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ABSTRACT — The thermodynamics of irreversible processes leads to nonlinear governing equations
for direct and coupled mass transport processes. Analytical solutions of linearized versions of these
equations can be used to verify numerical solutions of the nonlinear equations under conditions such
that nonlinear terms are relatively small. This report presents derivations of the analytical solutions
for one-dimensional and axisymmetric geometries.

GOVERNING EQUATIONS

Carnahan and Jacobsen (1990) have derived the governing equations for a saturated, porous
or fractured system in which fluxes of heat, mass and electrical charge are driven by gradients of
temperature, hydraulic potential, chemical potential and electrical potential. The derivations were
based on the thermodynamics of irreversible processes.

Under the assumptions that gravitational and electrical forces are negligible, that no chemical
reactions occur in the system, that the fluid phase is an ideal solution of a single solute, and that
partial specific volumes and entropies of solute and solvent are constant, the balance equations are

oT By T . RT

iy ==Vedy=Jo- VP =2 V0= o J2 -VC,, (1)
P _ . Cp P« RT

Mg ==V Ty =Jy VP = 2LV, = Z5r I VG, (2)

€ aac;, =-V.J, (3)

where T is the temperature, P is the pressure, C, is the concentration of the solute, J, is the heat
flux, J, is the volume flux, J,-is the solute flux in the laboratory reference frame, J? is the diffusional
solute flux relative to motion of solvent, and I1 and A, are shorthand notation for

Iy = €spgco,g + €n pncun, ‘ (4a)
K K.
A = €rPsCoy ﬂ_i + €3 Pn .cv,n ,B—: (4(:)

All other symbols are defined in the Notation.

The fluxes to be used in (1)—-(3)"a.re given by the phenomenological equations

vT RT
Jo = —qu-—f— - LunP Ly = G T, vd,, (5)
VT RT
J, = ~Logr = L VP = Lus 5o VG, ()
. T
Jo= L, E _p.vp-1L,, 2L v, 1)

st C.M,
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with the reciprocal relations
Lgs = Lsg, Lgv = Lug, Lus = Lso- (8)
The two solute fluxes, J, and J?, are related by
J,=Cido+(1-C V) I, 9)

and therefore the solute flux in the laboratory frame of reference is given by
- vT
Jy =~ [Cs Lyg+ (1= C,V,) Ly} -

~[CiLyw+ (1-C,V,) Ly VP

S - RT
- [Cs -‘Luc + (1 - Cs Va) Lu] mvca- . (10)

When (5)-(7) and (10) are substituted into (1)-(3), a system of nonlinear governing equations is ob-
tained. These equations were solved numerically by Jacobsen and Carnahan (1990). Under conditions
such that the nonlinear terms are small relative to linear terms in the governing equations, the numer-
ical results were verified by comparison with analytical solutions derived from linear versions of the
governing equations. The analytical solutions were useful also in estimating contributions of nonlinear
terms to magnitudes of the primary variables (T, P, C,) and the fluxes.

. DERIVATIONS OF ANALYTICAL SOLUTIONS

The phenomenological equations (5), (6) and (7) may be made linear by assuming constancy of
the phenomenological coefficients and by replacing factors of temperature and solute concentration by
average values, denoted below by T}, and C, m, respectively. The linear phenomenological equations
are

vT RTy
= —Lygm— — Ly VP — Ly —2_VC,,
Jo = ~Lug— — Lo VP = Ly 2= VG, (11)
vT RT,
Jo = _qu T — LyyVP — Ly, C’,m’;la Vs, (12)
— vT
J,g = - [03’111 qu + (1 - Cs,m VS) qu T_

- [Ca,m va + (1 - Ca,m Va) Lsu] vP

RT,,
Cs,m Ms

- [Cc,m Lua."‘ (1 - Cs,m Vu) Lsa] VCS) (13)

The governing equations (1), (2) and (3) can be made linear by neglecting products of derivatives:

oT _ - ﬂf T
Fl 8t ——V'Jq_ Kf V'Jv; (14)




®

oP _ Pl »
Mgr ==V - 2LV, | (15)
¢ % =-V.J, | (16)

When the expressions for the fluxes from the phenomenoldgical equations are substituted into the
governing equations above, the only space derivative terms are second derivatives:

or

5 = Dpp V2T + Drp VEP + Drs V2C,, (17)
opP 2 2 2
W:DPTV T+ DppV*P + Dps V°C,, (18)
aCs 2 2 2
—6t—=Ds7'V T+ Dsp VP + Dss V*C,. _ (19)

The Dy; are functions. of the material properties, phenomenological coefficients and the average values
of temperature and solute concentration and are defined by

