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LiDAR-derived snowpack data sets from mixed conifer forests
across the Western United States
A. A. Harpold1, Q. Guo2, N. Molotch1,3, P. D. Brooks4, R. Bales2, J. C. Fernandez-Diaz5,
K. N. Musselman6,7, T. L. Swetnam8, P. Kirchner2,9, M. W. Meadows2, J. Flanagan2, and R. Lucas2

1Institute for Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA, 2Sierra Nevada Research
Institute, University of California Merced, Merced, California, USA, 3Jet Propulsion Laboratory, Pasadena, California, USA,
4Hydrology and Water Resources, University of Arizona, Tucson, Arizona, USA, 5National Center for Airborne Laser
Mapping, Houston, Texas, USA, 6Civil and Environmental Engineering, University of California, Los Angeles, California,
USA, 7Now at Centre for Hydrology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, 8School of Natural
Resources and the Environment, University of Arizona, Tucson, Arizona, USA, 9Now at Joint Institute for Regional Earth
System Science and Engineering, University of California, Los Angeles, California, USA

Abstract Airborne-based Light Detection and Ranging (LiDAR) offers the potential to measure snow
depth and vegetation structure at high spatial resolution over large extents and thereby increase our ability
to quantify snow water resources. Here we present airborne LiDAR data products at four Critical Zone
Observatories (CZO) in the Western United States: Jemez River Basin, NM, Boulder Creek Watershed, CO,
Kings River Experimental Watershed, CA, and Wolverton Basin, CA. We make publicly available snow depth
data products (1 m2 resolution) derived from LiDAR with an estimated accuracy of <30 cm compared to lim-
ited in situ snow depth observations.

1. Introduction

Seasonal mountain snowpacks are the major source of water for human and natural systems in the semiarid
Western United States [Bales et al., 2006]. The interactions between vegetation, topography, and climate play
a central role in the accumulation, ablation, and partitioning of snowpacks to the atmosphere versus infiltra-
tion and runoff. Local canopy structure (i.e., canopy density, height, etc.) at the tree and stand scale strongly
controls snowpack accumulation and ablation [Golding and Swanson, 1986; Molotch et al., 2009; Varhola et al.,
2010; Varhola and Coops, 2013]. Light Detection and Ranging (LiDAR) data sets from airborne platforms are
increasingly used to estimate snow depth at high resolution (<1 m2) over landscape scales (>100 km2) by dif-
ferencing ‘‘snow-covered’’ and ‘‘snow-free’’ elevation products [Hopkinson et al., 2004; Deems et al., 2006; Tru-
jillo et al., 2007; DeBeer and Pomeroy, 2010; Gr€unewald et al., 2013; Varhola and Coops, 2013].

The goal of this paper is to present high quality, publicly available LiDAR-derived snow depth data prod-
ucts from four U.S. National Science Foundation Critical Zone Observatory (CZO) sites that cover a gradi-
ent of hydroclimate and snow processes in the Western United States. The CZO sites include forested
research catchments where intensive ecological and hydrological measurements are currently being
made.

