
UC San Diego
UC San Diego Previously Published Works

Title
High-throughput genetic clustering of type 2 diabetes loci reveals heterogeneous 
mechanistic pathways of metabolic disease.

Permalink
https://escholarship.org/uc/item/6vf552gc

Journal
Diabetologia, 66(3)

Authors
Kim, Hyunkyung
Westerman, Kenneth
Smith, Kirk
et al.

Publication Date
2023-03-01

DOI
10.1007/s00125-022-05848-6
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6vf552gc
https://escholarship.org/uc/item/6vf552gc#author
https://escholarship.org
http://www.cdlib.org/


High-throughput genetic clustering of type 2 diabetes loci 
reveals heterogeneous mechanistic pathways of metabolic 
disease

Hyunkyung Kim1,2,3, Kenneth E. Westerman2,4, Kirk Smith1,2,3, Joshua Chiou5, Joanne B. 
Cole2,3,6,7, Timothy Majarian2, Marcin von Grotthuss8, Soo Heon Kwak9, Jaegil Kim2,10, 
Josep M. Mercader1,2,3,6, Jose C. Florez1,2,3,6, Kyle Gaulton5, Alisa K. Manning2,4,6, Miriam 
S. Udler1,2,3,6

1Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA

2Broad Institute of MIT and Harvard, Cambridge, MA, USA

3Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA

4Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, USA

5Department of Pediatrics, University of California San Diego, San Diego, CA, USA

6Department of Medicine, Harvard Medical School, Boston, MA, USA

7Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston 
Children’s Hospital, Boston, MA, USA

8Takeda Pharmaceuticals, Cambridge, MA, USA

9Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea

10Present address: GlaxoSmithKline, Cambridge, MA, USA

Abstract

Aims/hypothesis—Type 2 diabetes is highly polygenic and influenced by multiple biological 

pathways. Rapid expansion in the number of type 2 diabetes loci can be leveraged to identify such 

pathways.

Methods—We developed a high-throughput pipeline to enable clustering of type 2 diabetes loci 

based on variant–trait associations. Our pipeline extracted summary statistics from genome-wide 

association studies (GWAS) for type 2 diabetes and related traits to generate a matrix of 323 

variant × 64 trait associations and applied Bayesian non-negative matrix factorisation (bNMF) to 
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identify genetic components of type 2 diabetes. Epigenomic enrichment analysis was performed 

in 28 cell types and single pancreatic cells. We generated cluster-specific polygenic scores 

and performed regression analysis in an independent cohort (N=25,419) to assess for clinical 

relevance.

Results—We identified ten clusters of genetic loci, recapturing the five from our prior analysis 

as well as novel clusters related to beta cell dysfunction, pronounced insulin secretion, and levels 

of alkaline phosphatase, lipoprotein A and sex hormone-binding globulin. Four clusters related to 

mechanisms of insulin deficiency, five to insulin resistance and one had an unclear mechanism. 

The clusters displayed tissue-specific epigenomic enrichment, notably with the two beta cell 

clusters differentially enriched in functional and stressed pancreatic beta cell states. Additionally, 

cluster-specific polygenic scores were differentially associated with patient clinical characteristics 

and outcomes. The pipeline was applied to coronary artery disease and chronic kidney disease, 

identifying multiple overlapping clusters with type 2 diabetes.

Conclusions/interpretation—Our approach stratifies type 2 diabetes loci into physiologically 

interpretable genetic clusters associated with distinct tissues and clinical outcomes. The pipeline 

allows for efficient updating as additional GWAS become available and can be readily applied 

to other conditions, facilitating clinical translation of GWAS findings. Software to perform this 

clustering pipeline is freely available.

Graphical Abstract
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Introduction

Type 2 diabetes has variable contributions of insulin resistance and beta cell dysfunction, 

and is influenced by multiple risk factors, including genetics [1]. Untangling the 

heterogeneity of type 2 diabetes may improve the management of the condition and facilitate 

precision medicine.
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Hundreds of loci associated with type 2 diabetes have been identified in large-scale 

genetic studies; however, translating these findings to improved understanding of disease 

pathophysiology has been challenging, largely owing to the abundance of non-protein 

coding lead variants [2]. Recent studies have leveraged genome-wide association study 

