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In Vivo Hippocampal Subfield Volumes in
Schizophrenia and Bipolar Disorder
Unn K. Haukvik, Lars T. Westlye, Lynn Mørch-Johnsen, Kjetil N. Jørgensen,
Elisabeth H. Lange, Anders M. Dale, Ingrid Melle, Ole A. Andreassen, and Ingrid Agartz
ABSTRACT
BACKGROUND: Hippocampal dysfunction and volume reductions have been reported in patients with schizo-
phrenia and bipolar disorder. The hippocampus consists of anatomically distinct subfields. We investigated to
determine whether in vivo volumes of hippocampal subfields differ between clinical groups and healthy control
subjects.
METHODS: Clinical examination and magnetic resonance imaging were performed in 702 subjects (patients with
schizophrenia spectrum [n 5 210; mean age, 32.0 6 9.3 (SD) years; 59% male], patients with bipolar spectrum
[n 5 192; mean age, 35.5 6 11.5 years; 40% male] and healthy control subjects [n 5 300; mean age, 35.3 6 9.9
years; 53% male]). Hippocampal subfield volumes were estimated with FreeSurfer. General linear models were used
to explore diagnostic differences in hippocampal subfield volumes, covarying for age, intracranial volume, and
medication. Post hoc analyses of associations to psychosis symptoms (Positive and Negative Syndrome Scale) and
cognitive function (verbal memory [California Verbal Learning Test, second edition] and IQ [Wechsler Abbreviated
Scale of Intelligence]) were performed.
RESULTS: Patient groups had smaller cornu ammonis (CA) subfields CA2/3 (left, p 5 7.2 3 1026; right, p 5 2.3 3
1026), CA4/dentate gyrus (left, p 5 1.4 3 1025; right, p 5 2.3 3 1026), subiculum (left, p 5 3.7 3 1026; right,
p 5 2.8 3 1028), and right CA1 (p 5 .006) volumes than healthy control subjects, but smaller presubiculum volumes
were found only in patients with schizophrenia (left, p 5 6.7 3 1025; right, p 5 1.6 3 1027). Patients with
schizophrenia had smaller subiculum (left, p 5 .035; right, p 5 .031) and right presubiculum (p 5 .002) volumes than
patients with bipolar disorder. Smaller subiculum volumes were related to poorer verbal memory in patients with
bipolar disorder and healthy control subjects and to negative symptoms in patients with schizophrenia.
CONCLUSIONS: Hippocampal subfield volume reductions are found in patients with schizophrenia and bipolar
disorder. The magnitude of reduction is greater in patients with schizophrenia, particularly in the hippocampal
outflow regions presubiculum and subiculum.
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Schizophrenia and bipolar disorder have overlapping clinical
characteristics (1), brain morphologic abnormalities (2), and
genetic risk factors (3,4). Several lines of evidence suggest
that the two disorders may represent two entities along a
continuum of psychosis spectrum disorders (5). The patho-
physiologic mechanisms of schizophrenia and bipolar disorder
are unknown, but hippocampal dysfunction has been reported
in both disorders (6,7). The hippocampus is a limbic structure
located in the medial temporal lobe. It is involved in verbal
memory functions and other complex behaviors, including
stress responses, emotions, sensorimotor integrations, and
goal-directed activity (8), all of which may be disrupted in
schizophrenia and bipolar disorder.

Neuroanatomic in vivo magnetic resonance imaging (MRI)
studies of patients with schizophrenia and bipolar disorder
have demonstrated smaller hippocampal volumes in both
disorders but with greater heterogeneity of findings in bipolar
N: 0006-3223 Biolo
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disorder (2,9–11) The hippocampus is not a uniform structure
and consists of subfields with distinct morphology: the cornu
ammonis (CA) subfields CA1–4, the dentate gyrus (DG), the
fimbria, and the adjacent subiculum and presubiculum (8,12).
Postmortem studies have demonstrated smaller pyramidal
neuron cell bodies (13,14), reduced dendritic spine density
(15), and reduced interneuron density and number (16–18) in
the hippocampi of patients with schizophrenia and bipolar
disorder. The postmortem cellular findings differ among sub-
fields, with CA4 showing more prominent pyramidal soma
reduction than CA1 in patients with schizophrenia (16) and
CA3 showing decreased number of mossy fiber synapses in
patients with schizophrenia (15) as well as a significant
reduction of somatostatin-positive neurons in CA1 and
parvalbumin-positive neurons in CA1 and CA4 in patients with
bipolar disorder (17). Although postmortem hippocampal
neuronal abnormalities are present in both patients with
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schizophrenia and patients with bipolar disorder, there is
evidence of diagnostically specific differences in presubicu-
lum—patients with schizophrenia show reduced somatostatin-
positive neuron density compared with patients with bipolar
disorder (18).

