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ABSTRACT 

 

Miniaturizing Medicine – Strategies for Developing Point-Of-Care Biosensors 

by 

Nathan E. Ogden 

 

Each moment of each day countless millions of proteins circulate through the body, 

performing their tasks, recognizing and binding to their targets, all with minimal crosstalk 

between the countless other proteins circulating alongside them. It is no wonder then, that, 

when faced with problems such as detecting rare molecular targets within complex 

backgrounds, technology developers often employ biological molecules as the foundation 

with which to build sensors (“biosensors”) and develop processes (“bioassays”). But that is 

not to say that sensors and assays based on biorecognition are perfect. Bioassays, for 

example, are generally complex, time-consuming processes and thus they provide actionable 

information only after a significant time lag. Biosensors (such as blood glucose meters), in 

contrast, can provide real-time information, but those few that work in realistically complex 

sample matrices invariably rely on the specific chemical reactivity of their targets, greatly 

limiting the range of molecules they can detect. Motivated by these concerns, I have been 

exploring biosensors and bioassays that, unlike existing approaches, are simultaneously 

general and capable of rapidly returning answers.  

 

The first strategy I have explored utilizes microfluidics to adapt existing, multi-step 

bioassays into a rapid-and-convenient point-of-care device. Specifically, taking advantage of 

the inherent automation potential of microfluidics I have shown it possible to automate and 

speed up an established, bench-top bioassay. Once fully automated, the assay can even be 
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used to perform continuous measurements, tracking changes in the concentration of a target 

protein in a clinical sample stream in real-time. 

 

The second strategy that I explored was the development of a single-step, reagentless 

biosensor platform termed electrochemical DNA-based (E-DNA) sensors. This broad class 

of electrochemical sensors utilizes binding-induced changes in the structure or dynamics of 

an electrode-bound biomolecule to reagenltessly and continuously report on the 

concentration of its target. Specifically, this class of sensors uses DNA either as a scaffold 

upon which to display a recognition element (scaffold-sensors), such as an antigen, or as the 

recognition element itself (aptamer-based sensors). Using Monte-Carlo simulations I have 

examined how changing the molecular weight of a recognition element affects the 

performance of scaffold sensors and used this information to develop a point-of-care 

serological assay to help rapidly diagnose syphilis. Using a similar Monte-Carlo model I 

likewise optimized the performance of aptamer-based sensors by examining how 

modifications around the aptamer’s binding pocket affect sensor performance. Together 

these studies are helping to bridge the gap between complex (but generalizable) bioassays 

and simple to use biosensors (such as blood glucose meters) which cannot readily be 

adapted to other targets. 
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I. Introduction 

 

Motivation 

Biological recognition is incredibly powerful. Consider, for instance, the cytokine TNFα, an 

important signaling protein which is in part responsible for inducing cell death and initiating 

the body’s inflammation response. While prompting cell death is at times essential for life, if 

TNFα was to bind to targets other than its intended ones, it would be disastrous. And yet 

TNFα performs its task day after day, year after year, in organisms all across the globe. And 

this is just one protein working amongst many thousands of others, each preforming its own 

task, binding to its own target with minimal cross-talk between them. It is no wonder then, 

that, when faced with problems such as detecting rare molecular targets within complex 

backgrounds, technology developers often employ biological molecules as the foundation 

with which to build sensors (“biosensors”) and develop processes (“bioassays”). Whether it 

be measuring glucose in diabetic patients, measuring disease markers in plasma, or 

measuring the concentration of contaminants in food or beverages or soil or water, 

biological recognition plays an essential role in how we measure molecules in the modern 

world. That is not to say that sensors and assays based on biorecognition are perfect. Indeed, 

there remains much room for improvement and, as a result, it is these sorts of biosensors and 

bioassays which we will interest ourselves in this thesis. 

 

Before discussing how to improve biosensors and bioassays (hereafter we will refer to the 

two interchangeably), it is worth asking what attributes comprise the ideal biosensor? 
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Arguably the most important is that a biosensor must have a low enough limit of detection to 

measure its target. In fact, a sensor which fails in this criterion really is no sensor at all. That 

is not to say, however, that the ability to measure small concentrations of target is the end all 

and be all of the ideal biosensor. It is easy to imagine cases where a sensor might be too 

sensitive to perform a useful function. Consider the example of a biosensor which works 

through the binding of a signaling protein to a target. The protein has some affinity towards 

its target, frequently given in terms of the dissociation constant, Kd. If we are in a situation 

where the amount of target is far in excess of the amount of the amount of affinity reagent 

(as is often the case in sensors where a limited amount of affinity reagent is conjugated to a 

surface), then we can think of the Kd as being the concentration of target at which half of our 

affinity reagents are bound. Clearly it is desirable that our hypothetical protein has a high 

affinity for its target (i.e., a low Kd), but only insofar as it relates to the expected amount of 

target present in our analyte. Too low of a Kd and we would completely saturate our sensor 

even at modest target concentrations, leaving it just as useless as a sensor with too high of a 

Kd, that does not appreciably bind its target.  As a result, while many papers seek ways to 

push the limit of detection of their sensors, it is always worth keeping in mind that we 

should aim for a sensor which can perform measurements over a relevant dynamic range for 

a given target rather than necessarily pursuing sensitivity for its own sake. 

 

If a properly matched dynamic range is the primary criteria for building a sensor, then 

selectivity is the second criteria that we should be concerned with. Consider, for instance, a 

non-biological based technique such as mass spectrometry. This is powerful analytic 

technique which allows researchers to measure picograms of material and can be used to 
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verify the purity of a sample and detect trace amounts of contaminants1,2. This ability to 

measure very low concentrations of target comes at a cost, however. Due to the sheer 

number of background molecules with overlapping signal, mass spectrometry is limited to 

measuring relatively pure samples. As a result, it must be paired with dilution, filtration, and 

generally some sort of purification, such as that achieved via gas chromatography, liquid 

chromatography, or capillary electrophoresis3–5. This makes it a fine research tool and an 

excellent quality control assay but leaves it poorly suited to clinical diagnostics where the 

expense and complication of purifying the sample oftentimes outweighs the benefits gained 

by high sensitivity. It is for this reason that biosensors are so attractive, since biological 

affinity reagents have already evolved to work in situ in the body, among the most complex 

of backgrounds. There are many ways to make far simpler sensors with a degree of 

specificity by introducing affinity reagents such as antibodies which attempt to sequester the 

target of interest. One example of such a sensor would be a micromechanical sensor in 

which an affinity reagent such as an antibody is immobilized on the surface of a cantilever6–

8. Binding between the antibody and its target is then accompanied by a change in the weight 

of the cantilever. This, in turn, causes a change in the resonant frequency of the cantilever, 

which may be measured in order to quantify the amount of the target bound to the surface 

[Figure 1a]. A similar analogue with an electric readout would be a biologic field effect 
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transistor (bio-FET). Here affinity reagents are placed in the gate region of a field effect 

transistor and the binding of the target of interest modulates the resistance between the 

source and the drain [Figure 1b]9–11. A fatal drawback with these sorts of sensors which rely 

entirely on adsorption to drive signal change is that while the presence of an affinity reagent 

enhances the likelihood of the target binding to the surface, it does not prevent non-specific 

binding. Since there is no way to discern the difference between off-target signal due to non-

specific binding of biomolecules to the cantilever/transistor and signal due to the target, 

these sensors fail when challenged with realistically complex samples. This leaves them 

Figure 1 An illustration of two biosensing strategies relying on affinity reagents to sequester target. a) 

Microbalance sensors measure the resonant frequency of a lever which has been functionalized with an antibody 

(or other affinity reagent). The binding of target to the sensor changes the mass on the lever, which in turn 

changes the resonant frequency. b) A typical bio-FET sensor scheme in which a conductive source and drain 

are separated by a semiconductor which has been modified with an affinity reagent. Binding of the target 

modulates the resistance of the semiconductor, changing the amount of current which flows from the source to 

the drain. 
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unsuitable for deployment in complex media such as blood or serum since the sheer number 

of non-target proteins means that false signal due to unpredictable nonspecific binding 

events will outweigh the signal due to specific binding to the affinity reagent.    

