
UC Berkeley
Research Reports

Title
Implementing a Kalman Filtering Dynamic O-D Algorithm within Paramics- Analysing
Quadstone Won Efforts for the Dynamic O-D Estimation Problem

Permalink
https://escholarship.org/uc/item/6vf61301

Author
Garcia, Reinaldo C.

Publication Date
2003-05-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6vf61301
https://escholarship.org
http://www.cdlib.org/

CALIFORNIA PATH PROGRAM
INSTITUTE OF TRANSPORTATION STUDIES
UNIVERSITY OF CALIFORNIA, BERKELEY

Implementing a Kalman Filtering Dynamic
O-D Algorithm within Paramics-Analysing
Quadstone Won Efforts for the Dynamic
O-D Estimation Problem

Reinaldo C. Garcia

California PATH Working Paper
UCB-ITS-PWP-2003-8

This work was performed as part of the California PATH Program of
the University of California, in cooperation with the State of California
Business, Transportation, and Housing Agency, Department of Trans
portation; and the United States Department Transportation, Federal
Highway Administration.

The contents of this report reflect the views of the authors who are
responsible for the facts and the accuracy of the data presented herein.
The contents do not necessarily reflect the official views or policies of
the State of California. This report does not constitute a standard, spec
ification, or regulation.

Report for Task Order 4130

May2003

ISSN 1055-1417

CALIFORNIA PARTNERS FOR ADVANCED TRANSIT AND HIGHWAYS

IMPLEMENTING A KALMAN FILTERING DYNAMIC 0-D

ESTIMATION ALGORITHM WITHIN PARAMICS - ANALYSING

QUADSTONE OWN EFFORTS FOR THE DYNAMIC 0-D

ESTIMATION PROBLEM

Reinaldo C. Garcia

Institute of Transportation Studies

PATH Research Program

Univeristy of California at Irvine

Irvine, 94720 CA

February 19, 2002

Executive Summary

This Project moves forward from the accumulated knowledge garnered from MOU 412 I.

Over the last year a good deal of insights was obtained about the implementation of dynamic

Origin-and-Destination (O-D) estimation. Under MOU 4121, the Kalman Filtering (KF)

algorithm described in Hu et al. (2000) for dynamic O-D estimation was implemented. In this

research, the implemented algorithm is incorporated to the microscopic traffic simulator

Paramics.

Paramics offers important and unprecedented features, such as high performance and

scalability, to handle realistic real world traffic networks under ITS (Intelligent Transportation

Systems). Nevertheless, Paramics has its own limitations, particularly relating to the model s

ability to interface with dynamic routing protocols, and dynamic O-D estimation.

Hu et al. (2000) implemented their KF algorithm for dynmic O-D estimation and tested it

for a freeway system. Needing the KF algorithm inputs such as link traffic counts and assignment

matrices to be applied, Hu et al. (2000) used the DYNASMART mesoscopic traffic simulator to

obtain the necessary input data for the KF algorithm.

In this research, being Caltrans (The California Transportation Department) the main

sponsor of this project, the implementation of the algorithm was made applying solely the

Paramics traffic simulator (not using therefore the DYNASMART simulator). Doing so, it was

intended to avoid future training costs to Caltrans, as it is already applying mainly Paramics

through its own districts. To implement the KF algorithm described in Hu et al. (2000) within

Paramics, the following AP! s (Advanced Programming Interfaces) were developed: net_action,

vehicle_action, vehicle_link_action and net_post_action. These AP! s will be explained in detail

in this report. Furthermore, this research will discuss the own proposed development of

Quadstone (the developer of Paramics) for the dynamic O-D estimation algorithm.

Introduction

This work builds on the contribution of MOU 4121, which focus on the methodological

of the dynamic O-D estimation. The important contributions of this work arc not only in

incorporating a dynamic O-D estimation algorithm but also in evaluating its implementation and,

helping Quadstone with its own dynamic O-D estimation approach. The problem of dynamic O-D

estimation and prediction of O-D has received increasing attention in recent years because its

applicability to on-line traffic management systems. It is important to say that time-dependent O

D matrices are essential input for advanced traffic management and information systems. In

MOU 4121 before applying any dynamic O-D algorithm, a series of different dynamic O-D

approaches were studied. The chosen dynamic O-D algoritlun is based on the development by llu

et al. (2000).