_ 1 (L, B '
Dyr = T, (Tm + Py qu ’ - : (203')
1 B4 Tm
DTP = Fl (qu + Ky Lvu) ’ (20b)
1 Bt Tm RT
Drs = ) (qu + Py Lw) ComM,’ (20¢)
1 Cp f f ‘
Doy = p.f Pf
pT Y [qu + ( 5 Ly, (20d)

1 Cp.f P

DPP = A_l [qu + (iﬁif—£> LUU] ’ : (20e)
1 (c RT,

Dpe = — . Cpt Pt hidd

PS Al [Lq + ( ﬂf Lua Cs,mMa ) (20f)
1 —_—

Dgr = — [Cs,m qu + (1 - Csym V’) LNI] ’ (20g)
&Tm
1 ——

DSP = ; [Cg,m Lvu + (1 - Cs,m Va) Lav] ’ (20h)
1 — RT, .

DSS = _C? [Cs,m Lvs + (1 - Cs,m Va) Lss] "C—,;::ﬂM‘:; (201)

where It and A; are defined by (4). To complete the mathematical formulation of the problem the
initial and boundary conditions must be specified. Initially all variables are assigned constant values.
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The boundary conditions for T', P and C, at the inner boundary are derived from the constant heat,
solute and solvent fluxes imposed there. In a one-dimensional coordinate system, the flux boundary
is located at ¢ = 0, and in radial coordinates, the flux boundary is located at » = a. At the outer
boundary, located at infinity, T, P and C, are held constant and equal to their initial values.

The analytical solution for the system of equations above is obtained using the Laplace transform
method (Carslaw and Jaeger, 1959). The transformed system of equations is given by

sT — T; = Drr VzT-l- Drp V2P + Drg VTC'_,,, (21)

s P — P, = Dpr V*T + Dpp V*P + Dps V?C,, (22)
sC, ~ C,; = Dsy V*T + Dsp V?P + Dss V*C,,. (23)

where T;, P, and C,; are the initial values of temperature, pressure and solute concentration.

Solutions for the Fully Coupled Case in a One-Dimensional Geometry

In a one-dimensional coordinate system, V2 = §2/8z%. Using this definition in (21), (22) and
(23), the transformed equations in one-dimension are

— 9T 0*P d%C,
ST_I}.:DTTW-*-DTPW-}-DTSW’ (24)
- 8°T 8’P 0’C,
SP—RzDPTEF'FDPP'a‘;;‘FDPSW, (25)
— o°T 8*P 82C
§C, ~Cs,i = Dsr 55 + Dsp 55 + Dss -3;-2-"- (26)

Noting that exp(—Az) and exp(Az) are solutions of

i : .
33 = V1, (27)

for f, a function of z, and A, a positive constant, it is reasonable to assume that solutions of the
transformed equations above will involve exponential functions. Only exponential functions with
negative arguments can satisfy the outer boundary condition, so the solutions for T', P and C, will be
assumed to be of the following form:

T= 3‘;- + Aexp(=A2), (28)
=_ b
P= <+ Bexp(—Az), (29)
2l Cs i
C, = s' + Eexp(—Az). (30)

where, as above, A is a positive constant to be determined and A, B and E are to be determined from
the inner boundary conditions. Substituting the expressions for T', P and C, above into the governing
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equations (24), (25) and (26) yields the following matrix equation -

Drr Drp Drs A A
A2 | Dpr Dpp Dps B|l=s|B|, (31)
Dsr Dsp Dss E E

which will have a nonzero solution if and only if A is chosen such that
det(A’D - sI) =0 (32)

(Bo‘yce and DiPrima, 1969). D is the matrix of coefficients in (31), and I is the identity matrix. The
equation defined by (32) is a cubic in A2/s:

d (’\;)3 —d, (’\;)2 +ds (’\;) - 1.= 0, (33)

dy = DrrDppDss + DyrpDpsDsr + DrsDprDsp

where

— Drr (DpsDsp) — Dpp (DrsDsr) — Dss (DrpDpr), (34a)
d2 = DrpDpr + DrsDsr + DpsDsp |

— DrrDpp — DrrDss — DppDss, (34b)
ds = Drr + Dpp + Dss. (34c)

For a cubic of the form
¥+py¥+qy+r=0, (35)

Burington (1949) gives the following expression for the roots,
0 2= . r . |
¥i =2v—acos §+T(z—l) -3 i=1,2,3. (36)

The intermediate variables, o and 6, are defined by

1 .
a=1060-p), 37

—v/n?/a3, ifn>0,
cosf = { ™/ (38)

+vn?/e?, ifn<0,

where
1

n=gg (20 — 9pg + 27r) . _ (39)

