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Executive Summary 

This Project moves forward from the accumulated knowledge garnered from MOU 412 I. 

Over the last year a good deal of insights was obtained about the implementation of dynamic 

Origin-and-Destination (O-D) estimation. Under MOU 4121, the Kalman Filtering (KF) 

algorithm described in Hu et al. (2000) for dynamic O-D estimation was implemented. In this 

research, the implemented algorithm is incorporated to the microscopic traffic simulator 

Paramics. 

Paramics offers important and unprecedented features, such as high performance and 

scalability, to handle realistic real world traffic networks under ITS (Intelligent Transportation 

Systems). Nevertheless, Paramics has its own limitations, particularly relating to the model s 

ability to interface with dynamic routing protocols, and dynamic O-D estimation. 

Hu et al. (2000) implemented their KF algorithm for dynmic O-D estimation and tested it 

for a freeway system. Needing the KF algorithm inputs such as link traffic counts and assignment 

matrices to be applied, Hu et al. (2000) used the DYNASMART mesoscopic traffic simulator to 

obtain the necessary input data for the KF algorithm. 

In this research, being Caltrans (The California Transportation Department) the main 

sponsor of this project, the implementation of the algorithm was made applying solely the 

Paramics traffic simulator (not using therefore the DYNASMART simulator). Doing so, it was 

intended to avoid future training costs to Caltrans, as it is already applying mainly Paramics 

through its own districts. To implement the KF algorithm described in Hu et al. (2000) within 

Paramics, the following AP! s (Advanced Programming Interfaces) were developed: net_action, 

vehicle_action, vehicle_link_action and net_post_action. These AP! s will be explained in detail 

in this report. Furthermore, this research will discuss the own proposed development of 

Quadstone (the developer of Paramics) for the dynamic O-D estimation algorithm. 



Introduction 

This work builds on the contribution of MOU 4121, which focus on the methodological 

of the dynamic O-D estimation. The important contributions of this work arc not only in 

incorporating a dynamic O-D estimation algorithm but also in evaluating its implementation and, 

helping Quadstone with its own dynamic O-D estimation approach. The problem of dynamic O-D 

estimation and prediction of O-D has received increasing attention in recent years because its 

applicability to on-line traffic management systems. It is important to say that time-dependent O

D matrices are essential input for advanced traffic management and information systems. In 

MOU 4121 before applying any dynamic O-D algorithm, a series of different dynamic O-D 

approaches were studied. The chosen dynamic O-D algoritlun is based on the development by llu 

et al. (2000). 

Several approaches have been investigated for estimation and prediction of dynamic OD 

matrices. They can be categorized into two families: statistical inference and state space models. 

A large number of statistical inference methods in this field have already been proposed (for an 

extensive description of them see the report for MOU 4121). The objective of state estimation is 

to track variables that characterize some dynamic behavior, by processing observations afflicted 

by errors. State estimators rely on a model lo relate the state variables to each other, to the 

observations, and to the forcing (see Norton (1986)).The Kalman Filtering (KF) algorithm is the 

most typical state space model that has been intensively investigated. Previous studies applying 

the KF algorithm were already described in detail in MOU 4121 (see Cremer and Keller (1987), 

Nihan and Davis (1987), Okutani (1987), Ashok and Ben-Akiva (1993), Chang and Wu (1994), 

Zijpp and Hamerslag (1994), Wu and Chang (1995)). In this research a KF algorithm developed 

by Hu et al. (2000) is implemented. 



Methodology 

A KF based dynamic freeway 0-D estimation and prediction algorithm with route 

switching and time-varying traffic characteristic considerations is presented in Hu et al.(2000) 

and applied in this work. The model applied extends previous work in the field (see Ashok and 

Ben-Akiva (1993)) by incorporating dynamic traffic characteristics and a behavioral component 

within the KF algorithm. 

Time-dependent 0-D distributions are the outcome of motorists trip plans, given network 

traffic co11ditions and users specific characteristics. For on-line traffic management these 0-D 

matrices can be obtained by using the information contained inexisting 0-D data and link traffic 

counts measured at each time interval. Those 0-D data are estimates of travel demands during 

previous time intervals and, therefore, are associated with random errors in a dynamic system. 

Link traffic counts, on the other hand, suffer from measurement errors as a result of technological 

limitations, data processing errors, and so forth. A dynamic 0-D estimation and prediction model 

that predicts time-varying 0-D demands from these two sources of information should recognize 

the uncertainty inherent in the dynamic traffic system and provide flexibility to accommodate 

different degrees of error. To specify the problem the following variables are defined: 

qk(i) = the number of vehicles entering the freeway from on-ramp i during time interval k, i= 1.2. 