Several approaches have been investigated for estimation and prediction of dynamic OD

matrices. They can be categorized into two families: statistical inference and state space models.

A large number of statistical inference methods in this field have already been proposed (for an

extensive description of them see the report for MOU 4121). The objective of state estimation is

to track variables that characterize some dynamic behavior, by processing observations afflicted

by errors. State estimators rely on a model lo relate the state variables to each other, to the

observations, and to the forcing (see Norton (1986)).The Kalman Filtering (KF) algorithm is the

most typical state space model that has been intensively investigated. Previous studies applying

the KF algorithm were already described in detail in MOU 4121 (see Cremer and Keller (1987),

Nihan and Davis (1987), Okutani (1987), Ashok and Ben-Akiva (1993), Chang and Wu (1994),

Zijpp and Hamerslag (1994), Wu and Chang (1995)). In this research a KF algorithm developed

by Hu et al. (2000) is implemented.

Methodology

A KF based dynamic freeway 0-D estimation and prediction algorithm with route

switching and time-varying traffic characteristic considerations is presented in Hu et al.(2000)

and applied in this work. The model applied extends previous work in the field (see Ashok and

Ben-Akiva (1993)) by incorporating dynamic traffic characteristics and a behavioral component

within the KF algorithm.

Time-dependent 0-D distributions are the outcome of motorists trip plans, given network

traffic co11ditions and users specific characteristics. For on-line traffic management these 0-D

matrices can be obtained by using the information contained inexisting 0-D data and link traffic

counts measured at each time interval. Those 0-D data are estimates of travel demands during

previous time intervals and, therefore, are associated with random errors in a dynamic system.

Link traffic counts, on the other hand, suffer from measurement errors as a result of technological

limitations, data processing errors, and so forth. A dynamic 0-D estimation and prediction model

that predicts time-varying 0-D demands from these two sources of information should recognize

the uncertainty inherent in the dynamic traffic system and provide flexibility to accommodate

different degrees of error. To specify the problem the following variables are defined:

qk(i) = the number of vehicles entering the freeway from on-ramp i during time interval k, i= 1.2.

,N-1 ;

Yk(i) = the number of vehicles leaving the freeway from off-ramp j during time interval k,

j=2,3, N;

mk(l) = the number of vehicles crossing the freeway mainline segment l during time interval k,

1=2,3, ,N-1;

xk(i,j) = the number of vehicles crossing the entering the freeway from on-ramp i during time

interval k that are destined to measurement location};

a/(i,j,d) = the fraction of x,(ij) that arrives at its destination during time interval k, r= 1,2, k

The state variables to be estimated are the time-dependent xk(i,j) 0-D flows. In view of

platoon dispersion, the assignment fraction variable a/(i,j,d) capture the temporal relationship

between the time-dependent 0-D flows and the observed link traffic counts. The aim of the

algorithm is to find an estimate of xk(i,j) using measurement link traffic counts, represented by

z,(i,j). It can be shown that z,(i,j) depends on q,(i), y,U) and m,(/) (see MOU 4121 and Hu ct

al.(2000)).

Solution of the Kalman Filtering Problem

Given the initial conditions Xo and P,, (the covanance of X0), the Kalman filter recursively

estimates the state variables by the following equations:

Lklk-1 ~ Fk Lk-Llk-LFk T + Q,

K, ~ L,,k-1 A/ [A,L,1,-L A/ +R, i-L

(1)

(2)

(3)

(4)

5)

where: - X,,_1 is thens-vector of augmented one-step ahead O-D flow predictions, and X,1, 1s

the us-vector of augmented filtered O-D flow estimates.

F, and Ak are the augmented transition and assignment coefficient matrices,

respectively.

