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Uncertainty quantification of satellite precipitation estimation

and Monte Carlo assessment of the error propagation

into hydrologic response

Yang Hong,1,2 Kuo-lin Hsu,1 Hamid Moradkhani,1 and Soroosh Sorooshian1

Received 30 June 2005; revised 9 March 2006; accepted 28 March 2006; published 12 August 2006.

[1] The aim of this paper is to foster the development of an end-to-end uncertainty
analysis framework that can quantify satellite-based precipitation estimation error
characteristics and to assess the influence of the error propagation into hydrological
simulation. First, the error associated with the satellite-based precipitation estimates is
assumed as a nonlinear function of rainfall space-time integration scale, rain intensity, and
sampling frequency. Parameters of this function are determined by using high-resolution
satellite-based precipitation estimates and gauge-corrected radar rainfall data over the
southwestern United States. Parameter sensitivity analysis at 16 selected 5� � 5� latitude-
longitude grids shows about 12–16% of variance of each parameter with respect to its
mean value. Afterward, the influence of precipitation estimation error on the uncertainty of
hydrological response is further examined with Monte Carlo simulation. By this approach,
100 ensemble members of precipitation data are generated, as forcing input to a conceptual
rainfall-runoff hydrologic model, and the resulting uncertainty in the streamflow
prediction is quantified. Case studies are demonstrated over the Leaf River basin in
Mississippi. Compared with conventional procedure, i.e., precipitation estimation error as
fixed ratio of rain rates, the proposed framework provides more realistic quantification of
precipitation estimation error and offers improved uncertainty assessment of the error
propagation into hydrologic simulation. Further study shows that the radar rainfall-
generated streamflow sequences are consistently contained by the uncertainty bound of
satellite rainfall generated streamflow at the 95% confidence interval.

Citation: Hong, Y., K.-L. Hsu, H. Moradkhani, and S. Sorooshian (2006), Uncertainty quantification of satellite precipitation

estimation and Monte Carlo assessment of the error propagation into hydrologic response, Water Resour. Res., 42, W08421,

doi:10.1029/2005WR004398.

1. Introduction

[2] Precipitation is a key forcing variable to the land
surface hydrological process at all space-timescales. There-
fore a better understanding of the spatial and temporal
distribution of precipitation is critical to water resources
management where the sizes of basins range from 100 km2

to 100,000 km2 and the temporal integration of rainfall
inputs ranges from hours to days. However, precipitation
observation from ground-based radar or gauge measurement
for the remote areas and mountain regions is very limited.
Recent development of satellite-based precipitation-retrieval
techniques has been providing extended precipitation cov-
erage beyond ground in situ data [Adler et al., 2003; Ba and
Gruber, 2001; Bellerby et al., 2000; Hong et al., 2004,
2005; Hsu et al., 1997; Huffman et al., 2001; Joyce et
al., 2004; Kuligowski, 2002; Kidd et al., 2003; Miller et al.,

2001; Sorooshian et al., 2000; Xie et al., 2003]. While these
algorithms provide precipitation products at spatial and
temporal scales relevant to atmospheric and hydrological
applications, quantification of the estimation error associated
with the products at a range of space scales and timescales
is critical due to the emerging use of satellite precipitation
products in the study of hydrologic and water management
applications. A great deal of progress in evaluating rainfall
estimation error has been made over the past decades
[Anagnostou et al., 1999; Carpenter and Georgakakos,
2004; Ciach et al., 2003; Huffman, 1997; Hossain et al.,
2004; Hossain and Anagnostou, 2004; Krajewski et
al., 1991, 2000; Krzysztofowicz, 1999; Li et al., 1996,
1998; McCollum and Krajewski, 1998; Rudolf, 1993;
Steiner et al., 1999; Steiner, 1996; Steiner et al., 2003].
In one of those studies, Huffman [1997] developed a
statistical relationship of the root-mean-square random
errors associated with precipitation estimates. Ciach and
Krajewski [1999] proposed the error variance separation
(EVS) method to decompose the uncertainty of reference
error into retrieval error and sampling error. Gebremichael
et al. [2003] assessed the key factors, such as gauge density
and sampling size, that affect the accuracy of EVS results.
Steiner et al. [2003] proposed a framework to identify
possible relationships between sampling error in radar
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Figure 1. A conceptual ‘‘end-to-end’’ error analysis framework for precipitation data producers and
users.