(GWAS) summary statistics to connect genetic loci to possible disease pathways by 

clustering loci based on shared patterns of associations across multiple traits [3–6]. In 

our previous work [5], Bayesian non-negative matrix factorisation (bNMF) soft clustering 

analysis was performed on 94 genome-wide significant type 2 diabetes variants manually 

curated from published studies and their associations with 47 diabetes-related traits. We 

identified five distinct genetic clusters, recognisable as relating to mechanisms of type 2 

diabetes pathogenesis. Five similar clusters were independently identified by Mahajan et al, 

along with a sixth cluster of ‘undetermined’ physiological impact [4]. Of these five shared 

clusters, two related to beta cell dysfunction, and the other three to different mechanisms 

of insulin resistance: obesity-mediated, abnormal lipodystrophy-like fat distribution, and 

altered hepatic lipid metabolism [4, 5]. Clusters of SNPs can be used to generate partitioned 

polygenic scores (pPSs), which have been associated with distinct cellular and clinical 

features [7–10], supporting the notion that these clusters can point to genetic subtypes with 

specific disease mechanisms.

With new type 2 diabetes loci continuously being discovered and additional GWAS trait 

summary statistics becoming available, we sought to expand our prior work, which involved 

manual curation of type 2 diabetes loci. We developed a high-throughput pipeline to enable 

extraction of genetic variants and traits from multiple GWAS to be used for cluster analysis 

to identify new genetic pathways of disease.

Methods

Pipeline for input variant–trait association matrix for clustering

An overview of pre-processing steps for variants and traits used for generating the input 

matrix for variant–trait association clustering analysis is illustrated in ESM Fig. 1 with 

additional details in the ESM Methods. To obtain a comprehensive set of independent 

genetic variants associated with type 2 diabetes, we extracted variants reaching genome-

wide significance (p<5×10−8) from large-scale type 2 diabetes studies [2, 4, 11–15] in the 

Accelerating Medicines Partnership-Common Metabolic Disease Knowledge Portal (AMP-

CMDKP) [16] (ESM Table 1) and performed stringent LD-pruning of variants at r2<0.1 

(ESM Table 2) as well as filtering and replacing of multi-allelic, ambiguous (A/T or C/G), or 

poorly represented in trait GWAS.

For trait selection, we utilised summary statistics available for 75 GWAS of glycaemic, 

anthropometric traits, vital signs, and additional laboratory measures in the AMP-CMDKP 

or UK Biobank [17] (ESM Table 3). Our goal was to let the genetics guide trait-inclusion, 

and thus traits were used only if the minimum p value across the final set of variants was 

lower than a Bonferroni p value cut-off of 0.05/N_final_variants (N=323). We then removed 

highly correlated traits (with |r|≥0.85) to reduce redundancy. We then used GWAS summary 

statistics to generate a matrix of standardised and scaled z scores, choosing the type 2 

diabetes risk-increasing allele for each variant (ESM Methods). This pipeline was also used 
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for coronary artery disease (CAD) and chronic kidney disease (CKD) with six CAD GWAS 

[18–20] and 39 CKD-related GWAS [12, 17, 21–24] queried.

bNMF clustering

The variant–trait association matrix Z (m by n, m: no. of variants, n: no. of traits) was 

constructed as above. We then generated a non-negative input matrix X (2m by n) by 

concatenating two separate modifications of the original Z matrix: one containing all 

positive standardised z scores (zero otherwise) and the other all negative standardised z 
scores multiplied by −1. The bNMF procedure factorises X into two matrices, W (2m by 

K) and HT (n by K), as X ~ WH with an optimal rank K, corresponding to the association 

matrix of variants and traits to the number of clusters (ESM Methods) [5]. The key features 

for each cluster are determined by the most strongly associated variants and traits, a natural 

output of the bNMF approach. To define a set of strongest-weighted variants and traits 

in each cluster, we employed a method to determine a weight cut-off that maximised the 

signal-to-noise ratio (ESM Fig. 2). For type 2 diabetes, the weight cut-off was 0.832.

Cluster associations with relevant phenotypes using GWAS summary statistics

We generated GWAS-partitioned polygenic scores (GWAS pPSs) for each cluster utilising 

inverse-variance weighted fixed effects meta-analysis of GWAS summary statistics 

including the set of strongest-weighted variants above the weight cut-off for each cluster 

using the dmetar package in R [25] (ESM Methods). For testing type 2 diabetes cluster 

associations with cardiometabolic outcomes, the significance threshold was set to 0.05/

(7×K), representing a Bonferroni correction for K clusters and seven outcomes (ESM Table 

4).

