connections, are removed for clarity (refer to SI Appendix,
Figs. S2–S4 for fully labeled networks). The network analysis was performed with STRING and a cutoff for confidence interactions of 0.70 (high confidence).
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lanthanides in S. cerevisiae. Both GO and pathway enrichment
analyses distinguished vesicle-mediated transport, particularly
endocytosis, as one of the main pathways affected by lanthanides.
Moreover, three different trends were observed within the series:
early lanthanides showed a small number of significant GO terms,
middle lanthanides were highly enriched in sensitive GO categories,
and later lanthanides were predominantly associated with resistant
GO terms. Protein–protein interaction network analysis indicated
that multiple proteins involved in biological response to calcium
participate in yeast response to lanthanides, with ESCRT machinery
in the endosomes being one of the most significant. The data suggest
that although lanthanides can, as a group, mimic calcium and disrupt
calcium-regulated processes, element-specific effects among the se-
ries were observed, likely as a consequence of specific metal dis-
crimination at the molecular level. Lastly, several of the genes and
proteins highlighted in the network analysis are conserved in humans,
suggesting that these may also be targeted by lanthanides in humans.

Materials and Methods
Diploid yeast deletion strains (BY4743 background) used for functional
profiling were cultured for 15 generations in yeast extract–peptone-dextrose

media at different lanthanide concentrations in an in-house–built auto-
mated dispensing system robot. Detailed materials and methods are pro-
vided in SI Appendix, including materials and reagents, yeast strains and
culture protocols, and procedures for functional screening of the yeast ge-
nome, including DNA extraction, amplification, and sequencing, as well as
methodologies for DSSA.

Data Availability.All study data are provided in the article or as datasets. Dataset
S1 includes a list of all pooled strains and their log2-fold growth change in the
presence of the individual lanthanide metals compared to controls. Dataset S2
includes a list of different overrepresented sensitive GO terms across the lan-
thanide series and their adjusted P values. Dataset S3 includes a list of different
overrepresented tolerant GO terms across the lanthanide series and their ad-
justed P values.
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