Connectivity disruptions in local and external hippocampal
circuits may be important to the formation of psychotic
symptoms and thought content (7). The hippocampal subfields
are classically described to be connected in a one-way
trisynaptic circuit, in which DG granular neurons connect via
mossy fibers with CA3 pyramidal neurons that project via
Schaffer collaterals to CA1 and to subiculum (7,12), but the
connections between the hippocampal subfields are more
complex (19). The DG receives input from the entorhinal
cortex, whereas subiculum represents the main hippocampal
outflow to the entorhinal cortex and other brain regions (8,12).
The ventral/anterior hippocampus is important to affective
regulation, stress responses, and emotions, and the posterior
parts are involved in cognitive functions, in particular, visuo-
spatial orientation and memory processing (20). Animal mod-
els of psychosis have demonstrated hippocampal hyper-
activity leading to dopamine increase and lack of dopamine
regulations in the ventral hippocampus (21); this dysregulation
has been related to deficits in normal ignorance of non-
important stimuli, a disruption that may underlie delusions
and hallucinations (21). Reduced glutaminergic signaling in the
DG has been associated with diminished pattern separation,
which, in combination with increased CA3 associational
activity and accelerated pattern completion, may cause delu-
sions and thought disorders (22). If alterations in hippocampal
subfield volumes differ between schizophrenia and bipolar
disorder, this could point toward neurobiological mechanisms
underlying the distinct clinical features of the two disorders.

Advances in computational MRI postprocessing methods
allow automated segmentation of the hippocampal subfields
(Figure 1) (23). With the use of this method, a negative
statistical correlation between current positive psychotic
symptoms and CA1–3 volume was reported in patients with
schizophrenia (24), smaller CA4/DG and fimbria volumes
compared with control subjects have been demonstrated in
patients with bipolar II disorder (25), and reduced subiculum
Figure 1. Hippocampal subfield segmentation. Sagittal (left) and coronal (right
purple, fimbria; orange, presubiculum; green, subiculum; light blue, hippocampa
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volumes have been associated with impaired verbal declara-
tive memory in persons with a familial risk for schizophrenia
(26). It is unknown to which extent in vivo hippocampal
subfield volumes differ between schizophrenia and bipolar
disorder.

The aim of the present study was to identify diagnostic
differences in in vivo hippocampal subfield volumes in a large
sample of patients with schizophrenia, patients with bipolar
disorder, and healthy control subjects. We hypothesized that
patients would have smaller hippocampal subfield volumes
than healthy control subjects and that patients with schizo-
phrenia would have smaller volumes than patients with bipolar
disorder. We conducted post hoc analyses of associations
between selected subfields and psychosis symptoms and
cognitive function and hypothesized smaller volumes to
correlate with poorer cognitive function and greater severity
of psychosis symptoms.
METHODS AND MATERIALS

Subjects

The subject sample (N 5 702) consisted of patients with a
DSM-IV diagnosis within the schizophrenia spectrum (n 5 210;
schizophrenia [DSM-IV 295.1, 295.3, 295.6, 295.9; n 5 161],
schizophreniform disorder [DSM-IV 295.4; n 5 21], or schizo-
affective disorder [DSM-IV 295.7; n 5 28]), patients with a
DSM-IV diagnosis within the bipolar spectrum (n 5 192;
bipolar I disorder [DSM-IV 296.0-7; n 5 117], bipolar II disorder
[DSM-IV 296.89; n 5 66], or bipolar disorder not otherwise
specified [DSM-IV 296.80; n 5 9]), and healthy control sub-
jects (n 5 300) from the ongoing multicenter Thematically
Organized Psychosis Study at the University of Oslo and
collaborator hospitals in Oslo, Norway.