Figure 2. (a) Geographic domain and satellite-based versus radar-based accumulated monthly rainfall
over all selected boxes in (b) August 2003 and (c) June 2004; and (d-e) the occurrence of monthly rainfall
for the 2 months. Note that the S/R is the ratio of satellite versus radar rainfall, Corr is correlation
coefficient, and RMSE is the root-mean-square error.
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rainfall estimates and several other factors. Hossain et al.
[2004] conducted a sensitivity analysis to understand the
implication of satellite Passive Microwave (PM) rainfall
retrieval and sampling error on flood prediction uncertainty
for medium-sized (�100 km2) watersheds. In a follow-up
paper, Hossain and Anagnostou [2004] examined the
passive microwave (PM)- and infrared (IR)-based satellite
rainfall retrieval for flood prediction using a probabilistic
error model. Hossain and Anagnostou [2004] also explored
the uncertainty bound of simulated flood events based on
various microwave rainfall samples and hourly infrared-
based rainfall estimates. The above research indicated that
it is critical to improve the communication between pre-
cipitation data producer and user community by quantify-
ing the estimation error and assessing the influence of error
propagation into hydrologic processes. For data providers,
the error inherent in the retrieval algorithm is of particular
interest. However, from the perspective of data users, the
error associated with the data and the influence of the error
propagation into the hydrologic responses is generally
interesting. As shown in Figure 1, quantification of error
associated with precipitation products would provide more
useful information for users (decision makers) than no error
assessment at all. To quantify the influence of estimation
error on hydrologic responses by ensemble simulation
would further place an appropriate degree of confidence
from data users’ perspectives.
[3] This study aims to foster the development of an end-

to-end uncertainty propagation analysis framework that can
quantify the error of satellite rainfall estimation and further
assess the uncertainty of the error propagation into various
hydrological modeling and applications. The error is
expressed as a nonlinear multivariate function of space-time
integration scale, rain intensity, and sampling frequency.
The advantage of this error formula, for example, is that the
various users of the precipitation products can approximate
the error by simply implementing the function at their
specified space-timescales and rain intensities. The influ-
ence of precipitation estimation error on a conceptual
rainfall-runoff hydrologic model is examined through

Monte Carlo simulation. By this approach, an ensemble of
precipitation data is generated, as forcing to the hydrologic
model, and the resulting uncertainty in the hydrologic
response is quantified at different confidence intervals.
[4] The outline of this paper is as follows: The formulation

of precipitation estimation error is described in dection 2, and
the data used in the study and the calibration procedure to
approximate the error function are presented in section 3. The
uncertainty of streamflow prediction associated with the
satellite rainfall estimation error is assessed in section 4,
and the summary and discussion are given in section 5.

2. Error Quantification Framework

[5] There is a fundamental difference between satellite and
radar remotely sensed observations of precipitation and those
measured directly by rain gauges. While satellites and radar
measure rainfall as a space integral at a given instance in time,
rain gauges, on the other hand, measure rainfall as a time
integral of rain at a particular location. Let r(x, t) represent the
rain rate (mm h�1) at a point x and in time t. Then, the rainfall
at point x accumulated during time period T is

RT xð Þ ¼ 1

T

Z T

0

r x; tð Þdt ð1Þ

and the instantaneous rain rate (at time t) averaged over an
area of A is

RA tð Þ ¼ 1

A

Z A

0

r x; tð Þdx ð2Þ

The RA(t) is of interest for satellite rainfall estimation because
it is the typical measurement by the satellite at each visit.
Equation (2) also indicates the nature of the measurements
from satellite data: rainfall is the quantity measured as an
integral of space (A) at a point in time (t). Integration of the
instantaneous rain rate r(x, t), both in time and space, gives the
space-time average of rain rate

RAT ¼ 1

AT

Z T

0

Z A

0

r x; tð Þdxdt ¼ 1

T

Z T

0

RA tð Þdt ¼ 1

A

Z A

0

RT xð Þdx

ð3Þ

Table 1. Reference Error s/R̂(%) at a Range of Spatiotemporal

Scales at Box M in June 2004a

0.04� 0.12� 0.24� 0.48� 0.96�

1 hour 1.1269 1.065 0.984 0.839157 0.782346
3 hours 0.9457 0.925 0.867 0.813293 0.735735
6 hours 0.8761 0.871 0.825 0.741898 0.698290
12 hours 0.8316 0.833 0.790 0.732958 0.692426
24 hours 0.7866 0.785 0.758 0.703407 0.675744

aSee Figure 2a.

Table 2. Number of Grids for the Statistical Computation at

Box M in June 2004a

0.04� 0.12� 0.24� 0.48� 0.96�

1 hour 10929571 1172898 278442 68965 16787
3 hours 3665026 392174 93145 23048 5524
6 hours 1839258 196388 46657 11539 2733
12 hours 931103 99003 23529 5838 1341
24 hours 462603 48789 11598 2869 666

aSee Figure 2a.

Figure 3. Satellite-based rainfall estimation error distribu-
tion as a function of spatial and temporal resolution without
consideration of rain intensity.