2. Site Description

We describe LiDAR data products from four CZO sites: Jemez River Basin (JRB), Boulder Creek Watershed
(BCW), Kings River Experimental Watershed (KREW), and Wolverton Basin (WLVB). The four LiDAR extents
vary in size and land cover (Figure 1), but are generally topographically complex with steep drainages con-
taining mixed conifer forests and alpine areas with seasonal snowpacks. A total of seven catchments were
investigated across the four CZO sites; two each in BCW, JRB, KREW, and one from WLVB (Table 1). Detailed
information and photographs of the sites are available on the CZO website (http://www.criticalzone.org,
accessed 1 October 2013). The BCW site had the largest snow-covered LiDAR extent (>400 km2) with forests
comprised of ponderosa pine (Pinus ponderosa), subalpine fir (Abies lasiocarpa), Engelman spruce (Picea
engelmannii), and lodgepole pine (Pinus contorta) at elevations <3000 m and rock and glacier at higher
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elevations (Figure 1). The JRB site had a LiDAR extent of 294 km2, with grasslands at lower elevations, transi-
tioning to higher elevation mixed conifer forests of Douglas-fir (Pseudotsuga menziesii), white fir (Abies con-
color), blue spruce (Picea pungens), southwestern white pine (Pinus strobiformis), limber pine (Pinus flexilis),
ponderosa pine, and aspen (Populus tremuloides; Figure 1). The KREW LiDAR extent was 18 km2 consisting
of rock outcrops and Sierra Nevada mixed conifer forests of white fir, Jeffrey pine (Pinus jeffreyi), ponderosa
pine, sugar pine (Pinus lambertiana), incense-cedar (Calocedrus decurrens), California black oak (Quercus kel-
loggii), and a minor component of lodgepole pine (Figure 1). The WLVB site had a snow-covered extent of
59 km2, with red fir forest at lower elevations, transitioning to California mixed subalpine and alpine at
higher elevations (Figure 1). Red fir forests species consist of red fir (Abies magnifica), lodgepole pine, west-
ern white pine (Pinus monticola), and incense-cedar. California mixed subalpine consists of large rock out-
crops and scattered Jeffery pine, red fir, western white pine, and lodgepole pine. Differences in winter
climates were typified by the differences in maximum snow water equivalent (SWE) in 2010 and ‘‘winter’’
(October through April) precipitation (P) and temperature (T) over 5 years (Table 1). The climate

Figure 1. Overview of the snow-covered LiDAR extents for the four study sites showing the research catchments: (a) Boulder Creek Water-
shed, (b) Jemez River Basin, (c) Kings River Experimental Watershed, and (d) Wolverton Basin. The 2001 National Land Cover Database
(NLCD) land use classifications are shown. The snow pillow locations are also shown.
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observations suggest wetter (P> 80 cm) and warmer (T> 4�C) winters at the Sierra Nevada sites (KREW and
WLVB) compared to colder (T<22�C), drier (P< 45 cm) Rocky Mountain sites (BCW and JRB).

3. Data Description

3.1. LiDAR and Field Data Collection
The National Center for Airborne Laser Mapping (NCALM) employed an Optech Airborne Laser Terrain Map-
per sensor (Gemini S/N 06SEN195) mounted to a twin-engine Piper PA-31 Chieftain (N931SA or N31PR) for
the snow-covered flights. The system was configured with pulse repetition frequency of 100 kHz, a scanning
frequency of 60 Hz, scan angle of 614�, scan overlap of 50%, and a beam divergence of 0.25 mrad which
yielded a laser footprint diameter of 15–20 cm. NCALM has typical nominal elevation accuracy of 5–10 cm
with a horizontal uncertainty of 20–40 cm over flat open surfaces. The total return density for the snow-
covered flights varied from 7.8 returns/m2 at BCW on 5 May 2010, 9.1 returns/m2 at JRB and BCW on 20
May 2010, 9.5 returns/m2 at WLVB, and 10.3 returns/m2 at KREW. The objective of the LiDAR flights was to
measure near-peak snow accumulation for water balance estimates at each site; however, due to the eleva-
tion ranges and logistical consideration, all flights occurred after melt had begun at some locations within
each extent. The timing of maximum SWE at nearby snow pillows indicates when snowmelt began relative
to flight timing (Table 1). Snow-covered flights were made over 1–2 consecutive days, with the exception of
BCW. Two flights were completed on 5 and 20 May 2010 and combine to cover the full BCW extent. The
extent of the snow-free LiDAR data sets exceeded the snow-covered extent in all cases.

In situ snow depth measurements from ultrasonic snow depth sensors installed perpendicular to the snow
surface and configured in open and under-canopy positions were used as a verification data set (see
Molotch et al. [2009] for configuration). The average snow depth from 12:00 to 13:00 on the day of each
LiDAR flight was used. Observations from continuous snow depth sensors were within 10 cm of manual
measurements at peak snow depth in BCW-Como, but accuracy can vary based on sensor height and snow
surface topography. The slope and aspect of sensor locations varied within and between sites, with flatter
sites at BCW-Como, JRB-History, and KREW-P303, and steeper slopes sampled at BCW-Gordon, KREW-P301,

Table 1. Properties Derived From the Snow-Free and Snow-Covered LiDAR Flights at the Four CZO Sites: Jemez River Basin (JRB), Boulder Creek Watershed (BCW), Kings River Experi-
mental Watershed (KREW), and Wolverton (WLVB) and Their Corresponding Research Catchments