Patients were included from four major psychiatric hospitals
and their outpatient clinics that together cover most of the
population in Oslo. The inclusion criteria were age 18–65 years
old, no head trauma leading to loss of consciousness, and
absence of previous or current somatic illness that might
affect brain morphology. Healthy control subjects were
randomly selected from the national population register. The
) views. Color code: red, CA1; blue, CA2/3; dark brown, CA4/dentate gyrus;
l fissure; light yellow, “remaining” hippocampus. CA, cornu ammonis.
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control subjects were resident in the same catchment area
and were within the same age range as the patients.

The study was approved by the Regional Committee for
Medical Research Ethics and the Norwegian Data Inspectorate
and was conducted in accordance with the Helsinki Declara-
tion. After complete description of the study to the subjects,
written informed consent was obtained from all participating
subjects.

Clinical Assessments

All patients underwent thorough clinical investigation by
specially trained psychologists and physicians. Clinical diag-
noses were assessed using the Structured Clinical Interview
for DSM module A–E (27), with an overall agreement
for diagnostic categories of 82%, κ 5 .77 (95% confidence
interval 5 .60–.94). Psychosocial function was assessed with
the Global Assessment of Function scale, split version.
Affective state was assessed with the Young Mania Rating
Scale and the Calgary Depression Scale for Schizophrenia,
and current psychotic symptoms were rated by the use of the
Positive and Negative Syndrome Scale (PANSS) (28), with high
intraclass coefficients (29). Patients with bipolar disorder were
classified as having psychotic or nonpsychotic bipolar dis-
order based on the presence of either a current psychotic
episode (defined as a score of $4 on any one of the PANSS
items P1, P3, P5, P6, G9) or a history of psychosis based on
information retrieved from the B-module in the Structured
Clinical Interview for DSM interview as well as medical
records.

Healthy control subjects were interviewed for symptoms of
severe mental illness by trained clinical psychologists and
examined with the Primary Care Evaluation of Mental Dis-
orders (30) to ensure no current or previous psychiatric dis-
orders. Control subjects with current or previous somatic
illness or substance abuse disorder including alcohol overuse
that could affect brain morphology were excluded.

Neurocognitive Assessment

Trained psychologists performed the neurocognitive assess-
ment (1). Based on the literature (8,19,26,31–33), we used the
delayed verbal recall subtests of the California Verbal Learning
Test, second edition (34) because delayed recall has previ-
ously been associated with the subfields we selected for the
neurocognitive analyses. General cognitive functioning was
estimated with the Wechsler Abbreviated Scale of Intelligence
full-scale IQ (35). Higher scores correspond to better neuro-
cognitive functioning for all tests.

MRI Acquisition and Postprocessing

All participants underwent MRI scanning on the same 1.5-T
Siemens MAGNETOM Sonata scanner (Siemens Medical
Solutions, Erlangen, Germany) equipped with a standard head
coil. Two sagittal T1-weighted magnetization prepared rapid
acquisition gradient-echo volumes were acquired with the
Siemens tfl3d1_ns pulse sequence (echo time 5 3.93 msec;
repetition time 5 2730 msec; inversion time 5 1000 msec; flip
angle 5 71; field of view 5 24 cm; voxel size 5 1.33 3 .94 3 1
mm3; number of partitions 5 160) and subsequently averaged
Biological Ps
together, after rigid-body registration, to increase the signal-
to-noise ratio. There was no major scanner upgrade during the
study period, and patients and control subjects were scanned
interchangeably to avoid the possibility for across-time scan-
ner drifting to confound diagnostic differences. A neuroradi-
ologist evaluated all scans, and 12 subjects with scans
showing minor brain pathology were excluded from the study,
leaving 702 participants.