W08421 HONG ET AL.: ERROR PROPAGATION FROM SATELLITE RAINFALL

3 of 15

W08421



Equation (3) assumes perfect measurement of rainfall over an
area A and time period T. Because of the imperfect nature of
satellite rainfall estimation algorithms, there is always an
error associated with the retrieval of the RA(t). Here, we
denote the rain rate averaged over area A as R̂A(t). Supposing
that the satellite makes N visits over an area A during a time
period T, one can write the satellite-derived rainfall at space-
time averaged scale as

R̂AT ¼ 1

N

XN
i¼1

R̂A tið Þ ¼ Dt

T

XT=Dt
i¼1

R̂A tið Þ ð4Þ

where Dt(= T/N) is the time interval between consecutive
visits, which is also called sampling frequency. The error
associated with R̂AT can be written as

e ¼ R̂AT � RAT ¼ 1

N

XN
i¼1

R̂A tið Þ � RAT

¼ Dt

T

XT=Dt
i¼1

R̂A tið Þ � 1

T

Z T

0

RA tð Þdt ð5Þ

In reality, there are no ‘‘true data’’ available. The
approximation of the ‘‘true error e’’ can be assessed through

comparison with independent reference data (RAT
ref, e.g.,

radar or gauge rainfall). The reference error is often used to
approximate the true error (e) (see Appendix A for an
explanation). Both the standard deviation and the variance
are measures of spread of the reference error (e). The
standard deviation is the square root of the variance and has
the desirable property of being in the same units as the data.
That is, in the case of this study, both rainfall rate and its
error standard deviation are in mm h�1:

sE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var R̂AT � Rref

AT

� �q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var

Dt

T

XT=Dt
i¼1

R̂A tið Þ � Rref
AT

 !vuut ð6Þ

The error of precipitation estimate, sE, is a function of its
area coverage (A), time integration (T), sampling frequency
(Dt), and the space-time average of rain rate (R̂), inversely
proportional to A and T and nonlinearly proportional to Dt
(sampling frequency) and R̂. In this study, similar to Steiner
et al. [2003], the area A is substituted with spatial scale L,
the side length of A. Thus the nonlinear multivariate
function random error, sE, is written as

sE ¼ f
1

L
;
Dt

T
; R̂

� 
¼ a

1

L

� b
Dt

T

� c

R̂
� �d ð7Þ

Table 3. Reference Error s/R̂(100%) at Various Spatialtemporal Scales and 10 Bins of Incremental Rain Ratea

Spatial, deg

Rain Rate, mm/h

0.1–0.5 0.5–1 1–2 2–3 3–4 4–5 5–10 10–20 >20

1 Hour
0.04 553.4 283.5 189.3 139.3 111.8 103.1485 99.5772 93.0648 83.686
0.12 370.2 225.8 156.4 127.3 104.7 101.2412 93.03398 90.108 82.135
0.24 263 197.5 131 106.9 98.45 91.29212 86.49507 83.5329 79.156
0.48 233.2 138.7 105.5 93.07 85.2 77.3654 70.61353 70.8495 69.504
0.96 99.13 105.4 79.04 71.11 72.25 71.28587 70.26871 65.4098 -

3 Hours
0.04 295.2 180.2 125 102.1 93.73 90.52022 86.95734 79.7471 75.879
0.12 229.4 152.6 109.8 98.03 93.1 85.17111 81.61962 78.5683 73.791
0.24 168.6 127.8 105.6 91.78 85.09 80.34503 75.57973 73.4305 73.036
0.48 151.4 102.8 89.69 82.03 71.48 67.73598 70.19385 71.4969 -
0.96 89.1 85.39 75.58 72.87 70.26 64.23749 60.69096 54.8749 -

6 Hours
0.04 200.2 130 101.6 92.46 86.46 83.27407 77.91234 70.7205 74.324
0.12 171.5 118.7 96.97 88.98 79.59 77.38816 75.14635 70.5529 -
0.24 133.3 110.9 90.09 83.9 75.61 71.0505 69.18679 68.9132 -
0.48 111.1 91.63 82.66 74.61 68.58 65.31336 64.8041 62.5515 -
0.96 84.86 82.8 69.49 60.4 55.8 56.77127 - - -

12 Hours
0.04 167.4 109.3 94.83 83.59 75.16 72.53024 69.59589 69.583 -
0.12 143.5 102.9 88.29 77.19 74.95 71.64718 65.70086 60.075 -
0.24 106.9 93.22 83.55 73.8 74.29 64.39437 59.66018 - -
0.48 89.76 86.07 75.1 69.58 59.19 56.75801 - - -
0.96 80.11 73.26 61.08 61.75 56.31 - - - -