Functional annotation and enrichment analysis

At each locus, we calculated approximate Bayes factors (aBFs) for all variants within 500 

kb with r2≥0.1 with the index variant (100% credible set) using the approach of Wakefield 

[26] (ESM Methods). We then calculated a posterior probability for each variant by dividing 

the aBF by the sum of all aBFs in the credible set. We obtained previously published 

13-state ChromHMM [27] chromatin state calls for 28 cell types [28]. We also compiled 

candidate cis-regulatory elements (cCREs) for 14 cell types and subtypes from published 

single-cell chromatin accessibility datasets [29]. We assessed enrichment of annotations 

within clusters by overlapping 100% credible set variants for signals in each cluster with cell 

type epigenomic annotations (chromatin states and cCREs). We also assessed epigenomic 

enrichment in single-cell pancreatic tissue using a second method. As previously described 

[30], we subset loci from the Beta cell 1 and 2 clusters, annotated variants using cCREs 

from INShigh and INSlow beta cells, and applied fgwas [31] in the fine-mapping mode (ESM 

Methods).

pPS analysis in the Mass General Brigham Biobank

The Mass General Brigham (MGB) Biobank includes clinical and genetic data from patients 

across the MGB healthcare system [32]. Approval for data analysis was obtained by the 

MGB Institutional Review Board, study 2016P001018. Description of data quality control 
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is in the ESM Methods. We performed individual-level analyses on 25,419 participants of 

European ancestry based on self-reported ancestry and genetic principal components (PC’s). 

Type 2 diabetes pPSs for each cluster were generated by multiplying a variant’s genotype 

dosage by its cluster weight, with only the top-weighted variants included, as defined above. 

Logistic and linear regression were performed in R v3.6.2, adjusting for age, sex and ten 

genetic PC’s.

Results

Ten type 2 diabetes genetic clusters identified by high-throughput approach

We employed a high-throughput pipeline to enable extraction of loci from GWAS summary 

statistics files and generate a variant–trait association input matrix for clustering analysis 

(ESM Methods, ESM Fig. 1). From 13 type 2 diabetes GWAS, we extracted 21,666 genome-

wide significant variants and performed stringent LD-pruning and optimisation, resulting in 

323 independent type 2 diabetes variants (ESM Methods). These variants guided selection of 

64 traits, such that each trait was significantly associated with at least one type 2 diabetes 

variant. Soft clustering of the resulting 323 by 64 variant–trait association matrix was 

performed using bNMF.

The plurality of 1,000 bNMF iteration results converged on ten clusters (36.3%), which were 

the focus of downstream analyses (ESM Tables 5, 6). The clusters were named based on 

their top-weighted traits or similarity to clusters from our previous work. The remaining 

bNMF iterations converged on nested clusters (K=6: 0.3%, K=7: 1.1%, K=8: 8.3%, K=9: 

26.6%, K=11: 22.6%, K=12: 4.4% and K=13: 0.4%). Six clusters (Beta cell 1, Beta cell 

2, Proinsulin, Obesity, Lipodystrophy, Liver/Lipid, as described below) appeared to be 

captured in all iterations, based on inspection of shared top-weighted variants and traits.

To interpret the ten type 2 diabetes clusters, we examined their strongest-weighted loci and 

traits, as well as the aggregate associations of cluster loci with the traits via GWAS pPS, 

with the goal of relating the clusters to driving mechanisms of type 2 diabetes: insulin 

deficiency and insulin resistance (Fig. 1, ESM Table 7, ESM Fig. 3). Four of the clusters 

(Beta cell 1, Beta cell 2, Proinsulin, and Lipoprotein A) related to insulin deficiency, with 

type 2 diabetes risk-increasing alleles in each cluster collectively associated with reduced 

fasting insulin and HOMA-B (GWAS pPS p values<0.05). Another five clusters (Obesity, 

Lipodystrophy, Liver/Lipid, ALP [alkaline phosphatase] negative, Hyper Insulin Secretion) 

related to insulin resistance, with the type 2 diabetes risk alleles in these clusters associated 

with increased fasting insulin and HOMA-IR (GWAS pPS p values<0.05). The remaining 

cluster (SHBG [sex hormone-binding globulin]) was driven by one type 2 diabetes allele that 

was not significantly associated with fasting insulin, but had a positive direction of effect (p 
= 0.36; Fig. 1, ESM Fig. 3, ESM Table 7).

Of the four clusters related to insulin deficiency (Beta cell 1, Beta cell 2, Proinsulin, 

Lipoprotein A), Beta cell 1 and Beta cell 2 appeared to be a division of the single Beta 

cell cluster in our previous work [5], with each containing top traits/loci from that prior 

cluster (ESM Table 5), including several well-known loci related to beta cell function (e.g. 

[33]). In Beta cell 1, the top-weighted traits were decreased corrected insulin response (CIR) 
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and disposition index (DI), both indicators of reduced pancreatic beta cell function; the 

strongest-weighted loci included MTNR1B, CDKAL1, HHEX, C2CD4A and SLC30A8. 