Kk is the Kalman filtering gain matrix

L,1, and L,1k-1 are the covariance matrices of the state estimators X,1, and X,1,-1

respectively and,

Qk and R, are covariance matrices for the individually noise and Gaussian processes

related to the variables x,(ij) and z,(ij) respectively.

One of the new developments exploited by this project is the implementation of the

chosen algorithm for a general network. Hu et al. (2000) applied their algorithm for just a stretch

(6 mile) of a freeway'. To understand one of the main reasons why Hu et al.(2000) applied their

algorithm for just a stretch of a freeway, lets look at the assignment matrix A,.

The matrix A, has dimensions ns X ns where n is a vector of O-D flows pairs and,

s~max{p,u}, where p is the order of the transition equation and, u is the maximum number of

time intervals required to travel between any O-D pair of the entire network. Therefore, if the

network has 10 origins and 10 destinations, there will be a total of 100 0-D s pairs (i.e. n=J00).

Besides that, if p=J (the order of the transition equation) and, if a commuter takes 1 hour (60

minutes) to arrive at her/his destination and, the time interval applied is 5 minutes, then u=12 (as

u=60/5=12 is the number of time intervals to traverse the network), making s=l2 (i.e.,

s=m,u{u,p)=max{ 12,3 }=12).

One can then see that from this simple example given above that the dimension of the

matrix Ak is 1,200 (i.e., ns X ns = 1,200 X 1,200). Thus, Ak will have a total of 1,440,000 (! !)

elements to be stored ! During the application of the algorithm not only the matrix A, has to be

stored, meaning that the problem can become computationally unfeasible (there wont be enough

memory to store all the necessary elements to apply the implemented algorithm).

Remark: Prior to tbe start of this research the option considered were either apply

methods (such as the Least Squares one) that could be easily implemented but would give very

poor results or, implement new methods (such as the KF algorithm) and, afterwards try to come

up with ways to make the KF algorithm computationally feasible. The implementation of the KF

algorithm was the chosen as recent research published in the literatnre obtained promising results

with its application.

Development of the Advanced Programming Interfaces (AP/ s)

This section gives a brief description of the AP! s developed for this research (a more

detailed description is given in Appendix A). To implement the chosen KF algorithm within

Paramics, the following AP! s were developed: api_setup, net_action, vehicle_action,

vehicle_link_action and, net_post_action. A brief description of them is given next.

The AP! api_setup is called during the initialization phase, before the simulation has

started. It allows us to insert initialization routines, and basically it explains the objectives of the

program.

In the AP! net_action some variables, such as the total number of vehicles in the network

(G_n_vehicles_in_the_network), the number of origins and destinations and, the flows in the

links, are defined and initialized. These variables will be in general used in the rest of the

program to obtain other variables (matrices), such as the assignment matrix Ak.

1 When the implementation of the algorithm was initiated, a personal communication between this author
and Shou-Ren Hu was exchanged. Shou-Ren called the attention that extra care for the memory allocation
issue should be given, as the algorithm was computationally very demanding.

The AP! vehicle_link_action is applied mainly to obtain the value of s. i.e., s-max{u.p)

where, as already explained previously, p is the order of the transition equation and, u is the

number of time intervals required to travel between any 0-D pair of the entire network.

The APT vehicle_action is applied mainly to obtain the assignment matrix Ak. Therefore,

the origin, destination and cost for each vehicle to traverse the network is obtained here.

The APT net_post_action implements the KF algorithm. The previous AP! s obtained the

necessary data to serve as input for the algorithms application. At the end of this AP!

net_post_action, the new 0-D table is obtained and, written into the Paramics format.

The next section describes the results obtained when applying the KF algorithm within

Paramics.

Obtaining and Analyzing the Results of the KF algorithm within Paramics

One of the main difficulties with the implementation of the KF algorithm was the

management of memory allocation. Even tough extra care was given during the KF algorithms

implementation', the program as it stands today can handle up to 2,500 vehicles in the network.