 

One method to avoid the problems described above is to co-opt proteins which can be 

adapted to generate a signal on their own rather than merely binding to its target. One of the 

most recognizable of such sensors is the blood glucose meter. First developed in 1962 

[ref12], early glucose measuring devices used a colorimetric readout, but more modern blood 

glucose meters utilize an electrochemical readout which is simpler to use and provides a 

quantitative readout13. While there have been many advancements towards improving the 

reliability and accuracy of electrochemical blood glucose meters, they all have a similar 

method of operation14–17. Generally, a thin coating of glucose oxidase is applied to an 

electrode surface. The electrode is exposed to the analyte (typically blood drawn through a 

fingerpick) at which point the enzyme on the electrode surface reacts with glucose. Glucose 

oxidase is then re-oxidized by a mediator molecule, which generates a current which can be 

measured using a hand-held device. This current is proportional to the amount of enzyme 

being oxidized, which is in return proportional to the amount of glucose present in the blood. 

Since glucose oxidase is an enzyme which has already evolved to work in complex media, it 

is highly specific towards its target and there is negligible signal contribution from off target 

binding, despite the complexity of the analyte. The result is a biosensor highly specific to 

glucose which is small enough to fit in the palm of a patient’s hand, rapid enough that a 

patient can immediately take corrective measures if the sensor indicates an adverse result, 
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and cheap enough that almost every diabetic patient in the United States owns one. In short, 

glucose monitors are everything that could be reasonably asked for in a biosensor.  

 

If the blood glucose meter represents the ideal molecular sensor to which we strive, why 

then have we not seen similar biosensors for targets other than glucose? The answer lies 

within the enzyme that provides the signal transduction at the heart of the glucose sensor. 

We are extremely fortunate that glucose oxidase evolved the way that it did. If it were not 

for the convenient fact that glucose oxidase reacts with glucose in a fashion which can be 

detected electrochemically, then glucose monitors such as we know them would not work. 

Unfortunately, the list of enzymes which bind to a diagnostically relevant target and can be 

used to generate an electrochemically active product is incredibly short. Outside of a few 

niche cases, we are therefore limited to designing sensors around affinity reagents which 

bind to their targets but do not generate an electroactive product. The trick is then to find a 

way to link these binding events with a readout capable of discerning between bound and 

unbound reagents which does produce significant signal due to non-specific binding. 

 

Given the challenge of creating a single-step sensor that can discern between specific and 

non-specific binding, it is far more common to develop complex and time-intensive 

procedures to perform the desired task. One of the most common assays of this sort is the 

enzyme linked immunosorbent assay (ELISA)18. As the name implies, ELISAs rely on 

naturally produced antibodies as their recognition element19. While there are many variants 

of ELISA assays, a representative scheme is shown in Figure 2. A technician will generally 

start by pipetting analyte into the wells of a 96 well plate which have been pre-coated with a 
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“capture” antibody. Depending on the concentration of target in the sample, some of it will 

bind to the capture antibody. After letting the sample incubate in the well for a pre-

determined amount of time, the plate is washed and then a second “recognition” antibody is 

introduced. This antibody binds to whatever target has been immobilized by the capture 

antibody, forming a “sandwich.” In some cases, the recognition antibody is labeled with an 

enzyme while in other cases a third, labeled, antibody is introduced which binds to the 

recognition antibody. In either case, the plate is washed again, and a fluorescent substrate is 

introduced which is catalyzed by the enzyme linked to one of the antibodies. This creates a 

colorimetric signal which can either be interpreted by eye or with the aid of a fluorescent 

plate reader. Since the immune system is naturally capable of generating antibodies against 

foreign bodies, it is possible to create antibodies against a wide variety of targets. The result 

is a sensitive and specific assay which is inherently much more generalizable than enzyme-

based assays which only work in niche cases. Unfortunately, this comes at a cost. ELISAs 

are not easy to perform – they require a trained technician to carry out the steps of the assay. 

They are not quick – it can take hours of incubation time and multiple wash steps before 

reaching a result. Lastly, they are not portable – they require several sets of reagents (which 

often must be kept refrigerated) and the plate readers required to interpret the results are 

large and bulky. The combination of these drawbacks means that ELISAs and similar 

immunoassays are not performed at the point of care, but instead typically performed in 

specialize off-site labs. This introduces considerable delay between when a patient initially 

visits their doctor or caregiver and when they receive the results of the assay. 
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While the above should hardly be thought of as an exhaustive review of current biosensing 

strategies, it does illustrate the chief dynamic which hinders further progress in the field. 

There are a few commercially available point-of-care sensors, such as blood glucose meters 

or pulse oximeters, which fulfill all of the desired requirements for a biosensor, but they rely 

on specific chemistries or biomolecules which cannot be adapted to other targets. For the 

vast quantity of remaining targets, we are forced to rely on cumbersome assays which 

require a trained user to perform and can take hours to reach a result. While given enough 

time and resources we are currently capable of measuring almost any target in almost any 

analyte, there are many scenarios where both time and resources are scarce. The focus of 

this thesis will therefore be bridging the gap between generalizable but resource-intensive 

assays and niche-use but cheap, fast, and portable biosensors. We will show two approaches 

to solve this problem. This first, detailed in Chapter II, will be using microfluidics to adapt 

well-proven clinical assays to a point-of-care device. The second approach will be to 

Figure 2 (a) In a typical ELISA, the wells of a microplate are coated with an antibody against the target of 

interest. (b) The analyte is then introduced into the well where it is allowed to incubate. The antigen eventually 

diffuses to the surface and binds to the antibodies coating the well. (c) The user then washes the plate and 

introduces a secondary antibody which forms a sandwich around the antigen. Typically this secondary antibody 

is either linked to an enzyme or a further enzyme linked antibody is introduced targeted towards the secondary 

antibody. (d) The plate is then washed again and a substrate is added which is converted by the enzyme to a 

fluorescent product. After allowing the sample to incubate for a set period of time, the reaction is halted and the 

fluorescence measured.  
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improve upon innovative electronic DNA based sensors, for which further background is 

given below. 

 

Electrochemical DNA Based Sensors 

In an attempt to combine the beneficial qualities of blood glucose meters, such as ease of 

use, rapid time to response, and small form factor, into a sensor that could be adapted to 

many different targets ranging from small molecules to proteins, of the Plaxco group began 

developing Electrochemical DNA sensors (E-DNA sensors). The first sensor in this class, 

published in 2003, was designed to recognize short segments of single stranded DNA or 

RNA20 and was followed by several variants intended to improve on the original design21–24. 

The general method of operation for all of these sensors is that specific binding between the 

sensor and the target of interest changes the rate at which a redox reporter is capable of 

approaching the surface. For the early E-DNA sensors, a sequence that is complementary to 

the target sequence is modified on the 3’ end with a thiol group and on the 5’ end with a 

methylene blue molecule which serves as a redox reporter [Figure 3]. The complementary 

sequence is then bound to the surface of a gold electrode using a gold-thiol bond and the 

sensor surface is backfilled with a protective monolayer. The completed sensor can then be 

immersed in a solution containing the target strand. In the absence of the target sequence, 

the tethered DNA is flexible, and the redox reporter is able to freely approach the surface. 

When the electrode is interrogated with a technique such as square wave voltammetry, the 

redox reporter produces a measurable Faradic current. In the presence of the target sequence, 

however, the target and its complement form a double stranded sequence which is far more 

ridged than the single stranded DNA alone. This has the effect of reducing the frequency 
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with which the redox reporter is able to approach the surface, therefore reducing the 

measured Faradic current measured in a manner proportional to the concentration of the 

target DNA sequence. Because the signal change is driven by the conformational change 

arising from the binding of the recognition strand to its complement (as opposed to the 

binding of a molecule to the surface), the technique is highly specific as demonstrated by its 

use in blood serum, saliva, and cellular extract22.  