The expression in (36) assumes that all of the roots are real. The sign of a® + 52 indicates whether
the roots of the cubic are real or imaginary. If o® + 7% > 0, then two of the roots are imaginary; if
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o3 + n? < 0, then all of the roots are real. It is difficult to check this condition a priori for & and n
defined in terms of the d;,

1 AN
« =g (4~ 3d1) “0
1 (dyds 24
7= 24, (3d1 “wE ) (41)

In this derivation, it has been assumed that a3+ % < 0. When the analytical solution is calculated for
given values of the material properties, phenomenological coefficients and other input parameters, this
condition is checked by calculating o + (r)/az)2 This alternate, but equivalent, form is used because,
in practice, the magnitudes of o and 7 are quite large.

As noted before, solutions involving exponential functions with positive arguments cannot satisfy
the boundary conditions at infinity. Therefore, the A; are defined by

’\i = Hi \/‘;: i= 1’2’3, (42)

where
d, ' 6 2r 3 ,
u,_{ﬁ-+2\/—acos [g-}-?(z—l)]} , t=1,2,3. | (43)

The solutions to the transformed equations can be written as

T= % + Z A; exp (~piVs2), (44)
— P .
P = —+ Z B; exp (—pi Vs ), (45)
—~ _Cus '
C,=24 Z E; exp ( - s:c) (46)
=1

assuming that p; > 0 for ¢ = 1,2,3.

Equation (31) holds for all values of 7, so it can be used to express the B; and E; coefficients in
terms of the A;:

B; =b; A, (47)
where
_ ¢ (DrrDps — DrsDpr) — Dps
by = =3 ) (48)
p?(DrsDpp — DrpDps) — Drs
and

E; = e; A;, (49)



for

_ 3 (DrrDsp — DrpDgt) — Dsp

€ = .
'~ p?(DrpDss — DrsDsp) — Drp

The A; can then be determined from the inner boundary conditions,

Jq,inc

and .

_—_...._.L

T
" Oz

z=0

z=0

-L

—Lyy =

~Lgyy =

oP

" 9z
=0

oP
Ox

P

=0

=L

-L

“Lu

RT,, &8C,
¥ CymM, 0z ’

z=0

BT, 50,
" Cy,mM, Oz ’

rz=

RT,, 08C,

ComM, 0z |
z=0

Jamc—CamJ mc+(1—'CsmV) sinc’

Transforming the boundary conditions and solving (54) for J7 ;. yield

Jq,:'nc -
8
Jv,inc
s
Js ine C Join
s(1-=CymV,)

_, 9P| _, _RT. &,
" 3z ® ComM, 0z

=0 z=0 z=0
L oP L _RTn ac,
Ly —Lvs X371 "o

z=0 oz z=0 C"mM' oz z=0
_, 9P| _, _R1, o,
* Bz * ComM, Oz

=0 r= z=0

(50)

(51)

(52)

(83)

(54)

(85)

(56)

(57)

Substituting the expressions for 7, P and C, from (44), (45) and (46) into the transformed boundary
conditions above and multiplying through by 1/,/5 yield

Js mc‘—Cst v,inc

3

—gine E Iqa B; A,

Jv,mc

S\/_(I_C,g,m V3 i=

=1

E lo; pi As,

E lyi p; Ai,

1

(58)

(59)

(60)



where
L RT,
lqi = 7’_?"_‘4_ + qubi + quc,a,T'XJ:ei)
L RT
lyi = :,: + Lyob;i + Lvameiv
L, RT,
I.si = T:: + L,wbi + Lsaa;nmv’ei

Equations (58), (59) and (60) can be solved for the A;. The result is

_ 1 _ 1 e .
A= s\/EG'_ /s Al‘i’ i=1,2,3,
where
a1 = (102133 - 103132)Jq,s'nc + (lq3132 - lq2ls3) Jv,inc
= Cymdui
Lolys — loal 8,inc a,m__v,mc)’
+ (Ig2lvs — 1g3ly2) ( oV,
g2 = (Iualsl - lvl’aS) Jq,inc + (Iqlla3 - IqSIal) Jv,inc
Jx inc — Cs va inc)
laly1 — 11l 2 — ,
+ (Igalv1 — 111y3) ( =GV,
g3 = (Iulls2 - lv2lal)Jq,inc + (IqZIal - 141132) Jv,inc
Ja inec Ca va inc)
llys — U520, : Lt ,
+ (lg1lva — lg2lv1) ( 1-Co.mV,
and

A= lql (102133 - 103132) + 1q2 (Iv3lal - 101133) + Iq3 (101132 - Iv2131) .

