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ABSTRACT OF THE DISSERTATION

Machine Intelligence for Chemistry: From Deep Learning Architectures to Open Data

By

Mohammadamin Tavakoli

Doctor of Philosophy in Computer Science

University of California, Irvine, 2023

Pierre Baldi, Chair

Achieving human-expert performance in predicting the outcomes of chemical reactions is a

major open challenge in AI and chemistry. A solution to this challenge would have significant

practical applications in areas ranging from drug design to atmospheric chemistry. However,

in order to address this challenge, many issues need to be overcome including the lack of

open data, the combinatorial and physical complexity of chemical reactions, and the need

for interpretable solutions that illuminate the underlying reaction mechanisms. We will

describe three projects aimed at addressing these challenges including the development and

deployment of public databases of chemical reaction steps, and the development and training

of deep graph neural network and transformer architectures to predict reaction outcomes in

interpretable ways.
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Chapter 1

Introduction

Attaining chemist-level performance in predicting the outcomes of chemical reactions remains

an unresolved challenge in computational chemistry. A solution to this challenge would have

applications in many areas of chemistry both in the laboratory, for instance in synthesis,

retrosynthesis, and drug design; and in nature, for instance: in biology and atmospheric

chemistry. Here we focus on the prediction of reactions at the level of mechanistic steps

using machine learning approaches.

Currently, three main classes of approaches are being developed to address reaction prediction

in general: (1) Quantum Mechanics (QM) simulations; (2) template-based predictions; and

(3) template-free predictions. These approaches are not mutually exclusive and can be

combined in different ways, as in [3].

Quantum Mechanics Simulations: Methods based on quantum mechanics and the sim-

ulation of chemical reactions at the atomic level provide the most accurate predictions of

reaction outcomes. However, these fine-grained simulations are computationally expensive

and may require human intervention [4, 5]. Quantum mechanics (QM) simulations are partic-

ularly sensitive and have operational limitations that restrict their applicability to a narrow
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range of chemical systems. Consequently, in current environments, QM simulations are not

suitable for making high-throughput predictions of reaction outcomes.

Template-based methods: These types of methods often require a set of pre-defined

chemistry rules that can be applied to a set of reactant molecules to predict chemical reaction

outcomes. Thus these methods are also called rule-based methods. These rules, which are

often referred to as ”chemical templates” can be extracted manually by human experts [6, 7]

or can be computationally inferred [8] from a data set of chemical reactions [9, 10, 11]. In

both cases, the templates are limited to either the knowledge of the human extractor or the

chemistry of the given data set. The rule-based system can produce rapid predictions and

can be used in “brewing” experiments where multiple reactants are iteratively reacted with

each other and their products [12, 13]. High-throughput template-based predictions can be

applied to retrosynthetic experiments using programs such as Synthia [14, 15]. Machine

learning methods have been used to help select templates [9, 16]. One important issue

is that there is no obvious gradient in the discrete space of symbolic learning rules and

thus efficient machine learning methods require finding a continuous embedding, leading

to template-free methods. Another issue often seen with template-based methods is that

they have limited generalization capabilities. The selection of general templates typically

disregards local interactions between atoms in a small neighborhood, while the selection

of specific templates may neglect the effects of reaction context, such as the presence of

particular reagents.

Template-free methods: In contrast, template-free methods can achieve broad general-

ization to a wide range of chemical reactions while offering fast predictions. These methods,

are purely based on machine learning predictive techniques and require large data sets for

training and development [17, 18, 19]. This is a significant issue by itself since there is no

comprehensive publicly available data set covering all, or even most, known chemical reac-

tions [20]. Nevertheless, various partial data sets have become available enabling at least
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a partial development of these methods. Different methods can be developed for different

representations of the reactions, which are rooted in the representation of the reactant and

product molecules. There are at least four distinct ways of representing molecules: labeled

graphs, text strings (e.g. SMILES strings leading to SMIRKS reaction representations), fin-

gerprints, and sets of atoms with their 3D coordinates). Here, as in most of the literature

we focus on machine learning methods based on graphs or text.

Graph-based methods represent each molecule as a graph with nodes associated with atoms,

and edges associated with bonds[21, 22, 23, 24]. A chemical reaction is described by the

graphs associated with the reactant molecules on one side, and the product molecules on

the other. These labeled graphs can be processed using some form of recursive, or graphi-

cal, neural networks using an inner or outer (convolutional) approach [25, 26, 27, 28, 29] .

In these methods, neural networks are used iteratively to pass information between graph

neighborhoods and compute vectorial representations that are increasingly more abstract

and encompassing. Such contextual representations can be exploited to generate graphs of

product molecules using different approaches. For instance, [30] leverages these represen-

tations to identify graph edits that lead to the product molecules, whereas [31] employs a

generative model to yield the 2D graph of the products.

Text-based methods typically utilize the simplified molecular-input line-entry system (SMILES)

and its extension to reactions (SMIRKS) [32]. Various kinds of neural network architectures,

ranging from recurrent/recursive to transformer architectures, can be used to process such

variable-length text strings, similarly to what is done for natural language processing (NLP)

problems [33, 34, 35]. Reaction prediction can be cast as a sentence-to-sentence or “trans-

lation problem” from the reactant sentence to the product sentence [36, 37]. Typically an

encoder module is used to encode the discrete string associated with the reactant molecules

into a continuous vector representation, and a decoder module is used to decode the con-

tinuous vector representation into the discrete string associated with the product molecules

3



[38, 35]. The encoding and decoding processes are implemented using deep recurrent neu-

ral network architectures that may include long short-term memory (LSTM) [39] units and

Transformers [40]. The decoder module can also leverage techniques such as beam search

and attention mechanisms to generate the most accurate SMILES string [35, 38].

There is no foundational advantage for any of these machine learning approaches over the

other ones, although preliminary evidence [38] together with the current success enjoyed by

large language models suggest that text-based methods may be particularly effective. This

is in spite of the facts that: (1 ) SMIRKS do not contain all the information needed to

accurately model molecules and reactions [41]; (2) the same reaction (resp. molecule) can

be represented by multiple SMIRKS (resp. SMILES), including those associated with any

permutation of the molecules within the reactants or within the products[42]. Finally, text-

based methods, as well as other machine learning methods, require large training sets, which

is a major challenge in reaction chemistry. Compensatory methods, such as regularization

and data augmentation, are being used but are often not enough.

The majority of recently created models, independently of the way they represent reactions,

are being designed and trained using the chemical transformation dataset derived from the

US Patent Office (USPTO) [43] and a few other minor datasets that were introduced in

several studies [28, 44, 45]. All these data sets have significant limitations, including: lack

of chemistry coverage, lack of precise and complete atom mapping, lack of balance between

reactants and products, and lack of elementary reaction step information. The USPTO

dataset of chemical reactions, for example, portrays chemical reactions restrictively as over-

all transformations, the majority of which result in a single primary product (and are thus

unbalanced). This dataset provides little information about the underlying mechanisms, crit-

ical intermediates, and side products. Additionally, it is challenging to extract information

about radical reactions, which appear to be underrepresented in this data set.

Utilizing this limited source of data to train data-driven models results in models that
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may be chemically limited or biased, predict unbalanced reactions, and lack information

about intermediate byproducts. Additionally, these models provide no interpretations of the

underlying chemistry that leads to the predicted products. Although there has been some

work (e.g. [35]) using machine learning interpretability methods to highlight the importance

of certain portions of the reactants, this does not provide any information on the mechanistic

interactions underlying the reactions. Lastly, due to the limited available training data, there

is no widely used reaction predictor for radical reactions. Radical reactions play a significant

role, for instance in synthetic pathway planning and biological and atmospheric chemistry,

and they often proceed through a complex series of chemical steps and highly branched

mechanistic pathways. Thus developing an accurate radical reaction predictor free of some

of the shortcomings mentioned above is important.

Broken	Down	Into	the	
Following	Steps:

Figure 1.1: The reaction at the top is an overall, unbalanced, transformation from the
USPTO data set. It can be broken down into four mechanistic steps with arrow-pushing
mechanisms. This provides chemical interpretability for each step, as well as for the overall
pathway while maintaining full balance at each step.

5



Chapter 2

RMechDB: A Public Database of

Elementary Radical Reaction Steps

2.1 Abstract

We introduce RMechDB, an open-access platform for aggregating, curating, and distribut-

ing reliable data about elementary radical reaction steps for computational radical reaction

modeling and prediction. RMechDB contains over 5,300 elementary radical reaction steps,

each with a single transition state at or around room temperature. These elementary step

reactions are manually-curated plausible arrow-pushing steps for organic radical reactions.

The steps were taken from a variety of sources. Over 2,000 mechanistic steps were ex-

tracted from textbooks and or constructed from research publications. Another 3,000 were

taken from gas-phase atmospheric reactions of isoprene and other organic molecules on the

MCM (Master Chemical Mechanism) website. Reactions are encoded in SMIRKS format

with accurate atom mapping and annotations for arrow-pushing mechanisms. At its core,

RMechDB consists of a database schema with an online interactive search interface and a
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request portal for downloading the raw form of elementary step reactions with their meta-

data. It also offers an interface for submitting new reactions to RMechDB and expanding

the data set through community contributions. Although there are several applications for

RMechDB, it is primarily designed as a central platform of radical elementary steps with

a unified and structured representation. We believe that this open access to this data and

platform enables the extension of data-driven models for chemical reaction predictions and

other chemoinformatics predictive tasks.

2.2 Introduction

A free radical is a chemical compound (e.g. atom, molecule) with at least one half-occupied

orbital. The presence of the half-occupied orbitals makes a radical compound highly reactive.

Because of this high reactivity, free radicals have the potential to both serve as powerful

chemical tools and be extremely harmful contaminants. Chemical reactions involving a free

radical are radical reactions that are an essential part of synthetic, biochemical, atmospheric,

and plasma chemistry [46, 47, 48]. For instance, the climate crisis has dramatically altered

fire activity worldwide. Wildland fires are increasing in frequency, duration, intensity, and

size. The chemistry of flames is dominated by radical reactions and the chemical composition

of fire smoke changes during atmospheric transport. This so-called “aging” of smoke is poorly

understood but known to be largely driven by free radical processes [49, 50, 46]. As another

example from the pharmaceutical industry, the composition of drug formulations changes

gradually upon storage. As a result, all drug companies are required to study those changes

through forced degradation studies under several conditions, including photochemical and

oxidative conditions, which mostly involve radical reactions [51, 52]. Thus, it is of great

importance to study the chemistry of radical reactions and their outcomes.

During the past few years, data-driven methods such as deep learning have provided new
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powerful tools for addressing chemoinformatics problems [53, 23, 54, 42, 23, 24, 4, 55]. Due

to important applications ranging from automated drug discovery to computer-aided syn-

thetic chemistry, there has been an increasing interest in developing deep learning models

to predict the outcome of chemical reactions [56, 30, 35, 57, 58]. While the deep learning

models have been evolving in sophistication and complexity, a major stumbling block has

remained the lack of comprehensive, standard, and public, reaction data [20]. The majority

of recently developed models are being trained using the data set of chemical transforma-

tions from the US Patent office [59], as well as a few other smaller data sets [54, 44, 45].

These data sets are spread across different platforms without unified and structured rep-

resentations and metadata. Additionally, they suffer from significant limitations in terms

of overall size, chemistry coverage, and balance, and lack of meta-data, atom mapping, a

reactant or product balance, and elementary reaction step information. For instance, the

USPTO data set of chemical reactions restrictively represents chemical reactions in the form

of overall transformations, most of which lead to one single major product. It contains little

information about underlying mechanisms and about key intermediates and side products.

Furthermore, radical reactions are hard to extract and appear to be underrepresented. On

the other hand, radical reactions often proceed through a complex series of chemical steps

and highly branched mechanistic pathways. Developing an accurate machine learning model

for predictive tasks on radical reactions (e.g. predicting the outcome of radical reactions)

requires a training data set of purely radical reactions with information about the mecha-

nistic pathways and intermediate products. To overcome the above limitations, and provide

a source of data for radical reactions with their unique natural characteristics, we developed

RMechDB as a central platform for aggregating, curating, and distributing elementary step

radical reactions. RMechDB is designed as an extendable database schema, capable of host-

ing huge sources of radical reactions in the form of elementary steps. RMechDB is publicly

available in the form of an online web server with interactive interfaces where users can

search, download, and upload elementary step radical reactions. The initial version of the
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RMechDB data set consists of over 5300 manually curated radical reactions and is accessible

through the DeepRXN website at https://deeprxn.ics.uci.edu/rmechdb.

2.3 Mechanistic Pathways vs Overall Transformations

The term reaction can be ambiguous and is most commonly used to describe either: 1) a

chemical transformation with reactants, products, chemical conditions, and yields; or 2) a

single step in an arrow-pushing mechanistic pathway. Therefore, in this work, instead of

using the vague term “reaction”, we use the more specific terms of transformation and ele-

mentary step to refer to the definitions above respectively. Every mechanistic pathway can

be decomposed into a series of discrete elementary steps, each with a single transition state

[60, 61]. In several aspects, it is advantageous to show every step in a mechanistic pathway.

First, when all the steps in a pathway are elementary, there is no chance of missing key

intermediates that give rise to competing pathways during chemical transformation. This

becomes extremely important with the presence of free radicals as radical transformations

often proceed through a complex series of chemical steps and highly branched mechanis-

tic pathways For example, when the transformation of ISOPAO to C524O2 is depicted as

a one-step process, it misses the potential for the allyl radical intermediate to form an

isomeric peroxy radical and downstream products (Figure 2.1). The second advantage to

mechanistic pathways based on elementary reaction steps is that they can be described using

curved half-arrows that correspond to the interaction of singly occupied molecular orbitals

with a HOMO and/or LUMO [62]. The curly arrows, also known as electron flow spec-

ifications or arrow-pushing mechanisms, are depicting the interaction between molecular

orbitals. This representation of elementary steps is highly informative and, when elementary

steps are chained together, an interpretation of the corresponding transformation can readily

be derived. This becomes even more important specifically for deep learning approaches to
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reaction product prediction for at least three reasons. First, the prediction of mechanistic

pathways leads to predictions that are interpretable. Interpretability is an essential consid-

eration in machine learning, especially for so-called “black-box” approaches such as deep

learning [63, 64]. Second, when machine learning models operate at the level of elementary

steps, the balance between reactants and products is always preserved together with the

underlying atom mapping. Maintaining the balance through a chain of reactions can be

extremely important in the study of retrosynthesis pathways. And third, by considering the

pathways, all intermediary and final products can be accounted for, which is an important

consideration in synthetic chemistry applications.