This total number of vehicles depends on the complexity of the network. Thus, if the network has

more (less) pairs of 0-D s or more (less) number of links, means that less (more) vehicles can be

handled by the program3
• One can argue that this short number of vehicles could make the

program not very useful for real world applications. Therefore, the following idea was

implemented to make the program more suitable for the real world issues.

The question to be asked is: How it is possible to make a program that can handle up to

2,500 vehicles be applied to mirror real world networks, which have hnndreds of thousands of

vehicles? Well, one can suppose that the 2,500 vehicles represent a sample of the network and,

once the new 0-D is obtained based on these 2,500 vehicles, a rescale is applied obtaining the

real new 0-D table4
.

2 During the implementation of the KF algorithm, whenever variables (matrices) were created, applied and,
then would not be anymore used in the simulation, they were deleted from the program to save memory.
3 The number of vehicles handled by the program can also be increased applying a more powerful
computer. The computer applied for this research was a Pentium III 350 Mhz with 128 Mb. Of RAM
memory.
4 One of form of scaling can be understood as: suppose that there arc at the moment I 0,000 vehicles at this
moment in the network. As the program can handle up to 2,500 vehicles, ach element of the new 0-D
should be rescaled by a actor of 4 (i.e., 10,000/2,500~4) and the new real O-D would then have been
obtained.

To test the approach developed in this research, the network showed in Figure I was

used. This applied network has about 64 pairs of O-D s, 152 links and its initial O-D matrix is

given in Table 1.

Figure I - Description of the network applied in this research.

from 1 0 3150 156 129 64 103 411 3150 ## 7163

from 2 4267 0 218 181 89 144 566 896 ## 6361

from3 373 339 0 16 8 13 50 78 ## 877

from4 320 291 16 0 7 11 42 67 ## 754

from 5 213 194 11 9 0 7 28 45 ## 507

from 6 133 121 7 6 3 0 18 28 ##316

from 7 533 485 27 23 11 18 0 112 ## 1209

from 8 5 5 0 0 0 0 l 0 ## 11

total 5844 4585 435 364 182 296 1116 4376 ## 17198

Table 1 -0-D Matrix applied at the start of the simulation.

The results obtained applying tbc KF algorithm are given in Table 2. Comparing Tables 1

and 2, the results agree quite well in magnitude. It must be added that in previous research

applying other methods (such as the Least Squares, LS, method) to estimate and predict dynamic

0-D tables, the results could differ by as much as 5,000% ! Similarly, when comparing the results

stated in Tables 1 and 2, one can see that the most of the cases differ by up to 25% (the

exceptions are the results in the last row, when comparing 5 to 8, i.e. 60%; but as those numbers

are so small, it basically does not affect the congestion oftbe network, for instance).

from I 0 2464 124 104 52 84 332 2338 ## 5498

from 2 2708 0 160 132 63 103 629 1010 ## 4805

from 3 272 411 0 36 18 27 94 127 ## 985

from 4 228 221 41 0 16 25 79 103 ## 713

from 5 150 148 30 26 0 0 54 68 ## 496

from 6 91 91 20 17 10 0 33 47 ##309

from 7 607 529 52 44 20 134 0 173 ## 1459

from8 8 8 0 0 0 0 3 0 ## 19

total 4064 3872 427 359 179 293 124 3866 ## 14284

Table 2 - 0-D Matrix obtained witb the application of the KF algorithm within Paramics.

Finally, it can be concluded that the results obtained applying the KF algorithm look

quite promising. Once real-time data is acquired through the ongoing research in the PATH

program, more tests should be realized to further validate the algorithm. Nevertheless, as far as it

is known, this project is the first one to apply a KF algorithm to the dynamic 0-D estimation

problem in a network. And once again, it is quite exciting the results when comparing Tables 1

and 2. Different types of networks (more complex ones) must also be studied to further

understand the capacity of the algorithm. The next section discusses the own approach suggested

by Quadstone (the developer of Paramics) to implement its own dynamic O-D estimation

procedure.