 

Electrochemical Aptamer-Based Sensors 

While the original E-DNA sensors could be modified to recognize effectively any nucleic 

acid sequence, single stranded oligonucleotides represent only a tiny fraction of the space of 

interesting biosensing targets. A major set forward for E-DNA sensors was therefore the 

development of electrochemical aptamer-based (E-AB) sensors. Aptamers are short 

oligonucleotide sequences which bind selectively to a target and were discovered 

independently by two different groups in 1990 [ref25,26]. While we typically think of nucleic 

Figure 3 While there are many variants, in the simplest example of an E-DNA sensor, a methylene blue 

redox reporter modified DNA sequence is attached to an electrode surface. Due to the flexibility of single 

stranded DNA, the redox reporter is able to move relatively freely in the unbound state, leading to a high 

electron transfer rate between the reporter and the surface. When the complementary DNA strand binds to the 

reporter strand, it forms a double stranded DNA complex which is far more ridged, leading to a lower electron 

transfer rate. 
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acids as storing or transmitting genetic information, aptamers are functional molecules and 

are not found in naturally. Instead, they are purposefully developed in a laboratory setting, 

typically through some variation of a process known as systematic evolution of ligands by 

exponential enrichment (SELEX). In this process, a large library of randomly generated 

nucleotide sequences, typically containing on the order of 1015 sequences, is exposed to a 

target of interest, generally immobilized on some sort of solid support. While the vast 

majority of sequences will not bind to the target, a small fraction will. These sequences can 

be isolated, usually through the means of sequential washing steps, and then enriched 

through polymerase chain reaction. The result is a subset of the library of sequences that is 

biased towards sequences that bind the target. Through repeating this process several times, 

it is possible to narrow the initial library of trillions of sequences down to the handful of 

sequences capable of binding the target. These can then be individually characterized in 

order to find the best sequence, whether that be the one with the lowest Kd, the most 

selective sequence, or some combination thereof. Since aptamers are short, single stranded, 

oligonucleotide sequences which selectively bind to a target it is fairly straightforward to 

adapt them to the E-DNA platform, as first demonstrated by Xiao et al. in 2005 [ref27]. 

Subsequent publications have shown that this method is quite generalizable, with examples 

of E-AB sensors being used to detect targets ranging from small molecule drugs to 

proteins28–31. As with previous E-DNA sensors, E-AB sensors are resistant to spurious 

signals due to off-target binding because the signal change is driven by conformational 

changes of the aptamer upon binding to its target rather than the simple process of a 

molecule binding to the surface itself. Thus, not only have E-AB sensors been used in 

complex media, but recently they have been adapted for use in implantable sensors used to 
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take measurements in vivo32,33. Still, while adapting aptamers for use in E-AB sensors 

initially sounds trivial, this is not always the case. Often researchers find that aptamers 

which have been demonstrated to work well in solution perform poorly when attached to the 

surface of an electrode. In these cases, it becomes necessary for the researcher to make 

modifications to the aptamer sequence, a process which can devolve into a trial and error 

affair. Efforts to improve this process are described in Chapter IV.  

 

DNA Scaffold Sensors 

The last class of sensors which we will discuss in this thesis are DNA scaffold sensors. 

While there have been many efforts to identify aptamers for clinically useful targets, the 

field suffers from two key problems. First, since aptamers were only first described in the 

1990’s and remained a niche topic for some time after, there has been relatively little time to 

develop aptamers compared to the amount of time and effort which has been expended 

towards identifying and characterizing other biomolecules, whether that be the development 

of antibodies for various targets, or the identification of binding epitopes for those 

antibodies. The second problem facing the aptamer field is that DNA (and RNA) present a 

limited chemical library from which to create an affinity reagent as compared to proteins. 

While there have been some attempts to rectify this through the use of non-natural bases34–37 

the end result is that aptamers for some targets remain stubbornly elusive. Either it is 

impossible to find aptamers against them, or the aptamers are of such poor affinity that they 

are not practically useful for creating sensors. To circumvent this issue, the Plaxco group 

developed a new class of sensors known as scaffold sensors38–40. Instead of relying on 

aptamers as the recognition element, scaffold sensors are capable of displaying peptides or 
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small proteins as the recognition element, vastly expanding the space of measurable targets. 

As with the rest of the E-DNA sensors, scaffold sensors start as a single stranded, methylene 

blue modified, DNA sequence bound to the surface of a gold electrode. For scaffold sensors, 

however, this initial “anchor” strand is then bound to a complementary peptide nucleic acid 

sequence which then displays a short peptide epitope. Binding of a target to the epitope 

changes the rate of electron transfer between the methylene blue and the surface, generating 

a measurable signal change [Figure 4]. A further examination of the physics of these sensors 

as well as a demonstration of their practical utility as a diagnostic device is demonstrated in 

Chapter III.  

 

Figure 4 The recognition element of a scaffold sensor consists of a methylene blue modified anchor 

strand bound to the surface of an electrode. A complementary strand bearing either a short peptide or a small 

protein is conjugated to a complementary strand which then binds to the anchor.  Binding of the target protein 

to the peptide reduces the efficiency with which the redox reporter is able to approach the surface, thus 

lowering the electron transfer rate of the sensor 
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II. Continuous, real-time microfluidic immunoassay 

Introduction 

In this chapter we discuss the development of a novel device designed to circumvent the 

shortcomings of traditional bioassays by taking advantage of the inherent automation 

potential of microfluidics. Given the massive dynamic range of the human proteome, a great 

deal of effort has been placed into increasing the sensitivity of modern affinity reagent based 

biosensors 1–3. Lowering the limit of detection allows researchers to gain insight into the 

concentration of low abundance proteins, and aids in the search for biomarkers which can 

signal disease 4. The common drawback of these sensors, however, is that they are purely 

end-point measurements. They rely on techniques that take trained users several hours to 

carry out and, as a result, they offer little insight into how protein concentrations may 

change as a function of time. Nevertheless, there are many serious conditions which could 

be detected, and therefore treated, more effectively if, rather than focusing purely on 

lowering the limit of detection, we could instead measure changes in a reporter protein's 

concentration in real-time. Disseminated intravascular coagulation (DIC), for instance, is a 

condition whose effects are characterized by widespread activation of the coagulation 

pathway, leading to clot formation, followed by organ failure, and eventually death5. 

Typically, this happens in patients already compromised by some other serious condition 

and, as a result, leads to a high mortality rate. Nevertheless, there is not currently any single 

laboratory test designed to diagnose DIC. Doctors are instead forced to form a diagnosis 

based off a scoring system which assigns point values to various physical symptoms6.  By 

continuously measuring the concentration of one (or several) of the proteins involved in the 
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coagulation cascade, care-givers would be able to administer treatment earlier and, thus, 

lower the risk of fatal complications.  

 

Recent years have seen some success in measuring protein concentration as a function of 

time in buffer and dilute serum using electrochemical7,8 and optical9 means. Unfortunately, 

nonspecific adsorption of proteins and cells from whole blood onto sensor surfaces leads to 

rapid signal degradation in many of these approaches10. Meanwhile, the poor optical 

qualities of whole blood and blood serum likewise renders fluorescent detection 

problematic11,12. As a result, many otherwise promising strategies for continuous protein 

monitoring are ill suited for clinical use. By combining the processing steps, washing steps, 

and measurement steps of a traditional immunoassay onto a single device capable of 

continuous readout, we can track the change of concentration of a sample protein in whole 

blood in real-time while avoiding many of the pitfalls which limit current techniques.  

 

The most interesting proteins to measure in real-time would be those involved in the 

coagulation cascade since their concentration can change several orders of magnitude in a 

short span of time and the resulting changes have obvious clinical importance. As an initial 

proof of concept however, we have used our device to measure in vitro concentrations of the 

cytokine protein tumor necrosis factor alpha (TNFα). We chose TNFα as a preliminary 

target for two reasons: first, there exists a set of affinity reagents capable of forming a 

sandwich complex, one reagent being a monoclonal antibody and the other being a recently 

discovered DNA aptamer selected for its specificity in serum13. Second, while TNFα is 

naturally present in the blood stream, it typically exists at sub-picomolar concentrations14,15, 
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allowing us to dope unmodified whole blood with nanomolar to micromolar concentrations 

of protein without having to worry about signifigant background signal arising from the 

protein naturally present.  
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Theoretical Background 

Motivating Microfluidics 

In order to adapt an existing benchtop assay to a point-of-care device, we will leverage 

microfluidics to fully automate all of the sample processing steps. This removes the need for 

trained technicians to operate the assay as well as removing the need for specialized lab 

space to analyze patient samples. The combined effect is that we can shift care from 

centralized lab facilities to the point of care itself, resulting in minimal lag time between 

when a care giver takes a sample and when the results of whatever assay being run is 

returned. It is worthwhile, therefore, to spend some time discussing the theoretical 

background of microfluidics in greater detail. What, for example, defines microfluidics as 

opposed to “macro”-fluidics? Besides the obvious advantage of handling small samples 

sizes, what advantages does microfluidics confer over a larger system? And finally, how can 

we adapt the steps of a traditional benchtop assay, such as the mixing and separating 

reagents, to a fully automated system? 