Given the crucial advantages of representing chemical reactions in the form of mechanistic

pathways, it is highly beneficial to synthesize a data set of elementary radical steps. Such

data sets can facilitate the training and development of deep learning models that are able

to automate complex predictive tasks in radical chemistry.

HO

HO

HO

OH

HO

HO

OO

HO

HO
OO

ISOPAO C524O2
1 x 106

OO
many

products

unidenti�ed
products?

allyl radical

isomer of
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Products
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allyl	radical	

ISOPAO C524O2
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Figure 2.1: Missing steps and intermediates prevent identification of products. The formation
of an allyl radical was not depicted for the transformation of ISOPAO to C524O2 in the
MCM. It is not clear why the missing allyl radical intermediate would not also generate an
isomer of C524O2 and account for more downstream products.
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2.4 Approaches to Chemical Reaction Modeling and

Predictions

An open-source, publicly available database of pedagogical elementary reaction steps will

facilitate training and development of tools for automating chemoinformatics tasks such as

the prediction of reaction mechanisms. There are two common approaches to the prediction

of step-wise mechanisms of organic transformations using databases of elementary reaction

steps. The quantitative approach uses a database of kinetic and thermodynamic parameters

to accurately predict the products of the reactions and the pathways by which they form.

This approach, as it is used in [65, 66] is not restricted to elementary reaction mechanisms,

but it does require kinetic parameters. The approach is best applied to cases where the prod-

uct structures are known but the abundances are not known. The qualitative approach such

as [67, 54, 56] is to use a database of diverse plausible (fast at or below 100 °C) mechanistic

steps, to match chemical structures (and mechanistic pathways) to mysterious, unknown,

or not structurally characterized analytes in readily available spectra or chromatograms.

This approach is best applied when the abundance is known, but the chemical structure

is unknown. The chemical structure can provide powerful insight into biological effects,

phase partitioning, and reactivity under changing reaction conditions. Public databases of

mechanistic steps will empower the use of machine learning to create tools that assign chem-

ical structures and mechanisms to products of environmental, synthetic, and environmental

transformations of organic compounds.

2.5 Existing Data Sets of Elementary Reaction Steps

There are several large commercial databases of organic transformations such as REAXYS,

SciFinder, and very few open-access databases such as the Open Reaction Database (ORD)
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[68]. Those databases are composed of recipes that describe reactants, conditions, yields, and

a list of products that rarely sums to 100%. The proprietary REAXYS database currently

has over 57 million transformations. The SciFinder Scholar database has over 126 million

transformations, which includes sequential reactions. Organic transformations were mined

from US Patents from 1976-2016 and are publicly available. The growing ORD already

gathers about 2 million chemical transformations from other available sources[68]. These

databases of chemical transformations allow synthetic organic chemists or systems trained

with machine learning, [69] to plan out synthetic routes composed of sequential laboratory

experiments, but the data don’t reveal the underlying mechanisms of any individual trans-

formations. Databases of transformations are not new, and neither is the application of

AI to the planning of synthetic routes. Why is there no database of elementary arrow-

pushing reaction steps? Sadly, when curved arrows were first introduced in 1922,[70][71]

the connection between curved arrows, frontier orbitals, and transition states was not rec-

ognized, so there was no incentive to apply them solely to elementary mechanistic steps.

As a result, curved arrow mechanisms and half-arrow radical mechanisms have been used

inconsistently, throughout the organic chemistry literature and are rendered in graphical

forms that are not easily recoverable through data mining. Reaction Mechanism Genera-

tor (RMG) supports the only existing database of elementary mechanistic reaction steps.

RMG predicts mechanistic pathways through a quantitative approach, using thermochem-

ical and kinetic parameters to model species concentrations and rates for each step[65].

RMG is supported by a searchable database, consisting of 98 families of reaction types[65].

Almost half (40/98) of the reaction families in the current RMG database involve radi-

cals. About a fourth of the reaction families supported by RMG do not correspond to

elementary reaction steps at or around room temperature (e.g., unimolecular keto-enol tau-

tomerization). Most of the mechanistic steps and kinetic data were developed to support

high-temperature processes up to 2000 K and many of the steps would be implausibly slow

at room temperature. For example, the kinetic parameters for homolysis of a CH3 group
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from isoprene would proceed with a half-life of over 1042 years. Many of the steps that pro-

ceed through a single transition state at high temperatures (e.g., over 1500 K) would involve

more than one mechanistic step at room temperature.[65] For example, at room tempera-

ture, the addition of HO• to the double bond of alpha-pinene should not be concerned with

ring opening. The requirement for accurate thermochemical and kinetic creates a major hur-

dle for applications involving complex organic structures. Additionally, RMG development

has so far been focused on processes involving simple reactants with just a single organic

functional group and up to one heteroatom: CH4, CH3CH3, CH3CH2CH3, exo-tetrahydro

dicyclopentadiene, C10H16, CH3OCH3, CH3(CH2)3OH, CH3(CH2)5CH3, ((CH3)2CH)2CO,

CH=CHCH=CHCH2CH3, HCC(CH2)4CCH, C6H5(CH2)5CH3, (CH3)2CHCH2OH, CH3(CH2)4CH3,

H2NCH2CH3, and ((CH3)3C)2S, C6H5OH. A few other examples of data sources containing

elementary steps are NIST Chemical Kinetics Database [72], Mechanism and Catalytic Site

Atlas (M-CSA) [73], and Master Chemical Mechanism [66, 74, 75, 76, 77, 78, 79], all of which

suffer from unorganized, unstructured form of elementary steps with extremely limited online

support.

2.6 RMechDB: Underlying Data Set

2.6.1 A Data Set of PLAUSIBLE Radical Elementary Steps

Organic transformations in databases such as REAXYS, SciFinder, and ORD are easily

validated because published products are rigorously characterized using convenient spectro-

scopic techniques such as mass spectrometry, NMR, and IR. In contrast, mechanistic steps

with one transition state are not easily validated. Experimental proof of a mechanistic step

usually requires electronic structure calculations and/or laborious experimental tools such

as chemical kinetics, isotopic labeling, crossover experiments, etc. It is often quoted that one
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Figure 2.2: Seven different categories of mechanistic steps involving radicals.

can never prove a mechanism, but only dis-prove the plausible alternatives[80]. We set out

to construct a data set of plausible elementary reaction steps, which are useful to chemists

in constructing mechanistic pathways and predicting byproducts of organic reactions. Plau-

sibility is subjective. For RMechDB, we define an elementary mechanistic step as plausible

if a half-life of a day or less is expected at room temperature under the conditions cited. If

more than one pathway has been postulated in the literature, it is expedient to include steps

from both potential pathways in the data set until the discrepancy is resolved. That way,

any pathway proposed using the data will reflect the ambiguity in the body of literature.

In theory, the plausibility of any elementary reaction step can ultimately be validated using

electronic structure calculations.

2.6.2 Composition of the RMechDB Data Set

The initial data set in RMechDB consists of over 5,300 pedagogically chosen elementary

radical mechanistic steps based on published transformations. The majority of the pub-
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Figure 2.3: The distribution of the different classes of reaction in the current version of the
RMechDB data set.

lished mechanistic steps had to be further decomposed into elementary reaction steps with

individual transition states. Over 880 steps were taken from eight introductory[81, 82, 83,

84, 85, 86, 87, 88] organic chemistry textbooks, advanced organic chemistry books[89][90],

and an atmospheric chemistry textbook[91]. Over 800 reactions were taken from the pri-

mary research literature including mechanisms for common synthetic transformations (atom

transfer, tin chemistry, radical cyclizations), autoxidation, atmospheric reactions, and ex-

plosives. The literature mechanisms also included steps leading to 14 common industrial

polymers: ethylene, propylene, butadiene, chloroprene, isoprene, acrylamide, acrylic acid,

methyl acrylate, ethyl acrylate, butyl acrylate, methyl methacrylate, acrylonitrile, styrene,

p-methylstyrene, vinyl chloride, vinyl fluoride, tetrafluoroethylene, chlorotrifluoroethylene,

vinylidene fluoride, vinyl acetate, N-vinylpyrrolidinone. The conditions for polymerization,

often including more than one type of initiator, were taken from the research literature and

are not necessarily the proprietary initiators and conditions used for industrial synthesis.

The data from textbooks and research literature are considered the core of the RMechDB

database.
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The core data set has been augmented with a large number of mechanistic steps related

to the atmospheric oxidation of organic molecules. We refer to this dataset as specific

steps. A large number (847) of specific steps were taken from a comprehensive review of

atmospheric isoprene oxidation that traced the fate of each individual carbon atom detailing

the highly branched pathways from reaction with HO•, O2, NO, Cl• and other species[92].

For simplicity, we focus on the daytime atmospheric chemistry of isoprene at atmospherically

relevant conditions (average atmospheric T=278 K), neglecting elementary steps involving

NO3, which is a dominant nighttime oxidant. Most of the elementary steps were inferred

from composite transformations. About 3,000 mechanistic steps were coded from the first

two stages of the major oxidation pathways in the Master Chemical Mechanism (MCM)[66].

The MCM contains mechanisms for atmospheric oxidation of 143 volatile organic compounds

initiated by both HO• and NO3, including reactions of isoprene. Steps more than ten times

slower than the fastest process (with the same reactants) were also excluded. Steps second-

order in reactive intermediates were excluded on the assumption that they would not slow

under typical conditions. For both the Wennberg and MCM steps, transformations initiated

by pericyclic [3+2] cycloaddition of O3 with alkenes were excluded from this initial data set,

but depicting the cycloaddition as a diradical process could be an expedient[93]. Photolysis

steps were also excluded. Any steps left out of this initial data set can be introduced in the

future.

The individual mechanistic steps are also labeled using two distinct classification schemes:

(1) Three-class classification, where each elementary step falls into one of the three possible

phases of a radical chain reaction: initiation, propagation, and termination; and (2) The

more detailed seven-class classification, where an elementary step reaction falls into one of

seven different categories: homolysis, recombination, abstraction, addition to pi bonds, retro-

addition to pi bonds, pi (e.g., allylic) and alpha lone pair resonance (e.g., ketyls). All seven

classes are depicted in Figure 2.2. In RMechDB, resonance is represented as a mechanistic

step, even though there is no transition state. Homolysis and recombination are mechanistic
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reverses of each other, like addition and retro-addition. Alpha resonance is represented

with a single curved half-arrow, but it is acknowledged that the half-arrow falsely implies

the formation of a partial double bond. The steps in radical chain mechanisms are often

classified as initiation, propagation, or termination steps, but many transformations involving

radicals do not involve chain mechanisms. Homolysis is a typical chain initiation step. Atom

abstraction, addition, retro-addition, and resonance are typical chain propagation steps.

Recombination is a typical chain termination step. Within the RMechDB data set, we try

to emulate the natural distribution of radical reactions based on the classifications described

above. Figure 2.3 represents the distribution of different classes of radical reactions in the

RMechDb data set.

2.6.3 Structure of the Data

The initial version of RMechDB contains over 5300 pedagogically chosen elementary radical

step reactions based on published transformations. Steps are categorized into two major

types: (1) Core elementary steps, extracted and curated from textbooks and the scientific

literature, capturing generic radical mechanisms; and (2) Specific elementary steps, curated

from multiple sources, capturing mechanisms associated with atmospheric chemistry. Given

RMechDB

Core	
(literature)

Specific
(atmospheric)

Train Test Train Test

Figure 2.4: The general format of the RMechDB data set.
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that one of the main goals for RMechDB is to provide a source of data for machine learning

models, each type is carefully split into a canonical train and test data (Figure 2.4).

While machine-learning users can of course split the data in any way they want, having a

canonical train/test data split facilitates standardized training and evaluation workflows, as

well as the comparison of performance across different research groups. This canonical split

is manually curated to ensure balance and coverage consistency between the train and test

data. Specifically, we use two criteria: balanced categorical distribution and consis-

tent chemistry coverage. To maintain the balance in categorical distribution, we ensure

that the distribution of the seven categories described above (Figure 2.2) is approximately

the same in the train and test data. To maintain consistent chemistry coverage, for any

mechanistic steps in the train data, we ensure that there is at least one mechanistic step

with similar reacting functional groups in the test data. As a result, using this presented

train and test split leads to a more interpretable evaluation of the generalization capabilities

of predictive models.

Each entry of RMechDB consists of elementary reaction steps in the SMIRKS format in-

cluding atom mapping for atoms that are a part of the transformation. Each SMIRKS is

associated with its electron flow specification representing the atom indices on the curved

half-arrows (Figure 2.5). Additionally, each elementary step has been decorated with the

following properties: (1) The initial condition of the reaction which falls into the room tem-

perature (298 K), heat, or light conditions; (2) The reaction class I which is the type of the

radical elementary step; (3) The reaction class II which is the type of the radical elementary

step based on a more fine-grained categorization; and (4) The scholarly source of the elemen-

tary step. The addition of more important properties such as phase, solvent, wavelength,

and enthalpy is left for future work.
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Figure 2.5: RMechDB format for depicting reactions and arrow pushing mechanisms. The
atom participating in the reaction are mapped on both sides of the reaction.

2.7 RMechDB: The Core Database

2.7.1 Standard Elementary Step Model

In addition to serving as a central source of reaction data for machine learning models,

RMechDB is designed to be extendable by community contribution. To maintain that, it is

crucial to use a standard and unified representation of elementary step reactions. This stan-

dard representation would enable consistent data sharing, model reproduction, and scalable

expansion. We model the elementary step reaction using the reaction model introduced in

[67, 61]. In this model– so-called “elementary step model”, the transition state is modeled

as the movement of one single electron from one half-occupied molecular orbital (MO) to

another. We use the atom labels in the arrow code of the elementary step to track the

movement of the electron. Lone pairs or π-bonds adjacent to π-bond MOs can be chained

to allow longer-range resonance rearrangement. In this model, each MO is associated with

its main atom. As a result, each radical elementary step has two reactive atoms and two

reactive MOs. We use the elementary step model to construct and populate the database

schema described in the next section.
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2.7.2 Database Schema

The database is implemented using the PostgreSQL [94] database management system [95],

to store, query, and retrieve reaction instances both efficiently and safely. We use Open-

Eye Scientific Software [96] toolkits OEChem [97], OEDepict [98], and GraphSim [99] for

chemoinformatics processing and depiction. In addition, we use Chemaxon Marvin [100]

for displaying and characterizing chemical structures, substructures, and steps with their

corresponding arrow-pushing mechanisms.

The RMechDB database schema comprises three fundamental models: (1) Reaction, (2)

Molecule, and (3) Atom as shown in Figure 2.6. The inter- and intra-integration of these

three models allow for fast and efficient reaction search and retrieval. As the naming suggests,

each elementary step is stored as an instance of the Reaction model which comes with several

descriptive fields. These fields are designed to uniquely represent an elementary step reaction

and all the available metadata associated with it. Here we list the main fields of the Reaction

model.