The final forms for the solutions in the transform space are

3
T = s. z—: exp s a:)

y
S

s\/_z b; G; exp (-—u. sx)

C, =

Z e; G; exp( — i s:c)

t_.l

(61)

(62)

(63)

(64)

(65a)

(65b)

(65¢)

(66)

(67)

(68)

(69)

where the G; are defined implicitly in (64), the y; are defined by (43), the b; by-(48) and the e; by
(50). All of these variables are free of the transform variable s. The solutions above can be inverted



using the two inversion formulas:

C“{%} =k, (70)
L‘,“{s—kﬁ exp (-u\/E)} =k [2 \/gexp ('%;) — erfc (ﬁ)‘ , (71)

where k is a constant independent of s, and erfc is the complementary error function. In the second
inversion formula, v = p; z, and letting

& = .;_‘:/_zf, (72)

the inverted solutions for the fully coupled case can be written

3
T=T+)Y G [2 \/g exp (=€) — piz erfc(&)] : (73)

i=1

3
P=P+) bG; [2 \/% exp (—€7) ~ mi xerfc(&)l , (74)

=1

Cs=C,i+ 2 e;G; [2 \/gexp (—€2) — pi xerfc({,')] , (75)

i=1

where G; = g;/(Ap;) and g; is defined by (65), A by (66) and p; by (43). The procedure for calculating
T, P and C, from the equations above is given in the third section.

In the uncoupled case and when thermal osmosis and thermal filtration are included, Drs and
Dps are zero. In these two cases, the definition of the b; in (48) is indeterminant. There are two
approaches to obtaining the solutions in these cases: the b; may be redefined by

1 — p} Drr

b =
‘ u? Drp

(76)

or the solution may be rederived starting with a simplified version of the system of governing equations.
The second approach is presented in the fourth section.

Solutions for the Fully Coupled Case in a Radial Geometry

In this case, the system of transformed equations is given by (21), (22) and (23) with V? =
82/0r% + (1/r) 8/8r. The modified Bessel functions of order zero, Iy and Ky, are solutions of the
differential equation,

02F 10F

5z T =N (77)

for A a constant. It is therefore reasonable to assume that solutions of the transformed equations
can be written in terms of Iy and K. For large arguments, however, I increases exponentially, so
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solutions involving Iy cannot satisfy the outer boundary conditions, which are that the solutions tend
to their initial values as r increases. Therefore, Iy is discarded as a possibility, and solutions of the

following form are assumed:

T= —+AKg (Ar), (78)
B

P=-;+BK0(Ar),, (79)
- Ca:

C, = -'—;— +EKQ (/\r) (80)

Substituting these expressions into (21), (22) and (23) leads to the same matrix equation (30) as
that derived when a one-dimensional coordinate system was used, and consequently many of the
intermediate steps are the same for the one-dimensional and radial coordinate systems. Using the
results from the previous section, the solutions in the transform space can be written

T 3
== E i Ko (ps Vsr), (81)
- P <
P:—;—+EbAKo(p, Vsr), (82)
i=1
C’
C,=22 ¢ Z e; A Ko (ni Vsr) . (83)

where the b; are given by (48) or (76) depending on the coupling, the e; are given by (50) and the p; are
given by (43). As with the one-dimensional solution, the A; can be determined using the transformed
inner boundary conditions and (53):

Jq,inc _ qu a-T 6?5 RT,, 66,
s T, Or Lo 8 ~Las Cs,mM, Or ’ (84)
r=a r=a r=a .
Ju,s'nc _ qu oT oP ) RT,, 63,
s T, or ~Lus or ~Les CymM, Or ’ (85)
r=a r=a r=a
Js,inc = Cs,m Juinc Laq 6T aﬁ | RT,, 66,
) 3 — 3 _ — - —L, - - ——m
3(1 —_ Ca,m V.,) Tm or r=a Y or rma L." Cs,mMa or rea (86)

Substituting the expressions for T, P amd C, from (81), (82) and (83) into the equations above and
multiplying through by 1/4/s result in three equations for the A;,

oo 3 .
sq\’/;c = ‘2:; lyi pi Ai Ky (5 V5 a) (87)
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Iy 3
-:T"/%£=Zlvil‘iAiK1 (i Vsa), (88)

=1

Ja inec _Cava ine
E lspi Ai K 89
sf(l— ) 2 si Mi 1 (I‘t sa) ( )

where the Iy, ly; and l,; are defined by (61), (62) and (63). Solving these yields the same results as in
the one-dimensional case: the A; are defined by equations (64) through (66).