Quadstone Approach to Develop a Dynamic O-D Estimation Procedure

Quadstone has proposed to develop its own dynamic O-D estimation procedure called

Udimode (User-Directed Interactive Method for O-D Estimation). The main idea behind the

Udimode approach is that the user will change parameters/weights of the links, intersections,

on-ramps, off-ramps, etc. and will then obtain a reasonable solution for the O-D estimation

table.

Studying more carefully the Quadstone approach, it can be concluded that it can (will) be

extremely time consuming for the user to calibrate just a small network. Among the many

parameters that the user will have to deal with are the following ones:

(i) Traffic counts on links, and confidence weights for each;

(ii) Tum counts and confidence weights for each;

(iii) Pattern seed matrix - this is assumed to be unit-less, but a previous matrix can be used. A

confidence interval may be supplied for each trip count ! !

To better understand how time consuming it can be for the user to calibrate a simple

network, lets look only at case (iii) stated above. Let s suppose that for case (iii) there is a 10

mile section of a freeway, with on-ramps and off-ramps spaced one mile apart from each other.

Therefore, there will be about IO possible origins and IO possible destinations, for this case.

Then, for this 10 by 10 O-D matrix, there will be about JOO possible weights and, the existence of

any arterial was not even considered here. Continuing this analysis, if the user had been able to

choose some parameters (after a lot of hard work) that could describe the demands of 60 of

those O-D s pairs, there is no guarantee that once the user starts to change again the already

chosen parameters (to try to match the other 40 O-D pairs of demands), repeating, there is no

guarantee that the new number of good matches will become worse than 60 (once the new

parameters have been chosen). Basically, the user would be walking backwards and not

forward to the solution of the problem.

It can be concluded that once the whole Udimode project has been implemented, it will

demand a lot of work hours just to calibrate a small network, for just one period of time. Then

there will be another problem.

As this approach intends to be extended for dynamic 0-D estimation, the

implementation for different periods of time will probably demand new calibration. Therefore, a

whole bunch of new parameters for a different period of time will have to be obtained by the user,

demanding again many hours of work (calibration). Once again, there is no guarantee that the

process of calibration can ever be concluded.

Quadstone has suggested that its own implementation shall be sufficiently flexible to

allow extensions to provide dynamic capability. The main problem is that with dynamic 0-D

estimation and prediction, during different periods of time of the day, there are different patterns

of the distribution of the data. Thus, early in the morning more people arc going to work and, a

little bit later, some of the families are taking their children to schools or go shopping, leisure m1d

so on. Therefore, if Quadstone s approach is implemented, once the user has calibrated the model,

lets suppose, for the first period of the day (working commute), and the new 0-D s are being

generated, when the next period arrives (shopping, leisure), the new 0-D s to be generated

should not be generated by the same parmneters that the user obtained when calibrating the

model for the I st
• period. Some other issues, as described next, can continue to challenge

Quadstone own development for the dynmnic 0-D estimation problem.

Lets suppose now that the user calibrated the model when no incident happened in the

newtork. For this case, the user would have chosen some parameters and weights that would

perceive the real world behavior. What happens if some kind of incidents (accidents, close of off

rmnps) occur !? By Quadstone s approach, to perceive the behavior of the real world, the user

will/would have to calibrate the whole model again(!!).

Finally, it can be said that Quadstone approach of basically trying to achieve the

estimation of new 0-D s by allowing the user to choose weights, parameters, etc. can be

extremely dangerous and, most probably, so time consuming that the real 0-D s (or at least

values close to the real ones) will never be achieved. As the name suggests Udimode (User

Directed Interactive Method for 0-D Estimation), it should be told to Quadstone to try to come

up with a more automatic way to obtain the new 0-D s matrices~ and not leaving the main

calibration task to the user.

CONCLUSlONS

This project has implemented an adaptive Kalman filtering algorithm for the dynamic and

prediction of a network 0-D matrices within the traffic simulator Paramics. As far as it is known,

it is one of the first researches trying to implement a KF algorithm for a network. To make

possible the implementation of the KF algorithm within Paramics, API shad to be developed.