 

Defining Microfluidics 

The simplest definition of “microfluidics” would be any fluidic device which holds 

microliter volumes of reagents. This definition, however, does little to communicate the 

physical properties which set microfluidics apart from any other regime of fluid mechanics. 

In order to understand the physics of microfluidics, we can first start with the Navier-Stokes 

equation, which arises from Newton’s second law of motion as applied to fluids and 

describes the velocity field of a Newtonian fluid as it is acted upon by a set of forces such as 

shear forces and pressure differentials: 
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𝜌
𝜕�⃑� 

𝜕𝑡
=  ∇𝜎 + f = − ∇p + η∇2u⃑ + f  

Here 𝜌 is the density of the fluid, 𝑢 is the velocity  𝜎  represents the force per unit area 

exerted by surfaces, f represents body forces (i.e. forces which are exerted on the entirety of 

the fluid), and η is the shear viscosity. While the Navier-Stokes equation is capable of fully 

describing any arbitrary fluid system, it lacks an analytic solution outside of a few 

specialized cases. As a result, while highly useful for numerical simulations, it provides little 

intuition into the behavior of a system. If we wish to gain an understanding of the behavior 

of some arbitrary system without resorting to highly detailed numerical modeling (we do), 

then it becomes useful to instead define dimensionless parameters which can capture a 

snapshot of the behavior of a system without requiring extensive calculations. 

 

The parameter most associated with microfluidics is the Reynolds number16–18. This 

dimensionless parameter describes the ratio between the inertial and viscous forces on a 

fluid: 

𝑅𝑒 =  
𝜌𝑈𝑜𝐿𝑜

𝜂
 

where 𝑈𝑜 is an average characteristic velocity of the system, 𝐿𝑜 is a characteristic length, 

and as above 𝜌 is the density of the fluid and η is the shear viscosity. In our typical day-to-

day experience, we are accustomed to fluidic systems dominated by inertial effects (𝑅𝑒 >

1). Examples of such systems would be water flowing through large diameter pipes, rivers, 

streams, or virtually any other fluid system which we interact with on a day-to-day basis. In 

such systems, we expect that inertia will cause a fluid in motion will stay in motion while 

turbulence will randomly mix and disrupt the flow in a chaotic fashion. Microfluidics, 
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conversely, can be thought of as the regime where this no longer holds true. If the 

characteristic length scale is small enough relative to the fluid viscosity to where the 

Reynolds number is much less than 1, then the behavior of the system changes completely19. 

In this regime, the behavior of the system is entirely dominated by forces currently acting on 

the system – either viscous forces or pressure differentials actively pumping liquid through 

the channel. Instead of the turbulent mixing flow which we are accustomed to, here instead 

we see completely laminar flow. As a result, flow through the system is (almost) completely 

reversible. The only mixing which takes place is through diffusion, a process which 

typically takes orders of magnitude longer than turbulent mixing.  

 

Advantages of Microfluidics 

Now that we have defined what constitutes the microfluidic regime, the next question is why 

we should care. What advantages does being in a system dominated by viscous forces 

confer? The answer to this question is control. Because we do not have to worry about 

turbulent mixing, it is possible to exert a great deal of control over our system. For example, 

rather than attempting to solve the Navier-Stokes equation for a system, it is possible to 

reduce the problem to something analogous to Kirchhoff's circuit laws for electronics20. We 

can convert the traditional circuit equation  

Δ𝑉 = 𝐼𝑅 

where Δ𝑉 is the voltage differential across a circuit, 𝐼 is the current and 𝑅 is the resistance, 

to an analogous “microfluidic circuit” equation:  

Δ𝑃 = 𝑄𝑅ℎ 
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where Δ𝑃 is the pressure differential, 𝑄 is the flow rate, and 𝑅ℎ is the hydrodynamic 

resistance, which can be calculated based off the channel geometry as well as the fluid 

viscosity. Using this technique, it is possible to create microfluidic “circuits” with complex 

junctions where, instead of attempting to numerically solve the Navier-Stokes equation, the 

user can instead calculate approximate behavior. As one example, microfluidics have been 

used to create highly reproducible droplet generators21–24. These devices typically take the 

form of a four-way junction where one inlet contains a reagent and two perpendicular inlets 

contain a non-miscible liquid such as mineral oil. At the junction, droplets are created as the 

reagent stream is encapsulated by the oil streams. Each droplet can be used as a mini-

reaction chamber where the amount of reagents introduced as well as the amount of time the 

reaction is allowed to take place can be passively controlled by the design of the mixer 

itself25. Because there is no turbulence and all of the flow parameters satisfy Kirchhoff’s 

laws, the entire process is inherently automated and reproducible.  

 

It is also possible to take advantage of Kirchhoff’s laws in order to sort particles inside of 

microfluidic chambers. If we create a microfluidic junction where two smaller channels split 

off of a main channel, it is easy to calculate the flow rate through each of the smaller 

channels and, since flow through microfluidic systems is laminar, it is trivial to predict 

which outlet a particle traveling in the main channel will exit towards. Particle sorters such 

as this have been shown to work in microfluidic chambers via magnetophoresis, 

acoustophoresis, electrophoresis, or other techniques26–28. For more complex devices, it is 

also possible to create microfluidic valves to further control flow and to isolate reagents 

from one another until some pre-determined time29. 
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Adapting Benchtop Assays 

As discussed above, microfluidics is a powerful tool for controlling the behavior of fluids 

(and particles suspended in those fluids). It is not too difficult to imagine how it would be 

possible to take advantage of this fact to adapt a benchtop assay to a single “lab-on-a-chip” 

device. If we consider the example of a user wishing to perform an immunoassay on some 

sort of solid support, the user would likely perform the following steps: 

 

1. Mix the solid support (with some sort of capture reagent conjugated to the 

surface) with the sample 

2. Wash 

3. Mix in a labeled reagent 

4. Wash 

5. Measure the resulting signal 

 

Since microfluidics gives us a great deal of control over the behavior of our system and we 

do not have to worry about turbulent mixing, it is easy to imagine a device which breaks this 

process down into a few discrete chambers, each performing their allotted task in sequence. 

The only major issue we can expect is with the mixing steps. Almost any assay will require 

some set of reagents to be mixed together at some point during the process. As previously 

discussed, however, the very thing that characterizes microfluidics is that there is no 

turbulent mixing inside of a microfluidic channel. In order to automate an assay, it is 

therefore necessary to somehow disrupt the laminar flow. Luckily, this problem has already 



 

 28 

been solved by the Whitesides group amongst others30,31. By introducing a series of raised 

herringbone patterns decorating one side of a microfluidic channel, they were able to locally 

disrupt laminar flow through the chamber, allowing them to mix two inlets much more 

efficiently than by relying on diffusion alone. This gives us the last component necessary to 

automate an assay. We can now easily imagine a device where reagents on a solid support 

are introduced, mixed with the sample, allowed to incubate, and then sorted out of the 

sample into a washing buffer where they can be analyzed. 
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Results 

Device Design 

Our goal is to take full advantage of microfluidics in order to create a chip which can 

passively automate a complex assay. In this specific case, we have designed a device which 

utilizes magnetic microbeads as a solid support for performing an on-chip fluorescence-

based sandwich assay. The setup is shown in Figure 1a. To summarize, fluid from the 

sample inlet is continuously mixed with a reagent mixture containing antibody-

functionalized beads and a phycoerythrin (PE) dye labeled affinity reagent. The resulting 

mixture incubates on chip inside the mixing stage, forming a sandwich complex with the 

target protein on the surface of the magnetic beads. It should be noted that the 

incubation/mixing stage of the device is not long enough for the antibody-modified 

microbeads to reach equilibrium with their surroundings (barring some unrealistically slow 

Figure 5. (a) A schematic showing the major features of the real time immunoassay chip. The sample 

and reagents are introduced at the appropriate inlets on the left side of the device where they then flow 

through a mixing stage. After mixing and incubation, we use a buffer suitable for fluorescent imaging to 

push the sample/reagent mixture to the top of the channel. Microfabricated nickel strips then pull the 

magnetic beads from the sample mixture into the imaging buffer where their fluorescence can be measured. 