FreeSurfer software (version 5.2.0) (http://surfer.nmr.mgh
.harvard.edu/) was used to obtain volumes of the hippocampal
subfields (Figure 1), total hippocampal formation volume,
and intracranial volume (ICV) (36). Processing includes motion
correction and averaging (37) of multiple volumetric T1-
weighted images (when more than one is available); removal
of nonbrain tissue using a hybrid watershed/surface deforma-
tion procedure (38); automated Talairach transformation; and
segmentation of the subcortical white matter and deep gray
matter volumetric structures by combining information on
image intensity, probabilistic atlas location, and local spatial
relationships between structures to assign a neuroanatomic
label automatically to each voxel in the MRI volume (39,40).
The hippocampal subfield segmentation is based on a Baye-
sian modeling approach and manual delineations of each
hippocampal subfield. A region of interest around the hippo-
campal formation (94 3 66 3 144 voxels) is automatically
assigned to each image using an affine mutual information–
based registration technique by first aligning the whole-brain
template and then the region of interest template only (23). The
hippocampal subfield volumes obtained with this method were
compared with manual hippocampal subfield tracings and
were shown to be most reliable for the larger subfields CA2/3,
CA4/DG, and subiculum, with acceptable reliability for CA1,
presubiculum, and fimbria (23). Hence we chose to include the
subfields CA1, CA2/3, subiculum, presubiculum, CA4-DG, and
fimbria in the statistical analyses.

The MRI postprocessing procedures were fully automated
without manual editing. All segmented scans were visually
inspected following standard procedures. Six subjects were
excluded because of scan segmentation errors.

Statistical Analyses

All statistical analyses were performed using IBM SPSS
Statistics for Windows, Version 21 (IBM Corp, Armonk, New
York). Demographic and clinical variables were evaluated by
analysis of variance and χ2 analysis between diagnostic
groups. All statistical tests were two-tailed. Hippocampal
subfield volume differences between groups were tested using
analysis of covariance with the subfield as the dependent
variable, diagnosis as fixed factor, and age and ICV as
covariates. Effects of sex were ruled out by including sex as
a covariate in this model, with no changes in significance
threshold for any of the subfields or diagnostic groups. Hence
the sex variable was left out of the final statistical model.
Standardized residuals and Cook’s distance were estimated,
and the data were reanalyzed after exclusion of all subjects
with residual values .2.5 or ,22.5 for each separate subfield.
Bonferroni correction was applied to the between-group com-
parisons to account for multiple testing (n 5 6 subfields) and
then within each subfield test to adjust for multiple pair-wise
ychiatry March 15, 2015; 77:581–588 www.sobp.org/journal 583
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test (n 5 3, patients with schizophrenia vs. control subjects,
patients with bipolar disorder vs. control subjects, and
patients with schizophrenia vs. patients with bipolar disorder).
Diagnostic differences in total hippocampal formation volumes
were studied using the same model, with the hippocampal
formation as the dependent variable. In concordance with
previous studies by our group, we performed subgroup
analyses on patients within the bipolar spectrum [psychotic
vs. nonpsychotic bipolar disorder (41) and bipolar I vs. bipolar
II disorder (2)].

The subfield analyses were repeated with total hippocampal
formation volume (for each hemisphere) replacing ICV as
covariate to investigate the anatomic specificity of the effects.
Finally, we included the diagnosis 3 total hippocampal for-
mation interaction term (with the total left and right hippocampal
formation for the left and right hemisphere subfields, respec-
tively) together with age, diagnosis, ICV, and total hippocampal
formation with each of the hippocampal subfields as dependent
variables in six analyses for each hemisphere.

To account for possible confounding effects of medication,
we calculated defined daily dosage (DDD) of current lithium,
antiepileptic, and antipsychotic medication in accordance with
guidelines from the World Health Organization Collaborating
Center for Drug Statistics Methodology (http://www.whocc.no/
atcdd). Linear regression analyses were conducted to test for
effects of first-generation and second-generation antipsy-
chotic medication, antiepileptics, and lithium on hippocampal
subfield volumes. Medication was not associated with any of
the hippocampal subfield volumes within any of the patient
groups. Second-generation antipsychotic medication was
associated with total hippocampal formation volumes and
included as a covariate in the statistical analyses of the total
hippocampal volumes.
Table 1. Demographic and Clinical Characteristics

Schizophrenia Subjects
(n 5 210)