Site BCW, CO JRB, NM KREW, CA WLVB, CA

Snow-covered area (km2) 2611, 2802 294 18 59
Forest cover fraction (%) 35.0 47.8 57.1 25.0
Forest height (m) 7 11 14 15
Average Winter P (cm) 45.2a, 27.5b 37.1c 126.8e 84.0f

Average winter T (cm) 22.7a 22.2c 4.2e 4.8f

Snow-free flight date 8/21-8/26/2010 6/29-7/8/2010 8/5-8/15/2010 8/5-8/15/2010
Snow-covered flight date 5/51, 5/20/20104/1/2010 4/1/2010 3/20/2010 3/21-3/22/2010
Max SWE date 4/8/2010a 3/29/2010d 4/22/2010e 3/15f, 4/14/10g

2010 max SWE (cm) 31.8a 30.4d 86.4e 59.4f, 121.8g

Catchment Como2 Gordon1 History Jaramillo P301 P304 Wolverton

Area (km2) 2.42 2.62 2.42 3.05 0.99 1.32 5.40
Elevation (m) 3221 2617 2947 2925 1974 1898 2525
Slope (�) 12.8 15.4 7.6 8.4 13.8 15.2 21.1
Aspect (degree CW from N) 152 153 125 202 196 230 214
Forest cover fraction (%) 46.9 52.7 49.5 43.7 69.3 60.2 53.1
Forest height (m) 6.4 3.5 10.4 8.9 16.0 14.5 17.1
Canopy point density (%) 55 54 66 66 75 75 71

Average Winter T and P refer to the period of 1 October to 1 May for water years 2006–2010. 1 refers to 5 May 2010 in Gordon Gulch and 2 to 20 May 2010 in Como. Date and
amount of maximum SWE was estimated at a nearby snow pillow at each site (Figure 1):

arefers to the Niwot SNOTEL,
bto Sugarloaf NADP site,
cto VCNP Redondo station,
dto VCNP COSMOS station,
eto Upper Providence station, and
fGiant Forest station.
gFarewell Gap station.
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and WLVB-Wolverton (Table 2). Snow water equivalent (SWE) measurements were obtained from local
snow pillows (Figure 1 and Table 1).

3.2. LiDAR Data Processing
The initial LiDAR processing steps involved developing a smoothed best-estimate trajectory (SBET) and geo-
location information for each return using trajectories calculated with a differential 3-D global navigation
system (GNSS). Each point was classified as ground or nonground (vegetation, building, etc.) using

Table 2. Properties of the In Situ Sensor Snow Depths and LiDAR-Derived Snow Depths at Seven Research Catchmentsa

Site
BCW, CO JRB, NM KREW, CA

WLVB, CA
Catchment Como2 Gordon1 History Jaramillo P301 P303 Wolverton

Snow depth (cm) 59 6 41 7 6 8 63 6 26 84 6 30 124 6 52 97 6 43 222 6 50
Mask area (% of total area) 15.7 11.4 11.2 10.5 24.3 26.7 23.0
Snow depth sensors

Measured snow depth (cm) 77 6 23 0 6 0 83 6 19 N/A 172 6 58 135 6 61 274 6 13
Number of sensors 16 5 9 N/A 13 5 12
Slope (�) 1–11 16–27 0–7 N/A 3–22 3–9 5–26
Canopy point density 36 38 21 N/A 48 20 34
LiDAR snow depth (cm) 62 6 22 6 6 4 71 6 14 N/A 166 6 59 125 6 53 276 6 27
Overall RMSE (cm) 27 7 22 N/A 18 31 23

aNumbers following the 6 symbol refer to one standard deviation. Properties of snow depth, slope, and canopy point density were derived from the 1 m grid cell corresponding to
each snow depth sensor. 1 refers to 5 May 2010 in Gordon Gulch and 2 to 20 May 2010 in Como.

Figure 2. Snow depth at 1 m resolution for the study catchments: (a) BCW-Como, (b) BCW-Gordon, (c) JRB-Jaramillo and JRB-History, (d)
KREW-P301 and KREW-P303, and (e) WLVB-Wolverton. The locations of the in situ snow depth sensors are also shown. Note that the figures
have been rotated for ease of display.