The final expressions for the solutions in the transform space for the fully coupled case are

- _ Z 1 Ko (u. sr)

T= s s\/_Z K, (pi Vsa)’ (90)

— 5 Ko (pi/sr) :

P BB el o
- C‘ i Ko (”i' \/Er) (92)

C,=— s\/_z aGsm,

where the b;, e;, G; and p; are defined by equations (48), (50), (63) and (43), respectively, and all are
free of the transform variable s. These solutions can be inverted using the inversion formula (70) and

ﬁ-l{ t Ko(p.vsr)}z
sv/s Ky (i /s a)

[ | e ()| S i 3

(Carslaw and Jaeger, 1959). Because of the difficulty in calculating the integral in (93), it is computa-
tionally more efficient to numerically invert the solutions in the transform space using an algorithm by
Stehfest (1970). A procedure for calculating 7', P and C, from equations (90) through (92) is outlined
below.

Computational Procedure for the Fully Coupled Case

The analytical solutions for the one-dimensional and radial coordinate systéms for the uncoupled
and all of the coupled cases, including the fully coupled case, can be computed as follows:

1. calculate the Dy from (20),

2. calculate the d;, for j = 1,2,3,4, from (34),
3. calculate o and 5 from (40) and (41),

4. calculate 8 from (38),

5. calculate the p; from (43),
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6. calculate the b; from (76) in the uncoupled case and when thermal osmosis and thermal
filtration are included or from (48) in all other cases,

7. calculate the ¢; from (50),
8. calculate the lyi, ly; and 1,; from (61), (62) and (63),
9. calculate Jy ;n. from the incoming solvent and solute fluxes, Joine and Js ine, using Jy ine =
Joine Vo + Js,incVs,
10. calculate the g; from (65) and A from (66),
*-11." calculate the G; from G; = g;/(A p;),

12. in the one-dimensional case, calculate T, P and C, from (73), (74) and (75) using & =
i £/2+/t and in the radial case, calculate 7', P and C, from (90), (91) and (92) and numer-
ically invert them to obtain T', P and C;.

In steps 5 through 12 above, i = 1,2, 3.

Solutions for the Uncoupled and Thermal Osmosis Cases in One Dimension

In the thermal osmosis case, that is, when thermal osmosis and thermal filtration are included,
all of the phenomenological coefficients corresponding to the indirect processes are zero except for
the coefficients of thermal filtration and thermal osmosis, Ly, and Lyq. In the uncoupled case, both
of these coefficients are zero as well. In both cases, Drg and Dpg defined by (20), are zero, which
simplifies the system of transformed equations:

sT — T = Drr V2T + Drp VZP, (94)
$P — P; = Dpy V?T + Dpp V*P, (95)
S_C_, - C,',' = Dgr V2T+ Dgsp v?P + Dgg V’ﬁ,. (96)

In the system above, solutions for T and P may be obtained independehtly‘ of that for C,, and once
they have, C, may be determined from (96).

Assuming solutions for 7' and P of the same form as those in (28) and (29) yields the following

matrix equation:
Drr Drp A A
A =s , (97)
Dpr Dpp v»B B

Equation (97) will have a nonzero solution only if the determinant of the coefficient matrix for the
corresponding homogeneous matrix equation is zero:

(DppDrr — DprDrp) Xt — (Dpp + Drr) s A2 + 52 = 0. (98)

The roots of (98) are

_ S(DPP + Dr1) 2 \/(Drr — Dpp)? + 4DprDrp

) 99
2(DrrDpp — DprDrp) (99)

AZ
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and therefore,

(Dpp + Drr) £ \/(DrT ~ DPP)? + 4DpPrDTP
A==4/s . 100
\/ 2(DrrDpp — DprDrp) (100)

It is necessary to determine which combination of signs in (100) yields positive values of A because
only positive values, and hence negative arguments in the exponential functions in (28) and (29), will
give solutions that satisfy the boundary conditions at infinity. Drr, Dpp, Drp and Dpr are all
positive, because the material properties and phenomenological coefficients in the definitions are all
positive. Substituting the expressions for Dpr, Dpp, Drp and Dpr from (20) yields the following
expression for the denominator in (100):

1 c
DrrDpp — DprDrp = —— (7':% - %) (LggLus — LquLuy) - (101)

On the right-hand side of (101), the first two factors are positive because each individual term in them
is positive. The third factor is positive because the phenomenological coefficients are constrained
by (Lg¢Lvy — LgvLvg) > 0 (Katchalsky and Curran, 1967). Therefore, the denominator in (100) is
positive. The second term in the numerator of (100) is positive and can be rewritten as

(Dpp — Drr)? + 4 DprDrp = (Dpp + Drr)? — A(DppDrr — DprDrp). (102)