B

Number %

Sex (M/F) 125/85 59/41

Handedness (R/L/A) (n 5 181/169/265) 159/22/0 88/12/0

Mean (SD) Range M

Age (Years) 32.0 (9.3) 18–63

Years of Education 12.8 (2.5) 7–23

WASI IQ (n 5 177/165/261) 103.0 (14.6) 66–136 1

YMRS 4.5 (5.0) 0–23

CDSS 5.8 (4.4) 0–17

GAF Symptom 42 (11) 9–81

GAF Function 44 (10) 14–81

PANSS Positive 14.9 (5.4) 7–29

PANSS Negative 15.5 (6.6) 7–39

Age at Illness Onset 23.8 (7.5) 7–51

Medication (DDD) (n 5 SCZ/BD)
Antipsychotics (n 5 187/103) 1.4 (.8) .1–5.5
Antiepileptics (n 5 43/87) .5 (.4) .0–1.3
Lithium (n 5 2/33) .5 (.0) .5–.5

ANOVA, analysis of variance; BD, bipolar disorder; CDSS, Calgary Depre
Assessment of Function split version; M/F, male/female; NA, not applicable
R/L/A, right/left/ambidextrous; SCZ, schizophrenia; WASI, Wechsler Abbreviated
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Post hoc analyses of associations between selected sub-
fields and psychosis symptoms (PANSS positive and negative
subscales), verbal memory (California Verbal Learning Test long
and short delay free and cued recall, z scores), and general
cognitive performance (Wechsler Abbreviated Scale of Intelli-
gence) were performed in a subset of participants for cognitive
analyses (n5 603; 177 patients with schizophrenia, 165 patients
with bipolar disorder, 261 control subjects), and for symptoms
analyses (n 5 172; 97 patients with schizophrenia, 75 patients
with bipolar disorder) (Tables S1 and S2 in Supplement 1). We
tested for associations with the subfields that showed signifi-
cantly different volumes between patients with schizophrenia
and bipolar disorder (subiculum and presubiculum, left and right
hemisphere combined), and verbal memory tests were selected
because they have previously demonstrated a relation to the
subicular area (8,19,26,31–33). We used nonparametric Spear-
man rank correlation with relative subiculum volume (subfield
divided by ICV) to correct for differences in head size. Because
of significant group differences in symptom and cognitive
scores (Table 1; Tables S1 and S2 in Supplement 1), the
analyses were stratified by diagnostic groups. Given the a priori
hypothesis, all post hoc tests were one-tailed.

RESULTS

Demographic and Clinical Variables

Demographic and clinical variables are presented in Table 1.

Hippocampal Subfield Volume Differences Between
Diagnostic Groups

Volume differences between groups (Table 2) were found in hippo-
campal subfields CA2/3, CA4/DG, presubiculum, and subiculum
ipolar Disorder Subjects
(n 5 192)

Control Subjects
(n 5 300) p Value

Number % Number % χ2

77/115 40/61 158/142 53/47 4.2 3 1024

147/20/2 87/12/1 243/19/3 92/7/1 NS

ean (SD) Range Mean (SD) Range ANOVA

35.1 (11.5) 18–65 35.3 (9.9) 18–73 4.7 3 1024

13.5 (2.3) 9–20 14.2 (2.3) 9–20 1.5 3 1028

09.1 (12.0) 77–138 114.4 (12.8) 78–135 ,5.0 3 1026

3.7 (4.9) 0–28 NS

5.0 (4.9) 0–23 NS

57 (11) 28–84 7.1 3 10230

53 (12) 28–82 2.7 3 10216

10.0 (3.6) 7–25 4.4 3 10222

10.1 (3.6) 7–25 4.1 3 10220

27.3 (10.1) 7–63 1.1 3 1024

.9 (.7) .1–3.9 NA

.7 (.5) .0–2.0 NA
1.1 (.4) .1–1.8 NA

ssion Scale for Schizophrenia; DDD, defined daily dosage; GAF, Global
; NS, not significant; PANSS, Positive and Negative Syndrome Scale;
Scale of Intelligence; YMRS, Young Mania Rating Scale.
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Table 2. Mean Hippocampal Subfield Volumes (mm3), SD, and Range Stratified by Diagnostic Groups

Schizophrenia Subjects (n 5 210) Bipolar Disorder Subjects (n 5 192) Healthy Control Subjects (n 5 300)