24 Hours
0.04 121.4 94.71 82.94 71.38 65.25 65.19843 - - -
0.12 105.8 87.64 78.46 71.14 69.36 - - - -
0.24 93.4 83.85 70.42 68.2 68.24 - - - -
0.48 80.64 71.41 67.77 61.1 - - - - -
0.96 78.08 70.31 59.11 58.72 - - - - -

aDash indicates no data.
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where a, b, c, and d are the parameters of the approximation
function, and the units of L, T, and R̂AT are degrees of
longitude, hour, and mm h�1, respectively. The sampling
frequency Dt is 1 hour from the satellite observation in this
study. In order to make it comparable to results obtained
from different climate regimes and various seasons, e.g., dry
or wet, the error sE needs to be tied to a rain rate. As shown
in equation (8), the error could also be expressed as
percentage (%) of rain rate by dividing the space-time
average of rain rate (R̂):

sE=R̂
� �

¼ f
1

L
;
Dt

T
; R̂

� 
¼ a

1

L

� b
Dt

T

� c

R̂
� �d�1 ð8Þ

3. Data and Analysis Procedure

3.1. Data

[6] The satellite rainfall estimates used in this study
are from the PERSIANN-CCS (Precipitation Estimation

from Remote Sensed Information using Artificial Neural
Network–Cloud Classification System) algorithm [Hong et
al., 2004]. The PERSIANN-CCS is the follow-up version of
our earlier reported work, the PERSIANN algorithm [Hsu et
al., 1997; Sorooshian et al., 2000]. The PERSIANN-CCS is
a patch-based cloud classification and rainfall estimation
system based on coregistered passive microwave and infra-
red images from low Earth-orbiting and geostationary
satellites by using computer image processing and pattern
recognition techniques. We operate this system (http://hydis8.
eng.uci.edu/CCS/) with the goal of producing data at spatial-
temporal resolution (reaching 4 � 4 km2 30 min) suitable
for basin-scale hydrological research and applications.
PERSIANN-CCS has been generating precipitation esti-
mates at resolution (0.04� � 0.04� scale and 30-min time
interval) since 2000.
[7] The National Weather Service WSR-88D stage IV

data serve as ground reference rainfall data at 4 km � 4 km
spatial and hourly temporal resolution. Both stage II and

Figure 4. (left) Error distribution as a function of spatial and temporal scales at increasing rain rates for
box I (August 2003). (right) Percentage of error to rain rate.

W08421 HONG ET AL.: ERROR PROPAGATION FROM SATELLITE RAINFALL

5 of 15

W08421



stage IVanalysis are national products generated at National
Center for Environmental Prediction (NCEP) from multi-
sensor (radar and gauge) hourly/6 hourly rainfall data on
local 4-km polar stereographic grids. The stage IV data
differ from the NCEP stage II data because the NCEP stage
II data contain no manual quality control (QC), while the
stage IV data benefit from manual QC performed at the

12 River Forecasting Centers over the continental United
States. The period of stage IV record begins 1 January 2002,
while stage II began to be archived at NCAR on 1 May
1996. The stage IV high spatial and temporal resolution
rainfall analysis provides data useful for testing of satellite
rainfall estimation algorithms. Additional information about
the NCEP stage IV analysis can be found at http://
wwwt.emc.ncep.noaa.gov/mmb/ylin/pcpanl/stage4/.
[8] The selected study coverage, shown in Figure 2a as

the shaded area, was divided into 16 boxes, 5� � 5� for
each. Two heavy rainfall seasons (August 2003 and June
2004) were selected for the analysis of uncertainty sE. The
scatterplots of PERSIANN-CCS and radar monthly accu-
mulation rainfall (0.04� grid) during August 2003 and
June 2004, respectively, are shown in Figures 2b and 2c.
Both months show high spatial correlation (Corr) and
relatively low root-mean-square error (RMSE); however,
PERSIANN-CCS underestimates the two summer months
with satellite-to-radar ratio (S/R) of 0.94 and 0.96, respec-
tively. The occurrence of the rainfall for the two months,
respectively, is displayed in Figures 2d and 2e. The
peaks of occurrence indicate that both months received
relatively heavy rainfall over large areas. In August 2003,
the PERSIANN-CCS estimates match the radar at low
rainfall regions (less than 100 mm) but overestimates
rainfall at medium rainfall (100–200 mm) and heavy
rainfall regions (>230 mm). In June 2004, false alarms
occur at no rain or light rainfall regions and slightly
underestimate at heavy rainfall regions (>350 mm).

3.2. Case Studies

[9] Given their processed basic resolution (0.04� � 0.04�
and hourly), both the satellite and radar data sets were
aggregated into a range of discrete temporal (1, 3, 6, 12, and