Beta cell 2 cluster’s top-weighted traits and loci included increased fasting proinsulin 

adjusted for fasting insulin (PI), reduced HOMA-B and fasting insulin, and TCF7L2, 

ADCY5, GCK, DGKB and GLIS3 (Table 1, Fig. 2, ESM Tables 5, 6).

The Beta cell 1 and Beta cell 2 clusters differed from each other with regard to the 

magnitude of their glycaemic trait associations. The Beta cell 1 GWAS pPS (63 loci) 

had a more marked association with reduced DI compared with Beta cell 2 (β=−0.05, 

p=3.69×10−61 vs β=−0.03, p=9.02×10−9), while Beta cell 2 (28 loci) had a more marked 

association with increased PI (β=0.02, p=9.81×10−43 vs β=0.006, p=9.81×10−7) (Fig. 1, 

ESM Table 7). Proinsulin is a prohormone precursor to insulin, and elevated PI levels 

indicate defective proinsulin processing, particularly related to beta cell stress [34]. The 

stronger association with increased PI for Beta cell 2 vs Beta cell 1 could therefore indicate 

that Beta cell 2 relates more specifically to beta cell stress.

The Proinsulin cluster, also captured in our previous work, had top-weighted traits of 

reduced PI and HOMA-B (Fig. 2, ESM Tables 5, 6). The top-weighted loci included two 

distinct signals in the ARAP1/STARD10 region, which has previously been functionally 

connected to impaired beta cell function in mouse models where beta cell-selective deletion 

of Stard10 impaired insulin secretion [35]. In contrast to the other insulin deficiency 

clusters, this cluster (18 loci) was significantly associated with decreased PI (GWAS pPS 

p=3.51×10−36) (ESM Table 7), potentially indicating a mechanism of lack of proinsulin 

substrate for insulin synthesis and secretion.

The Lipoprotein A cluster was novel to the present analysis and had the top-weighted 

trait, increased serum lipoprotein A [Lp(a)], and single top-weighted locus, SLC22A3/LPA 
(rs487152) (Fig. 2, ESM Tables 5, 6). SLC22A3/LPA contains the gene LPA encoding 

Lp(a), and the type 2 diabetes-risk-increasing allele of rs487152 was associated with 

increased Lp(a) levels (p=4.06×10−1586) (ESM Table 7), but the underlying mechanism 

relating to insulin deficiency is unknown.

Of the five clusters related to mechanisms of insulin resistance (Obesity, Lipodystrophy, 

Liver/Lipid, Hyper Insulin Secretion, ALP negative), three (Obesity, Lipodystrophy, and 

Liver/Lipid) were captured in our previous work, but gained additional loci (and traits) in 

this expanded analysis.

The Obesity cluster had most strongly weighted traits of increased BMI, waist 

circumference, per cent body fat, and C-reactive protein (CRP), and key genetic signals 

included the well-known obesity loci FTO and MC4R [36] (Fig. 2, ESM Table 5, 6). The 

GWAS pPS for the Obesity cluster (35 loci) identified significant associations with increased 

fasting insulin (p=7.92×10−22), HOMA-IR (p=7.58×10−19), BMI (p=1.87×10−1398), body fat 

(p=6.94×10−83), and CRP (p=6.47×10−260), supporting a mechanism of obesity-mediated 

insulin resistance.

The Lipodystrophy cluster had top-weighted traits and loci suggestive of ‘lipodystrophy-

like’ or fat distribution-mediated insulin resistance as in our and other’s prior work [5, 
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37, 38]; these included decreased adiponectin, HDL-cholesterol, and modified Stumvoll 

insulin sensitivity index (ISI; adjusted for age, sex and BMI), increased triglycerides and 

waist–hip ratio, and IRS1, KLF14 and PPARG (Fig. 2, ESM Table 5, 6). The GWAS 

pPS for the Lipodystrophy cluster (54 loci) was associated with increased fasting insulin 

(p=3.16×10−43), HOMA-IR (p=7.47×10−29) and triglycerides (p=1.18×10−612), decreased 

ISI (p=1.84×10−38) and HDL (p=5.19×10−535).

The Liver/Lipid cluster was defined by decreased triglycerides and γ-glutamyl transferase 

levels, and multiple loci previously connected to hepatic lipid or glycogen metabolism, 

including GCKR, HNF1A, PPP1R3B, TOMM40/APOE, and PNPLA3 (Fig. 2, ESM 

Table 5, 6) [39]. The GWAS pPS for this cluster (11 loci) was associated with reduced 

triglycerides (p=3.64×10−181) and interestingly also reduced CRP (p=7.75×10−106) and 

white blood cell count (p=1.42×10−49).