1. Reaction ID: Each reaction is associated with a unique ID number.

2. Canonicalized atom mapped SMILES of the reactants: The SMILES string

of the reactants molecules, with integer labels for atoms that are participating in the

reaction. We use a labeling convention where the labels of the participating atoms on

the nucleophile part start from 10 and increment by one per atom and the labels of

the participating atoms on the electrophile part start from 20 and increment by one

per atom.

3. Canonicalized SMILES of the products: The unique SMILES representation of

the product molecules generated from the reactive reactants.

4. Canonicalized arrow codes: The standard codes for arrow pushing mechanisms
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contain the integer labels of the participating atoms on the reactants side. The standard

arrow codes begin from the integer label (starting at 10) on the nucleophilic group.

5. Spectator molecules: The unique SMILES representation of the molecules that are

present in the reaction but not participating in the electron transfer.

6. Reactive atom I: The SMILES string of the molecule containing the first reactive

atom (based on the RMechDB orbital model) whose label is 1.

7. Reactive atom II: The SMILES string of the molecule containing the second reactive

atom whose label is 1.

8. Step type: Core or specific step (Figure 2.4).

9. Initial heat or energy: The initial condition of the step which can be independent

of external energy – represented as blank, “heat”, or “light”.

10. Step classification I: The class of the step according to the 3-class classification into

initiation, propagation, and termination.

11. Step classification II: The class of the step according to the 7-class classification

into homolysis, recombination, addition, retro-addition, abstraction, alpha- resonance,

and pi-resonance shown in Figure 2.2.

Given the fields above associated with the Reaction model, an instance of the Reaction

model in RMechDB can be uniquely retrieved from the database using either the Reaction

ID or the combined properties 2-5 as the key.

The Molecule model has three fields corresponding to the unique molecule ID, canonicalized

SMILES string of the molecule, and the OEChem MolBase object [97]. An instance of

the Molecule model has a many-to-many relation with the reactant molecules, product

molecules, and spectator molecules fields of the Reaction model.
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The Atom model has three fields corresponding to the unique ID, canonicalized atom mapped

SMILES string of the parent molecule, and the OEChem AtomBase object [97]. An instance

of the Atom model has a many-to-many relation with the reactive atom I and reactive atom

II fields of the Reaction model.

The schema with the fields described above is designed not only to provide efficient storage

and retrieval but also to enable the automated population of the fields for new steps that

are contributed to RMechDB by the community as described in the section on Uploading

New Data.

2.8 RMechDB: Web Server

The web server of the RMechDB includes three interfaces for: (1) Searching the data; (2)

Downloading the data; and (3) Uploading new data.

2.8.1 Searching the Data

RMechDB provides an interactive search interface available at https://deeprxn.ics.uci.

edu/rmechdb/rsearch where users can search through the database using a variety of meth-

ods. At the highest level, the interface allows for reaction search and compound search.

Reaction Search

1. Exact search: Using the exact search method, the user inputs the query in the form

of the SMIRKS of an elementary step containing reactants and products (no arrow

code needed). Then the system finds and displays all the elementary steps with the

same reactants and products as in the query reaction but with additional molecules
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involved as reagents or spectators.

2. Search by reactants: Using the search by reactant (or by reactants), the user inputs

the query in the form of a set of molecules, separated by ”.”. Upon hitting the search

button, the system finds and displays all the elementary steps with reactants containing

the query molecules. This search is useful when the user does not know the exact

reaction and how molecular orbitals might react.

3. Search by products: Similar to the search by reactants, using the search by-products

(or by-products), the user inputs the query in the form of a set of molecules, separated

by ”.”. Upon hitting the search button, the system finds and displays all the elementary

steps with products containing the query molecules.

4. Similarity search: Using the similarity search method, the user again inputs the

query in the form of the SMIRKS of an elementary step containing reactants and

products (no arrow code needed). Then the user specifies a similarity metric and the

number of similar reactions (N) to be retrieved under this query. Upon hitting the

search button, N elementary steps sorted from the most similar to the least similar to

the input query are displayed.

The current version of RMechDB is equipped with the following similarity metrics computed

on various representations of the elementary steps:

1. The Tanimoto, dice, and cosine distance between the binary Extended Connectivity

Fingerprints (ECFP) of the elementary steps.

2. The Euclidean distance between the embedding of the elementary steps derived using

a pretrained transformer architecture, trained on the SMIRKS of the USPTO data set

[35, 59].
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Figure 2.6: The three fundamental models of the RMechDB database and how they integrate.
The yellow arrows show the many-to-many relations.

3. The Euclidean distance between the embedding of the elementary steps derived using

the pretrained RxnHypergraph method [42].

Compound Search

In addition to search capabilities based on elementary steps, RMechDB provides search

capabilities based on smaller chemical entities as follows:

1. Molecule search: In this search, the user inputs the SMILES string of the desired

molecule. After testing the validity of the input SMILES, RMechDB displays those

elementary steps in the database that contains the desired molecule in the reactant or

product side of the elementary step.
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2. Reactive atom (molecular orbital) search: In this search, the user inputs the

atom-mapped SMILES string of the molecule where the reactive atom is labeled using

an integer between 1 and 9, while the other atoms are not labeled. After testing

the validity of the input SMILES with the labeled atom, RMechDB displays all the

elementary steps in the database where the labeled atom is acting as one of the two

main reactive atoms in the elementary step.

3. Substructure search: In this search, the user inputs the SMARTS of a chemically

valid substructure. RMechDB displays all the elementary steps in the database with

molecule(s) containing the input substructure. The molecule that contains the input

substructure can be in the reactant or product side of the elementary step.

In addition, the results of each search can also be filtered using the following properties: (1)

the type of the elementary steps (core or atmospheric); and (2) the category of the elementary

step based on either of the two categorization schemes described in the Composition of the

RMechDB Data Section.

The result of each search will be displayed as a table containing the depiction of the filtered

reactions along with their reactive atom-mapped SMIRKS, arrow codes, masses of the prod-

ucts, and the initial conditions. The search query inserted by the users will also be displayed

in a separate box.

2.8.2 Downloading the Data

The data set of the chemical reactions in RMechDB is available for download at https:

//deeprxn.ics.uci.edu/rmechdb/download. The data set is licensed under the Creative

Commons Attribution-NonCommercial-NoDerivs (CC-BY-NC-ND) license, which limits its

free public usage to non-commercial purposes. Under this license, the users are not allowed
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to modify and distribute the data set or to distribute the original data set without referencing

the original source. After submitting basic information (name, email, and institution) and

accepting the license terms, users receive an email containing a comma-separated value

(CSV) file containing all the data and metadata.

2.8.3 Uploading New Data

While we continue to insert new data in RMechDB, we invite the community to contribute

new radical elementary steps. Uploading new data can be done at: https://deeprxn.ics.

uci.edu/rmechdb/upload.

Contributing users must fill out two fields: (1) the SMIRKS of the elementary step; and (2)

the corresponding electron flow specification (codes for arrow pushing) as shown in Figure

2.5. There are also two optional fields where the user can provide information about the

source of the elementary step (e.g. the title of a textbook, or a publication) and provide an

optional note (e.g. the necessity of initial energy). After uploading the elementary step, it

will be checked for validity, duplication, and plausibility (Figure 2.7).

Validity Check

A submitted elementary step is considered to be valid if it satisfies the following three criteria:

1. The SMILES string of all the molecules on both sides of the submitted elementary

step must be correct and convertible to graphs representing valid molecules. We

use the Openeye Scientific Software [96] toolkit OEChem [97] to convert the input

SMILES/SMARTS strings into molecular graphs.

2. The annotations for the arrow-pushing mechanisms must be correct. This implies
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Figure 2.7: Schematic depiction of how new data contributed to RMechDB and goes through
different checking stages.

that the reacting atoms on the reactant side of the elementary step must be labeled

with distinct integers. These integers form the basis for the arrow-pushing mechanisms

associated with electron transfers. The arrow codes must be consistent with the integers

used to label the reacting atoms. An example of a valid atom mapping and arrow codes

is shown in Figure 2.5.

3. The entered SMIRKS and arrow codes are then used to extract the interacting orbitals.

We used our elementary step model described in Section 2.7 to create the elementary

step object. Using this object, we extract the interacting molecular orbitals and their

corresponding atoms. If the input SMIRKS and arrow codes fail to create the ele-

mentary step object, the input is considered invalid. This failure usually implies a

mismatch between the labeled atoms and the corresponding arrow codes.

Duplication Check

In this step, we check that the valid uploaded elementary step is not equivalent to any

elementary step already included in the RMechDB data set. We consider two steps to be

equivalent if they have the same:
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1. Canonicalized SMILES string of the reacting molecules.

2. Canonicalized SMILES string of the product molecules.

3. Canonicalized SMILES string of the spectator molecules.

4. Conventional representation of the codes for the arrow pushing mechanism. The labels

of the participating atoms on the nucleophilic component start from 10 with incre-

ments of one per atom, and the labels of the participating atoms on the electrophilic

component start from 20 with increments of one per atom. It is important to mention

that the user can use any integers to label the participating atoms. The conventional

arrow codes will be automatically generated by RMechDB.

Once an elementary step is uploaded, RMechDB performs the validity and duplication tests

automatically. In case of failure of either test, an informative error message is displayed with

details about the corresponding errors.

Plausibility Check

Once the submitted elementary step passes both tests, it is further manually reviewed by

the RMechDB curators for overall quality and plausibility, before being imported into the

RMechDB.

2.9 Conclusion

The main obstacle to the large-scale application of AI methods to chemical reactions is the

lack of data [20]. Some efforts have begun to try to address this fundamental bottleneck

at the level of chemical transformations [68, 59]. Here we have presented a complementary
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effort aimed at building an open platform and database, RMechDB, for elementary steps in

radical reactions. A parallel effort is underway to cover also polar reactions.

Databases of elementary steps introduce a new perspective and new opportunities for computer-

aided reaction prediction and modeling. In particular, when properly deployed, they should

facilitate addressing the central problems of explainability and causality found in many ap-

plications of AI in chemistry and other domains. The ability to decompose a transformation

into a sequence of elementary steps is one way to understand how and why it occurs.

The RMechDB platform is designed to facilitate training deep learning and other AI models

in data-driven workflows using its tabular data, with no need for additional pre-processing

steps. While RMechDB is designed primarily to facilitate the training and evaluation of

data-driven models for predicting all the potential outcomes of radical reactions, it can be

used also for other tasks, such as reagent versus reactant classification, initial condition

prediction, and reaction classification.

RMechDB is intended to be a live platform for contributing, aggregating, curating, and

distributing data in the form of elementary radical reaction steps to accelerate research in

chemoinformatics and reaction modeling. It provides a unified model that ought to facili-

tate data sharing, model building, dissemination, and publications. Future updates will be

reported through the RMechDB website at https://deeprxn.ics.uci.edu/rmechdb. We

encourage the community to explore and use the RMechDB data and functionalities and

contribute to its expansion.

2.10 Data and Software Availability

RMechDB website is accessible at https://deeprxn.ics.uci.edu/rmechdb. The RMechDB

data set can be downloaded through the download interface at https://deeprxn.ics.uci.
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edu/rmechdb/download. Documentation on how to use the RMechDB interfaces is also

provided at https://deeprxn.ics.uci.edu/rmechdb/howtouse.
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Chapter 3

Radical Predictor: A Deep Learning

System for Interpretable Radical

Reaction Prediction

3.1 abstract

Deep learning-based reaction predictors have undergone significant architectural evolution.

However, their reliance on reactions from the US Patent Office results in a lack of inter-

pretable predictions and limited generalizability to other chemistry domains, such as radical

and atmospheric chemistry. To address these challenges, we introduce a new reaction predic-

tor system, RMechRP, that leverages contrastive learning in conjunction with mechanistic

pathways, the most interpretable representation of chemical reactions. Specifically designed

for radical reactions, RMechRP provides different levels of interpretation of chemical re-

actions. We develop and train multiple deep-learning models using RMechDB, a public

database of radical reactions, to establish the first benchmark for predicting radical reac-
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tions. Our results demonstrate the effectiveness of RMechRP in providing accurate and

interpretable predictions of radical reactions, and its potential for various applications in

atmospheric chemistry.

3.2 Introduction

Attaining chemist-level performance in predicting the outcomes of chemical reactions re-

mains an unresolved challenge in computational chemistry. A solution to this challenge

would have applications in many areas of chemistry both in the laboratory, for instance in

synthesis, retrosynthesis, and drug design; and in nature, for instance: in biology and atmo-

spheric chemistry. Here we focus on the prediction of an important class of reactions–radical

reactions–at the level of mechanistic steps using machine learning approaches.

Currently, three main classes of approaches are being developed to address reaction prediction

in general: (1) Quantum Mechanics (QM) simulations; (2) template-based predictions; and

(3) template-free predictions. These approaches are not mutually exclusive and can be

combined in different ways, as in [3].

Quantum Mechanics Simulations: Methods based on quantum mechanics and the sim-

ulation of chemical reactions at the atomic level provide the most accurate predictions of

reaction outcomes. However, these fine-grained simulations are computationally expensive

and may require human intervention [4, 5]. Quantum mechanics (QM) simulations are partic-

ularly sensitive and have operational limitations that restrict their applicability to a narrow

range of chemical systems. Consequently, in current environments, QM simulations are not

suitable for making high-throughput predictions of reaction outcomes.

Template-based methods: These types of methods often require a set of pre-defined

chemistry rules that can be applied to a set of reactant molecules to predict chemical reaction
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outcomes. Thus these methods are also called rule-based methods. These rules, which are

often referred to as ”chemical templates” can be extracted manually by human experts [6, 7]

or can be computationally inferred [8] from a data set of chemical reactions [9, 10, 11]. In

both cases, the templates are limited to either the knowledge of the human extractor or

the chemistry of the given data set. Rule-based systems can produce rapid predictions and

can be used in “brewing” experiments where multiple reactants are iteratively reacted with

each other and their products [12, 13]. High-throughput template-based predictions can be

applied to retrosynthetic experiments using programs such as Synthia [14, 15]. Machine

learning methods have been used to help select templates [9, 16]. One important issue

is that there is no obvious gradient in the discrete space of symbolic learning rules and

thus efficient machine learning methods require finding a continuous embedding, leading

to template-free methods. Another issue often seen with template-based methods is that

they have limited generalization capabilities. The selection of general templates typically

disregards local interactions between atoms in a small neighborhood, while the selection

of specific templates may neglect the effects of reaction context, such as the presence of

particular reagents.