The problem of implementing the algorithm and developing AP! s requires the storage of

some variables (matrices) which can have huge dimensions. To make the problem

computationally feasible, an approach of obtaining an 0-D table through a sample of the number

of vehicles present in the network was developed. The results obtained with this research look

quite promising.

Further tests applying the procedure here presented should be made to validate the described

procedure. Tests such as looking at different types of networks, with different complexities and,

making tests such as when incidents occur or not in the network, would be helpful to further

validate the procedure. Once real-time data is also obtained through the ongoing research in the

PATH program, the KF algorithm here presented could then be tested with real-time data. It is

hoped that this project can be a valuable tool to Caltrans and to the PATH program in their

ongoing effort to expand not only the Paramics capabilities but also any other future applications .

REFERENCES

Anderson, B.D.O. and Moore, J.B. (1979) Optimal Filtering, Prentice Hall, New Jersey.

Ashok, K. and Ben-Akiva, M.E. (1993) Dynamic Origin-Destination matrix estimation for

real-time traffic management systems. In Transportation and Traffic Theory (C.F. Daganzo, ed.),

Elsevier Science Publishers B.V., 465-484.

Bell, M.G.H. (1991) The real time estimation of'origin-destinationjlows in the presence of

platoon dispersion, Transportation Research, Part B, Vol. 25, No. 2, 1157-125.

Ben-Akiva, M.E., Ashok, K. and Yang Q. (1994), Commentaries on a statistical analysis of

the reliability of'using RGS vehicle probes as estimators of dynamic 0-D departure rates, !VHS

Journal, Vol. 2, No. l, 21-44.

Chang, G.L. and Wu, J. (1994) Recursive estimation of'time-varying Origin-Destination

flows from traffic counts in freeway corridors, Transportation Research, Part B, Vol. 28, No. 2,

141-160.

Cremer, M. and Keller, H. (1987) A new class of dynamic methods for the identification of'

Origin-Destination flows, Transportation Research, Part B, Vol. 21, No. 2, 117-132.

Daganzo, C. (1997), Fundamentals of Transportation and Traffic Operations, Elsevier

Science Ltd., Great Britain.

Davis, G. A. (1993) Estimating freeway demand patterns under impact of ncertatinty on

ramp controls, ASCE Journal of Transportation Engineering, Vol. I 19, No. 4, 489-503.

Gartner, N.1-1. (1982) OPAC: A demand-responsive strategy for trajjic signal control,

Transportation Research Record, 906, 75-81.

Gartner, N.H. (1983) Simulation study of OPAC: A demand-responsive strategy _for traffic

signal control. In Gartner N.H. and Wilson N.H. (eds.), Transportation and Traffic Theory (pp.

233-250). New York: Elsevier Science Publishing Company.

Hellinga, B. and Van Aerde, M. (994) A statistical analysis of the reliability of using RCS

vehideprobes as estimators of dynamic O-D departure rates, !VHS Journal, Vol. 2, No. 1, 21-

44.

Hu, S.R., Madanat, S.M., Krogmeier, J.V. and Peeta, S. (2000), Estimation of dynamic

assignment matrices and OD demands using adaptive Kalman Filtering, Working paper, 2000 (lo

appear in the ITS Journal).

Maher, M. J. Inferences on trip matrices from observations on link volumes: a Bayesian

slalislical approach, Transportation Research, Pmt B, Vol. 17, No. 6, 435-447.

Mahmassani, H.S. and Liu, Yu-Hsiu (1999), Dynamics of commuting decision behavior

under advanced traveler ieformation systems, Transportation. Research, 7C, 91-107

Norton, J.P. (1986)An introduction to identification, Academic Press, Inc. London, U.K ..

Okutani, J. (1987) The Kalman filtering approach in some transportation and traffic

problems. In International Symposium on Transportation and Traffic Theory (N.H. Gartner and

N.H.M. Wilson, eds.), Elsevier Science Publishing Company, Inc., 397-416.

Peeta, S. (1994), System optimal dynamic traffic assignment in congested networks with

advanced information systems, Doctoral Dissertation, The University of Texas at Austin.