The two remaining insulin resistance clusters (ALP negative and Hyper Insulin Secretion) 

were novel, containing driving traits and loci not part of our prior clusters (Fig. 2, ESM 

Table 5, 6). The ALP negative cluster had decreased ALP level as its top-weighed trait, 

and the ABO locus as the top-weighted locus. The GWAS pPS in this cluster (4 loci) 

was associated with decreased ALP (p=1.97×10−1431) and triglycerides (p=4.49×10−247). 

The Hyper Insulin Secretion cluster included top-weighted traits of increased DI and CIR, 

and loci PPP1R3B, CNTN2, DTNB, SREBF1 and TNF. More than 87% of the loci in 

this cluster were not part of our prior work. The Hyper Insulin Secretion GWAS pPS 

(32 loci) was associated with increased CIR (p=1.16×10−14), DI (p=2.89×10−14), BMI 

(p=1.01×10−26), and reduced HDL (p=1.09×10−110) and SHBG (p=1.07×10−100).

The final cluster, SHBG, was novel to the current work and not significantly associated 

with fasting insulin (GWAS pPS p=0.36). The cluster was driven by a single trait and 

locus: decreased SHBG levels and the SHBG locus (ESM Table 5, 6). The GWAS pPS in 

this cluster (1 locus) was significantly associated with reduced SHBG (p=1.2×10−1784) and 

IGF-1 (p=4.12×10−13).

Type 2 diabetes clusters differ in tissue enrichment including single-cell islets

To acquire further evidence for the suspected disease mechanisms represented by clusters 

and assess biological differences between the clusters, we analysed the top-weighted loci 

in each type 2 diabetes cluster for enrichment of epigenomic annotations across 28 tissues 

(Fig. 3a, ESM Table 8a). In line with expected mechanisms, the Beta cell 1, Beta cell 2, 

and Proinsulin clusters were significantly enriched in pancreatic islet tissue (false discovery 

rate [FDR]<0.05). The Liver/Lipid and ALP negative clusters were significantly enriched in 

liver tissue (FDR<0.01). The Lipodystrophy cluster was strongly enriched in adipose tissue 

(FDR<0.01). Additionally, both Beta cell 1 and 2 had enrichment in adipose tissue and the 

brain hippocampus (FDR<0.01). The Obesity cluster was most transcriptionally enriched in 

human epidermal keratinocytes (NHEK) and hASC-t3 pre-adipose cells, both at nominal 

significance (p<0.05, FDR=0.11).

We also interrogated newly available chromatin profiles from 14.3k pancreatic islet cells, 

which Chiou et al subsetted based on their chromatin profiles [30]. In prior work, the 
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islets were found to have two epigenomic subsets, labelled Beta INShigh and Beta INSlow, 

indicating high or low insulin gene (INS) promoter accessibility; the Beta INShigh islet 

cells had enriched promoter accessibility for genes involved in insulin secretion, whereas 

the Beta INSlow cells had enrichment for stress-induced signalling response genes. When 

assessing enrichment of our clusters, we found that our Beta cell 1 cluster was enriched 

only in Beta INShigh cells (p=0.0001, FDR=0.0014), whereas our Beta cell 2 cluster 

was nominally enriched in both Beta INShigh and Beta INSlow cells (p=0.025, p=0.013, 

respectively, FDR=0.18 for both), (Fig. 3b, ESM Table 8b). The same trend was observed 

in fgwas enrichment analysis: Beta cell 1 was significantly enriched only in INShigh 

[loge(enrichment) (95% CI): INShigh 2.32 (1.31, 3.12); INSlow −0.36 (−1.79, 0.55)] whereas 

Beta cell 2 was significantly enriched in both single-cell subsets [loge(enrichment) (95% 

CI): INShigh 1.61 (0.22, 2.96); INSlow 2.11 (0.73, 3.46)] (Fig. 3c). Together these results 

support the likelihood that Beta cell 1 and Beta cell 2 clusters relate to distinct physiological 

mechanisms, with Beta cell 2 potentially connected to a stress-induced pancreatic state.

Also of interest within the pancreas single-cell data, the Liver/Lipid cluster was most 

enriched for alpha cells, (p=0.007, FDR=0.099); alpha cells secrete glucagon, which acts to 

release glucose from the glycogen stores in the liver, providing further connection between 

these type 2 diabetes loci and liver function (Fig. 3b).