By (101), the second term in parentheses on the right-hand side of (102) is positive, so

Dpp + Drr > \/(Dpp + Dr1)? —4(DppDyr — DprDrP), (103)

and therefore, the numerator of (100) is always positive. Letting
/\.‘ = [1,'\/;, = 1,2, . (104)

A1 and A, are real and positive for gy and p, defined by

(Dpp + Dr7) — \/(DrT — DPP)? + 4DPT DrP

= , 105a
i 2(DrrDpp — DprDrp) (1052)
_ [(Dpp + D7)+ \/(Drr — Dpp)? + 4 DprDrp
2(DrrDpp — DprDrp)
The solutions for the transformed variables T and P can now be written as
- T &
T==+) Aexp(—pis2), (106)
i=1
- P <
P=—=+) B;exp(-piVsz), (107)
i=1

where the y; are defined by (105).
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Using (97), the B; can be expressed in terms of the A; by B; = b; A;, where the b; are given by
(76). The transformed inner boundary conditions can be used to determine the A;. In the uncoupled

case, they are

Jgine _ qu oT

s Tm Bz o
Jui 8P
v:nc L',u a i

and in the thermal osmosis case, they are

Tgine qu or| _, oP
s Tm Bz v
=0
Jv,inc _ qu @ —L., o
s  Tn Oz -0 ve

P
i}

z=0

(108)

(109)

(110)

(111)

Substituting the solutions for T and P from (106) and (107) into the transformed boundary conditions

above yields the following equations for the A;:

chnc _Z Iqtﬂt i

vmc z Im/‘: i)

where in the uncoupled case, the l;; and l,; are defined by

L. = L
qi Tm ’
Iui =b Lwa

and in the thermal osmosis case, they are defined by

L .

[qi = ']_-.'qni +bl qu:
L,

Iw'='—"q' bi vu-
T, Thl

(112)

(113)

(114)

(115)

(116)

(117)

Solving (112) and (113) for the A, and A, and substituting these results into (106) and (107) give the

final forms for the solutions in the transform space:

2

T T’+ 1
s >As\/§i=1 Hi

% exp (—piV/52),

(118)
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=_FB 1 b; gi '
== L exp (—p 1
P s+As¢§g m exp (—pi V5z), (119)
where
g1 = {y2 Jq,inc - lq2 Jv,inc, (120&)
g2 = Iql Jv,inc -1y Jq,incy (120b)
and
A=lgly— qulul. (121)

In (118) and (119) the b; are defined by (76), the u; by (105), and the l;; and l,; are defined by (114)
and (115) in the uncoupled case and by (116) and (117) when thermal osmosis and thermal filtration
are included.

Using the inversion formulas (70) and (71), the inverted solutions for the uncoupled and thermal
osmosis cases are

, .
T=T;+ Z G: [2 \/_t;—exp (—€2) — i :cerfc(f,-)l , (122)

i=1

2
P=P+ Z b G; [2 \/gexp (—€) — i xerfc(ﬁ;)l ) (123)

i=1

where the b; are defined by (76) and the y; by (105) and as in the first section, G; = g;/(A p;) and
& = p; £/(2/1), where A is defined by (121) and the g; by (120).

The solution for C, remains to be determined. Substituting the expressions for T and P from
(118) and (119) into (96), the governing equation for C,, yields

— — 1
Dss V*C, - sC, = -7 Z (Dst + b; Dsp) Gi pf exp (—pi Vsz) — Cs i, (124)

2
=1

which may be solved using the method of undetermined coefficients (Boyce and DiPrima, 1969). The
first step is to find the general solution to the homogeneous equation, and the second is to look for a
particular solution to the nonhomogeneous equation. Combining the results from the two steps gives
the final solution.

The homogeneous equation is

Dss V3Cs —sC, =0, (125)

which has as its general solution

— s )
Csu = Eyexp (—:c Das ) + Eqexp (:c Dss )’ (126)
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where the E; are constants. A particular solution to the nonhomogeneous equation is

- Cs,i 2
Con=—2+ ; Fi exp (—pi V5 2), (127)

where F; and Fj are constants. Substituting this expression into (124) and solving for the F; yield

F= fiGi (128)

3
$

&

where

Dst + b Dsp) p? ,
o=t o 15ssu?) . (129)

The general solution to (124) is the sum of -C'_,,H and 5,,1\;. The constant E5 in 6,, g must, however,
be zero in order for the boundary condition at infinity to be satisfied. The solution for C, can now be
written as

—_ Cs,i S 2
C,:—s——}-Elexp(—:c‘/m)+ZFieXP(—lii\/§$); (130)

i=1

where the F; are given by (128) and E, is to be determined from the transformed inner boundary
condition, which for both the uncoupled and thermal osmosis cases is