Peeta, S. and Mahmassani, H.S. (1995), Multiple user-class real-time traffic assignment for

online operations: a rolling horizon solutionframei-vork, Transportation. Research, 3C, 83-98.

Nihan, N.L. and Davis, G.A. (1987) Recursive estimation of Origin-Destination matrices

from Input/Output counts, Transportation Research, Part B, Vol. 21, No. 2, 149-163.

Nihan, N.L. and Davis, G.A. (1989) Application pf prediction-error minimization and

maximum likelihood ta estimate intersection O-D matrices from traffic counts, Transportation

Science, Vol. 23, No. 2, 77-90.

Flannery, B.P., Press, W.H., Teukolsky, S.A. and Vettering, W.T. (1994) Numerical recipes

in C. the art of scientific computing, Second Edition, Cambridge University Press, Cambridge,

England.

Zijpp, N.J. and Hamerslag, R. (1994) An improved Kalman filtering approach to estimate

Origin-Destination matrices far .freeway corridors. Presented at 73'd. Annual Meeting of the

Transportation Research Board, Washington, D.C.

Wu, J. and Chang, G.L. (1995) Estimation of time-varying 0-D matrices with dynamic

screenline flows. Presented at 74th
. Annual Meeting of the Transportation Research Board,

Washington, D.C.

Appendix A

This appendix describes more technical details about the programmmg of the KF

algorithm. As it was already said, the following AP! s were developed during this project:

api_setup, net_action, vehicle_action, vehicle_link_action and, net_post_action. After describing

a little bit more in detail these API s, this Appendix gives some hints about how to extend the

program in the future and (or) how to look for bugs if unfortunately those still appear.

The api_setup

As it is described in the Paramics manual, this AP! is called during the initialization

phase, before the simulation has started. It allows us to insert initialization routines, and basically

explains the objectives of the program. In our case, it is printed that the following program

implements a KF algorithm for the dynamic O-D estimation problem.

The APT net_action

In this API some variables, such as: the total number of vehicles in the network

(G_n_vehic/es_in_the_network), the number of origins and the number of the destinations in the

network (N_of_origins and N_of_destinations), the number of links (Number _of_links, obtained

through the net_n_links function of Paramics), the flows in the links (Z_jlow/inks), are defined

and initialized. These variables will be in general used in the other AP! s of the program to obtain

other variables, such as the assignment matrix Ak (represented in the program by the variable

a__ptr in the program). It could be also said that there is no need to have two different variables

for the number of origins and the number of destinations, as usually they are identical.

Nevertheless, two variables were used iu the program because if in the future it appears such a

strange network where this case of equality between the origins and destinations does not hold,

there will be no problem with the program implementation.

The APT vehicle_link_action

This AP! is very important as it obtains the value of s (i.e., s=max{u,p} where, as already

explained previously, p is the order of the transition equation and, u is the number of time

intervals required to travel between any O-D pair of the entire network). The way that the AP!

works is very straightforward, as it starts with the value of 2, and whenever a vehicle has higher

cost to traverse the network, the value of s is updated. It must be reminded that the cost of the

vehicle to traverse the network can be obtained through the Paramics function

link_destination_cost, having as inputs the current link of the vehicle, its current destination and

its current route to arrive at the destination.

The API vehicle_action

This APT is applied mainly as support to obtain the assignment matrix A,. Therefore, the

origin, destination and cost for each vehicle to traverse the network is obtained and stored here.

One has to remember that the assignment matrix has dimensions of not only the number of O-D s

pairs but also of the cost of each vehicle to traverse the network. Therefore, if two vehicles have

the same origins and destinations but different costs, they can (will) be in different positions of

the assignment matrix. One should imagine the assignment matrix as looking like: 00o, 001, 00,

(as being the elements representing vehicles which are going from origin O to destination O and

are going to take O interval of time or, 1 interval of time or, 2 intervals of time, respectively, to

traverse the network; as one can see, as Parmnics does not allow a vehicle go from one origin to

that same destination, destination 0, all these elements will be 0), and also 01 0, 01 1, 01 2 (as

being the elements representing vehicles which are going from origin O to destination I and are

going to take O interval of time or, 1 interval of time or, 2 intervals of time, respectively, to

traverse the network) and so on.