,N-1 ; 

Yk(i) = the number of vehicles leaving the freeway from off-ramp j during time interval k, 

j=2,3, N; 

mk(l) = the number of vehicles crossing the freeway mainline segment l during time interval k, 

1=2,3, ,N-1; 

xk(i,j) = the number of vehicles crossing the entering the freeway from on-ramp i during time 

interval k that are destined to measurement location}; 

a/(i,j,d) = the fraction of x,(ij) that arrives at its destination during time interval k, r= 1,2, k 

The state variables to be estimated are the time-dependent xk(i,j) 0-D flows. In view of 

platoon dispersion, the assignment fraction variable a/(i,j,d) capture the temporal relationship 

between the time-dependent 0-D flows and the observed link traffic counts. The aim of the 

algorithm is to find an estimate of xk(i,j) using measurement link traffic counts, represented by 



z,(i,j). It can be shown that z,(i,j) depends on q,(i), y,U) and m,(/) (see MOU 4121 and Hu ct 

al.(2000)). 

Solution of the Kalman Filtering Problem 

Given the initial conditions Xo and P,, (the covanance of X0), the Kalman filter recursively 

estimates the state variables by the following equations: 

Lklk-1 ~ Fk Lk-Llk-LFk T + Q, 

K, ~ L,,k-1 A/ [A,L,1,-L A/ +R, i-L 

(1) 

(2) 

(3) 

(4) 

5) 

where: - X,,_1 is thens-vector of augmented one-step ahead O-D flow predictions, and X,1, 1s 

the us-vector of augmented filtered O-D flow estimates. 

F, and Ak are the augmented transition and assignment coefficient matrices, 

respectively. 

Kk is the Kalman filtering gain matrix 

L,1, and L,1k-1 are the covariance matrices of the state estimators X,1, and X,1,-1 

respectively and, 

Qk and R, are covariance matrices for the individually noise and Gaussian processes 

related to the variables x,(ij) and z,(ij) respectively. 

One of the new developments exploited by this project is the implementation of the 

chosen algorithm for a general network. Hu et al. (2000) applied their algorithm for just a stretch 

(6 mile) of a freeway'. To understand one of the main reasons why Hu et al.(2000) applied their 

algorithm for just a stretch of a freeway, lets look at the assignment matrix A,. 

The matrix A, has dimensions ns X ns where n is a vector of O-D flows pairs and, 

s~max{p,u}, where p is the order of the transition equation and, u is the maximum number of 

time intervals required to travel between any O-D pair of the entire network. Therefore, if the 



network has 10 origins and 10 destinations, there will be a total of 100 0-D s pairs (i.e. n=J00). 

Besides that, if p=J (the order of the transition equation) and, if a commuter takes 1 hour (60 

minutes) to arrive at her/his destination and, the time interval applied is 5 minutes, then u=12 (as 

u=60/5=12 is the number of time intervals to traverse the network), making s=l2 (i.e., 

s=m,u{u,p)=max{ 12,3 }=12). 

One can then see that from this simple example given above that the dimension of the 

matrix Ak is 1,200 (i.e., ns X ns = 1,200 X 1,200). Thus, Ak will have a total of 1,440,000 (! ! ) 

elements to be stored ! During the application of the algorithm not only the matrix A, has to be 

stored, meaning that the problem can become computationally unfeasible (there wont be enough 

memory to store all the necessary elements to apply the implemented algorithm). 

Remark: Prior to tbe start of this research the option considered were either apply 

methods (such as the Least Squares one) that could be easily implemented but would give very 

poor results or, implement new methods (such as the KF algorithm) and, afterwards try to come 

up with ways to make the KF algorithm computationally feasible. The implementation of the KF 

algorithm was the chosen as recent research published in the literatnre obtained promising results 

with its application. 

Development of the Advanced Programming Interfaces (AP/ s) 

This section gives a brief description of the AP! s developed for this research (a more 

detailed description is given in Appendix A). To implement the chosen KF algorithm within 

Paramics, the following AP! s were developed: api_setup, net_action, vehicle_action, 

vehicle_link_action and, net_post_action. A brief description of them is given next. 

The AP! api_setup is called during the initialization phase, before the simulation has 

started. It allows us to insert initialization routines, and basically it explains the objectives of the 

program. 