Table 4. Parameter Estimation for Each of the 16 Selected Boxes

Boxes a b c d RMSE, %

A 1.11 0.2608 0.328 0.682595 14.0912
B 0.9794 0.2751 0.3423 0.696877 10.57958
C 0.8791 0.2274 0.3447 0.549421 17.07047
D 0.7279 0.193 0.3103 0.515032 12.9689
E 0.842 0.3051 0.3724 0.727115 12.99048
F 0.9755 0.2205 0.2878 0.642486 15.42445
G 0.9451 0.2865 0.3538 0.708498 13.80694
H 0.9241 0.192 0.2593 0.613987 16.25296
I 0.8674 0.1962 0.2635 0.618213 14.82851
J 0.7842 0.294 0.3613 0.715968 13.69446
K 0.9274 0.1774 0.2154 0.965651 10.66329
L 0.9659 0.2577 0.325 0.795838 10.00643
M 0.7211 0.2136 0.3309 0.5356 15.76622
N 0.9703 0.3406 0.4078 0.762369 14.0912
O 0.7492 0.3115 0.4288 0.633527 16.54722
P 0.6854 0.1986 0.3159 0.52057 13.58956
All 0.8018 0.2317 0.3465 0.5576 9.5
Maximum 1.1100 0.3400 0.4288 0.9657 17.0100
Minimum 0.6854 0.1774 0.2154 0.5150 9.5000
Range 0.4246 0.1632 0.2135 0.4506 7.5705
Mean 0.8732 0.2460 0.3290 0.6618 13.6395
Median 0.8791 0.2317 0.3309 0.6425 13.8069
STD 0.1166 0.0496 0.0529 0.1161 2.3190
Variance 0.0136 0.0025 0.0028 0.0135 5.3780

Figure 5. (a) Estimated parameters in equation (7) from the data of each of the selected boxes (A-P) and
the data of all the boxes (all) (see Figure 2a and Table 4 for detail) and (b) box plot of the four parameters.
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24 hours) and spatial (0.04�, 0.12�, 0.24�, 0.48�, and 0.96�)
scales. Therefore each box is divided into subgrids with side
lengths of 0.04�, 0.12�, 0.24�, 0.48�, and 0.96� latitude-
longitude; each subgrid holds rainfall intensities at time
resolutions of 1, 3, 6, 12, and 24 hour for this analysis. The
error analysis is conducted for each box separately. As an
example, box I (August 2003) and box M (June 2004), as
shown in Figure 2a, were selected to calculate the reference
error. Note that the sampling frequency Dt is 1 hour from
the PERSIANN-CCS data.
3.2.1. Calculating the Reference Error as a Function
of Spatial and Temporal Scales
[10] Regardless of the rainfall intensities, Table 1 shows

the reference error s/R̂(%) as a function of spatial and

temporal scales at box M, the Rio Grande basin, in June
2004 wet season. The count of effective subgrid numbers
from this statistical computation is listed in Table 2. The
maximum count of a subgrid number at 1-hour 0.04� scale
is 11,250,000 (125 rows � 125 columns � 24 hour �
30 day) within each 5� grid for rainfall data in June 2003.
Similarly, the reference error (%) distribution, calculated at
box I in August 2003, as a discrete function of spatial and
temporal scales is shown in Figure 3. Without consideration
of the rain intensity, Table 1 and Figure 3 show that the
satellite rainfall estimation reference error (%) is a function
of spatial and temporal scales where higher spatial and
temporal resolution is subject to larger reference error.

Figure 6. Plot of the error distribution with respect to L, T, and R using the optimal parameters from
equation (9).
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3.2.2. Calculating the Reference Error as a Function
of Spatial-Temporal Scales and Rainfall Intensities
[11] The satellite rainfall estimates were incrementally

divided into 10 bins according to their intensities; the refer-
ence errors are then calculated for each rain rate bin at various
spatial and temporal scales. The reference error, derived from
box M in June 2004, as a function of both spatial-temporal
scales and rainfall intensities is given in Table 3.
[12] The reference error (sE) distribution at the discrete

temporal and spatial scales and increasing rain rates for box I
in August 2003 are displayed in Figure 4 (left). The same
reference error is shown in Figure 4 (right), but as a percent-
age of rainfall estimates sE/R̂(%).
[13] The procedure was repeated for the other 14 grids in

Figure 2a. A reference error look-up table, similar to Table 3,

is established by using the whole year data (July 2003 to
June 2004) for each grid shown in Figure 2a. All the results
(not shown here) support the assumption that the error in
satellite-based rainfall estimation is inversely proportional
to the area and time interval integration and proportional to
the rainfall rate.

3.3. Regression Parameter Estimation

[14] For each box shown in Figure 2a, we built up a
reference error look-up table from an entire year data set at
various spatial-temporal scales and 10 bins of incremental
rain intensities. By defining the minimum satellite sampling
frequency as 1 hour (Dt = 1), the parameters (a, b, c, and d)
of equation (7) were calibrated using the error look-up table
derived from the 1-year data set for every box. The resulting
parameter estimates of equation (7) for each of the 16 grids