We utilize two waste outlets so that the results can be verified on a flow cytometer after collection. (b) We 

use microfabricated nickel strips to divert paramagnetic beads from the sample solution into an imaging 

buffer. When placed on top of a neodymium magnet, the nickel strips create a strong, localized magnetic 

field. This, in turn, causes a force normal to the direction of the strips to divert beads from one buffer to 

another.  
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flow rate). Rather, we are taking advantage of the highly reproducible flow behavior inside 

microfluidic channels to ensure that the beads are all exposed to the sample for the same 

amount of time. After leaving the mixing stage, a buffer inlet forces the blood/reagent 

mixture to one side of the microfluidic channel. Due to the laminar nature of microfluidic 

flow, there is minimal mixing between the optically clear buffer and the sample mixture. 

The sample then passes over a number of microfabricated ferromagnetic strips (MFS). These 

are nickel strips 10 µm wide which have been deposited onto the glass backing wafer and 

run at an angle relative to the channel. When placed onto a permanent magnet, such as a 

neodymium magnet, the nickel strips create a large, localized magnetic field32–34. We can 

take advantage of this to displace the magnetic beads into an optically favorable buffer for 

analysis. While similar “buffer exchange” devices have been used to perform end-point 

measurements 35–38, our device is unique in that we use kinked MFS to deflect and 

temporarily trap the magnetic beads [Figure 1b]. The physics of this temporary trapping are 

relatively straightforward. If we consider a spherical particle traveling in a microfluidic 

device, there is typically only one force we need consider, that of the fluidic drag: 

𝐹𝑑
⃑⃑⃑⃑ = 6𝜋𝜂𝑟(𝑣𝑓⃑⃑⃑⃑ − 𝑣𝑝⃑⃑⃑⃑ ) 

where 𝐹𝑑
⃑⃑⃑⃑  is the drag force, 𝜂 is the fluid viscosity, 𝑟 is the radius of a spherical particle, 𝑣𝑓⃑⃑⃑⃑  is 

the fluid velocity and 𝑣𝑝⃑⃑⃑⃑  is the velocity of the particle. We see that a particle traveling in a 

microfluidic device will accelerate until it reaches the same velocity as the surrounding 

medium after which there will be no further net force. Upon reaching the MFS, however, 

there will be a counteracting magnetic force: 

𝐹𝑚⃑⃑ ⃑⃑  = 𝑚∇B⃑⃑ =  
4𝜋

3
𝑀𝑟3∇�⃑�  
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where 𝑚 is the magnetic moment of the particle, ∇B⃑⃑  is the magnetic field gradient,  𝑀 is the 

magnetization, and 𝑟 is again the radius of the particle. We see from this that the magnetic 

force will act perpendicular to the MFS strips. If the strips are at some angle (𝜃) relative to 

the flow in the device, a magnetic particle will therefore be deflected out of its path and 

move along the MFS as long as  

|𝐹𝑚| > |𝐹𝑑|sin (𝜃) 

We can take advantage of this to separate the (now fluorescently labeled) magnetic beads 

from the optically unfavorable blood/reagent mixture. In order to image the particles, 

however, we must stop or slow them down long enough to accurately measure their 

brightness. Here again we can use the MFS structures. By placing a kink at the end of the 

strips perpendicular to the direction of the flow, we now have a situation where the particles 

will be trapped so long as  

|𝐹𝑚| > |𝐹𝑑| 

4𝜋

3
𝑀𝑟3∇�⃑� >  6𝜋𝜂𝑟𝑣𝑓⃑⃑⃑⃑  

Since the magnetic field is highly localized, only particles near the nickel strips themselves 

will feel the effects of the magnetic field. As more and more particles build up behind the 

trapped beads, however, the drag force acting on the clog will continue to increase linearly 

with the size of the clog. The net effect of these two phenomena is that small clusters of 

beads will become temporarily trapped by the magnetic force counteracting the drag force. 

Eventually, depending on the flow rate inside the device, the buildup of particles behind the 

trapped beads will result in the drag force being greater than the magnetic force, pushing the 

entire cluster past the strips. We can take advantage of these kinked-MFS strips to “pause” a 

cluster of beads in place long enough to accurately image them with a CCD camera before 
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releasing them and refreshing the beads in the frame. As the footage is taken by the camera, 

the computer passes it to a real-time analysis program, allowing us to continuously quantify 

the fluorescent signal with virtually no lag time. Due to the nature of the microfluidic 

design, this entire process is inherently automated and requires minimal user input.  

 

Measuring in vitro TNFα concentration 

We first compared the results of our on-chip measurements against an analogous benchtop 

assay. Similar devices in the literature tend to incorporate multiple 'washing' steps where the 

magnetic beads are directed into a buffer stream in between protein capturing steps and 

labeling steps35–38. This increases the complexity of the device by necessitating additional 

fluidic inlets and results in a lower overall incubation time since large portions of the chip 

must be dedicated to additional sample processing. The proposed design eliminates these 

steps by incubating the antibody conjugated magnetic beads with the fluorescently labeled 

aptamer in the sample of interest at the same time. As a result, we need to know the effects 

of forming a sandwich complex in a high protein background without washing steps in 

between. We prepared serial dilutions of TNFα in PBS buffer ranging from 100 nM to 10 

pM. For the on-chip measurements, we then pumped the TNFα solution through the device 

at a rate of 0.8 ml/hr. Simultaneously, we pumped a reagent mixture containing 500 nM of 

PE-labeled anti-TNFα aptamer and a 1:500 dilution (~1x105 beads/mL) of antibody-coated 

paramagnetic beads (Dynabeads M-450) through the device at a rate of 1.2 mL/hr. Given the 

dimensions of the microfluidic channel, this flow rate corresponds to an incubation time of 

approximately 30 s. For each concentration of TNFα, we collected the sorted beads at the 

outlet and measured their fluorescence on a flow cytometer (BD FACSVerse). Between 
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runs, the chip was thoroughly washed with PBS buffer and allowed to equilibrate for 

approximately 5 min at the new TNFα concentration before performing further 

measurements [Figure 2]. Despite the short incubation time, we see the expected binding 

isotherm, indicating that we can use our device to perform quantitative measurements of 

proteins in a complex background.  

 

In order to perform real-time measurements, we need to be able to perform these 

measurements continuously. In order to do so, we developed an algorithm to measure bead 

fluorescence in real time inside of the device using a CCD camera attached to a fluorescent 

microscope. We compared the fluorescence results of samples prepared in our device and 

Figure 2. Using our device, we were able to construct a binding isotherm for TNFα. We flowed whole 

blood spiked with varying concentrations of TNFα through the device in conjunction with our reagent 

mixture, which contained antibody labeled microbeads as well as fluorescently labeled aptamer. After 

incubating for approximately 30 seconds, the MFS features passively sorted the now fluorescently labeled 

beads from the background medium, which were then collected at the outlet and analyzed with a flow 

cytometer. 
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measured with our algorithm to that of samples prepared on a more traditional benchtop 

setup and measured with a flow cytometer. We prepared the on-chip samples as above, this 

time spiking the blood with concentrations ranging from 10 pM to 100 nM. From this 

measurement, we determined that the analysis program could detect fluorescence at 

concentrations as low as 100 pM [Figure 3a]. Below this, the program could not effectively 

differentiate the beads from the background fluorescence. To validate our algorithm, we 

then compared the mean fluorescence of our traces evaluated with the algorithm to bead 

fluorescence measured with flow cytometry. We mixed various dilutions of TNFα spiked 

with the reagent mixture at a ratio of 1:1.5 and incubated for 30 min, then washed the beads 

with a PBS buffer. This mimicked the reagent ratios found in the device albeit with a much 

longer incubation time and more effective washing steps. After preparing the beads, we 

measured the median bead fluorescence at each TNFα concentration using a flow cytometer 

(BD FACSVerse). Our results show a linear correlation between the data gathered using our 

chip after a short incubation and the results gathered using a commercial device after 30 min 

of equilibration [Figure 3b].  