In the AP! net_action some variables, such as the total number of vehicles in the network 

(G_n_vehicles_in_the_network), the number of origins and destinations and, the flows in the 

links, are defined and initialized. These variables will be in general used in the rest of the 

program to obtain other variables (matrices), such as the assignment matrix Ak. 

1 When the implementation of the algorithm was initiated, a personal communication between this author 
and Shou-Ren Hu was exchanged. Shou-Ren called the attention that extra care for the memory allocation 
issue should be given, as the algorithm was computationally very demanding. 



The AP! vehicle_link_action is applied mainly to obtain the value of s. i.e., s-max{u.p) 

where, as already explained previously, p is the order of the transition equation and, u is the 

number of time intervals required to travel between any 0-D pair of the entire network. 

The APT vehicle_action is applied mainly to obtain the assignment matrix Ak. Therefore, 

the origin, destination and cost for each vehicle to traverse the network is obtained here. 

The APT net_post_action implements the KF algorithm. The previous AP! s obtained the 

necessary data to serve as input for the algorithms application. At the end of this AP! 

net_post_action, the new 0-D table is obtained and, written into the Paramics format. 

The next section describes the results obtained when applying the KF algorithm within 

Paramics. 

Obtaining and Analyzing the Results of the KF algorithm within Paramics 

One of the main difficulties with the implementation of the KF algorithm was the 

management of memory allocation. Even tough extra care was given during the KF algorithms 

implementation', the program as it stands today can handle up to 2,500 vehicles in the network. 

This total number of vehicles depends on the complexity of the network. Thus, if the network has 

more (less) pairs of 0-D s or more (less) number of links, means that less (more) vehicles can be 

handled by the program3
• One can argue that this short number of vehicles could make the 

program not very useful for real world applications. Therefore, the following idea was 

implemented to make the program more suitable for the real world issues. 

The question to be asked is: How it is possible to make a program that can handle up to 

2,500 vehicles be applied to mirror real world networks, which have hnndreds of thousands of 

vehicles? Well, one can suppose that the 2,500 vehicles represent a sample of the network and, 

once the new 0-D is obtained based on these 2,500 vehicles, a rescale is applied obtaining the 

real new 0-D table4
. 

2 During the implementation of the KF algorithm, whenever variables (matrices) were created, applied and, 
then would not be anymore used in the simulation, they were deleted from the program to save memory. 
3 The number of vehicles handled by the program can also be increased applying a more powerful 
computer. The computer applied for this research was a Pentium III 350 Mhz with 128 Mb. Of RAM 
memory. 
4 One of form of scaling can be understood as: suppose that there arc at the moment I 0,000 vehicles at this 
moment in the network. As the program can handle up to 2,500 vehicles, ach element of the new 0-D 
should be rescaled by a actor of 4 (i.e., 10,000/2,500~4) and the new real O-D would then have been 
obtained. 



To test the approach developed in this research, the network showed in Figure I was 

used. This applied network has about 64 pairs of O-D s, 152 links and its initial O-D matrix is 

given in Table 1. 

Figure I - Description of the network applied in this research. 

from 1 0 3150 156 129 64 103 411 3150 ## 7163 

from 2 4267 0 218 181 89 144 566 896 ## 6361 

from3 373 339 0 16 8 13 50 78 ## 877 

from4 320 291 16 0 7 11 42 67 ## 754 

from 5 213 194 11 9 0 7 28 45 ## 507 

from 6 133 121 7 6 3 0 18 28 ##316 

from 7 533 485 27 23 11 18 0 112 ## 1209 

from 8 5 5 0 0 0 0 l 0 ## 11 

## total 5844 4585 435 364 182 296 1116 4376 ## 17198 



Table 1 -0-D Matrix applied at the start of the simulation. 