Js inec — Cs m Jv tne RTm ’ 6?,
) 3 — k) —_ _La —— e 131
s(L=CamV,) *ComM, Oz (131)
! z=0
Substituting the expression for C, from (130) in the equation above and solving for E; yield
E = —= | (132)

where

_ vV .DSS Cs,m Ms Js,inc - C,,m J",‘ﬂc 2
“= IR oy, ) T VPss 2 mfiGe (133)

The final form for C, is

- Ca,s' €1 S 1 2 .
C, = . —7= eXp (—z \ / Des ) + ﬁ; fiGi exp (—pi Vs z) . (134)

Using (70) and (71) to invert C, gives
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C, = Cs,i +e;

9 \/gexp (—(2) -z erfc(()]

2
+) £iGi l2 \/g exp (—€7) —piz erfc(&)] , (135)

i=1

where

z
= —— 136
(=37D (136)
Dss is defined by (10), e; by (133), the f; by (129), Gi = g:/(Ap;), the g; by (120), A by (121), the

pi by (105) and & = piz/(2V).

Because of the complicated form of the solutions, it is exceedingly difficult to algebraically prove
that the solutions for T, P and C, in (73) through (75) reduce to those in (122), (123) and (135) in
the uncoupled case and when thermal osmosis and thermal filtration are included. The equivalence of
the solutions has been verified numerically by calculating the solutions for the uncoupled and thermal
osmosis cases from the first section and comparing the results to those obtained by calculating the
solutions' derived in this section. The procedure used to calculate the latter is outlined in the last
section.

Solutions for the Uncoupled and Thermal Osmosis Cases in a Radial Geometry

For the uncoupled and thermal osmosis cases, the simplified system of transformed equations is
given by (94) to (96) with V2 = §2/6r? + (1/r) 8/8r. Assuming solutions of the form of (78) and (79)
for T and P and following the procedure used in the previous section lead to the following expressions:

2

sT—T,-:ZA;Ko(u.-\/Er), (137)
2

sP—Pi=) b AiKo(pivsr), (138)
=1

where the b; are given by (76), the p; by (105), and the A; are to be determined from the inner
boundary conditions. In the uncoupled case, the boundary conditions are

Jgine _ Lgqg 0T
s  Tm Or i ’ (139)

Jv,inc _ 6-13
" = —Lyy 3 , (140)

r=a
and in the thermal osmosis case, they are
Jyine _ Lgg 0T oP
s T, Or k™ ! (141)
r=a r=a
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Jv,inc Luq 6-T- B—P_
Zvpne  _v4 —Lyy ¥
r

(142)

r=a r=a

Substituting the solutions for T and P from (137) and (138) into the equations above yields the
following equations for the A;:

Jq,inc
w3 glq,y,A i Ky (;1, Vsa), (143)

J,
s”\}'? ZI,,. pi A; Ky (i v/5a), (144)

where in the uncoupled case, the l,; and l,;.are given by (114) and (115) and when thermal osmosis and
thermal filtration are included by (116) and (117). Solving (143) and (144) for the A; and substituting

the results into (137) and (138) give the final expressions for 7 and P:

2
_G Y, o(u. k) |
T8 \/'; K1 (piv/5a)’ (145)
?=§+_1__22 b, G, Kol v/5T) (146)

s VoA N R uivme)
where the b; are defined by (76), G; = ¢:/(Ap;), the g; are defined by (120), A by (121) and the p;

by (105).

The sohition for C, is obtained by substituting P from (138) into (96) and following the steps
given in the fourth section. The general solution to the homogeneous equation (125) is

Conr = Bv Ko (rv/5/Dss ) + B2 Io (/5 Dss ) , (147)

where the E; are constants. The nonhomogeneous equation is

— — K (#‘-\/Er)
T o - 4 e 2O VST) o
Dgss V2C, — sC, 5\/3;:1 (Dst + b Dsp) gi pi Ry (/e a) Cs,i, . (148)

a particular solution of which is

I

where the F; are defined by (128). The general solution to (148) is the sum of 6,, g and -5,, N. Because
Io (piv/sr) increases exponentially as r increases, the constant Ej in 5,, g must be zero in order for
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the boundary condition at infinity to be satisfied. Combining the expressions from (147) and (149),
the solution for C, can be written

_ Cui " 2, Ko(si/5r)
C.==2 1B Ko (ry/ /Dss) +§ S NN DL (150)

where the only remaining unknown, E;, can be determined using the inner boundary condition for .
C,. For both the uncoupled and thermal osmosis cases, the boundary condition is