Mean (SD) Range Mean (SD) Range Mean (SD) Range

Left

Presubiculum 455 (59) 326–622 463 (58) 301–628 478 (59) 2892–5520

CA1 321 (42) 206–462 322 (45) 235–453 331 (43) 234–486

CA2/3 969 (136) 630–1426 981 (128) 668–1342 1029 (136) 667–1401

Fimbria 73 (23) 19–135 72 (23) 16–152 76 (23) 25–185

Subiculum 629 (78) 426–823 642 (80) 458–924 666 (75) 463–774

CA4/DG 542 (74) 367–774 548 (70) 366–758 574 (72) 365–774

Right

Presubiculum 430 (56) 268–624 443 (55) 328–596 456 (57) 327–642

CA1 333 (45) 206–469 334 (44) 220–457 349 (47) 234–460

CA2/3 1019 (142) 648–1444 1026 (128) 617–1360 1079 (140) 687–1588

Fimbria 64 (21) 12–148 62 (21) 20–123 65 (23) 14–187

Subiculum 628 (75) 399–838 640 (75) 461–854 669 (79) 461–1021

CA4/DG 565 (76) 351–789 571 (72) 355–761 600 (77) 372–857

CA, cornu ammonis; DG, dentate gyrus.
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bilaterally and right CA1 when age and ICV were accounted for;
patients with schizophrenia or bipolar disorder had smaller
volumes than healthy control subjects for all subfields except
the presubiculum, where only patients with schizophrenia had
smaller volumes (Table 3). Both patient groups showed smaller
right and left total hippocampal volumes than healthy control
subjects (Table 3). Patients with bipolar disorder showed inter-
mediate volumes relative to patients with schizophrenia and
healthy control subjects for all subfields except the fimbria
(Table 2); the difference reached statistical significance for the
right presubiculum, the right and left subiculum, and the hippo-
campal formation (Table 3) as well as a trend level significance for
the left presubiculum volume (t 5 22.16, p 5 .09). Subgroup
analyses revealed no differences between patients with psychotic
versus nonpsychotic bipolar disorder or between patients with
Table 3. Statistical Comparisons of Hippocampal Subfield Volu

All Groups
Schizophrenia vs. Contro

Subjects

F2,699 p Adjusted t B (SE) p Adjuste

Left

Presubiculum 9.12 7.2 3 1024 24.3 2158 (37) 6.7 3 102

CA1 1.79 .617 NS

CA2/3 13.95 7.2 3 1026 25.12 2424 (83) 1.2 3 102

Fimbria .847 1 NS

Subiculum 14.61 3.7 3 1026 25.39 2256 (48) 2.9 3 102

CA4/DG 13.22 1.4 3 1025 24.95 2226 (46) 2.8 3 102

Hippocampal formation 23.77 6.0 3 10210 26.83 2225 (33) 5.7 3 102

Right

Presubiculum 15.25 2.0 3 1026 25.50 2185 (34) 1.6 3 102

CA1 7.45 .006 23.47 2105 (30) .002

CA2/3 15.07 2.3 3 1026 25.25 2437 (83) 6.2 3 102

Fimbria .845 1 NS

Subiculum 19.71 2.8 3 1028 26.22 2291 (47) 2.6 3 102

CA4/DG 15.10 2.3 3 1026 25.31 2250 (47) 4.5 3 102

Hippocampal formation 29.32 3.5 3 10212 27.57 2243 (33) 3.5 3 102

Analyses of covariance with age and intracranial volume included in the mod
CA, cornu ammonis; DG, dentate gyrus; NS, not significant.

Biological Ps
bipolar I versus bipolar II disorder. To account for potential
confounding effects of duration of illness, the analyses were rerun
with duration of illness as a covariate. Duration of illness was not
related to any of the hippocampal subfields. Including duration of
illness as a covariate in the analysis of covariance did not affect
the results except for the right CA1, where patients with bipolar
disorder did not have smaller volumes than healthy control
subjects when duration of illness was accounted for.