Water Resources Research 10.1002/2013WR013935

HARPOLD ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 2752



Terrasolid’s TerraScanTM. The
ASPRS LAS standard format ver-
sion 1.2) tiles for snow-covered
and snow-free flights are avail-
able via OpenTopography (http://
www.opentopography.org,
accessed 22 March 2013) using
the DOI numbers cited (BCW
(snow free): 10.5069/G93R0QR0,
JRB (snow free): 10.5069/
G9RB72JV, JRB (snow covered):
10.5069/G9W37T86, KREW and
WOLV (snow free): 10.5069/
G9BP00QB, KREW and WOLV
(snow covered): 10.5069/
G9BP00QB).

A simpler data product was
derived from the LAS point cloud
by binning the full 3-D data into
regularly spaced 2.5-D grids (x, y,

and elevation). The first classification used TerraScan’s isolated return routine (TerraScan User’s Guide, 2012,
https://www.terrasolid.com/download/tscan.pdf) to define outliers 2 m below the ground surface by speci-
fying a 3-D search radius and a minimum number of neighbors. The classification was completed by run-
ning TerraScan’s classify ground routine, which is an iterative algorithm similar to Axelsson [2000] that starts
with the lowest elevation return within each grid cell. The grid spacing is defined so that the return with
the minimum elevation is likely to be a ground return within an area that varied between 60 and 120 m in
forested terrain. Next, a triangulated faceted surface was built using the lowest returns (assumed ground) as
vertices. Then the vertical distance and angle from the facet was computed and compared against user-
defined filter thresholds to determine if the point can be classified as a ground or nonground return. The
threshold values depend on the local terrain and are manually tuned by the NCALM data processor as filter
parameters for each project area.

NCALM utilized ordinary Kriging interpolation [Kraus and Pfeifer, 1998] to produce two standard 1 m
gridded deliverables from the point cloud data: a bare-earth digital terrain model (DTM) and a first return
(top of canopy) digital surface model (DSM). Differencing the snow-free DSM by the snow-free DTM pro-
duced the canopy height model (CHM) that was used to compare vegetation between sites. The snow
depth data set was the difference between the snow-covered and snow-free DTMs. The result from this
differencing procedure was filtered to replace any negative snow depths with zero and remove outliers
greater than 10 m. Verification of zero snow depths would benefit from simultaneous high-resolution aer-
ial imagery, which was unavailable for this data set. The maximum snow depth of 10 m was chosen based
on over a decade of snow surveys in the alpine areas of BCW and WLVB [Jepsen et al., 2012]. A 1 m grid
cell was determined to be forest covered if the CHM was >2 m. Canopy point density was estimated from
the snow-free LiDAR point cloud as the fraction of the total returns that were >2 m higher than the
snow-free DTM in each 1 m grid cell. A mask layer was developed using the snow-covered LiDAR point
cloud for 1 m grid cells that did not contain returns classified as ground (e.g., snow surface). Grid cells in
the mask had no direct snow surface elevation information and were thus interpolated from nearby
locations.

3.3. Catchment-Scale Vegetation and Snow Depth Data Sets
The seven research catchments range from 1.0 to 5.4 km2 and were more comparable in terms of topog-
raphy and vegetation than the full snow-covered LiDAR extent (Figures 1 and 2 and Table 1). Tree height
and species varied between catchments, while forest cover fraction ranged from 44% to 69% (Table 1).
Both forest cover fraction and forest canopy point density were greatest at KREW-P301 and KREW-P303
while the forest canopy was tallest at WLVB-Wolverton. The forest cover fraction values were similar
between the BCW and JRB catchments (Table 1), with slightly higher canopy point density values at JRB

Figure 3. Comparison between LiDAR-derived snow depths versus in situ sensor values
at the four study sites (symbols). All 60 sensors had a RMSE of 23 cm and r2 of 0.97
(p< 0.00001).
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than BCW. Average forest height was much shorter in BCW catchments versus the KREW and WLVB catch-
ments. It should be noted that forest canopy height reported in Table 1 is not equivalent to tree height
and is dependent on the surrounding forest cover fraction and canopy point density. The percentage of
masked area (e.g., no snow surface returns) varied considerably based on forest canopy structure. Not sur-
prisingly the largest masked areas >23% were in KREW-P301 and KREW-P303 where forest cover fraction
and canopy point density were greatest (Table 2). Conversely, the masked areas were <16% in JRB-
History, JRB-Jaramillo, and BCW-Gordon (Table 2).