 

Having determined that our device could perform quantitative measurements at a reasonable 

sensitivity, we then sought to demonstrate the ability of our device to perform long term 

measurements of dynamic protein concentration changes. As before, we pumped reagents 

into the device using a Harvard Apparatus pump at 1.2 mL/hr. In order to vary the protein 

concentration as a function of time, we switched to a peristaltic pump to draw blood from 

open topped containers and pump into the device at a rate of 0.8 mL/hr. We doped whole 

blood with either 5 nM or 100 nM of TNFα and then switched inputs every 30 min, the  
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Figure 3. (a) To test the sensitivity of our device and detection algorithm, we doped whole blood with 

varying concentrations of TNFα. We found that under ideal conditions we could detect concentrations as low 

as 100 pM of TNFα. Below this, the detection algorithm frequently missed beads or confused them with the 

background. The dotted lines represent the raw data while the solid lines represent a rolling average. (b) We 

then verified our results by comparing the fluorescence measured with our device/image detection algorithm 

with results from a comparable benchtop assay measured with a commercial flow cytometer 
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entire time monitoring the resulting on-chip fluorescence signal using our image detection 

program. The results of these measurements are shown in Figure 4. For such long 

measurements it became necessary to bin the data each minute and measure the average 

fluorescence of these bins in order to minimize the effect small clots and spurious beads 

becoming trapped in the device and incubating for longer than desired. We see that there is 

an approximately 5 min delay between the concentration changes and the resulting 

measurements. This is likely attributable to the dead volume from the various fluidic 

connections between the blood reservoir and the device coupled with a low overall flow rate. 

Additionally, we see that the system started to become unstable after ~85 min. At this point 

a large blood clot began blocking the channel and forcing us to halt further measurements. 

Despite these issues, we can see a clear differentiation between the low-TNFα and high-

TNFα blood, giving us an unparalleled ability to measure protein concentration changes in 

complex media in real time.  
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Figure 4. We varied the concentration of TNFα in whole blood over a period of approximately 90 

minutes and continuously measured the average fluorescence. Whole blood was pumped into the device 

from one of two open-top containers using a peristaltic pump. After a half-hour, tubing was quickly 

switched from the low TNFα to high TNFα container. At one hour, the source was switched back.  In order 

to mitigate the effect of clots and trapped beads on our data, we divided our data into 1-minute bins and 

averaged the fluorescence of each bin. After ~ 80 min a clog in the device disrupted the flow of beads 

through the channel, resulting in the termination of the experiment. 
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Materials and Methods 

Microfluidic devices: 

The microfluidic device necessary to carry out these operations was fabricated using 

standard soft lithography techniques 39,40. To briefly summarize, a mold was created by 

spinning SU8 2050 photoresist onto a clean silicon wafer and subsequently baked at 950C 

for 6 minutes. After exposing the first SU8 layer, a second layer of SU8 2015 was then spun 

onto the wafer surface. This layer is used to form the raised herringbone patterns necessary 

for the mixing stage of the device. The wafer was then baked again at 950C for 6 minutes. At 

this point, the outline of the channels was clearly visible through the thin layer of SU8 2015, 

and so we could align a second photomask with the channels and perform a second exposure 

for the same time and intensity as the first. The wafer was then baked at 950C for a third 

time before being immersed in a solution of SU8 developer. Analysis using a Dektak 

profilometer showed the channels to be 40 µm high and 500 µm wide. The MFS structures 

were fabricated by first spinning AZ 5214 photoresist onto a glass wafer. 10 µm wide MFS 

patterns were formed with a photomask by exposing the wafer to 7 mW/cm2 of UV light for 

5 seconds. The wafer was then baked at 1150C for 2 minutes before performing a second 

exposure at 7 mW/cm2 for 1 min. Afterwards, the wafer was developed in a 4:1 dilution of 

AZ 400K developer for 35 seconds. The wafer was washed and residual organic matter was 

removed using an ozone oven. 200 Å of titanium was deposited on the surface via electron 

beam deposition, followed by 1800 Å of nickel to serve as the ferromagnetic layer. The 

undeveloped areas of photoresist were then stripped by submerging the wafer in an acetone 

bath, leaving only the MFS features behind. In addition to the MFS, we deposited nickel 
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alignment marks at the same time in order to assist with aligning the microfluidic channels 

with the MFS and permanent magnet. 

To create the channels themselves, we poured polydimethylsiloxane (PDMS) on the mold 

and placed the wafer under vacuum to degas the PDMS. The wafer was then cured at 800C 

for 2 hours. In order to create a permanent bond between the PDMS and backing wafer, each 

set of channels was peeled off of the mold and placed in a Novascan PSD ozone system for 

10 minutes along with a MFS backing wafer. The channels were then aligned manually with 

the MFS features and were left overnight to bond. 

 

Analysis program: 

In order to measure the fluorescence of each magnetic bead, we wrote a MATLAB program 

to analyze bead brightness in real time [Figure 5]. The beads are imaged with a Leica 

DM4000B upright microscope with an attached CCD camera (Hamamatsu). As a first step, 

the program connects to the camera and allows the user to adjust the exposure time and 

resolution. The program then requests the user select two “regions of interest” to analyze. 

The first region contains one or more MFS and will be where the bead fluorescence is 

analyzed. The second region of interest is a control region and should not contain any MFS 

strips where beads might get trapped. This region is used to calculate a background 

fluorescence which is later subtracted from the bead fluorescence. After selecting the 

regions of interest, the program then begins to search for beads using MATLAB’s built in 

circular Hough transform function. This is a standard image processing technique. Briefly, a 

Hough transforms works by first analyzing the gradient of the image in order to identify 

edges (i.e. regions where there is a sudden shift from the dark background to a brighter 
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foreground feature such as an MFS or a fluorescent bead). For each edge pixel, the 

algorithm then evaluates whether its neighboring edge pixels fit the definition of a circle. If 

enough pixels fit the definition of a circle to pass some user-defined threshold, the algorithm 

then returns the (x,y) value corresponding to the center of the circle as well as its radius.  

 

After the circle detection algorithm returns these values for all circles detected within the 

region of interest, the program then constructs a digital “mask”, which is a matrix the same 

size as the measurement region of interest as selected by the user, but with values of 1 for 

every area where beads were recognized by the Hough transform and values of 0 otherwise. 

Figure 5. The analysis program works by feeding in video frames and analyzing a small region of 

interest selected by the user. The program searches for circles in this region (corresponding to fluorescent 

beads), and then creates a digital mask which is laid over the frame. The pixel values of the masked frame 

are integrated and then divided by the number of beads present to form an average “brightness-per-bead”, 

which is then reported to the main program. After finishing with one frame, the program then moves on to 

the most recent frame available from the camera, allowing it to analyze the data in real time at a frame rate 

of approximately 2 frames per second. 
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We then produce a filtered image by multiplying the matrix representing the current camera 

frame by the mask. This returns a filtered image matrix with non-zero pixel values 

corresponding to the brightness of each bead where circles were detected and values of zero 

otherwise. The program then sums all of the values of this filtered image and divides by the 

number of detected beads in order to give an average “brightness-per-bead” for a given 

camera frame.  