The results obtained applying tbc KF algorithm are given in Table 2. Comparing Tables 1 

and 2, the results agree quite well in magnitude. It must be added that in previous research 

applying other methods (such as the Least Squares, LS, method) to estimate and predict dynamic 

0-D tables, the results could differ by as much as 5,000% ! Similarly, when comparing the results 

stated in Tables 1 and 2, one can see that the most of the cases differ by up to 25% (the 

exceptions are the results in the last row, when comparing 5 to 8, i.e. 60%; but as those numbers 

are so small, it basically does not affect the congestion oftbe network, for instance). 

from I 0 2464 124 104 52 84 332 2338 ## 5498 

from 2 2708 0 160 132 63 103 629 1010 ## 4805 

from 3 272 411 0 36 18 27 94 127 ## 985 

from 4 228 221 41 0 16 25 79 103 ## 713 

from 5 150 148 30 26 0 0 54 68 ## 496 

from 6 91 91 20 17 10 0 33 47 ##309 

from 7 607 529 52 44 20 134 0 173 ## 1459 

from8 8 8 0 0 0 0 3 0 ## 19 

## total 4064 3872 427 359 179 293 124 3866 ## 14284 

Table 2 - 0-D Matrix obtained witb the application of the KF algorithm within Paramics. 

Finally, it can be concluded that the results obtained applying the KF algorithm look 

quite promising. Once real-time data is acquired through the ongoing research in the PATH 

program, more tests should be realized to further validate the algorithm. Nevertheless, as far as it 

is known, this project is the first one to apply a KF algorithm to the dynamic 0-D estimation 

problem in a network. And once again, it is quite exciting the results when comparing Tables 1 

and 2. Different types of networks (more complex ones) must also be studied to further 

understand the capacity of the algorithm. The next section discusses the own approach suggested 



by Quadstone (the developer of Paramics) to implement its own dynamic O-D estimation 

procedure. 

Quadstone Approach to Develop a Dynamic O-D Estimation Procedure 

Quadstone has proposed to develop its own dynamic O-D estimation procedure called 

Udimode (User-Directed Interactive Method for O-D Estimation). The main idea behind the 

Udimode approach is that the user will change parameters/weights of the links, intersections, 

on-ramps, off-ramps, etc. and will then obtain a reasonable solution for the O-D estimation 

table. 

Studying more carefully the Quadstone approach, it can be concluded that it can (will) be 

extremely time consuming for the user to calibrate just a small network. Among the many 

parameters that the user will have to deal with are the following ones: 

(i) Traffic counts on links, and confidence weights for each; 

(ii) Tum counts and confidence weights for each; 

(iii) Pattern seed matrix - this is assumed to be unit-less, but a previous matrix can be used. A 

confidence interval may be supplied for each trip count ! ! 

To better understand how time consuming it can be for the user to calibrate a simple 

network, lets look only at case (iii) stated above. Let s suppose that for case (iii) there is a 10 

mile section of a freeway, with on-ramps and off-ramps spaced one mile apart from each other. 

Therefore, there will be about IO possible origins and IO possible destinations, for this case. 

Then, for this 10 by 10 O-D matrix, there will be about JOO possible weights and, the existence of 

any arterial was not even considered here. Continuing this analysis, if the user had been able to 

choose some parameters (after a lot of hard work) that could describe the demands of 60 of 

those O-D s pairs, there is no guarantee that once the user starts to change again the already 

chosen parameters (to try to match the other 40 O-D pairs of demands), repeating, there is no 

guarantee that the new number of good matches will become worse than 60 ( once the new 

parameters have been chosen). Basically, the user would be walking backwards and not 

forward to the solution of the problem. 



It can be concluded that once the whole Udimode project has been implemented, it will 

demand a lot of work hours just to calibrate a small network, for just one period of time. Then 

there will be another problem. 

As this approach intends to be extended for dynamic 0-D estimation, the 

implementation for different periods of time will probably demand new calibration. Therefore, a 

whole bunch of new parameters for a different period of time will have to be obtained by the user, 

demanding again many hours of work (calibration). Once again, there is no guarantee that the 

process of calibration can ever be concluded. 

Quadstone has suggested that its own implementation shall be sufficiently flexible to 

allow extensions to provide dynamic capability. The main problem is that with dynamic 0-D 

estimation and prediction, during different periods of time of the day, there are different patterns 

of the distribution of the data. Thus, early in the morning more people arc going to work and, a 

little bit later, some of the families are taking their children to schools or go shopping, leisure m1d 

so on. Therefore, if Quadstone s approach is implemented, once the user has calibrated the model, 

lets suppose, for the first period of the day (working commute), and the new 0-D s are being 

generated, when the next period arrives (shopping, leisure ), the new 0-D s to be generated 

should not be generated by the same parmneters that the user obtained when calibrating the 

model for the I st
• period. Some other issues, as described next, can continue to challenge 

Quadstone own development for the dynmnic 0-D estimation problem. 