Template-free methods: In contrast, template-free methods can achieve broad general-

ization to a wide range of chemical reactions while offering fast predictions. These methods,

are purely based on machine learning predictive techniques and require large data sets for

training and development [17, 18, 19]. This is a significant issue by itself since there is no

comprehensive publicly available data set covering all, or even most, known chemical reac-

tions [20]. Nevertheless, various partial data sets have become available enabling at least

a partial development of these methods. Different methods can be developed for different

representations of the reactions, which are rooted in the representation of the reactant and

product molecules. There are at least four distinct ways of representing molecules: labeled

graphs, text strings (e.g. SMILES strings leading to SMIRKS reaction representations), fin-

gerprints, and sets of atoms with their 3D coordinates). Here, as in most of the literature
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we focus on machine learning methods based on graphs or text.

Graph-based methods represent each molecule as a graph with nodes associated with atoms,

and edges associated with bonds[21, 22, 23, 24]. A chemical reaction is described by the

graphs associated with the reactant molecules on one side, and the product molecules on

the other. These labeled graphs can be processed using some form of recursive, or graphi-

cal, neural networks using an inner or outer (convolutional) approach [25, 26, 27, 28, 29] .

In these methods, neural networks are used iteratively to pass information between graph

neighborhoods and compute vectorial representations that are increasingly more abstract

and encompassing. Such contextual representations can be exploited to generate graphs of

product molecules using different approaches. For instance, [30] leverages these represen-

tations to identify graph edits that lead to the product molecules, whereas [31] employs a

generative model to yield the 2D graph of the products.

Text-based methods typically utilize the simplified molecular-input line-entry system (SMILES)

and its extension to reactions (SMIRKS) [32]. Various kinds of neural network architectures,

ranging from recurrent/recursive to transformer architectures, can be used to process such

variable-length text strings, similarly to what is done for natural language processing (NLP)

problems [33, 34, 35]. Reaction prediction can be cast as a sentence-to-sentence or “trans-

lation problem” from the reactant sentence to the product sentence [36, 37]. Typically an

encoder module is used to encode the discrete string associated with the reactant molecules

into a continuous vector representation, and a decoder module is used to decode the con-

tinuous vector representation into the discrete string associated with the product molecules

[38, 35]. The encoding and decoding processes are implemented using deep recurrent neu-

ral network architectures that may include long short-term memory (LSTM) [39] units and

Transformers [40]. The decoder module can also leverage techniques such as beam search

and attention mechanisms to generate the most accurate SMILES string [35, 38].

There is no foundational advantage for any of these machine learning approaches over the
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other ones, although preliminary evidence [38] together with the current success enjoyed by

large language models suggest that text-based methods may be particularly effective. This

is in spite of the facts that: (1 ) SMIRKS do not contain all the information needed to

accurately model molecules and reactions [41]; (2) the same reaction (resp. molecule) can

be represented by multiple SMIRKS (resp. SMILES), including those associated with any

permutation of the molecules within the reactants or within the products[42]. Finally, text-

based methods, as well as other machine learning methods, require large training sets, which

is a major challenge in reaction chemistry. Compensatory methods, such as regularization

and data augmentation, are being used but are often not enough.

The majority of recently created models, independently of the way they represent reactions,

are being designed and trained using the chemical transformation dataset derived from the

US Patent Office (USPTO) [43] and a few other minor datasets that were introduced in

several studies [28, 44, 45]. All these data sets have significant limitations, including: lack

of chemistry coverage, lack of precise and complete atom mapping, lack of balance between

reactants and products, and lack of elementary reaction step information. The USPTO

dataset of chemical reactions, for example, portrays chemical reactions restrictively as over-

all transformations, the majority of which result in a single primary product (and are thus

unbalanced). This dataset provides little information about the underlying mechanisms, crit-

ical intermediates, and side products. Additionally, it is challenging to extract information

about radical reactions, which appear to be underrepresented in this data set.

Utilizing this limited source of data to train data-driven models results in models that

may be chemically limited or biased, predict unbalanced reactions, and lack information

about intermediate byproducts. Additionally, these models provide no interpretations of the

underlying chemistry that leads to the predicted products. Although There has been some

work (e.g. [35]) using machine learning interpretability methods to highlight the importance

of certain portions of the reactants, this does not provide any information on the mechanistic

35



interactions underlying the reactions. Lastly, due to the limited available training data, there

is no widely used reaction predictor for radical reactions. Radical reactions play a significant

role, for instance in synthetic pathway planning and biological and atmospheric chemistry,

and they often proceed through a complex series of chemical steps and highly branched

mechanistic pathways. Thus developing an accurate radical reaction predictor free of some

of the shortcomings mentioned above is important.

Broken	Down	Into	the	
Following	Steps:

Figure 3.1: The reaction at the top is an overall, unbalanced, transformation from the
USPTO data set. It can be broken down into four mechanistic steps with arrow-pushing
mechanisms. This provides chemical interpretability for each step, as well as for the overall
pathway, while maintaining full balance at each step.

3.3 Interpretability of Mechanistic Reaction Steps

Chemists typically employ an alternative approach to represent and conceptualize chemical

reactions. Specifically, they utilize an intuitive representation that involves the consideration

of single-state transitions and arrow-pushing mechanisms, which we refer to as elementary

reaction mechanisms or elementary steps. Overall chemical transformations can be decon-

structed into a chain of elementary reaction mechanisms, each characterized by a singular

transition state [56, 101]. Figure 3.1 provides an illustrative example of this process. Curved
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arrows (or fish-hook arrows for radical reactions) are employed to depict the reaction mech-

anisms [62], and correspond to the interaction of singly occupied molecular orbitals with

both the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular

orbital (LUMO) [71]. Hence, the development of a reaction predictor that operates at the

reaction mechanism level can confer three critical benefits (shown in Figure 3.1 that none of

the current reaction predictors can offer.

Chemical interpretability: The first key benefit is enhanced chemical/orbital inter-

pretability. The use of curly arrows, or arrow-pushing mechanisms, allows for an accurate

understanding of the fundamental chemistry underlying each reaction step. This approach

facilitates the understanding of the interactions between molecular orbitals, which ultimately

drive each reaction step.

Pathway interpretability: The second key benefit is enhanced pathway/transformation

interpretability. A predictor trained to predict elementary steps, can be iterated to expand

a tree of such steps rooted at the initial reactants. This allows for the interpretation of any

overall all transformations leading to several final products, some of which are unknown.

By expanding such tree of pathways there is no chance of missing key intermediates that

give rise to competing pathways during change. This level of interpretability enables several

applications, most importantly for drug discovery and atmospheric chemistry where highly

reactive radicals are present.

Balance and atom mapping: Finally, the third benefit is the preservation of the balance

between reactants and products, in conjunction with the underlying atom mapping. The

balance is maintained at all times, throughout the chain of reaction steps, which can be

highly valuable, for instance when studying retrosynthesis pathways [102].
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Table 3.1: The size of the various subsets of elementary radical reaction steps contained in
the RMechDBdatabase [1]. These are used to train and test the predictors.

Train Test

Core 1512 150
Specific 3397 367

Combined 4909 517

3.4 Data

To develop a mechanistic-level radical reaction predictor, we utilize the standard train and

test sets from the recently released RMechDB dataset [1]. This dataset comprises approxi-

mately 5500 radical elementary step reactions sourced from chemistry textbooks (core reac-

tions) and scientific articles on atmospheric chemistry (atmospheric reactions). Each reaction

in the RMechDB dataset is labeled with different categorizations enabling comprehensive

evaluation of the predictive models trained on RMechDB. See Table 3.1 for a summary of

the RMechDB dataset used in subsequent training and testing experiments.

3.5 Methods

Here we first describe the OrbChain, a model we developed to represent and process radical

mechanistic reactions. Then we describe three different machine-learning approaches for

predicting the outcome of radical mechanistic reactions with or without their associated

arrow-pushing mechanisms. The first approach follows the methodology described in [56,

101, 103] where predictions are carried out using deep learning in two steps: a first one to

identify reactive sites, and a second one to rank the plausibility of all reactive-site pairs. In

the second approach, we directly predict the most reactive pair of molecular orbital. Within

this direct approach, we test two different representations for the atoms: our own atom

descriptor and RxnHypergraph [42] which applies a transformer model to the molecular
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graph representations. Lastly, we use a purely text-based approach leveraging transformers

and large language models to predict reactions viewed as a “translation” from reactant to

products [35]. Within this text-based approach, we test two different sequence-to-sequence

transformer models: Molecular Transformer and Chemformer [38, 35]. These models are

pre-trained on other data and fine-tuned on the RMechDB data with data augmentation.

Both models output the string associated with the products, without the arrow-pushing

information.

3.5.1 OrbChain: Model of Mechanistic Reactions

A radical mechanistic reaction is a reaction with a single transition state that involves at least

one half-occupied orbital. More precisely, In the arrow-pushing mechanism representation,

a radical mechanistic reaction consists of a set of reactant molecules R = {Ri}nr
i=1, a set

of product molecules P = {Pi}np

i=1, and a set of fish-hook arrows A showing the cleavage

or movement of a single electron. Each of the reactant or product molecules (Ri or Pi) is

represented by a connected molecular graph Gi = (Ni, Vi) where the vertices Ni represent the

atoms and Vi represent the bonds. The variable {aij} represents atom j in molecule i and {bij}

represents bond j in molecule i. Inspired by [101], Orbchain models a radical mechanism with

a single transition state as the interaction between two reactive Molecular Orbitals (MOs)

m∗
1 and m∗

2 (we refer to a MO as m and a reactive MO as m∗). Each MO is associated with

four distinct parameters m = (a, e, n, c), where a represents the atom corresponding to the

MO (i.e., the central atom of the MO), e denotes the number of electrons involved in the

MO (0, 1, or 2), n indicates the atom adjacent to the atom a in the case of a bond orbital

(such as a π or σ bond), and c signifies the possible chain of filled or unfilled MOs (such as a

π system). The reactive orbitals are identified by following the sequence of electron transfers

in the arrow-pushing diagram (Figure 3.2).
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For a given mechanistic reaction, Orbchain uses the atom-mapped reactants R, the atom-

mapped products P , and the arrow codes A ([1]), to uniquely determine the pair of reactive

orbitals, (m∗
1, m

∗
2), in R. Alternatively, given that atom-mapped reactants R and a pair

of orbitals (m1, m2), Orbchain can uniquely determine the atom-mapped products P ′ and

the arrow codes A′. Thus the two main functionalities of Orbchain can be summarized

schematically by:

3.1.

OrbChain :


(1) R,P

A−−−→ (m∗
1, m

∗
2)

(2) R
(m1, m2)−−−−−→ P ′, A′

(3.1)

𝑚!
∗: sp3 MO on atom 10 (C:10 sp3 None 1)

𝑚#
∗ : sp3 MO on atom 20 (O:20 sp3 None 1)

𝑚!
∗: sp3 MO on atom 10 (O:10 sp3 None 1)

𝑚#
∗ : sigma MO on atom 20 (H:20 sigma -1-C:21 1)

𝑚!
∗: sp3 MO on atom 10 (O:10 sp3 None 1)

𝑚#
∗ : sigma MO on atom 20 (H:20 sigma -1-O:21 1;

C:22 sp3 None 1)

Reactive MOs and atoms:

Reactive MOs and atoms:

Reactive MOs and atoms:

Figure 3.2: Three radical mechanistic reactions from RMechDB. For each reaction, the
reactive orbitals and reactive atoms are extracted using Orbchain.
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3.5.2 Two Step Prediction

In the two-step prediction approach [56], given a set of reactants, we first identify all possible

orbitals, then pair them in all possible ways, and finally find the most likely products. While

chemically sound, this approach runs into computational complexity issues as the number

of orbital pairs is quadratic in the number of orbitals. Thus we first apply a filtering step

to reduce the number of candidate orbitals (i.e., likely to be reactive orbitals) that need to

be paired. Second, we rank all possible pairs of reactive orbitals. Both steps are carried out

using a deep neural network trained on the RMechDB data.

Reactive Sites Identification

As described above, a MO is defined using four parameters: (a, e, n, c), where a is the atom

associated with the MO. Note that a MO is associated with a unique atom a, whereas an

atom a can be associated with multiple MOs. Thus, in order to train a predictive model

to filter the molecular orbitals, it is convenient to first train a predictive model to identify

potential reactive atoms, and then consider all the orbitals associated with these reactive

atoms. Thus the labeling of the reactive atoms in the training data corresponds to:

g(aij) =


0 m∗ /∈ {m |m = (aij, e, t, c)}

1 m∗ ∈ {m |m = (aij, e, t, c)}
(3.2)

The filtering neural network takes as input a vector describing an atom and its environment

and produces an output via a logistic function with binary targets (reactive vs non-reactive).

The input vector is constructed using a method similar to [56]. The components of this

vector correspond to both atomic features and graph-topological features. Examples of
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atomic features include valence and electronegativity. Examples of graph-topological features

include the counts or presence/non-presence of specific labeled paths and trees starting at

the atom being considered. The complete list of these features is given in the Appendix.

For all the atoms within the RMechDB datasets, we extract these feature vectors to train

one feed-forward fully connected neural network that can classify each atom as reactive or

non-reactive. The architecture and hyper-parameters of the trained model are given in the

Appendix. As an alternative, which does not require the extraction of the graph-topological

features, we also train a graph convolution neural network (GNN) [26, 27, 9] augmented

with attention mechanisms [29], which uses only the atomic features as its inputs. The

architecture and hyper-parameters parameters of the GNN are given in the Appendix. The

two classification architectures are trained using the standard cross-entropy loss function.

The canonical training set in the RMechDB repository contains 4909 training reactions. To

train each classifier, we iterate through 4909 training reactions from the RMechDB dataset.

For each sample (R, P, A), we first find all the MOs within R. Then using P and A, we find

the pair of reactive orbitals (m
(∗)
1 ,m

(∗)
2 ). All other orbitals are considered non-reactive MOs.

Then using the function g, the corresponding atom of each MO aij is augmented with a label

yij = g(aij) according to Equation 3.2. The iteration results in a dataset of atoms and their

associated binary labels y. Using all the reactions in the RMechDB training set, we extract

73630 pairs of (a, y) with roughly 9800 reactive atoms (atoms with label 1). We re-weight

the reactive and non-reactive classes to compensate for the class imbalance.