Figure 7. Same as Figure 6, except the error is expressed as percentage (%) of rain rates.
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(Figure 2a) and for the data from all of the boxes are listed
in Table 4. Using the RMSE as calibration criterion for
equation (7), the optimal parameter sets are estimated
separately for the data in each 5� � 5� grid box (see
Figure 2a). As shown in Figure 5a, the error estimation
function with the optimal parameter set is

sE ¼ f
1

L
;
Dt

T
; R̂

� 
¼ 0:8018

1

L

� 0:2317
1

T

� 0:3465

R̂
� �0:5576 ð9Þ

[15] The box plots of the calibrated parameters are given in
Figure 5b. The lower and upper lines of the box are the 25th
and 75th percentiles of the sample. The distance between the
top and bottom of the box is the interquartile range. The cross
sign indicates potential outlier or extreme points of the range;
the line in the middle of the box represents the mean. If the
mean is not centered in the box, the distribution is skewed.
The statistical information of the 17 sets of parameters is also
listed in the bottom rows of Table 4. Figure 5 andTable 4 show
the spatial variability of each parameter derived fromdifferent
5� � 5� latitude-longitude grids. In particular for parameters
b, c, and d, the ranges of values are more than 50% of their
mean values, which shows that the error of satellite-derived
precipitation estimates can be region-dependent. Notably, it is
reasonable to expect that the error in wet season is generally
larger than dry season. For example in box M, the error
simulated from the parameter set in Table 4 is generally
smaller than the error in Table 3. The difference essentially
originates from the fact that the parameters in Table 4 are
calibrated by entire year data [2004], whereas Table 3
represents the error in wet season only (June 2004). Addi-
tionally, the parameter fitting is influenced by the uneven
distribution of the rainfall intensity, more heavy rainfall
occurrence in wet season than dry season.
[16] Using the calibrated optimal parameter set in equa-

tion (9), Figure 6 plots the reference error estimates (sE)
with respect to spatial-temporal scales and rainfall intensi-
ties; the same reference error estimates but as a percentage
of rainfall intensity (sE/R̂) are plotted in Figure 7. Note that
in the current study, we arguably assume that the effect of
sampling frequency in equation (7) is negligible because the
PERSIANN-CCS has relatively high sampling frequency
(30-min), one of the advantages of rainfall estimates using
multiple satellites.

4. Propagation of Rainfall Estimation Error
Into Hydrological Response

[17] As the key forcing variable of hydrological processes,
the precipitation is largely responsible for the variability in

Figure 8. Study area for streamflow uncertainty estima-
tion associated with rainfall uncertainty.

Figure 9. Hydrologic Model (HyMOD) after Boyle et al. [2001].
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model outputs. Clearly, evaluation of the error associated
with precipitation products into model behavior is an
indispensable element of improving hydrologic modeling
and data assimilation.
[18] In the current study, the influence of the error of

input-forcing data, i.e., precipitation, through a conceptual
rainfall-runoff hydrologic model to output forecasting
uncertainty is evaluated by propagating the approximated
PERSIANN-CCS rainfall error estimates with a Monte
Carlo simulation approach. This approach generates an
ensemble of precipitation data as forcing input to fit to the
conceptual rainfall-runoff model, and the resulting uncer-
tainty in the forecasted streamflow is then quantified. The
applicability and usefulness of this procedure is demonstrated
in the case of the Leaf River basin, located north of Collins,
Mississippi. The size of the Leaf River basin is about
1949 km2. A map of the Leaf River basin is shown in
Figure 8. We have used a daily time step for precipitation
input. This may be larger than desirable to capture the
hydrologic response. See, e.g., Burges [2003] for a perspec-
tive on this issue.
[19] To demonstrate rainfall error propagation through a

hydrologic model, we employed a parsimonious conceptual
Hydrologic Model (HyMOD) as described by Boyle et al.
[2001] (Figure 9) in the model simulation. HyMOD has its
origins in the probability-distributed moisture model (PDM)

[Moore, 1985], an extension of some of the lumped storage
models developed in 1960s, and later to the case of multiple
storages representing a spatial distribution of different
storage capacities in a watershed. HyMOD is a rainfall
excess model defined by a nonlinear tank (representative of
the watershed soil moisture content) connected with two
series of linear tanks, three identical quick flow tanks
(responsible for channel routing) in parallel to a slow flow
tank representing the base flow. The model contains five
states of variables describing the dynamics of the system
along with five parameters which characterize the system
and need to be calibrated; for more information, see
Moradkhani et al. [2005a, 2005b].
[20] Once the spatial size (1949 km2) and the temporal

resolution (daily in this case) of the Leaf River basin are
specified, the standard error of rainfall as a function of rain
rate can be estimated from equation (9). Figure 10 shows
the error, in terms of RMSE and relative percentage error, of
precipitation based on the regression parameters of those
16 test grid boxes and the averaged parameter set listed in
Table 4. As shown in Figure 10a, the RMSE of estimated
rainfall is increased with respect to rainfall with higher
intensity. In terms of percentage error of estimated precip-
itation (see Figure 10b), high-intensity rainfall is subjected
to lower-percentage relative error. The straight bold line
shown in Figure 10b assumes the error as fixed ratio (50%)