Jsine — Cs m Juinc RT,, ab—a
: et = — Ly (151)
8 (1 - Cs'm V’) ’ Cs,mMs 61' r=a
Substituting the expression for C, from (150) in the equation above and solving for E; yield
Ey = ° | (152)

8\/5 K, (a\ /37D55)
where e is defined by (133). The final expression for C, is

_ G e Ko(rvolDss)

=& LS~ g, Kol v/or)
©=5 MY Kl(a\/S/DSS)-*-S\/Eiz_—_;f'G’ Ky (pisa) (153)

where Dgg is defined by (10), e; by (133), the f; by (129), G; = g:/(Aps), the g; by (120), A by (121),
and the p; by (105). As noted in the second section, the solutions in (145), (146) and (153) may be
analytically inverted using (70) and (93) or numerically inverted using the Stehfest (1970) algorithm.

The procedure for calculating T, P and C, is outlined in the next section.

Computational Procedure for the Uncoupled and Thermal Osmosis Cases

For completeness, the procedure for calculating the analytical solutions for the uncoupled and
thermal osmosis cases for the one-dimensional and radial geometries, derived in the fourth and fifth
section, respectively, is outlined in this section. The computational procedure outlined in the third
section could also be used.

1. calculate the Dy from (20),

2. calculate the p; from (105),
3. calculate the b; from (76),
4

. calculate the I;; and l,; for the uncoupled case from (114) and (115), and calculate the l,;
and ly; when thermal osmosis and thermal filtration are included from (116) and (117),

5. calculate Ju inc from the incoming solvent and solute fluxes, Jo inc and Js inc, using Jy ine =
JO,inc VO + ']s,ich.n

6. calculate the g; from (120) and A from (121),
7. calculate the G; from G; = g; /(A wi),
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8. calculate the f; from (129),
9. calculate e; from (133),

10. in the one-dimensional case, calculate T, P and C, from (122), (123) and (135) using &; =
piz/2/t and { = 2/2+/t Dss, and in the radial case, calculate T, P and C, from (145),

(146) and (153) and numerically invert them to obtain T', P and C,.

In steps 5 thfough 10 above, i =1,2.

NOTATION
a location of inner boundary in axisymmetric case m
Cs concentration of solute kg/m3
C, Laplace transform of solute concentration kg-s/m3
Cyii initial value of solute concentration kg/m3
Com average concentration of solute kg/m3
Co concentration of solvent kg/m3
Cp.f specific heat capacity of fluid phase at constant pressure J/(K-kg)
Cpn specific heat capacity of solid phase at constant pressure J/ (K -kg)
Cof specific heat capacity of fluid phase at constant volume J/(K-kg)
Con specific heat capacity of solid phase at constant volume J/(K kg)
Jq heat flux W/m?
Jginc  incoming heat flux at inner boundary W/m?
Js solute flux (laboratory frame of reference) kg/m?.s
Jsinc  incoming solute flux (laboratory frame of reference) at inner boundary kg/m?.s
J? solute flux (defined relative to motion of solvent) kg/m?.s
2:ne incoming solute flux (defined relative to motion of solvent) at inner
o boundary kg/m?s
Ju volume flux m/s
- Jyine incoming volume flux at inner boundary m/s
Jo solvent flux (laboratory frame of reference) kg/m?.s
Jojine  incoming solvent flux (laboratory frame of reference) at inner boundary kg/m?.s
L, coefficient of Dufour effect kg/ms
L,, coefficient of thermal diffusion kg/m-s
Ly, coefficient of mass diffusion (Fick’s law) kg2/J-ms
L,, coefficient of ultrafiltration kgm?/J-s
Ly, coefficient of thermal osmosis m?/s
Lys coefficient of chemical osmosis kg-m?/Js
Ly, coefficient of advection (Darcy’s Law) m®/J.s
M, molecular weight of solute kg/mole
p pressure Pa
P Laplace transform of pressure Pas
P; initial value of pressure Pa
r radial distance m
R universal gas constant J/K-mole
s Laplace transform variable s—1
t time s
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T temperature K

T Laplace transform of temperature K-s

T; initial value of temperature K

T average temperature K

Vs partial specific volume of solute m3/kg

z distance , _ m

By coefficient of thermal expansion of fluid phase K-!

Bn coefficient of thermal expansion of solid phase K-!

€5 volume fraction of fluid phase

€n volume fraction of solid phase

Ky coefficient of isothermal compressibility of fluid phase m?/N

Kn coefficient of isothermal compressibility of solid phase ' m?/N

ps density of fluid phase kg/m3

Pn density of solid phase : kg/m3
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