The results of reactive site identification are presented in Table 3.2. While these methods

achieve reasonable accuracies, they overlook an essential aspect: the context of the reaction

involving spectator and reagent molecules. As the reactivity of different sites and functional

groups can be influenced by the reaction context, we propose a context-aware approach for

reactive site prediction to address this limitation.
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Plausibility Ranking

After identifying the reactive atoms within a set of reactant molecules, we consider all possible

pairings between reactive atoms. More precisely, for each reactive atom we consider the

complement of orbitals associated with it, Then we consider all the possible pairings of

orbitals from the complement of the first reactive atom with orbitals from the complement of

the second reactive atom. In a typical case, several of these orbital pairings can be discarded

because they are not chemically possible (i.e., Orbchain cannot produce the products P ′ in

Equation 3.1. For each viable pairing of orbitals, Orbchain produces the products and the

arrow codes.

Subsequently, we rank these generated reactions to enhance the accuracy of reaction pre-

diction, specifically aiming for top-N accuracy. To achieve this, we employ a deep Siamese

architecture [104, 105] neural network [106, 103, 56]. This neural network architecture is

well-suited for ranking entities. The shared module of the Siamese architecture is a neural

network that takes as its input a representation of a mechanistic reaction, including reactants

and products, and produces a real-valued numerical output. The Siamese architecture uses

this module twice (weight sharing) to compare two mechanistic reactions. The parameters

of the shared neural network module are optimized by minimizing the following loss function

(per example):

L = 1 − σ(f(Rxnplausible) − f(Rxnimplausible)) (3.3)

where f is the function computed by the shared network, σ is the logistic function, Rxnplausible

represents the reaction between the two reactive orbitals m∗
1,m

∗
2, and Rxnimplausible represents

the reaction between two orbitals m1,m2 other than the reactive ones. By minimizing the

loss function above, the function f tends to assign higher scores to the plausible reaction.

Thus, the output of the function f can be interpreted as the plausibility score.
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The performance of this model can be significantly affected by two key factors: the repre-

sentation of the input reactions (Rxnplausible and Rxnimplausible), and the architecture of the

neural network computing the function f . To study this effect, we deploy four reaction repre-

sentations with their suitable neural architecture. More precisely, we use: (1) the predefined

features vectors introduced in [56]; (2) reactionFP [107] with different molecular fingerprints

including Morgan fingerprints [14], AtomPair (AP) [108] fingerprints; and Topological Tor-

sions (TT) [109] fingerprints; (3) Differential Reaction Fingerprints (DRFPs) introduced in

[110]; and (4) rxnfp [35] based on a transformer model pre-trained on the US PTO data

[43]. To train the Siamese neural network, we use the reactions of RMechDB as plausi-

ble reactions (i.e., Rxnplausible). For each plausible reaction (R,P,A) with reactive orbitals

(m∗
1, m

∗
2), we use the second functionality of OrbChain to produce 50 implausible reactions

(R,P ′, A′) with reactive orbitals (m∗
1,m2), (m∗

2,m2), (m1,m
∗
2), and (m1,m2). Here m1 and

m2 are randomly chosen non-reactive MOs. The hyperparameters of each neural network

are given in the Appendix. The comparative results of the plausibility ranking are presented

in Table 3.3.

3.5.3 Contrastive Learning

As stated above, the context of a reaction can affect the dynamic of orbital interactions by

changing the reactivity of different functional groups. An informative atom representation

for reactive site identification must take this context into account. In this section, we solve

this problem by proposing new methods that compute and learn the atom representations

by considering the entire context of the reaction. The key idea is that instead of predicting

the reactive atoms separately, we can predict the most reactive pairs of MOs directly, in one

step. In other words, we must approximate the following probability distribution:

P((mi,mj) = (m∗
1,m

∗
2)|R) (3.4)
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Atom Pairs and Atom Descriptor

To establish a baseline for approximating the probability mentioned above, we utilize con-

trastive learning methods. In this approach, the positive data consists of the most productive

reactions (R,P,A)(i.e., each sample of the RMechDB dataset), while the negative data in-

cludes all other possible reactions from the same set of reactants (R,P ′, A′). To train the

contrastive model, reactions, whether positive or negative are represented as a pair of atoms

where each atom is the representative of its reactive MO. The targets yij for an atom pair

(ai, aj) is obtained as shown in Equation 3.2. We calculate the marginalized probability

(Eqn. 3.4) by considering all possible atom pairs in R. This approach has two advantages:

(1) It enables one-step reaction prediction by identifying the most reactive pair of MOs,

determining the product and arrows according to Orbchain (statement (2)). (2) It reduces

false negatives by not discouraging less reactive, yet still plausible, MO pairs. These pairs

are ranked highly, with the most reactive MO pair receiving the highest ranking.

y(ai,aj) =


1 m∗

1 = (ai, e, n, c) & m∗
2 = (aj, e

′, n′, c′)

0 Otherwise;

(3.5)

Figure 3.3 (left side) shows the schematics of the contrastive model. Table 3.4 presents

the results of this method, while the Appendix provides details on the objective function,

parameters of the contrastive model (Figure 3.3), and the atom descriptor.

Rxn-Hypergraph

Considering all atom pairs in a contrastive learning fashion would take the reaction context

into account. However, we can compute a more informative representation of atom pairs

by utilizing the Rxn-Hypergraph. Rxn-Hypergraph introduced in [42] is a graph attentional

neural network that operates on the hypergraph of the entire reaction. Instead of using an
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atom descriptor, we can train a Rxn-Hypergraph model, to automatically learn a contextual

representation of all atoms of the reactant sides.

To adapt the Rxn-Hypergraph for the reaction predictor task (OrbChain Statement (2)),

we make a modification by duplicating the reactants on both sides of the graph. This

modification allows us to provide the reactants on one side while maintaining the full context

on the other side. Following the training procedure of [42], we compute atom representations

and generate pairs of atoms. These pairs are then fed into the contrastive network depicted in

Figure 3.3 to obtain a ranked list of atom pairs. Each atom pair corresponds to an interaction

between two orbitals, which enables us to generate products and arrows using OrbChain.

The results of the reaction predictor using atom pair prediction with Rxn-Hypergraph are

presented in Table 3.4.

Productive	Reaction Non	Productive	Reaction

First	Reactive	Atom Second	Reactive	Atom First	Reactive	Atom Second	Reactive	Atom

sub

𝜎

mult mult

One	Set	of	Reactants

Applying	For	N	Layers

Figure 3.3: Left: The architecture of the contrastive learning approach. Right: The
schematic depiction of the Rxn-hypergraph.

3.5.4 Text Representation and Sequence to Sequence Models

Considering the SMILES string as the text representation of molecules [32, 111], a chemical

reaction can be seen as the transformation of a sequence of characters (reactants) to another

(products). This makes the sequence-to-sequence models, such as the Transformer [36, 40]
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and models based on the recurrent neural network architecture, a suitable predictive model

for chemical reaction predictions [38, 33, 34, 35], retrosynthesis prediction [112] and molecular

optimization [113].

Existing text-based models for chemical reaction prediction have limitations, including non-

interpretable and non-balanced predictions, as well as the need for extensive data augmenta-

tion due to the text representation of molecules breaking the inherent permutation invariance

in reactions. However, we aim to leverage the success of these models and apply them to

the prediction of radical mechanistic reactions. In particular, we adopt the pioneering text-

based reaction predictor, Molecular Transformer [35], which utilizes a bidirectional encoder

and autoregressive decoder with a fully connected network for generating probability dis-

tributions over possible tokens. The pretrained Molecular Transformers were trained using

different variations of the USPTO dataset [43]. During training the encoder computes a

contextual vector representation of the reactants by performing self-attention on the masked

and randomly augmented (non-canonicalized) SMILES string of the reactant molecules. The

decoder then uses the encoder output and the right-shifted SMILES string of the products

to autoregressively generate the product tokens. Since the radical reactions in RMechDB

are not labeled with reactants and reagents, we used the model which was pretrained using

the USPTO MIT mixed dataset [43, 57, 114].

3.5.5 Fine-tuning Using RMechDB

Molecular Transformer enables the fine-tuning of pretrained models for downstream tasks

like radical reaction prediction. In our approach, we utilized pretrained models and con-

ducted reactant-to-product sequence translation. During the fine-tuning process, our only

augmentation technique involved rearranging the reactant molecules within the SMILES

string. Specifically, for each reaction containing N reactant molecules, we employed N
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SMILES strings with reactants randomly reordered. We removed all atom mappings from

the RMechDB training data and fine-tuned the model using the entire training set of the

RMechDB.

Table 3.4 shows the performance of the text-based prediction for both pretrained and fine-

tuned versions of the Molecular Transformer. Within the Appendix, we illustrate the phases

of radical reaction prediction using Molecular Transformer. We also include detailed infor-

mation on training and fine-tuning parameters, as well as tokenization statistics.

3.6 Results and Discussion

3.6.1 Performance on RMechDB

We evaluate the performance of the two-step prediction method, which includes reactive

site identification and plausibility ranking. Table 3.2 displays the results of reactive site

identification on the combined test datasets of RMechDB using the TopN evaluation metric.

More detailed TopN accuracy for each RMechDB test set can be found in the Appendix.

We can see that GNN models can outperform the method based on the atom descriptor

(predefined feature extraction). This behavior is expected as the atom descriptor is limited to

a certain radius around the atom (in this case the radius is set to three). However, the number

of GNN layers can be optimized to construct the most informative atom representations. The

advantage of GNNs is more evident for the atmospheric test data where there are usually

more molecules present in the context of the reaction.

The second model of the two-step prediction is the Siamese architecture that ranks the

reactions based on their chemical plausibility. Four different architectures were used for the

reaction fingerprint from [56], reactionfp from [107], DRFP [110], and the rxnfp [115]. The
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results of the topN accuracy and MRR ranking score [116] for the combined test sets of

RMechDB are shown in Table 3.3. The table shows that DRFP outperforms the reactionfp

and the feature extraction methods. We believe the reason is mainly because of the different

nature and underlying chemistry of the radical mechanistic reaction and the USPTO reaction,

which was used to pre-train the rxnfp.

Table 3.2: The performance of different methods for reactive site identification. Each number
represents the percentage of reactions for which both reactive atoms are identified within
the topN predictions.

Method Top2 Top3 Top5 Top10

Atom Fingerprint 75.1 81.5 89.3 96.7
GNN 76.9 83.6 92.1 97.9

To predict the outcome of a mechanistic radical reaction using the two-step method, we

must perform both reactive site identification and reaction ranking. Given the performance

of each individual predictor, the best combination would be the GNN and DRFP. Therefore

in Table 3.4, we use this combination to compare the performance of the other two methods

with the two-step prediction.

Table 3.3: The performance of different methods for plausibility ranking. Each number
represents the percentage of reactions for which the correct mechanism is predicted in the
topN plausible reactions.

Method Top1 Top3 Top5 Top10

Feature Extraction 73.1 79.2 88.3 96.3

reactionfp
AP 74.6 82.3 90.2 97.8

Morgan2 74.3 81.9 90.0 97.3
TT 74.3 82.4 90.0 97.8

DRFP 78.6 90.2 95.1 100.0
rxnfp (pretrained) 75.9 86.2 94.3 97.9

As it is shown in Table 3.4, the contrastive learning approach yields the most accurate pre-

diction across all the metrics. In terms of inference time, the contrastive learning approach

is faster than the two-step prediction as it only consists of one neural network. This be-

comes crucial in the case of pathway search where we exponentially expand the tree of the
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mechanistic pathways by predictions. However, the advantage of using the two-step method

becomes more evident when the size of the reactant molecules increases. In Figure 3.4, we

show the performance of all three methods based on the number of heavy atoms on the reac-

tant sides. As expected, the prediction of both contrastive methods and text-based models

becomes more faulty when big molecules react. This can be explained using the fact that

the reactive sites identification part of the two-step method is mainly dependent on a local

neighborhood of atoms and is not significantly affected by the size of the molecules.

The text-based models are outperformed by the other two graph-based methods. Although

they offer faster inference times, they yield less accurate predictions. This poor performance

is mainly because the Molecular Transformer model is trained on the USPTO MIT mixed

dataset. Therefore, it learned to predict the only major product of overall transformations

that are mostly polar. On the contrary, RMechDB data are balanced, mechanistic, and

involve radical species. Align with this low performance, according to Table 3.4, fine-tuning

on the relatively small RMechDB dataset results in a slight decrease in the performance.

This can be attributed to the dissimilarities between RMechDB and the USPTO dataset.

RMechDB comprises intermediate products of transformations and includes radical reactions

with compounds not found in the USPTO dataset. During the tokenization process of the

RMechDB reactions, new tokens emerge that have not been extracted from the USPTO

dataset.

We also provided a separate performance of the predictors with respect to different radical

reaction categories provided in RMechDB.

3.6.2 Pathway Search

After successfully predicting the outcomes of mechanistic radical reactions, we can chain

these predictions to construct mechanistic pathways. Starting from a set of reactant molecules,
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Table 3.4: Top N accuracy of all the three reaction prediction models on Core and Atmo-
spheric test sets of RMechDB. For the text-based models, a prediction is considered to be
correct, when at least one of the non-spectator product molecules are predicted correctly.
For the text-based models, we use (p) and (f) for pretrained, and fine-tuned models respec-
tively.

Model Variant
Core Atmospheric Time

Top N Top N

1 2 5 10 1 2 5 10

Two-step Best Combination 62.4 71.9 93.2 97.2 60.4 70.9 91.6 96.3 1.38

Contrastive
Atom Descriptor 62.9 73.8 94.2 96.5 61.0 73.6 93.0 94.4 0.08
RxnHypergraph 64.3 74.1 95.1 97.4 62.1 74.8 94.1 95.9 1.45

Text-based
Pretrained 58.2 64.3 84.2 91.0 58.0 67.3 82.6 91.0 1.30
Fine-tuned 57.7 64.0 83.9 90.4 57.1 66.8 82.2 90.3 1.30
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Figure 3.4: Left: The number of recovered reactions in top5 for different methods and
different classes of RMechDB reactions. Right: The recovery rate of different methods with
respect to the size of the reactants.

we perform a series of predictions by using each of the topN predicted products as the reac-

tants for the next prediction. This would form a tree structure with the starting reactants

as the root. This tree can be expanded to a desired depth, representing numerous mech-

anistic pathways leading to different products. These pathways are crucial for identifying

synthetic routes, exploring intermediate products, and aiding in mass spectrometry analysis

with broad applications to various fields, including drug design and drug degradation.