Type 2 diabetes clusters are differentially associated with clinical traits and outcomes

To assess translation of the clusters to individuals, we generated cluster pPSs in the MGB 

Biobank (N=25,419). We first confirmed that cluster pPSs were associated with expected 

traits in this study population both in all individuals and in those with type 2 diabetes (ESM 

Table 9).

We next tested whether the cluster pPSs were associated cardiometabolic outcomes related 

to type 2 diabetes using GWAS summary statistics: CAD, CKD, eGFR, hypertension, 

ischaemic stroke and diabetic neuropathy (ESM Table 4, Fig. 4a, ESM Fig. 4a). All ten 

type 2 diabetes clusters were associated with at least one outcome. The GWAS pPS results 

for eGFR highlighted the utility of cluster-specific scores, with individual clusters having 

more significant associations than the full set of type 2 diabetes SNPs: increased pPSs 

for the Liver/Lipid, ALP negative and SHBG clusters were associated with reduced eGFR 

(p<5×10−4), whereas all cluster type 2 diabetes SNPs together did not reach Bonferroni-

corrected significance (p=0.03, ESM Table 10). The most significant of these GWAS pPSs 

were replicated using individual-data from MGB Biobank: increased Obesity cluster pPS 

with increased risk of hypertension, increased Lipodystrophy cluster pPS with increased risk 

of CAD, and increased Liver/Lipid cluster pPS with reduced eGFR, in all individuals with 

and without adjustment for type 2 diabetes status (Fig. 4b, ESM Table 11).

Clusters from CAD and CKD share mechanistic pathways with type 2 diabetes

We applied our clustering pipeline to two other metabolic diseases, CAD and CKD, 

identifying five CAD clusters (219 loci): ALP negative, Lipoprotein A, HDL negative, 

Cholesterol and Blood markers increased), and five CKD clusters (70 loci): Blood markers 

increased, Urea increased, Reduced haematopoiesis, Beta cell opposite and Lipoprotein A 
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(ESM Tables 12–15, ESM Fig. 5). Based on inspection of constituent variants and traits in 

the clusters of type 2 diabetes, CAD and CKD, the Lipoprotein A cluster was shared by all 

three diseases. Similarly, the ALP negative cluster was shared between type 2 diabetes and 

CAD, and the Blood markers increased cluster between CAD and CKD.

Discussion

Novel approaches are needed to connect the currently identified hundreds of type 2 diabetes 

loci to disease pathophysiology and accommodate the rapid pace of new locus discovery. 

Here, we describe expanded clustering of type 2 diabetes variants, using a high-throughput 

pipeline for extracting and pre-processing variants from multiple GWAS datasets and 

generating a variant–trait association matrix. Applying bNMF soft clustering to this 323 

by 64 type 2 diabetes variant–trait matrix, we identify ten type 2 diabetes genetic clusters, 

which we show have tissue epigenomic specificity and are associated with distinct metabolic 

outcomes.

Importantly, among the ten clusters, we again capture the five identified in our previous 

work of 94 type 2 diabetes variants (Beta cell, Proinsulin, Obesity, Lipodystrophy, Liver/

Lipid) [5], with the Beta cell cluster subdivided into two distinct clusters, and also identified 

four novel clusters related to pronounced insulin secretion, levels of ALP, Lp(a) and SHBG. 

In contrast to our prior work, which involved manual curation of published GWAS loci 

to generate the input list of variants, the current approach allowed for use of uncurated 

GWAS datasets and included newly available datasets, more than tripling the number of 

input loci. Thus, rediscovery of the previously identified clusters provides strong validation 

of this high-throughput approach, with the newly identified clusters driven by traits or loci 

not available in the prior analysis.

Three of the ten type 2 diabetes clusters identified in this work (Beta cell 1, Beta cell 2, 

and Proinsulin) clearly relate to pancreatic beta cell function, differing in part due to the 

direction or magnitude of the PI association. All three clusters were enriched in pancreatic 

islet tissue in the epigenomics analysis. Additionally, loci in the Beta cell 2 cluster had a 

unique signal of enrichment for single beta cells predicted to be in a stressed state [30]. 

The functional distinctions between these clusters support our independent approach of 

phenotypically informed type 2 diabetes locus clustering.

Three other type 2 diabetes clusters related to pathways of insulin resistance (Obesity, 

Lipodystrophy, Liver/Lipid) were also captured in our prior work, but now gained additional 

loci and traits. Loci in these clusters were most enriched for enhancers in tissues 

for the suspected mechanisms: pre-adipocytes, adipocytes and liver tissue, respectively. 