When covarying for total hippocampal formation volume
(left and right total hippocampal volume for the left and right
hemisphere subfields, respectively), there was an associa-
tion between diagnosis and left CA1 volume [F2,699 5 7.15,
p 5 .001]; patients with schizophrenia had significantly larger
CA1 volume (t 5 3.79, p 5 .001) than healthy control
subjects. This finding remained significant when ICV was
mes Between Groups

l Bipolar Disorder vs. Control
Subjects

Schizophrenia vs. Bipolar
Disorder Subjects

d t B (SE) p Adjusted t B (SE) p Adjusted

5 NS NS

NS NS
6 23.23 2272 (84) .004 NS

NS NS
7 22.54 2123 (48) .034 22.53 2133 (52) .035
6 23.26 2152 (47) .003 NS
11 23.60 2122 (34) .001 22.83 2133 (36) .014

7 NS 23.36 2125 (37) .002

22.97 292 (31) .009 NS
7 23.58 2305 (85) .001 NS

NS NS
9 23.31 2158 (48) .003 22.57 2133 (52) .031
7 23.43 2165 (48) .002 NS
13 24.07 2133 (33) 1.6 3 1024 23.10 2109 (35) .006

el. All p values are adjusted for multiple tests with Bonferroni correction.

ychiatry March 15, 2015; 77:581–588 www.sobp.org/journal 585
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included as an additional covariate in the model (t 5 3.46,
p 5 .006) and when defined daily dosage of second-
generation antipsychotic medication was included in this
model (t 5 2.65, p 5 .048). For all other subfields, there were
no significant volume differences between patients with
schizophrenia and patients with bipolar disorder and healthy
control subjects. When the diagnosis 3 total hippocampal
formation volume interaction term was included in the model,
no main effects of diagnosis or interaction effects were found
for any of the subfields.

Associations with Psychosis Symptoms and
Cognitive Functioning

Verbal retrieval was positively related to subiculum volume in
patients with bipolar disorder (short delay cued recall rS 5 .18,
p , .05; long delay cued recall rS 5 .18, p , .05; long delay
free recall rS 5 .12, p , .05) and healthy control subjects (short
delay free recall rS 5 .13, p , .05; short delay cued recall
rS 5 .11, p , .05; long delay cued recall rS 5 .12, p , .05) but
showed no relationship in patients with schizophrenia (Figure
S1 in Supplement 1). There were no associations between
Wechsler Abbreviated Scale of Intelligence scores and su-
biculum volume. In patients with schizophrenia, PANSS nega-
tive symptoms were positively related to subiculum volume
(rS 5 2.14, p , .05). No other associations between su-
biculum volume and PANSS positive or negative scores were
found. No associations between presubiculum volume and
cognitive functioning or psychosis symptoms were found.
DISCUSSION

The main findings in this study were smaller in vivo volumes of
the hippocampal subfields CA2/3, CA4/DG, subiculum, and right
CA1 in patients with schizophrenia and patients with bipolar
disorder compared with healthy control subjects, with distinctly
smaller subiculum and presubiculum volumes in patients with
schizophrenia compared with patients with bipolar disorder.

Subiculum and presubiculum constitute the outflow parts of
the hippocampal neuronal circuitry (8) and receive the major
output from CA1 (19,42), a subfield that has been linked to several
aspects of psychosis pathology (24,43,44). It has been speculated
that the subiculum amplifies hippocampal output, with extensive
neuronal bursting, regular, theta-modulated, and fast spiking in
response to input from CA1 (19). A more recent study (45) found
glutamate hypermetabolism to be related to specific volume
reductions in subiculum and CA1 of at-risk subjects who pro-
gressed to psychosis. Previous studies have reported subicular
shape deformations in both patients with schizophrenia (46) and
patients with major depressive disorder (47) compared with
healthy controls. A stereologic post mortem study reported
reduced density of gamma-aminobutyric acidergic somatostatin-
positive neurons (of importance to synchronized network activity)
in the presubiculum of patients with schizophrenia but not in
patients with bipolar I disorder (18). The observed volumetric redu-
ction in subiculum and presubiculum in the present study may
represent an in vivo correlate of cellular abnormalities that could
be more pronounced in schizophrenia than in bipolar disorder.