We create a dataset consisting of 100 radical reactants paired with target molecules that are
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expected to be formed from the reaction. Each pair is accompanied by a specified depth,

indicating the length of the mechanistic chain reactions required to reach the target. We

generate this dataset by simulating atmospheric conditions, taking inspiration from the at-

mospheric reactions observed in the RMechDB dataset and atmospheric literature [117]. The

reactants in our dataset primarily consist of Isoprene, a prevalent atmospheric compound,

along with other atmospheric molecules like radical Oxygen and Hydroxyl radical. To find

these targets, we expand and search the tree of the mechanistic pathways by employing a

breadth-first search algorithm. To expand the tree for each of the 100 reactants, we use the

top 10 predictions at each step (i.e., the breadth of 10 to expand the tree), and we expand

the tree up to the given depth. Given the average inference time of the predictive models

presented in Table 3.4, we used the fastest method with interpretable predictions which is

the contrastive model with atom descriptor. Upon running this pathway search for these 100

pathways, we observed a significant recovery rate of 60% meaning that for the 60% of the

reactants, the given target was found within the expanded tree. These pathways along with

their targets and detailed information on the pathway search are presented in the Appendix.

3.6.3 RMechRP Software

We develop and release the online RMechRP (Radical Mechanistic Reaction Predictor) ac-

cessible at https://deeprxn.ics.uci.edu/rrp/. This online predictor offers two interfaces:

(1) Single-step prediction; and (2) Pathway search. The single-step predictor accessible at

https://deeprxn.ics.uci.edu/rrp/singlestep, allows the user to input a set of reactant

molecules. Then upon inserting a few parameters, such as the number of reactive atoms,

the system will use the best model described above to find all the possible radical mecha-

nistic steps. Then all the top predicted reactions will be displayed with side information,

including arrow codes, SMIRKS, reactive orbitals, and plausibility scores. The pathway

search interface accessible at https://deeprxn.ics.uci.edu/rrp/pathway, is designed for
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searching for a specific target molecule(s) through the mechanistic pathway of the input

reactants. The user must input a set of reactants and a set of target molecules. After setting

parameters such as the depth and breadth of the mechanistic pathways, the system will use

the fastest predictive model described above to expand the mechanistic pathway as a tree

rooted at the reactants. Once the target molecule is found within the expanded tree, the

system will display the synthetic, mechanistic pathways from the starting reactants to the

target molecule(s). More details on both interfaces and how to use them are presented in

the Appendix.

3.7 Conclusion

We have successfully developed a radical reaction prediction system that offers a unique

approach to reaction prediction by focusing specifically on radical reactions and operating

at the mechanistic level. We trained and developed three deep learning models for radical

reaction prediction, demonstrating that the contrastive learning method yields the most

accurate results. By leveraging the RMechDB datasets, our radical predictor represents

a significant advancement in interpretable reaction prediction. Furthermore, it provides

various benefits, such as pathway interpretability and maintaining balance throughout the

chain of mechanistic reactions, making it valuable for identifying synthetic pathways. Our

predictor, RMechRP, as the only radical reaction predictor system, is available to the public

through online interfaces available at https://deeprxn.ics.uci.edu/rrp.

3.8 Appendix

In this appendix, we provide a comprehensive description of the experimental details and

environments in which the experiments were conducted. Additionally, we present detailed
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information and data pertaining to the pathway search. Furthermore, we offer an explanation

of the various interfaces of the RMechRP software, which serves as the pioneering online

radical reaction predictor. Each section in this appendix corresponds to the section with

the same title in the main article. Finally, all the experiments are conducted using a single

NVidia Titan X GPU.

3.8.1 Two Step Prediction

This method consists of two distinct steps, within each, we trained several neural networks.

Here we explained the parameters used during the training of these networks.

Reactive Site Identification

For the Atom Fingerprint model, we constructed a fingerprint of length 800 for each atom.

This fingerprint includes 700 graph topological features explained in [56] and 85 atomic fea-

tures including a one-hot vector for atom type, and chemical features of the atoms such as

valance and electronegativity. The graph topological features are extracted using a neigh-

borhood of size three. The extracted fingerprints are fed into a fully connected model with

an output layer for binary classification. For the GNN model, we used the atomic feature for

the initial representations of atoms. The model consists of four GNN layers with an output

layer for binary classification.

Combining both training sets presented in RMechDB [1], we extracted over 51000 atoms to

train each of the models above. Both models are evaluated using a combination of two test

sets in RMechDB and the topN accuracy of models is reported in Table 2 of the main article.

Table 3.5 represents the parameters used for training the models.
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Table 3.5: The parameters used for training the models for reactive site identification.

Model Batch Size Num Layers Layers Dim Act Reg Num Att Heads
Atom Fingerprint 32 3 512-256-1 GELU L2(5e-5) -

GNN 32 4 64-64-64-1 ReLU Dropout (0.3) 2

Plausibility Ranking

For the plausibility ranking experiments, we used the following four methods for representing

chemical reactions:

Feature Extraction: We use the same features explained in [56] which results in extracting

a vector of length 3200 for each reaction.

reactionfp: We use the RDKit [118] implementation of reactionfp [107]. For all three

fingerprint types (Atom Pair, Morgan2, and Topological Torsions), we use a fingerprint of

size 2048, with a bit ratio of 0.2. We considered non-agent molecules with a weight of 0.4

and agent molecules with a weight of 1.0.

DRFP: We use the DRFP fingerprint [110] with a size of 2048 with a min and max radius

of zero and four, while including the hydrogen atoms and rings.

Feature Extraction: We use the default tokenizer and pretrained model for the rxnfp [115]

which results in fingerprints of length 256.

For training, we use a combination of both training sets in RMechDB. For each sample of the

training data (productive reaction), we generate (at most) 40 negative samples (unproductive

reactions) by randomly sampling molecular orbitals other than the reactive MOs (m∗
1,m

∗
2).

This results in a data set of over 185000 pairs of productive and unproductive reactions. To

train the plausibility rankers for each method, we use the parameters explained in Table 3.6.
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Table 3.6: The parameters used for training the models for the plausibility ranking.

Model Batch Size Num Layers Layers Dim Act Reg
Feature Extraction 32 3 512-256-1 GELU Dropout (0.5)

reactionfp 32 3 400-200-1 GELU Dropout (0.5)
DRFP 32 3 400-200-1 GELU Dropout (0.5)
rxnfp 64 2 128-1 GELU Dropout (0.5)

3.8.2 Contrastive Learning

Atom Pairs and Atom Descriptor

For the contrastive learning method using the atom pairs and atom descriptor, we use the

same atomic feature and graph topological features above to represent one single atom.

Specifically, for the graph topological features, we use the neighborhood of size one. These

features plus the atomic features result in a vector of length 140 for atom representation.

Using these vectors, we train a contrastive model depicted in Figure 2 (left) of the main

article. The objective function to train this contrastive model is as follows:

L = 1 − σ([f(a∗1) × g(a∗2)] − [f(a′1) × g(a′2)]) (3.6)

Where a∗1 and a∗2 are the atoms of the reactive MOs m∗
1 and m∗

2, while a′i are randomly chosen

atoms. Both f and g functions are characterized by a fully connected neural network. The

first reactive atoms in both productive and unproductive reactions, are fed through the same

network f , and similarly, the second reactive atoms are fed through the same network g. The

outputs of both f and g are single real-valued numbers, which, when multiplied together,

yield a score for the respective reaction. These scores are then utilized to construct the

objective function, aiming to maximize the score of the productive reaction compared to

the unproductive reactions using the same reactant set. Figure 3.5 represents a schematic

depiction of this contrastive model.
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We use a combination of both training sets in RMechDB to train f and g. For each productive

reaction, we form unproductive reactions by considering at most 15 samples of (a′1, a∗2),

(a∗1, a′2), and (a′1, a′2). This negative sampling results in a dataset of over 200000 pairs

of productive and unproductive atom pairs. We use this training dataset to minimize the

objective function 3.6.

Both f and g have similar architectures that consist of three fully connected layers with

a GELU activation function and a dropout with a rate of 0.5 applied to all layers. The

dimensions of the layers are 128, 64, 1.

Productive	Reaction Non	Productive	Reaction

First	Reactive	Atom Second	Reactive	Atom First	Reactive	Atom Second	Reactive	Atom

sub

𝜎

mult mult

One	Set	of	Reactants

Figure 3.5: The architecture of the contrastive learning approach.

Rxn-Hypergraph

We use the Rxn-Hypergraph to replace form atom descriptors that are extracted automat-

ically for minimizing the objective function 3.6. After processing the Rxn-hypergraph for

N layers, the generated atom descriptors are used in the same setting above for the same

minimization objective. Here in Table 3.7 we describe the parameters we use for training

the Rxn-Hypergraph.
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3.8.3 Text Representation and Sequence to Sequence Models

In order to develop a text-based radical reaction predictor, we utilize the pretrained molecular

transformer which was trained using the USPTO MIT mixed dataset. We also used the

tokenizer developed by Molecular Transformer. This tokenizer yields 523 distinct tokens for

the USPTO MIT mixed dataset. There are nine tokens from the RMechDB dataset that do

not match the 573 tokens of the USPTO. Therefore, we used the unknown token to represent

these nine tokens.

For fine-tuning the pretrained model, we used the combination of both RMechDB training

sets. We fine-tune the model using a simple data augmentation described in Section 4.5

for 10 epochs. Finally, for the evaluation of the text-based models, we considered all the

generated unknown token as correct tokens.

3.8.4 Pathway Search

In the Pathway Search section, we conducted an experiment involving the execution of the

pathway search for 100 specific reactants. Each of these reactants was associated with a

desired target molecule, which was expected to be found within the mechanistic pathway

tree. Additionally, a set of distinct parameters was assigned to each reactant to guide the

pathway search process.

To provide detailed information and facilitate reproducibility, we have included supplemen-

tary materials accompanying the paper. Among these materials, you will find a file named

pathways.csv. This file contains the reactants, corresponding targets, the provided context

Table 3.7: The parameters used for training the Rxn-Hypergraph for the contrastive model.

Batch Size Num Layers Layers Dim Act Reg Num Att Heads Learning Rate
32 5 all 64 GELU L2(5e-5) 2 0.001
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(if any), and the anticipated depth at which the target molecule is expected to appear within

the mechanistic pathway tree.

Furthermore, we have included another file titled pathway results.txt in the supplemen-

tary materials. This file comprises the identified pathways leading to the specified target

molecules. It presents the discovered pathways that were found during the experiment.

It is worth noting that the 100 pathways and their results will be published alongside the

paper, subject to acceptance. These materials serve to provide comprehensive insights into

the pathway search process and its outcomes, enabling readers to reproduce and further

explore the obtained results.

3.8.5 RMechRP Software

In addition to the methods and results presented in the main article, we have developed an

online web server that enables users to utilize the trained models for predicting the outcomes

of mechanistic radical reactions with the highest levels of interpretability of the outcome.

RMechRP (Radical Mechanistic Reaction Predictor) accessible via http://deeprxn.ics.

uci.edu/rrp. RMechRP offers two interfaces: Single-step prediction and Pathway search.

Single-Step Prediction predicts the outcome of a mechanistic reaction with a single

transition state. Users have the option to either input the reactants in written form or draw

them using a drawing tool provided on the web server. Additionally, users can specify the

reaction conditions, with the current option being standard temperature and pressure. The

number of reactive molecular orbitals (MOs) to be considered can also be specified by the

user.

To ensure flexibility, users can choose to filter out reactions that violate specific chemical
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rules, such as Bredt’s rule [119]. Once the input and conditions are set, the user can click the

Predict button. The system will then run the two-step prediction model, as described above,

to generate and rank the potential products. These predicted products will be displayed,

accompanied by additional information such as arrow codes, reactive MOs, and the mass

of the products. The single-step predictor is accessible via http://deeprxn.ics.uci.edu/

rrp/singlestep. Figure 3.6 shows the single-step interface and the displayed predictions

for a simple reaction.

Figure 3.6: The single-step interface with the predictions of a simple reaction. Left: the
input panel. Right: the table displaying the ranked predictions.

Pathway Search forms the tree of the mechanistic pathways up to a given depth and

breadth. Users have the option to either input the reactants in written form or draw them

using a drawing tool provided on the web server. Users must also input a set of targets (either

mass or chemical structure) to look for within the expanded tree of the mechanistic pathways.

users have the ability to provide a context for the reactions. The context consists of a set of

molecules along with their corresponding frequencies of appearance within the mechanistic

pathway tree. When a molecule from the context is consumed in a reaction, the system

can automatically reintroduce that molecule back into the pathway tree. The frequency of
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appearance indicates how many times a molecule can be added to the mechanistic pathway

tree.

In addition to the context, there are several additional parameters that can be specified by

the user. These parameters include:

Depth of Pathway Search: Users can define the depth of the pathway search, which deter-

mines how many reaction steps will be explored in the mechanistic pathway tree.

Breadth (Branching Factor) of Pathway Search: This parameter controls the branching factor

of the pathway search, influencing the number of alternative reaction pathways that will be

considered.

Application of Chemistry Rules: Users have the option to apply certain chemistry rules

during the pathway search. These rules can be used to filter out reactions that violate

specific chemical principles or constraints.

Score Threshold: Users can set a threshold value to consider only reactions with scores

higher than the specified threshold. This helps narrow down the focus to more favorable or

promising reactions.

These additional parameters allow users to customize their pathway search and refine the

results based on their specific requirements and preferences. By leveraging these features,

users can gain deeper insights into the mechanistic pathways and explore a wider range of

possible reaction outcomes. The pathway search interface is accessible via http://deeprxn.

ics.uci.edu/rrp/pathway. Figure 3.7 shows the pathway interface and the required pa-

rameters.
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Figure 3.7: The pathway search interface.
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Chapter 4

Rxn Hypergraph: a Hypergraph

Attention Model for Chemical

Reaction Representation

4.1 abstract

It is fundamental for science and technology to be able to predict chemical reactions and

their properties. To achieve such skills, it is important to develop good representations of

chemical reactions or good deep-learning architectures that can learn such representations

automatically from the data. There is currently no universal and widely adopted method

for robustly representing chemical reactions. Most existing methods suffer from one or

more drawbacks, such as: (1) lacking universality; (2) lacking robustness; (3) lacking inter-

pretability; or (4) requiring excessive manual pre-processing. Here we exploit graph-based

representations of molecular structures to develop and test a hypergraph attention neu-

ral network approach to solve at once the reaction representation and property-prediction
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problems, alleviating the aforementioned drawbacks. We evaluate this hypergraph represen-

tation in three experiments using three independent data sets of chemical reactions. In all

experiments, the hypergraph-based approach matches or outperforms other representations

and their corresponding models of chemical reactions while yielding interpretable multi-level

representations.