Interestingly we also observed a significant association for the Liver/Lipid cluster with 

pancreatic alpha cells, which may relate to the liver activity of this cluster or could suggest 

a more direct role for glucagon in diabetes development [40]. The distinction between 

fat accumulation in the Obesity cluster and abnormal fat compartmentalisation in the 

Lipodystrophy cluster may be supported by the differential enhancer enrichment shown 

for different developmental stages of the adipocyte lineage.
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We also identified four new type 2 diabetes clusters from this work, several of which were 

also captured in the clustering of CAD and CKD: ALP negative, Lipoprotein A, SHBG and 

Hyper Insulin Secretion.

The ALP negative cluster (seen for type 2 diabetes and CAD) was driven by reduced serum 

ALP levels and the ABO locus. Isoform levels of ALP have been shown to vary by blood 

group [41]. The ABO locus and blood type have previously been connected to type 2 

diabetes [42] and CAD [43] risk, but the causal mechanisms are not fully understood.

The Lipoprotein A cluster (seen for type 2 diabetes, CAD and CKD) all included the top 

locus (SLC22A3/LPA tagged by rs487152) and top biomarker Lp(a), pointing to a genetic 

pathway leading to increased Lp(a) levels and increased risk of type 2 diabetes, CAD and 

CKD. The relationship between Lp(a) and cardiometabolic disease is complex, and genetic 

interrogation of LPA has been complicated by the fact that plasma concentration of Lp(a) 

is influenced by kringle IV type 2 repeats in addition to other genetic variation [44]. While 

epidemiological studies have connected elevated Lp(a) levels with increased risk of CAD 

and CKD [45, 46], an inverse association has been reported for type 2 diabetes [47]. Our 

genetic findings for type 2 diabetes therefore indicate that there are likely to be multiple 

pathways impacting Lp(a) level that may have differential effects on type 2 diabetes risk.

For the SHBG cluster (seen for type 2 diabetes), our results point to a genetic pathway 

whereby alteration of the SHBG locus leads to reduced SHBG levels and increased type 

2 diabetes risk, which was consistent with previous epidemiological and genetic studies 

indicating that low circulating levels of SHBG were causally related to increased risk of type 

2 diabetes in both sexes [48].

We assessed the impact of cluster pPSs in individuals, finding that individuals with increased 

cluster pPS had significant associations with clinical traits and disease outcomes, supporting 

prior findings for the original five clusters [8]. While the effect sizes of the pPSs on 

clinical outcomes were too small to be of clinical utility at the individual-level, the results 

point to marked heterogeneity in type 2 diabetes genetic associations with clinical features, 

suggesting important physiological implications. For example, we detect associations with 

CKD and eGFR for several of the insulin-resistance-related clusters, but not with the insulin-

deficiency-related clusters. Our results are consistent with the phenotypic-based clustering 

finding in Ahlqvist et al of the ‘severe insulin-resistant diabetes’ group having the highest 

risk of developing CKD [49] and may have implications for preventing or treating diabetic 

kidney disease.

The strengths of this study include the high-throughput approach for pre-processing variants 

and traits from multiple GWAS datasets in a semi-automated way. This method can be 

readily applied to other diseases beyond type 2 diabetes to identify mechanisms of disease, 

and the code has been made publicly available. We included here application of the pipeline 

to CAD and CKD, demonstrating transferability of the approach and potential shared 

mechanisms of disease. Limitations include clustering of only available phenotypes from 

GWAS. It is possible that additional pathways exist that are not captured using the set 

of traits included in the analysis. Additionally, due to methodological limitations and data 
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availability we have focused on GWAS from populations of European ancestry, although 

we are actively pursuing application of this method in non-European populations through 

additional efforts. It is worth noting that bNMF generates weights for all included elements 

in the matrix, and it is not known how best to determine a cut-off threshold for cluster 

membership; we have applied a reasonable strategy to maximise signal-to-noise ratio. 

Future work would benefit from longitudinal analysis to assess the impact of clusters 

throughout the disease course as well as further validation that the genetic clusters map to 

predicted disease processes, as has been done for one of the original clusters using cellular 

characterisation [7].