With regard to subicular function, findings from animal
models suggest a dorsal-ventral segregation. The ventral
586 Biological Psychiatry March 15, 2015; 77:581–588 www.sobp.org
subiculum appears to be involved in hypothalamic-pituitary-
adrenal axis regulation (19), which has been shown to be
altered in both patients with schizophrenia (48) and patients
with bipolar disorder (49). The dorsal subiculum is important to
information processing including memory functions (19), which
are more severely impaired in patients with schizophrenia than
patients with bipolar disorder (1,50). We found smaller su-
biculum volume to be related to poorer immediate and delayed
verbal recall in patients with bipolar disorder and healthy
control subjects. Reduced subiculum volume has been related
to impaired immediate verbal recall in subjects with a familial
risk for schizophrenia (26) and to delayed verbal recall in
patients with Alzheimer’s disease (32). Functional MRI studies
of healthy subjects demonstrated specific associations
between subiculum and memory retrieval, whereas CA2/3
activation was related to memory encoding (31,33). We did
not find an association between verbal memory and subiculum
volume in patients with schizophrenia, but we found smaller
subiculum volume to correlate with increased severity of
negative symptoms. A recent functional MRI resting state
study reported negative symptoms in patients with schizo-
phrenia to be inversely related to cognitive functioning in
relation to hippocampal activation (51). We can speculate that
a higher load of negative symptoms may confound possible
associations between memory retrieval and subiculum volume
in patients with schizophrenia. Nevertheless, the subiculum
volume reductions appear to have functional consequences in
both patients with schizophrenia and patients with bipolar
disorder, and further studies exploring the underlying patho-
mechanisms are warranted.

We found volumetric reductions in all hippocampal sub-
fields except the fimbria. Our findings are in line with a study
using ultra-high-field MRI (7T) reporting a trend toward lower
contrast of the dentate granule cell layer (a site of neuron
proliferation and maturation) in the DG of patients with
schizophrenia (52). This trend may reflect altered intracellular
and extracellular water as a response to abnormal neuronal
density, organization, and architecture (52). Postmortem stud-
ies have reported reduced neural stem cell proliferation in the
DG of patients with schizophrenia (53) and decreased number
of oligodendrocytes in CA4 (54); this could contribute to
reduced myelination of the axon and impaired connectivity
to CA3 (54). The CA3 projects to the CA1 (7). Unexpectedly,
we found larger CA1 volumes in patients with schizophrenia
when we covaried for total hippocampal volume. The findings
appear contradictory to a more recent study that reported
specific psychosis-related volume reductions in CA1 and
subiculum in a cohort of 25 subjects at risk for psychosis
(45). We included a much larger cohort with patients with an
established diagnosis of schizophrenia or bipolar disorder, and
the results are not directly comparable. Perhaps more impor-
tant, the automated FreeSurfer hippocampal subfield algo-
rithm we used has been suggested to underestimate CA1
volume (32,55). The CA1 is one of the largest hippocampal
subfields (56), but the current FreeSurfer method (23) esti-
mates it as one of the smallest relative to the other subfields
within the hippocampus (Table 2) (26,32). Although a recent
study demonstrated CA1 volumes obtained with FreeSurfer to
correlate with CA1 cellular density in epilepsy (55), the CA1
results in the present study must be interpreted with caution.
/journal
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The present study has some limitations. First, despite
controlling for effects of current medication use, we did not
have reliable data on cumulative medication and could not rule
out possible confounding effects of medication. Second, the
use of Bonferroni correction may be overly conservative
because the hippocampal subfield volumes are not independ-
ent, and type II errors might have occurred. Third, we used MRI
scans obtained on a 1.5-T scanner, which may have decreased
sensitivity to disease-related biological variability compared
with data obtained from higher field magnets that may allow
for signal-to-noise ratio. It has been noted that the FreeSurfer
hippocampal subfield algorithm appears to underestimate CA1
volumes at the expense of a relative enlargement of subiculum
in the hippocampal head where the boundary between the two
subfields is difficult to delineate; however, this appears to be a
systematic misclassification (32,55) that would affect the rela-
tive volume differences between the subfields but not putative
case-control differences within or across subfields. Strengths of
our study include the large sample size; thorough clinical
characterization of participating subjects; interrater reliability
testing on clinical instruments; Structured Clinical Interview for
DSM–verified diagnoses obtained by specially trained psychia-
trists, clinical psychologists, or physicians; and use of the same
MRI scanner with neither software nor hardware upgrades
during the study period.

In conclusion, although hippocampal subfield volume
reductions are found in both patients with schizophrenia and
patients with bipolar disorder, the magnitude of reduction is
greater in patients with schizophrenia, particularly in the
hippocampal outflow regions presubiculum and subiculum.
Further studies exploring the pathophysiologic mechanisms
that underlie the different associations between the subicular
volume reductions and functional outcome in schizophrenia
and bipolar disorder are warranted.
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