 

We noticed that when running the device for longer periods of time, ultra-bright beads 

would begin to appear, preventing the circle detection algorithm from recognizing other, less 

bright beads. Presumably, this was due to beads becoming temporarily trapped in the device 

and therefore incubating in the presence of target much longer than their companion beads 

before eventually working their way free. We used several strategies to prevent this 

phenomenon from distorting the reported data. First, the program only calculates the 

brightness-per-bead if two or more beads are detected. Second, the program keeps a bin of 

the brightness values of the most recent 50 beads. If, for a given frame, the average 

brightness-per-bead is more than three times the standard deviation of the binned beads 

away from the average brightness of the binned beads, the values of the current frame are 

considered an outlier and are not reported to the main program (although they are recorded 

in the bead brightness bin, meaning that if a large change is sustained it will be reported 

within a few frames of when it began). Finally, for time periods greater than an hour, the 

program reports the average fluorescence value over a minute-long period. While this lowers 

our time resolution, it greatly helps alleviate the effect of noise on the system.  
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Fluidic operation: 

Prior to running each experiment, the microfluidic chip was placed atop a ½”x ¼”x ⅛” 

neodymium magnet. We then prepared a fresh batch of both the reagent and buffer 

solutions. For the reagent solution, a 1:500 dilution of antibody functionalized 4.5 µm 

magnetic beads (Dynabeads) was prepared in a PBS buffer. To this was added 500 nM of 

biotinylated affinity reagent (IDT) as well as 10 mg/ml BSA and 500 nM of SAPE. The 

imaging buffer solution consisted of 2.5 mg/ml BSA in a solution of PBS and 0.25% tween-

20. Both the imaging buffer and reagent solutions were then loaded into syringes and 

interfaced with the device using 0.02” tygon tubing (Cole-Parmer). The reagent mixture was 

pumped at 1.2 ml/hr using a Harvard Apparatus syringe pump. The imaging buffer was 

likewise pumped with a Harvard Apparatus syringe pump. The optimal flow rate was 

determined at the beginning of each experiment. Depending on the precise alignment of the 

magnet with the fluidic channel, we found that this rate typically ranged between 4.5 ml/hr 

and 5 ml/hr. 

 

Human whole blood preparation: 

For measuring doped protein levels in blood, human whole blood treated with sodium citrate 

anticoagulant was ordered from Bioreclamation LLC.  Whole blood was refrigerated at 4°C 

until use. Before use, blood was warmed to room temperature and then passed through a 40-

mm pore cell strainer (Thermo Fisher Scientific) to remove any clots or aggregates which 

may have formed. Concentrated target (TNFα or F1.2) was then doped into the blood at the 

desired levels. 
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Discussion 

While there has been considerable success in recent years in creating new and highly 

sensitive immunoassays, the long and complicated sample processing steps necessary to 

make these assays work means that they are unable to offer insight into dynamic systems. 

This is unfortunate considering that there are many conditions which could be better 

diagnosed and monitored by measuring the time dependent change of the concentration of 

moderate-to-high abundance proteins. In this work, we have attempted to address this 

deficiency by designing a microfluidic chip capable of performing continuous, real-time, 

concentration measurements of medium to high abundance proteins directly in whole blood.  

 

While our device/analysis program is unable to reach the same limits of detection as 

traditional bioassays, it is capable of extremely fast measurements, allowing it to track 

concentration in real time. With a maximum time resolution of two measurements per 

second over short periods and a time resolution of one measurement per minutes over time 

periods extending over one hour, our device offers unprecedented time resolution for 

tracking concentration changes in medium to high abundance proteins. Furthermore, these 

measurements are fully automated and are performed on undiluted whole blood. Along with 

being fully automated, the system is also modular, meaning that the user need only swap out 

the affinity reagents used in order to measure a different target. Additionally, the system is 

agnostic to the type of affinity reagent used (aptamers vs monoclonal antibodies vs 

polyclonal antibodies), making it much more flexible than other systems. We hope in the 

future to expand on this work to both increase the stability of the system over long time 
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periods and to swap out the reagents in order to measure more clinically relevant targets, 

such as proteins involved in the coagulation pathway. 
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III. An electrochemical scaffold sensor for rapid syphilis diagnosis 

Introduction 

In the previous chapter, we introduced a microfluidic device designed for real-time 

monitoring of protein concentrations. While designed as a point-of-care device, this system 

still requires a continuous supply of reagents as well as extensive instrumentation (such as a 

fluorescent microscope, computer, and various pumps to operate the fluidics), and thus is 

better suited to a hospital setting where the space requirements and upfront cost are less of 

an issue. For many applications, such as disease diagnostics however, continuous 

measurements are unnecessary and instead the more important factor is the portability of the 

system, the cost, as well as the time to response. After all, the more rapidly a disease is 

diagnosed, the sooner treatment can be initiated, which improves both compliance and 

outcomes, and therefore renders it desirable to achieve diagnosis within the timeframe of a 

single patient/clinician interaction1. This is particularly true for infectious diseases, as 

single-visit diagnosis allows for the treatment of patients who would otherwise be lost to 

follow up, enabling healthcare providers to intervene immediately to change behaviors and 

limit transmission2–5. Accomplishing this, however, necessitates diagnostic tools that are 

simple enough to use at the point of care and are capable of returning answers within 

minutes rather than hours, attributes that the current, largely laboratory-centered approaches 

to molecular diagnostics fail to achieve6. 

 

The potential value of improved point-of-care diagnostics is illustrated by the “gold-

standard” approach for diagnosing syphilis, a disease for which the incidence rate has more 

than doubled in the United States during the past decade7. The current standard of care for 
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syphilis diagnosis involves two serological tests performed in sequence. The first, the 

“nontreponemal” test, detects the presence of cardiolipids associated with cell damage and is 

used to determine whether a patient has an active infection8–10. The second, “treponemal” 

test, detects antibodies specifically indicative of exposure to pathogenic bacteria from the 

Treponema genus such as Treponema pallidum pallidum, the causative agent of syphilis11. 

This two-pronged approach12 is employed because the specificity of the two individual tests 

is poor; other underlying illnesses or pregnancy can cause false positives in the non-

treponemal test and antibodies remaining from past exposure (rather than ongoing infection) 

can cause false positives in the treponemal test13,14. However, while the two-pronged 

approach improves clinical specificity, it slows down diagnosis.  Specifically, while the non-

treponemal test can be performed rapidly at the point of care using assays such as the rapid 

plasma reagin test, the treponemal test relies on traditional serological assays (e.g., 

hemagglutination, Western blotting, or enzyme linked immunosorbent assays), thus 

necessitating specialized lab facilities15,16. Given this, a rapid treponemal test capable of 

being deployed at the point of care could help to limit the spread of syphilis by eliminating 

the gap between a patient’s initial visit and a positive diagnosis, allowing clinicians to 

intervene immediately. 

 

Motivated by the general need for improved, point-of-care serological tests, we have 

recently developed a general platform for rapid (< 10 min), convenient measurement of the 

concentration of specific antibodies in unprocessed serum [Figure 1] and have adapted it 

here to the treponemal test. Electrochemical DNA (E-DNA) biosensors have already proven 

to be a versatile platform for detection of analytes in complex media such as serum17–19. 
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Here we use a modification of the E-DNA scaffold platform20, which is comprised of a 

nucleic acid duplex (“scaffold”) bound to the surface of an electrode via a flexible linker. On 

the distal end of this scaffold, a redox reporter is conjugated to one end of the DNA 

backbone, while a recognition element, such as an antigenic protein, is bound to the other. 

Binding of an antibody to the recognition element reduces the efficiency with which the 

redox reporter approaches the electrode surface, resulting in a change in electron transfer 

rate that can rapidly and conveniently be measured using standard electrochemical 

approaches.  