In summary, we have identified ten robust genetic clusters pointing to mechanistic pathways 

of type 2 diabetes using a high-throughput clustering pipeline. These clusters displayed 

tissue-specific enrichment patterns even within single-cell pancreatic tissue subsets and 

could be used to generate pPSs that stratify patients genetically with distinct associations 

with clinical outcomes. We demonstrate that our approach can be applied to other 

complex diseases, with identification of overlapping clusters between type 2 diabetes, CAD 

and CKD. Thus, we contribute to further delineation of cardiometabolic disease genetic 

pathways using a data-driven approach informed by physiology.
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CIR Corrected insulin response

CKD Chronic kidney disease

CRP C-reactive protein

DI Disposition index

FDR False discovery rate

GWAS Genome-wide association study

INShigh/low High/low insulin gene (INS) promoter accessibility

ISI Insulin sensitivity index

Lp(a) Lipoprotein A

MGB Mass General Brigham

PC Principal component

pPS Partitioned polygenic score

SHBG Sex hormone-binding globulin
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Research in context

What is already known about this subject?

• Type 2 diabetes is highly polygenic and influenced by multiple biological 

pathways

• Five genetic clusters have been identified in previous work studying 94 type 2 

diabetes variants

What is the key question?

• Can we identify additional genetic clusters by expanding the number of 

phenotypes and variants in the clustering and, if so, will the clusters point 

to mechanisms of type 2 diabetes pathogenesis with epigenomic tissue 

specificity and distinct clinical characteristics?

What are the new findings?

• Ten clusters are identified, including those from our prior analysis as well as 

novel clusters related to pronounced insulin secretion, and levels of alkaline 

phosphatase, lipoprotein A and sex hormone-binding globulin

• The clusters displayed tissue-specific epigenomic enrichment. Two beta 

cell clusters (splitting the ‘Beta cell’ cluster from our prior work) were 

differentially enriched in functional and stressed pancreatic beta cell states

• Cluster-specific polygenic scores were associated with clinical outcomes 

across genome-wide association studies and in participants in an independent 

hospital-based biobank. Multiple type 2 diabetes clusters overlapped with 

coronary artery disease and chronic kidney disease

How might this impact on clinical practice in the foreseeable future?

• Delineation of genetic pathways of type 2 diabetes may improve 

understanding of disease pathogenesis and identify genetic type 2 diabetes 

subtypes, both potentially leading to improved management of the condition 

among people with diabetes
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Fig. 1. 
Cluster associations with metabolic traits using GWAS. Forest plot showing standardised 

effect sizes with 95% CI of cluster pPS–trait associations derived from GWAS summary 

statistics. Three metabolic traits (fasting insulin, fasting proinsulin adjusted for fasting 

insulin, and DI) that help discriminate clusters are displayed. The numbers in parentheses 

next to cluster names indicate the number of variants included in the analysis in each cluster. 

‘All SNPs’ includes all the variants that are top-weighted in at least one cluster. Filled points 

indicate p values <0.05
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Fig. 2. 
Clusters of type 2 diabetes loci. Top-weighted loci and traits in each of the ten clusters 

are represented in circular plots: (a) Beta cell 1, (b) Beta cell 2, (c) Proinsulin, (d) 

Lipoprotein A, (e) SHBG, (f) Obesity, (g) Lipodystrophy, (h) Liver/lipid, (i) ALP negative, 

(j) Hyper insulin secretion. The length of the bars shows the weights. Green bars represent 

top-weighted loci, red bars represent increased trait association, and blue bars represent 

decreased trait association with each cluster. A maximum of 35 elements (loci and traits) 

based on highest weights are displayed in each cluster. The blue outline indicates clusters 

associated with decreased fasting insulin levels, and the red outline indicates clusters 

associated with increased fasting insulin levels
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Fig. 3. 
Enrichment for tissue-specific enhancers in type 2 diabetes clusters. (a) Heatmap of 

tissue enhancer/promoter enrichment analysis result. (b) Heatmap of pancreatic islet cell 

enrichment analysis result. Significance was indicated as follows: *** FDR < 0.001, ** FDR 

< 0.01, * FDR < 0.1, • p < 0.05. (c) Forest plot of comparison of Beta cell 1 and Beta cell 2 

clusters in fgwas enrichment analysis in functional and stressed beta cell states
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Fig. 4. 
Forest plot of cluster associations with outcomes using (a) GWAS and (b) individual-level 

data from MGB Biobank. (a) Forest plot showing standardised effect sizes with 95% CI of 

cluster pPS–outcome associations derived from GWAS summary statistics. Three metabolic 

outcomes (type 2 diabetes, CAD and CKD, all unadjusted for type 2 diabetes) are displayed. 

The numbers in parentheses next to cluster names indicate the number of variants included 

in the analysis in each cluster. Filled points indicate p values <0.05. (b) Forest plot of 

associations of pPSs in individuals in the MGB Biobank with clinical outcomes. Three 

outcomes including type 2 diabetes are displayed. T2D, type 2 diabetes
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