Lets suppose now that the user calibrated the model when no incident happened in the 

newtork. For this case, the user would have chosen some parameters and weights that would 

perceive the real world behavior. What happens if some kind of incidents (accidents, close of off

rmnps) occur !? By Quadstone s approach, to perceive the behavior of the real world, the user 

will/would have to calibrate the whole model again(!!). 

Finally, it can be said that Quadstone approach of basically trying to achieve the 

estimation of new 0-D s by allowing the user to choose weights, parameters, etc. can be 

extremely dangerous and, most probably, so time consuming that the real 0-D s (or at least 

values close to the real ones) will never be achieved. As the name suggests Udimode (User

Directed Interactive Method for 0-D Estimation), it should be told to Quadstone to try to come 



up with a more automatic way to obtain the new 0-D s matrices~ and not leaving the main 

calibration task to the user. 

CONCLUSlONS 

This project has implemented an adaptive Kalman filtering algorithm for the dynamic and 

prediction of a network 0-D matrices within the traffic simulator Paramics. As far as it is known, 

it is one of the first researches trying to implement a KF algorithm for a network. To make 

possible the implementation of the KF algorithm within Paramics, API shad to be developed. 

The problem of implementing the algorithm and developing AP! s requires the storage of 

some variables (matrices) which can have huge dimensions. To make the problem 

computationally feasible, an approach of obtaining an 0-D table through a sample of the number 

of vehicles present in the network was developed. The results obtained with this research look 

quite promising. 

Further tests applying the procedure here presented should be made to validate the described 

procedure. Tests such as looking at different types of networks, with different complexities and, 

making tests such as when incidents occur or not in the network, would be helpful to further 

validate the procedure. Once real-time data is also obtained through the ongoing research in the 

PATH program, the KF algorithm here presented could then be tested with real-time data. It is 

hoped that this project can be a valuable tool to Caltrans and to the PATH program in their 

ongoing effort to expand not only the Paramics capabilities but also any other future applications . 
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Appendix A 

This appendix describes more technical details about the programmmg of the KF 

algorithm. As it was already said, the following AP! s were developed during this project: 

api_setup, net_action, vehicle_action, vehicle_link_action and, net_post_action. After describing 

a little bit more in detail these API s, this Appendix gives some hints about how to extend the 

program in the future and (or) how to look for bugs if unfortunately those still appear. 

The api_setup 

As it is described in the Paramics manual, this AP! is called during the initialization 

phase, before the simulation has started. It allows us to insert initialization routines, and basically 

explains the objectives of the program. In our case, it is printed that the following program 

implements a KF algorithm for the dynamic O-D estimation problem. 

The APT net_action 

In this API some variables, such as: the total number of vehicles in the network 

( G_n_vehic/es_in_the_network), the number of origins and the number of the destinations in the 

network (N_of_origins and N_of_destinations), the number of links (Number _of_links, obtained 

through the net_n_links function of Paramics), the flows in the links (Z_jlow/inks), are defined 

and initialized. These variables will be in general used in the other AP! s of the program to obtain 

other variables, such as the assignment matrix Ak (represented in the program by the variable 

a__ptr in the program). It could be also said that there is no need to have two different variables 

for the number of origins and the number of destinations, as usually they are identical. 



Nevertheless, two variables were used iu the program because if in the future it appears such a 

strange network where this case of equality between the origins and destinations does not hold, 

there will be no problem with the program implementation. 

The APT vehicle_link_action 

This AP! is very important as it obtains the value of s (i.e., s=max{u,p} where, as already 

explained previously, p is the order of the transition equation and, u is the number of time 

intervals required to travel between any O-D pair of the entire network). The way that the AP! 

works is very straightforward, as it starts with the value of 2, and whenever a vehicle has higher 

cost to traverse the network, the value of s is updated. It must be reminded that the cost of the 

vehicle to traverse the network can be obtained through the Paramics function 

link_destination_cost, having as inputs the current link of the vehicle, its current destination and 

its current route to arrive at the destination. 

The API vehicle_action 

This APT is applied mainly as support to obtain the assignment matrix A,. Therefore, the 

origin, destination and cost for each vehicle to traverse the network is obtained and stored here. 