Figure 10. Given the size of the Leaf River basin and the temporal resolution (daily in this case), the
reference error (%) is a function of rain rates according to the error equation (9): (a) the error estimation
using the 17 parameter sets listed in Table 4 and (b) same but the error expressed as percentage of rain
rates. Note that the straight bold line in Figure 10b indicates the fixed reference error as 50% of rain rates.
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of rain rates, which is about the average of the rainfall
intensity-dependent error, while the true error property of
rainfall estimates is unknown. The rain intensity-dependent
error reveals more realistic error characteristics of the
rainfall data than the fixed ratio method, one of the
conventional approaches.
[21] HyMOD streamflow simulation proceeded under

two scenarios: (1) the error as a variable ratio of rain rates
based on equation (9), and (2) the error as a fixed ratio of
rain rates. The satellite daily rainfall estimates over the Leaf
River basin for a time period over 1 year are shown in
Figure 11a. The daily rainfall error estimated from the scale-
dependent function equation (9) is listed in Figure 11b, and
the percentage of error to the rain rates is given in Figure
11c. In addition, a fixed ratio of 50% of the daily rain rate
error (horizontal line) is also listed as a reference. In each
error scenario, 100 ensemble members of the HyMOD
simulation were used to derive the confidence interval of
streamflow prediction by using the Monte Carol method.
The simulated runoff output and its 95% uncertainty
bound derived from the second scenario are displayed in
Figure 12a; the results from the first scenario are given in
Figure 12b. The red dots represent the runoff time series
generated from the satellite rainfall estimates. The results
show that the reliability of estimated streamflow is highly
related to the intensity of input-forcing data. For both of the
error propagation cases, the uncertainty bound is signifi-

cantly higher during high-flow periods and is lower in low-
flow regions. However, the 95% uncertainty bound of the
simulated runoff as shown in Figure 12b is lower than the
one generated from the fixed error ratio case pictured in
Figure 12a. The first scenario, scale-dependent error prop-
agation, offers more realistic uncertainty assessment of
streamflow prediction than the fixed ratio error propagation,
particularly during high flow, i.e., heavy rainfall periods.
[22] Comparison of runoff simulation generated from

both stage IV radar precipitation measurement and satellite
PERSIANN-CCS measurement is shown in Figure 13.
Again, 100 ensemble members were generated from the
satellite-based rainfall to derive the streamflow responses.
The result of the 66% confidence interval of generated
streamflow is listed in Figure 13a, while the 95% confi-
dence interval is listed in Figure 13b. The red dots represent
the streamflow sequence generated from radar rainfall,
while the solid line shows the synthetic mean of ensemble
streamflows simulated from satellite rainfall estimates. At
the 66% confidence interval, part of the radar-generated
streamflow are not covered by the uncertainty bound, while
under the 95% confidence interval, the radar-generated
streamflow are consistently contained by the uncertainty
bound of satellite-simulated flow. However, the uncertainty
bound for the high flow period can be large, as the
upper bound can be 100% � 300% higher than the radar-

Figure 11. (a) Time series of the daily rainfall over the Leaf River basin; (b) the rainfall estimation error
calculated from equation (9); and (c) rainfall error expressed as percentage of rain rates. Note that the
straight line in Figure 11c indicates rainfall estimation error as fixed percentage of rainfall intensities, and
the bar represents the rainfall error percentage from equation (9).
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generated streamflow values, while the lower bound can
reach to the amount of no streamflow.

5. Summary and Conclusion

[23] As satellite-based precipitation estimates are increas-
ingly applied to atmospheric and hydrological applications at
various space-timescales, the estimation error itself and the
effect of how the error propagates through models need to be
evaluated as a whole so that the users have a certain degree of
confidence while making decisions (Figure 1). Additionally,
evaluation of error associated with precipitation products and

its propagation into model behavior is an indispensable
element of evaluating data quality and improving hydrologic
simulation techniques. Given these requirements, the aim of
this paper is to foster the development of an end-to-end
analysis framework that can quantify satellite-based precip-
itation estimation error and assess its influence on the uncer-
tainty of hydrologic simulation.
[24] Satellite-based rainfall estimates from PERSIANN-

CCS [Hong et al., 2004] were used in this study.
PERSIANN-CCS, a high-resolution precipitation estimation
system operating at near real-time mode (http://hydis8.eng.
uci.edu/CCS/), has been generating precipitation data at

Figure 12. Uncertainty estimation of streamflow prediction corresponding to 95 percentile confidence
using rainfall error propagation (a) fixed rainfall error 50% and (b) scale-dependent rainfall error
according to equation (9). The red dots are mean of the 100 ensemble streamflow sequences simulated
from satellite rainfall estimates.
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resolution (0.04� � 0.04� and 30-min time intervals) since
2000. The estimation error is quantified as the difference of
satellite estimates and observations (equation (5)). It is
further assumed that the uncertainty of satellite-based pre-
cipitation estimation error is a function of several factors,
including spatial and temporal resolution of estimates, the
estimated rain rates, and sampling frequency (equation (7)).
Parameters of this scaling law equation were calibrated using
PERSIANN-CCS precipitation estimates and NCEP gauge-
corrected radar reference rainfall data (Figures 2–4 and
Tables 1–3). The box plots of the 17 sets of parameters
show that the parameters derived from different 5� � 5�
latitude-longitude grids are mostly consistent, with about
12%�16% of variation for one standard deviation of each
parameter with respect to its mean value (Figure 5). How-
ever, for parameters b, c, and d, the range of values is more
than 50% of their mean values, which suggests that the error
of satellite-derived precipitation estimates is significantly
region-dependent (Table 4). Figures 6 and 7 simulate the
satellite estimation error as a function of rain intensity,