Over the past few years, artificial intelligence has refashioned organic chemistry. Numerous

problems such as chemical reaction prediction, synthesis route planning, drug design, etc.,

have benefited from the advancement of deep learning methods [30, 56, 35, 120, 121, 28]. For

instance, accurate reaction yield predictions would help chemists to choose synthesis routes

across high-yielding chemical reactions. As another example, estimating reaction rates via

deep learning methods could circumvent the time and expense required to experimentally

measure the reaction rate of reactions. Not to mention that because the true solution-phase

reaction rates are bounded by the rate of molecular diffusion, it is impossible to measure

the accurate rate experimentally. Lastly, predicting the outcome of chemical reactions using

deep learning methods would automate and accelerate the demanding processes of drug

design and discovery. All these problems require accurate predictions of chemical reactions’

properties using deep learning models, consequently, necessitating optimizing every aspect

of such deep learning models. One important facet that can significantly affect training

dynamics and model performance is the representation of the input data.

In an attempt to find a suitable representation of chemical reactions for input into deep

learning models, several methods have been proposed but each of them suffers from certain

shortcomings. These shortcomings may be summarized with the following properties:

1. Lack of universality Several representations are derived based on predefined pattern

matching algorithms [107, 14]. Since there is no learning process involved in deriving

these representations, they cannot be automatically adjusted for different predictive
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tasks.

2. Lack of robustness Atoms and molecules have no inherent ordering within a chem-

ical reaction. Therefore, a robust representation must be invariant to permutations

of atoms and molecules within a given reaction. Methods built upon the text repre-

sentation of chemical reactions are an example of models with the lack of robustness

[115, 53]. Using such methods, one can obtain different outcomes by only permuting

atoms and molecules in the text representation of one single reaction.

3. Non-interpretability It is vital for chemists to understand the reasoning behind a

reaction-level prediction. For example, capturing the correlation between the pres-

ence and absence of certain functional groups or the interaction between specific elec-

trophiles and nucleophiles would provide useful insight for chemists [55, 4]. Thus it is

important that a representation can provide means to interpret the final predictions.

4. Need for expensive computations Lastly, some other representations require hand-

crafted implementations and processes in order to be used as the input of a predictive

model. These hand-crafted processes usually include running pattern and subgraph

matching algorithms [101] or performing massive data augmentations [122] which are

extremely time-consuming.

In what follows, we review these methods and evaluate them based on the four mentioned

shortcomings. Then we propose an augmented graph representation of a chemical reaction

called rxn-hypergraph which is designed to fix these shortcomings and improve the proposed

methods. Finally, through a set of experiments on the classification and plausibility-based

ranking of chemical reactions, we empirically show the viability of our rxn-hypergraph rep-

resentation.
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4.2 Related Work

One commonly used method for numerically representing chemical reactions was introduced

in [107]. This representation is called reactionFP and it is derived from the fingerprints of

the molecules involved in the chemical reaction. The reactionFP can be described as follows:

w1(
∑
Pi

FP (Pi) −
∑
Ri

FP (Ri)) + w2(
∑
Ai

FP (Ai)) (4.1)

Where A, R, and P represent the molecular agents, reactants, and products respectively.

w1 and w2 are two, potentially learnable, parameters that adjust the contribution between

the agent molecules and the reactive molecules within the final representation. FP (.) is

a function that outputs a traditional fingerprint of a given molecule such as ECFP4 [14].

Since extracting the traditional molecular fingerprints is based on the presence or absence of

predefined patterns and involves no learning process, this representation lacks universality

and cannot be adjusted for a variety of reaction-level predictive tasks.

However, reactionFP was an early robust representation since Equation 4.1 is trivially in-

variant to the permutation of the molecules involved in the reaction. Additionally, many

traditional molecular fingerprints such as ECFP4 [14] or AtomPair [108] are also invariant

to atomic order within molecules, presenting a robust representation. Nevertheless, since

the molecular fingerprints are obtained using non-invertible hashing mechanisms [123], this

method cannot be easily interpreted to discover high-level patterns after learning. Addition-

ally, according to Equation 4.1, obtaining reactionFP requires extra hand-crafted computa-

tions including: (1) an accurate atom mapping between reactants and products to identify

the role of molecules in a chemical reaction; and (2) extracting the vectorized form of tradi-

tional fingerprints.
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Graph-based methods have also been used to extract more informative reaction representa-

tions. To predict the outcome of chemical reactions, [56] used a neural network to rank a

set of potential mechanistic reactions based on their thermodynamic plausibility. They form

two separate count bit vector representations, one for the reactant and one for the product

molecules by recursively counting the predefined paths and trees of different sizes rooted at

each atom. Then, through a mutual information feature selection stage, they extract the

most informative set of these count bits for a given downstream task. Finally, the chemical

reaction may be represented as the difference between the count vector of reactants and

the count vector of products. Since this method is based on a set of predefined patterns,

it lacks universality in the sense that it cannot capture necessary information for different

tasks. Although it is not discussed in [56], the mutual information feature selection step can

potentially provide an additional interpretable view of the final prediction. However, this

requires further expensive computations, not to mention that already massive computation

is required for obtaining the count bit vectors.

Finally, the most successful reaction representation makes use of SMIRKS [111] of chemical

reactions [35, 124, 115]. SMIRKS is a well-defined domain-specific language with special

characters and grammatical rules for describing chemical transformations in the SMILES

strings [32]. Authors in [115] deployed commonly used methods from natural language pro-

cessing (NLP) to encode the SMIRKS of chemical reactions into a continuous vector. They

train bi-directional encoder representation from transformers (BERT) [36] models to obtain

task-specific reaction representations. They also trained large sequence-to-sequence trans-

former models for masked language model prediction (MLM) on the reaction SMIRKS. These

models may also be used to extract pre-trained representations of any given chemical reac-

tions [125]. These transformer-based methods are highly accurate across multiple reaction

level predictive tasks [53, 120]. Such models provide a universal reaction representation that

can be used for numerous reaction-level predictive tasks. Additionally, transformer architec-

tures provide a character-level interpretable framework over the SMILES strings. However,
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one major downside of these NLP models is that their input, SMILES, and SMIRKS strings,

are not permutation invariant with respect to the order of atoms and molecules. Depend-

ing on the canonical SMILES parsing algorithm, atom labeling, and a few other details, a

single reaction may be correctly represented with many different SMIRKS. Some permu-

tation invariance may be recovered through massive data augmentation, where all possible

representations of the input reactions are generated and randomly selected during training

[122]. It has been shown the performance of transformer models is highly dependent on

the data augmentation, where they show surprisingly poor performance without the data

augmentation [122, 35].

4.3 Methods

In this section, we describe the reasons for constructing the chemical reaction hypergraph

(rxn-hypergraph) and why this hypergraph would yield an abstract and powerful representa-

tion of a chemical reaction. Then we explain the process of constructing the (rxn-hypergraph)

for a given reaction, and finally, we discuss how to train neural networks using this hyper-

graph representation of chemical reactions.

4.3.1 Why Rxn-hypergraph?

Graph neural networks and their variants have become the preeminent tool for learning

patterns and relations from graph-structured data [126, 127, 128, 23, 129, 31]. The main

operation of graph neural networks is to recursively update the representation of nodes

using a message-passing scheme only between the nodes and their neighbors. Then a read-

out function can be applied to the set of nodes’ representations to provide an abstract

representation of the entire graph.
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There are several essential reaction-level properties where predicting them would be highly

beneficial to the entire field of chemoinformatics. However, applying a graph neural net-

work to the graph structure of chemical reactions in its most raw form would not lead to a

rich representation that captures different properties of the reaction. Particularly, reactions

are a more general form of a graph that consists of multiple disconnected graph compo-

nents (molecules). The absence of a message-passing route between these components would

result in node representations that are independent of the nodes and connections within

the other graph components that are involved in the reaction. Consequently, applying any

form of a read-out function to these independent node representations would result in a

non-informative representation of the entire reaction.

On the contrary, self-attentional models (e.g. transformers) have been impressively success-

ful in reaction-level property predictions [53]. The input to these models is the SMIRKS

representation of a chemical reaction in which atoms are represented by alphabetical charac-

ters (tokens). Although this form of input representation is not invariant to the permutation,

it provides a suitable structure for the transformer architectures. The key reason behind the

success of such models can be found in applying multiple layers of self-attention mechanisms

to every pair of input tokens. By this means, the representation of each token will be updated

by attending to all other tokens including the atoms within other molecules.

Inspired by this crucial factor in representing a reaction, we form a hypergraph structure of a

reaction by constructing efficient message-passing routes between every pair of atoms. These

routes would improve the representation of the reaction by: (1) enabling message-passing

schemes between every possible pair of atoms so the atom representations are updated with

respect to all other atoms within the reaction, and (2) providing a learnable read-out function

(i.e. pooling mechanism) which can attend to different parts in different levels of the reaction

which are informative for a specific predictive task.
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4.3.2 Constructing Rxn-hypergraph

A chemical reaction with N reactants and M product molecules is described by two distinct

sets of disconnected graph components R and P . R = {Gr
i}Ni=1 represents the set of reactant

molecules, and P = {Gp
i }Mi=1 represents the set of product molecules. Molecule Gi with n

atoms (regardless of beginning a reactant or product molecule) is a graph Gi = (Vi, Ei, A, S),

where Vi = {aij}nj=1 is the set of nodes (atoms) and Ei = {(aiu, a
i
v)} is the set of edges

(bonds). The set of possible labels for the vertices in A corresponds to atom types (e.g.

C, O), and the set of possible labels for the edges in S correspond to edge types (single,

double, triple, and aromatic). The idea behind forming the rxn-hypergraph of a chemical

reaction is to efficiently construct new message-passing routes between these disconnected

graph components (molecules) and form one connected hypergraph to represent the entire

reaction.

To form this hypergraph, we begin by unifying all the Gis into one graph G = (V,E,A, S)

where V =
⋃

V r
i +

⋃
V p
i and E =

⋃
Er

i +
⋃
Ep

i , while A and S remains the same. For

each of the disconnected graph components Gi (molecules), we add a hypernode to the

graph as a mol-hypernode mi. Then we add two types of new edges to the G: (1) a set of

bidirectional edges connecting every atom to the mol-hypernode of their parent molecule,

mol-atom= {(mi, a
i
j), (a

i
j,mi)}, and (2) a set of bidirectional edges connecting every pair of

mol-hypernodes on either side of the reaction, mol-mol= {(mi,mj), (mj,mi)}. The edges

of type mol-mol would form two fully connected subgraphs between the mol-hypernodes on

each side of the reaction. We further augment G by adding two more hypernodes as rxn-

hypernodes xr and xp, one for the reactant and one for the product side of the reaction. Then

we add a new type of edge to the graph: a set of unidirectional edges from each mol-hypernode

to the rxn-hypernode of the same side of the reaction, mol-rxn= {(mr
i , x

r), (mp
j , x

p)}. This

augmented version of graph G is what we refer to as the rxn-hypergraph. Figure 4.1 shows
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a schematic drawing of the rxn-hypergraph. It can also be represented it as follows:

rxn-hypergraph = (V ∗, E∗, A∗, S∗)

where:

V ∗ = V ∪ {mr
i}Ni=1 ∪ {mp

i }Mi=1 ∪ {xr, xp},

E∗ = E ∪ {(mi, a
i
j), (a

i
j,mi)} ∪ {(mr

i ,m
r
j), (m

r
j ,m

r
i )}

∪ {(mp
i ,m

p
j), (m

p
j ,m

p
i )} ∪ {(mr

i , x
r), (mp

j , x
p)},

A∗ = A ∪ {mol-hypernode, rxn-hypernode},

S∗ = S ∪ {atom-mol,mol-atom,mol-mol,mol-rxn}.

(4.2)

4.3.3 Relational Graph Attention

Now that the rxn-hypergraph is formed, there is an intermolecular path of length three

(aiu → mi → ajv → mj) between every pair of atoms. Thus, we may construct robust

contextual node representations by applying more than three layers of graph convolution

neural networks to the rxn-hypergraph since this would ensure the receptive field of every

atom would include all other atoms. Also, the presence of the unidirectional paths between

mol-hypernodes and a rxn-hypernode, provides a form pooling mechanism where the rxn-

hypernode can fully represent one side of the reaction. Assuming that both rxn-hypernodes

carry an abstract representation of the reactants and product molecules, merging them into

one vector would represent the entire chemical reaction.

To obtain this representation, we model the entire rxn-hypergraph as a relational graph where

the relations are represented by S∗ in the previous section. We apply and compare two forms

of graph neural networks: relational graph convolution (RGCN) [130] and relational graph

attention (RGAT) [131, 132]. We summarize the layer-wise operations for each of these
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graph neural networks.

First, a layer-wise operation of the relational graph convolution can be described as follows:

hl+1
i = Woh

l
i +

1

|Ns(i)|
(
∑
s∈S∗

∑
j∈Ns(i)

Wnh
l
j) (4.3)

Where hl
i is the vector representation of atom ai and layer l. Wo and Wn are two learnable

weight matrices, and Ns(i) represent the set of nodes adjacent to ai through edge type s.

The layer-wise operation of our version of relational graph attention and how the attention

scores are computed are as follows. The term αs
ij is the amount of attention that node ai

would pay to its neighbor node aj (through edge type s).

hl+1
i = αiiWhl

i + (
∑
s∈S∗

∑
j∈N (i)

αijWhl
j) (4.4)

αs
(ij) =

exp(A(Whi||Whj))∑
k∈Ns(i)

exp(A(Whi||Whk))
(4.5)

To train a reaction-level predictive model, we apply L ≥ 3 layers of relational graph atten-

tion/convolution to the rxn-hypergraph. The final representation of the reaction would be

X = f(xrL , xpL) where f is a selected summarizing function to combine the two sides of the

reaction. We use subtraction (f(x, y) = x − y) and concatenation (f(x, y) = x||y) as the

summarizing function. Taking X as the final latent representation of our reaction, we apply

a classification or regression head (typically a feed-forward MLP) to perform reaction-level

classification or regression. In the Experiments section, we evaluate the viability of our
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proposed method by performing several reaction-level prediction tasks.

4.3.4 Interpretability

Applying any form of graph neural networks on the rxn-hypergraph would provide an in-

terpretable framework using the standard attribution methods such as Integrated gradient

[133] and Class Activation Map (CAM) [134]. However, the structure of the rxn-hypergraph

is capable of providing a more in-depth interpretation. The attention weights obtained from

applying GAT can be used as a measure of importance for propagating information relevant

to the predictive task. Given that, we define three types of interpretations for the predic-

tions of a GAT model trained using rxn-hypeergraph. (1) The atom-rxn interpretation: the

multiplication of the attention scores (α) of the edges in the path from an atom to the

corresponding rxn-hypernode (e.g. aiu → mr
i → xr). These scores can be considered as the

contribution of each atom to the final representation of the reaction. (2) The node-node

interpretation: the average of the attention scores of the edges over all the GAT layers used

in architecture. These scores can measure the importance of bonds between adjacent atoms

in the final representation of the reaction. Also, the relative importance of the reacting

molecules in the final representation of the reaction can be measured by node-node scores of

the edges between the mol-hyernodes and their corresponding rxn-hypernode (e.g. mr
i → xr).