Mean LiDAR-derived catchment-scale snow depths varied from 7 to 222 cm (Table 2) and mean snow
depths from in situ sensors varied from 0 to 274 cm, with in situ snow depths 19%–28% greater than catch-
ment averages (Figure 2 and Table 2), excluding BCW-Gordon that lacked snow. Catchment-scale snow
depth variability was greater than in situ snow depth variability except in KREW-P301 and KREW-P303 (Table
2). The in situ sensors failed to capture the LiDAR-derived mean catchment-scale snow depth despite the
installation in variable canopy positions.

3.4. Verification of LiDAR-Derived Snow Depth
LiDAR-derived snow depth error was estimated by comparing each in situ sensor measurement to its
corresponding 1 m grid cell snow depth. The Root Mean Square Error (RMSE) of the LiDAR-derived snow
depths was 23 cm and the r2 was 0.97 (p< 0.0001) compared to measurements from 60 snow depth sen-
sors (Figure 3). The RMSE varied from 7 to 31 cm among the catchments, which had between 5 and 16
snow sensors each (Table 2 and Figure 3). The RMSE was 31 cm at KREW-P303 and only 18 cm at the
adjacent, and topographically similar, KREW-P301 catchment (Table 2). Error estimated from these point-
to-point snow depth comparisons was not biased by topographic slope; however, uncertainty in eleva-
tion would be expected to increase on steeper slopes [Deems et al., 2013]. Snow depth RMSE values <10
cm were within the in situ sensor measurement error making verification difficult at shallower depths.
Vertical errors below 30 cm are consistent with previous verification efforts in alpine areas [Geist and
Stotter, 2008; Moreno-Banos et al., 2009; DeBeer and Pomeroy, 2010; Joerg et al., 2012] and similar to verifi-
cation across smaller forested extents [Reutebuch et al., 2003; Hopkinson et al., 2004; Hopkinson et al.,
2010].

4. Summary and Conclusion

The LiDAR-derived snow depth and vegetation gridded data products from the four Western United States
CZO sites are publicly available (ftp://snowserver.colorado.edu/pub/WesternCZO_LiDAR_data), as well as
the raw LiDAR point cloud (http://www.opentopography.org via individual DOI cited). To improve the
usability of the data sets, we briefly described the site characteristics, forest type and structure, snow depth
mean and variance at the catchment scale, and verified LiDAR snow depths against in situ sensor measure-
ments. Our verification efforts showed LiDAR-derived depths had a RMSE of 23 cm compared to data from
60 snow depth sensors, which is generally acceptable for most research and resource management applica-
tions. Investigations of snow depth error sources are needed to identify locations and conditions most
appropriate for airborne LiDAR applications. For example, our results suggest that differences in forest can-
opy structure among catchments resulted in a twofold difference in spatially interpolated under-canopy
snow depths (e.g., mask area). We suggest future LiDAR-derived snow depth verification efforts use larger
field verification data sets with more precise instruments (<10 cm vertical RMSE) to determine the sources
of LiDAR error, including concurrent terrestrial LiDAR scans and aerial orthophotography with multispectral
bands capable of verifying snow presence and absence. Newly available full waveform LiDAR is not limited
by the number of discrete returns and therefore, offers another potentially unexplored data set for verifying
under-canopy snow depths.

As the economic and processing limitations of acquiring LiDAR data decrease [Stennett, 2004], publicly avail-
able LiDAR-derived snow depth and vegetation products will become more prevalent. Here we showed lim-
ited in situ sensor measurements do not capture the mean and variance of catchment-scale snow depth.
This is an important demonstration of the utility of airborne LiDAR-derived snow data products with impli-
cations for water resources management [Hopkinson et al., 2012], snow cover modeling [DeBeer and Pom-
eroy, 2010], and postdisturbance hydrology [Harpold et al., 2014]. Better linkages between in situ
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observations and LiDAR data sets, at sites like the CZOs, have the potential to improve our predictions of
water and energy fluxes at the landscape scale.
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