The API net_post_action

One can say that this is the main AP! of the Program developed. In this net_post_action

AP!, the KF algorithm is implemented. First many variables were defined and left in the program

even after its successful implementation. This decision was taken as many of those variables are

applied to write the results either in the files or in the screen. One has to remember that in the

future, the program can (will) be applied for more complexes networks and, as Paramics is a

terrible software regarding its debugging abilities, the only way to debugger the program is

printing the values of the variables.

After the definition of a whole group of variables, the assignment matrix (A,) and the link

counts (the variables z,) are obtained. The values of those variables are found by the values of the

origins, destinations and costs for each vehicle. Once the variables A, and z, are obtained, the

application of the algorithm is a little bit straightforward, applying Eqs.(l) trough (5) of this

report. Of course that before obtaining the multiplication (addition) of each equation, a new

variable (matrix) having the correct dimensions has to be defined to store the result of the

multiplication (addition). At the true, it can be said that the implementation is straightforward

until Eq. (2), where there is the need to invert a matrix (i.e., the matrix that results from some

manipulations). Before inverting this matrix, its determinant is obtained in the program and, if

and only if the matrix is not singular (i.e., its determinant is different of zero), the inversion of the

matrix is realized. Both functions to obtain the determinant and to invert the matrix were

implemented applying the Gauss Jordan algorithm presented in the book Numerical Recipes in

C(l994).

Finally, after the new values of the time-dependent state variables x,(iJ) 0-D flows are

found, the new O-D demand can be obtained. Then the rescale of the O-D matrix as already

described in this report is realized and, the matrix is written in the O-D format as requested by the

Paramics simulation package.

Tro11ble,·hooting for the Program

Even tough extra care was given to make the program bug free, it is impossible to say

that there will be no problems in the future. Therefore, with the experience obtained during the

implementation of the algorithm, some insights about where to look at possible problems are

given in this section.

The first issue is the problem of: if after running the algorithm, very strange results are

obtained to the O-D table. These strange results can be either very large numbers or even negative

numbers (! 1). If that happens, almost sure the reason is that the capacity of the memory of the

program has been achieved, meaning that during the creation of the pointers actually, no pointer

is being created anymore. Two possible solutions can be tried for this case. The first is to

increase the value of the variable time_step_matrix (defined at the beginning of the program, just

over the AP! set_up). This time_step_matrix controls the cost for each vehicle in seconds (i.e., a

time step of IO means 10 seconds, of300 means 5 minutes, of600 means 10 minutes). Increasing

the value of the variable time_step_matrix will decrease the dimension of the assignment matrix,

but the trade off is that the results can decrease in accuracy'. The second possible solution is to

decrease the value of the variable G_total_number_of_ vehicle_in_the_network. In the beginning

of the program, the value of this variable is defined as about 2,500 vehicles, as this is the total

number of vehicles that could be stored in our particular example. Therefore, if we decrease the

value of G_total_number_of_ vehicle_in_the_network, a smaller number of variables will be

created (such as the ones that store the origins and destinations of each vehicle) and more

memory can be freed. But, once again, the reliability of the results will decrease, as a smaller

sample of vehicles will then be used to estimate the real new 0-D table.

Finally, inside the program, there are many portions of comments that were left to either

help the user to print the values of specific variables to see if there are any problems with them.

The comments can also be used to further understand which part of the algorithm implementation

is being evaluated at that point. It is hoped that the comments here presented can be helpful for

future users of the Program implementated. As it has already been said, extra care was given to

make the program bug free, but in any software implementation problems can always come up

when new testing or, networks or, cases are tried.

5 The point here is that making time_step_value::.=600 (i.e., IO minutes, for instance) it means for example
that all the vehicles that will take between O and 10 minutes to arrive at their destination, will have the same
cost. Basically, there is greater aggregation of the data when the value oftime_step_value is increased.