This score can indicate the difference between reactants and reagents. (3) The intermolecu-

lar atom-atom interpretation: the multiplication of the attention scores of the edges in the

path between pair of atoms of different molecules (e.g. aiu → mr
i → mr

j → ajv). These scores

can be considered as a measure of the pair-wise correlation between atoms.
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4.4 Experiments

To evaluate the viability of the hypergraph representation in various different circumstances,

we perform three experiments on different reaction-level predictive tasks using multiple

datasets of chemical reactions.

4.4.1 Data

For the first experiment, we use the dataset of chemical reactions from the US patents office

(USPTO)[59] to train a model to classify these reactions into the top 50 highly populated

classes of chemical reactions. These reactions were classified according to reaction classes

presented in [135, 136] and the RSC’s RXNO ontology [137] using the NameRxn tool. Similar

to the classification experiment presented in [107], we randomly sample 1000 reactions for

each of the 50 reaction classes. Then we split each class into a subclass of 200 random

reactions for training and 800 for testing. This results in 10,000 training reactions and

40,000 test reactions which are uniformly distributed over 50 classes of chemical reactions.

For the second experiment, we use an in-house curated dataset of reaction mechanisms

(reaction with a single transition state). This dataset consists of three classes of mechanistic

reactions: (1) over 11,000 polar reactions. The reactions wherein a pair of electrons would

transfer from an electron donor orbital to an electron acceptor orbital; (2) 2800 of radical

reactions. The reactions that involve a radical species; and (3) 2600 pericyclic reactions.

The reactions wherein the transition state has a cyclic geometry. We split this dataset into

an 80 percent training dataset and 10 percent validation and 10 percent holdout for final

testing.

Lastly, we redo the reaction-level experiment described in [56] as the reaction ranker stage. In

this stage, the authors in [56] used a set of over 11,000 productive polar mechanistic reactions
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to train a ranker system that ranks a reaction mechanism based on its thermodynamic

plausibility.

4.4.2 Reaction Representations

For each experiment, we compare the performance of different models that are trained using

the corresponding reaction representation. These representations which are introduced in

the Related Work section are: (1) reactionFP representation based on AP, Morgan2, and

TT fingerprints; (2) the representations from the transformer models on reaction SMIRKS,

rxnfp (both pre-trained and trained from scratch); and (3) representations from the relational

graph convolution/attention using rxn-hypergraph.

4.4.3 Training and Hyperparameter Optimization

We train the graph attention/convolution layers using either cross-entropy or mean squared

error, depending on the task. We use the ADAM optimizer [138] and anneal the learning

rate with an exponential schedule across the training duration. Training is performed across

4 GPUs for a period of 500 epochs for each of the experiments explained below.

Additionally, we used SHERPA [2] to optimize the hyperparameters associated with each

predictive task, guided by Bayesian Optimization for each parameter. Specifically, we opti-

mized the number of graph layers L, size of the latent representation of nodes D, learning

rate, learning rate decay, and L2 weight regularization term. The final parameters for each

experiment are presented in Table 4.4.
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Table 4.1: Comparing testing accuracy of different representations on a test set of 40,000
chemical reactions from the USPTO dataset of chemical reactions.

Representation Network Accuracy

reactionFP
AP 0.854

Morgan2 0.850
TT 0.852

Transformers
pre-trained rxnfp 0.862

rxnfp 0.925

rxn-hypergraph
RGCN 0.909
RGAT 0.928

4.4.4 Classification of USPTO reactions

The results of this classification experiment are reported in Table 4.1. Both transformer

representation (rxnfp) and RGAT on rxn-hypergraph achieve the highest accuracies. It is

important to mention that this classification scheme is highly dependent on the presence

of certain molecules and compounds on the reactant side of the reaction. Such textual

dependencies are not representing the underlying chemistry of the reaction which implies

that a highly accurate model that uses the text representations might not learn the actual

chemistry of the reactions and take advantage of the presence of absence of these textual

signatures.

4.4.5 Classification of Mechanistic Reactions

Here we classify the reactions into three classes polar, radical, and pericyclic reactions. Since

the classification scheme is only based on the pair of reacting orbitals (i.e. single transition

states), the underlying chemistry might not be complicated for models to learn. Neverthe-

less, the graph attentional models on rxn-hypergraph are outperforming other models and

representations.
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For this particular experiment, we also show the interpretations of the final predictions

using the three metrics described in the Interpretability section. Figures 4.2, 4.3, and 4.4

are illustrating the interpretation results. In each figure, the reaction with labeled atoms

is depicted at the top. The atom-rxn scores are shown in the middle while the node-node

and intermolecular atom-atom scores are shown at the bottom right and bottom left of the

figures.

4.4.6 Plausibility Ranking of Polar Mechanistic Reactions

This experiment was first introduced in [56], where they rank a set of possible reactions from

the interactions between one set of reactant molecules. We precisely follow the procedure

of ranking described in [56], we use Siamese network [104, 139] to train ranker models for

reactionFP and transformer models. In each branch of the Siamese network, we used the

hyperparameters used in the previous section.

Ranking Network Architecture

We learn pairwise rankings between different mechanisms using the DirectRanker architec-

ture introduced in [140]. We first compute the learned latent representations of a pair of

reactions. Afterward, we use the DirectRanker method of subtracting the two latent repre-

sentations before feeding them through a bias-free fully-connected layer and a sign-preserving

anti-symmetric nonlinearity which produces a scalar value for each pair of events. We train

this network using mean squared error to predict which of the two input reactions is more

plausible than the other, targets of 1 or −1.

After training this pairwise ranker, we still need a method for determining a final ranked

order on a list of plausible mechanisms. To accomplish this, we use the ranked-pair voting
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Table 4.2: Comparing testing accuracy of different representations on a test set of 5,455
chemical reactions from an in-house dataset of mechanistic reactions.

Representation Network Accuracy

reactionFP
AP 0.915

Morgan2 0.915
TT 0.913

Transformers
pre-trained rxnfp 0.955

rxnfp 0.974

rxn-hypergraph
RGCN 0.988
RGAT 0.990

Table 4.3: The top1, 2, 5, and 10 prediction accuracy of plausibility ranking models with
different representations of a chemical reaction. All the metrics are computed for a test set
of 200 real-world mechanistic reactions.

Representation top1 top2 top5 top10

reactionFP
AP 58.01 67.05 77.60 84.33

Morgan2 59.03 69.14 78.24 85.01
TT 58.41 68.22 77.31 84.14

Transformers
pre-trained rxnfp 81.31 84.19 89.60 92.33

rxnfp 89.14 93.22 96.09 98.55

rxn-hypergraph
RGCN 82.67 92.57 97.03 99.01
RGAT 84.23 96.06 98.57 99.28

method [141]. This algorithm allows us to convert a pair-wise ranking matrix between

all viable reaction mechanisms to an ordered list by preference. Ranked pairs construct a

directed acyclic graph based on the sorted pair-wise score between different elements. The

acyclic property is maintained by ignoring any pairs which would introduce a cycle. After all

of the pairs are exhausted, we produce the final ordering by following a topological ordering

on the nodes of the graph. The resulting ordering is guaranteed to obey certain criterion

which is useful for this task such as independence from irrelevant alternatives, which means

that extra implausible reactions that the network is unsure of will not spoil the top rankings.

Out of three experiments, ranking reaction based on thermodynamic plausibility requires a

deeper understanding of the underlying chemistry. In this task, the correlation between the
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Task USPTO Classification Mechanism Classification Polar Plausibility

Num GAT Layers 10 10 5
Latent Rep Dim 128 128 64
lr Rate 4.11 ×10−4 4.11 ×10−4 1.14 ×10−2

lr Decay 0.999995 0.999995 0.99986
L2 Reg 9.75 ×10−5 9.75 ×10−5 7.28 ×10−5

Table 4.4: Table of hyperparameters selected through Bayesian Optimization using SHERPA
[2].

textual signatures and plausibility of a reaction is minimal. This potentially explains the

results presented in Table 4.3 where the RGAT model on rxn-hypergraph outperforms other

models, especially those based on the text representations with a considerable margin.

4.5 Discussion and Conclusion

We proposed rxn-hypergraph representation of a chemical reaction which is suitable for train-

ing graph neural networks for the reaction-level predictive task. The key idea behind forming

the rxn-hypergraph is to construct efficient message passing routes that provide a platform

for (1) updating atom representation based on the atom and molecules if the other reacting

molecules, and (2) a global pooling mechanism. Rxn-hypergraph is designed to be a uni-

versal and permutation-invariant representation that adapts to any downstream predictive

task. There are no manual and hand-crafted pre-processing stages involved in computing

the rxn-hypergraph and it provides different levels of interpretability. There are two po-

tential aspects of this work that are left to future work: (1) several other demanding and

practical reaction-level predictive tasks such as yield prediction, and reaction rate constant

prediction that can be benefited by rxn-hypergraph, and (2) more complicated and expressive

attention mechanisms such as multiplicative attentions and transformers can be applied to

rxn-hypergraph which might result in more powerful reaction representations.
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Figure 4.1: A depiction of the rxn-hypergraph corresponding to the reaction at the bottom.
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Figure 4.2: Interpretability plots for a radical reaction for the task of classifying the mecha-
nistic reactions.
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Figure 4.3: Interpretability plots for a pericyclic reaction for the task of classifying the
mechanistic reactions.
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Figure 4.4: Interpretability plots for a polar reaction for the task of classifying the mecha-
nistic reactions.
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Chapter 5

Conclusion

The accurate prediction of chemical reaction outcomes poses a significant challenge from

both experimental and computational standpoints. Reaction predictor systems that rely on

quantum mechanical simulations or hand-crafted rules often suffer from various limitations,

including slow or non-robust predictions. However, in the past decade, machine-learning re-

action models have emerged as promising solutions, effectively addressing these drawbacks.

These models exhibit the capability to generalize their predictions across a wide range of

chemical reactions. Moreover, their high-speed inference enables the utilization of high

throughput experimentation, facilitating rapid progress in the field. The advancements in

machine learning-based reaction prediction have enabled high-impact applications in phar-

maceutical, atmospheric, and organic chemistry. Nonetheless, it is important to acknowledge

that current machine learning-based reaction predictors still encounter certain limitations.

One such limitation is the availability of a limited source of training and development data.

In order to tackle these limitations, our research aimed to introduce a novel approach to

reaction prediction. Instead of solely predicting the final outcome of overall transformations,

we shifted our focus towards the fundamental components of reactions, known as elementary
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step reactions. By adopting this perspective, we developed comprehensive and open-access

databases known as RMechDB and PMechDB. These databases encompass various types of

elementary step reactions, offering a valuable resource for the development of new machine-

learning reaction predictors. Specifically, RMechDB focuses on radical chemical reactions,

while PMechDB covers polar chemical reactions. Leveraging the availability of our open-

access databases, we successfully developed novel reaction predictors specifically tailored for

radical reactions, functioning at the level of elementary step reactions. Our newly devised

reaction predictor surpasses previous models by offering enhanced capabilities, including

chemical interpretability and pathway interpretability. Notably, our predictor ensures the

preservation of reaction balance throughout the entire prediction process, maintaining con-

sistency across the reaction chain. To showcase the performance of our reaction predictor,

we conducted a comprehensive evaluation benchmark on the RMechDB database, providing

insights into its predictive accuracy.

In an effort to contribute to the scientific community, we have made our developed reaction

predictor openly accessible to the public. This includes providing access to the databases

we curated, as well as the corresponding reaction predictors. To facilitate easy utilization

and accessibility, we have hosted these resources on the DeepRXN platform. Interested

users can access the platform and explore our reaction predictors and databases by visiting

the following link: https://deeprxn.ics.uci.edu/. By making these tools available, we

aim to encourage collaboration, further research, and advancement in the field of reaction

prediction.
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lauronolsäuren und bihydrolauro-lactone. Berichte der deutschen chemischen
Gesellschaft, 35(2):1286–1292, 1902.

[120] Philippe Schwaller, Riccardo Petraglia, Valerio Zullo, Vishnu H Nair, Rico Andreas
Haeuselmann, Riccardo Pisoni, Costas Bekas, Anna Iuliano, and Teodoro Laino. Pre-
dicting retrosynthetic pathways using transformer-based models and a hyper-graph
exploration strategy. Chemical science, 11(12):3316–3325, 2020.

[121] Kevin Yang, Kyle Swanson, Wengong Jin, Connor Coley, Philipp Eiden, Hua Gao,
Angel Guzman-Perez, Timothy Hopper, Brian Kelley, Miriam Mathea, et al. Ana-
lyzing learned molecular representations for property prediction. Journal of chemical
information and modeling, 59(8):3370–3388, 2019.

[122] Esben Jannik Bjerrum. Smiles enumeration as data augmentation for neural network
modeling of molecules. arXiv preprint arXiv:1703.07076, 2017.

[123] Robert C Glen, Andreas Bender, Catrin H Arnby, Lars Carlsson, Scott Boyer, and
James Smith. Circular fingerprints: flexible molecular descriptors with applications
from physical chemistry to adme. IDrugs, 9(3):199, 2006.

[124] Philippe Schwaller, Benjamin Hoover, Jean-Louis Reymond, Hendrik Strobelt, and
Teodoro Laino. Extraction of organic chemistry grammar from unsupervised learning
of chemical reactions. Science Advances, 7(15):eabe4166, 2021.

[125] Giorgio Pesciullesi, Philippe Schwaller, Teodoro Laino, and Jean-Louis Reymond.
Transfer learning enables the molecular transformer to predict regio-and stereoselective
reactions on carbohydrates. Nature communications, 11(1):1–8, 2020.

[126] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy
Hirzel, Alán Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs
for learning molecular fingerprints. In Adv. Neural Inf. Process. Syst, pages 2224–2232,
2015.

95

http://www.rdkit.org


[127] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov,
and Max Welling. Modeling relational data with graph convolutional networks. In
Euro. Sem. Web. Conf., pages 593–607. Springer, 2018.

[128] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolu-
tional networks. arXiv preprint arXiv:1609.02907, 2016.

[129] Oliver Wieder, Stefan Kohlbacher, Mélaine Kuenemann, Arthur Garon, Pierre Ducrot,
Thomas Seidel, and Thierry Langer. A compact review of molecular property predic-
tion with graph neural networks. Drug Discovery Today: Technologies, 2020.

[130] Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov,
and Max Welling. Modeling relational data with graph convolutional networks. In Aldo
Gangemi, Roberto Navigli, Maria-Esther Vidal, Pascal Hitzler, Raphaël Troncy, Laura
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