spatial scale, and temporal scale by implementing the
optimally calibrated parameter set in equation (9). Just a
reminder that the error quantified here should be interpreted
as upper bound of ‘true error’ as discussed in the Appendix
because NCEP gauge-corrected radar rainfall itself is not
error free.
[25] The influence of the PERSIANN-CCS rainfall error

on uncertainty of streamflow prediction is evaluated with
Monte Carlo simulation in the Leaf River basin, Mississippi
(Figure 8). By this approach, an ensemble of 100 precipi-
tation data members is generated, as forcing input to a
conceptual rainfall-runoff hydrologic model (Figure 9), and
the resulting uncertainty in the predicted streamflow is
quantified. Compared with the conventional error propaga-
tion procedure, i.e., fixed ratio error estimate (Figure 11c),
our strategy not only provides more realistic quantification
of precipitation estimation error but also offers improved
uncertainty assessment of the error propagation from the
precipitation input into the hydrological models (Figure 12).
Finally, comparison of runoff simulation generated from

Figure 13. Comparison of runoff simulation generated from both stage IV precipitation radar
measurement and satellite PERSIANN-CCS measurement at 1-year time span (1 July 2003 to 30 June
2004) (a) 66% confidence interval and (b) 95% confidence interval. Note that the red dots are streamflow
generated from radar rainfall, the blue lines are synthetic mean of streamflow simulated from
PERSIANN-CCS satellite rainfall estimates, and the gray areas are corresponding to confidence interval
from 100 member ensemble simulation using satellite rainfall.
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both stage IV radar precipitation measurement and satellite
PERSIANN-CCS measurement is demonstrated in
Figure 13. At the 95% confidence interval, radar-simulated
streamflow values are contained by the uncertainty bound of
satellite-simulated flow.
[26] The proposed uncertainty analysis framework in this

study not only provides a general framework of satellite
precipitation estimation error quantification procedure but
also can assess its influence on the uncertainty of hydrologic
prediction through Monte Carlo simulation of the error
propagation. As a first attempt to quantify uncertainty of
one of the major satellite-based precipitation data sets
(PERSIANN-CCS) at fine scale (0.04� � 0.04� and hourly),
the satellite rainfall error model (equation (7)) does not
consider rainfall detection and false alarm probabilities.
However, it is reported that these type of errors might
compromise the accuracy of the error propagation into the
hydrological model [Hossain and Anagnostou, 2006]. In
our continuing effort to quantify the uncertainty of high-
resolution satellite-based rainfall estimates, the error prop-
erty of spatial-time integrated precipitation related to the
undetected rainfall and false alarm scenarios will be inves-
tigated and embedded in the end-to-end uncertainty analysis
framework report here.

Appendix A

[27] Ciach and Krajewski [1999] and Anagnostou et al.
[1999] described the error variance separation issue in
validation of radar rainfall estimates against ground gauge
data. Similarly in the current study, reference data (RAT

ref) are
often used because of the absence of measurement of true
rainfall RAT. Therefore the reference error can be written as

R̂AT � Rref
AT

� �
¼ R̂AT � RAT

� �
� Rref

AT � RAT

� �
¼ e� eref ðA1Þ

where RAT
ref is the reference data such as gauge or radar and eref

represents the error associatedwith the reference data. The e is
always unknown due to the absence of the true measurement.
Take the variance of both sides of equation (1):

Var R̂AT � R
ref
AT

� �h i
¼ Var R̂AT � RAT

� �� �
þ Var Rref

AT � RAT

� �� �
� 2Cov R̂AT � RAT

� �
; Rref

AT � RAT

� �� �
¼ Var e½ 	 þ Var eref

� �
� 2Cov e; eref

� �
ðA2Þ

where Var denotes variance and Cov denotes covariance.
Assume that e and eref are uncorrelated because satellite-based
rainfall estimation algorithms are usually independent from
gauge and radar rainfall measurements. The reference error
variance therefore can be written as

Var R̂AT � Rref
AT

� �� �
¼ Var e½ 	 þ Var eref

� �
ðA3Þ

Var[e] can be assessed using independent reference data (i.e.,
radar or gauge rainfall) if the error characteristics of reference
data Var [eref] are known or derivable. In this study, the
reference error (R̂AT � RAT

ref) is used to approximate (R̂AT �
RAT) because (1) the RAT is usually unavailable and (2) the
reference error is the relaxant representation of true error
(upper bound) because the Var[(R̂AT � RAT

ref)] is the upper
bound of Var [e] [Gebremichael et al., 2003].
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