One has to remember that the assignment matrix has dimensions of not only the number of O-D s 

pairs but also of the cost of each vehicle to traverse the network. Therefore, if two vehicles have 

the same origins and destinations but different costs, they can (will) be in different positions of 

the assignment matrix. One should imagine the assignment matrix as looking like: 00o, 001, 00, 

(as being the elements representing vehicles which are going from origin O to destination O and 

are going to take O interval of time or, 1 interval of time or, 2 intervals of time, respectively, to 

traverse the network; as one can see, as Parmnics does not allow a vehicle go from one origin to 

that same destination, destination 0, all these elements will be 0), and also 01 0, 01 1, 01 2 (as 

being the elements representing vehicles which are going from origin O to destination I and are 

going to take O interval of time or, 1 interval of time or, 2 intervals of time, respectively, to 

traverse the network) and so on. 

The API net_post_action 



One can say that this is the main AP! of the Program developed. In this net_post_action 

AP!, the KF algorithm is implemented. First many variables were defined and left in the program 

even after its successful implementation. This decision was taken as many of those variables are 

applied to write the results either in the files or in the screen. One has to remember that in the 

future, the program can (will) be applied for more complexes networks and, as Paramics is a 

terrible software regarding its debugging abilities, the only way to debugger the program is 

printing the values of the variables. 

After the definition of a whole group of variables, the assignment matrix (A,) and the link 

counts (the variables z,) are obtained. The values of those variables are found by the values of the 

origins, destinations and costs for each vehicle. Once the variables A, and z, are obtained, the 

application of the algorithm is a little bit straightforward, applying Eqs.(l) trough (5) of this 

report. Of course that before obtaining the multiplication (addition) of each equation, a new 

variable (matrix) having the correct dimensions has to be defined to store the result of the 

multiplication (addition). At the true, it can be said that the implementation is straightforward 

until Eq. (2), where there is the need to invert a matrix (i.e., the matrix that results from some 

manipulations). Before inverting this matrix, its determinant is obtained in the program and, if 

and only if the matrix is not singular (i.e., its determinant is different of zero), the inversion of the 

matrix is realized. Both functions to obtain the determinant and to invert the matrix were 

implemented applying the Gauss Jordan algorithm presented in the book Numerical Recipes in 

C(l994). 

Finally, after the new values of the time-dependent state variables x,(iJ) 0-D flows are 

found, the new O-D demand can be obtained. Then the rescale of the O-D matrix as already 

described in this report is realized and, the matrix is written in the O-D format as requested by the 

Paramics simulation package. 

Tro11ble,·hooting for the Program 

Even tough extra care was given to make the program bug free, it is impossible to say 

that there will be no problems in the future. Therefore, with the experience obtained during the 

implementation of the algorithm, some insights about where to look at possible problems are 

given in this section. 

The first issue is the problem of: if after running the algorithm, very strange results are 

obtained to the O-D table. These strange results can be either very large numbers or even negative 



numbers ( ! 1). If that happens, almost sure the reason is that the capacity of the memory of the 

program has been achieved, meaning that during the creation of the pointers actually, no pointer 

is being created anymore. Two possible solutions can be tried for this case. The first is to 

increase the value of the variable time_step_matrix (defined at the beginning of the program, just 

over the AP! set_up). This time_step_matrix controls the cost for each vehicle in seconds (i.e., a 

time step of IO means 10 seconds, of300 means 5 minutes, of600 means 10 minutes). Increasing 

the value of the variable time_step_matrix will decrease the dimension of the assignment matrix, 

but the trade off is that the results can decrease in accuracy'. The second possible solution is to 

decrease the value of the variable G_total_number_of_ vehicle_in_the_network. In the beginning 

of the program, the value of this variable is defined as about 2,500 vehicles, as this is the total 

number of vehicles that could be stored in our particular example. Therefore, if we decrease the 

value of G_total_number_of_ vehicle_in_the_network, a smaller number of variables will be 

created (such as the ones that store the origins and destinations of each vehicle) and more 

memory can be freed. But, once again, the reliability of the results will decrease, as a smaller 

sample of vehicles will then be used to estimate the real new 0-D table. 

Finally, inside the program, there are many portions of comments that were left to either 

help the user to print the values of specific variables to see if there are any problems with them. 

The comments can also be used to further understand which part of the algorithm implementation 

is being evaluated at that point. It is hoped that the comments here presented can be helpful for 

future users of the Program implementated. As it has already been said, extra care was given to 

make the program bug free, but in any software implementation problems can always come up 

when new testing or, networks or, cases are tried. 

5 The point here is that making time_step_value::.=600 (i.e., IO minutes, for instance) it means for example 
that all the vehicles that will take between O and 10 minutes to arrive at their destination, will have the same 
cost. Basically, there is greater aggregation of the data when the value oftime_step_value is increased. 