 

  

Figure 1. (a) E-DNA scaffold sensors are comprised of a nucleic acid “scaffold” bound to the surface 

of a gold electrode via a flexible linker (Cash et al., 2009). The distal end of the scaffold is modified with a 

redox reporter (here methylene blue; MB), and a nitrilotriacetic acid (NTA) that, in the presence of copper, 

tightly binds a hexa-his tag on the antigen (here TpN17). (b) Binding of the target antibody to the 

recognition element reduces the efficiency with which the redox reporter approaches the surface of the 

electrode, reducing the electron transfer rate and, in turn, the current observed when the sensor is 

interrogated using square wave voltammetry. 
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Results 

The first step in fabricating antibody-detecting scaffold sensors is the identification of an 

appropriate antibody-recognizing epitope or antigen.  All previous examples of sensors in 

this class employed relatively short (< 18 amino acid) linear epitopes or low molecular 

weight haptens as these recognition elements20–23. Due to the difference in size between the 

recognition peptide and corresponding antibody these have the advantage of producing large 

signal gain (relative change in signal upon the addition of saturating target)24. They 

nevertheless suffer from two potentially significant limitations. First, not all antigens involve 

linear epitopes, reducing the generality of the approach. Second, not all patients seroconvert 

(i.e., generate detectable antibodies) against any given epitope. In contrast, the use of full-

length or near-full-length antigens as recognition elements supports the simultaneous 

presentation of multiple linear and conformational epitopes, which should improve clinical 

sensitivity by expanding the range of diagnostically relevant antibodies that can be detected 

and increasing the likelihood that the patient will have seroconverted for one of the epitopes 

present.  

 

In order to help determine the maximum possible size of our affinity reagent, we developed a 

Monte Carlo simulation of a scaffold sensor, allowing us to explore the effect of recognition 

element size on signal gain. The model generates a set number of scaffold conformations and, 

for each conformation in our ensemble, we individually rebuild the DNA scaffold in order to 

sample many independent conformations. To build each new scaffold the position of the first 

base pair is defined by randomly choosing a rotational angle, 𝜌, from the evenly distributed 

range 0 and 2π and an angle, 𝜃, the angle between the axis and the surface, which is randomly 



 

 54 

selected from a Gaussian distribution centered on 0; the width of the Gaussian we employ 

defines the flexibility of the linker connecting the scaffold to the surface [Figure 2a].  The 

center of the base pair is then placed 6 Å from the origin along this vector, corresponding to 

the length of the carbon linker attaching the anchor strand to the surface. The position of the 

DNA backbone is then determined via appropriate coordinate transfers. For each subsequent 

base, new angles, 𝜌𝑖 and 𝜃𝑖 , (relative to the coordinates of the previous base) are randomly 

selected. The rotational angle, 𝜌𝑖, is selected from a Gaussian distribution centered on the 

average rotational angle between DNA base pairs (0.6178 radians)25 with a standard deviation 

of 0.0125, while the bend angle, 𝜃𝑖 , is selected from a distribution centered on 0 with a 

standard deviation of 
 𝜋

60
. A sphere representing the center of the next DNA base pair is placed 

3.38 Å (the per-base translation of DNA) away along this vector and the position of the 

backbone again determined. The program tracks the overall bend and twist angles and uses 

them to convert from the local coordinates (spherical coordinates calculated for each new base 

relative to the previous base) to a global Cartesian coordinate calculated relative to an origin 

located at the attachment point of the anchor to the surface. This is accomplished by first 

converting from local spherical coordinates of the nth base to local Cartesian coordinates 

relative to the (n-1)th base: 

𝑟𝑛⃑⃑  ⃑′ = [𝐿𝐵 sin(𝜃𝑛) cos(𝜌𝑛) , 𝐿𝐵 sin(𝜃𝑛) sin(𝜌𝑛) , 𝐿𝐵 cos(𝜃𝑛)]′ 

where 𝑟𝑛⃑⃑  ⃑′ is the 3x1 matrix the location of the nth base given in local Cartesian coordinates 

relative to the previous base’s reference frame, and 𝐿𝐵 is the length per base of double stranded 

DNA. We then define two rotational matrices used to convert between the local Cartesian 

coordinates and global coordinates: 
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𝑅𝜃 = [
cos (Δ𝜃) 0 sin (Δ𝜃)

0 1 0
−sin (Δ𝜃) 0 cos (Δ𝜃)

] 

𝑅𝜌 = [
cos (Δ𝜌) −sin (Δ𝜌) 0
sin (Δ𝜌) cos (Δ𝜌) 0

0 0 1

] 

where Δ𝜌 and Δ𝜃 are given by: 

Δ𝜌 =  ∑ 𝜌𝑖

𝑛−1

𝑖=1

 

Δ𝜃 =  ∑ 𝜃𝑖

𝑛−1

𝑖=1

 

From this, we can determine the position of the nth base in global coordinates centered at the 

origin, which is then: 

𝑟𝑛⃑⃑  ⃑ = 𝑅𝜃𝑅𝜌𝑟𝑛⃑⃑  ⃑
′
+ ∑ 𝑟𝑖⃑⃑ 

𝑛−1

𝑖=1

 

This process is reiterated 27 times to create our scaffold (27 bases being the length of the 

scaffold currently employed in our experiments). Upon reaching the final base pair the 

position of the methylene blue reporter is defined by placing a sphere 7 Å away (to account 

for the size of the methylene blue and its linker) normal to one of the backbone chains. The 

“protein” is then simulated by attaching a variable radius sphere 3 Å away (to account for the 

length of the his-tag) from the opposite backbone. To simulate a flexible attachment from the 

scaffold to the protein we define an angle, , defined as the angle of the linker relative to the 

vector of the last base pair, which is randomly selected from a Gaussian distribution of varying 

standard deviation. For comparison with our experimental data we converted these radii into 

molecular weights according to the following formula26: 
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𝑅𝑔 = 7.78(𝑀)0.37 

To build our conformational ensembles, we next determined the energy of each conformation, 

which is comprised of the internal energy of the DNA and any interaction with the surface.  

The internal energy is given by: 

𝑈𝑏𝑒𝑛𝑑 = ∑

𝑘𝑏𝑇
2 𝐿𝑝

3.38
(1 − 𝑢𝑘 ∙ 𝑢𝑘−1)

𝑛

𝑘=2

 

𝑈𝑡𝑤𝑖𝑠𝑡 = ∑
𝑘𝑏𝑇

2
𝜅(𝜌𝑘 − �̅�)2

𝑛

𝑘=2

 

Here 𝐿𝑝 is the persistence length of double-stranded DNA (approximated to be 53.5 nm), 𝑢𝑘 is 

the unit vector defining the kth base relative to the previous base, 𝜅 is the twist force constant 

for double-stranded DNA (203.49 radians-2)25, and (𝜌𝑘 − �̅�) is the difference between the 

rotation angle of the kth base and the average rotational angle of double-stranded DNA. 

Interactions with the surface are defined by a hard-wall approach in which the energy of these 

interactions is zero for conformations that do not overlap with the monolayer and infinity if 

there is any overlap between the protein and the monolayer. The monolayer is simulated as an 

exclusion layer 9.25 Å from the surface. Using this potential, we used Monte Carlo approaches 

to simulate 1,000,000 conformations for each set of parameters (i.e., for each discrete value 

of   and protein radius) to generate our ensembles. 

 

Per Uzawa et al.27 we calculated a weighted mean effective electron transfer rate (𝑘𝑒𝑓𝑓) for 

each ensemble according to: 

𝑘𝑒𝑓𝑓 =
1

𝑛
∑𝑃𝑖 ∙

𝑛

𝑖=1

𝑘𝑖(𝑧) 
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here n is the number of scaffolds with non-zero probability of occurring, 𝑃𝑖 is the probability 

that the ith scaffold is in its current conformation as determined by Maxwell Boltzmann 

statistics, and 𝑘𝑖(𝑧) is a distance dependent electron transfer rate. The latter is given by a 1-D 

tunneling equation with a length constant of 1.2 Å−1  [ref28].  

 

Simulations of the scaffold sensor suggest that the dependence of the baseline peak current on 

molecular weight stems from simple geometric exclusion. Specifically, we see that the signal 

change begins to saturate when the weight of the attached recognition element corresponds to 

a radius of ~3.5 nm, which is roughly equivalent to the width of the dsDNA scaffold (~2 nm) 

plus the length of the methylene blue linker (~1 nm) [Figure 2]. We find that, besides the 

molecular weight of the attached protein, the simulated rate of electron transfer is also strongly 

dependent on the linker flexibility of the linker connecting the protein to the scaffold (𝜙), and 

the flexibility of the linker connecting the scaffold to the surface (𝜃) [Figure 2b, 2c]. Plots of 

relative estimated electron transfer rate versus recognition element molecular weight trace out 

shapes similar to those seen in experimental results24. The current suppression seen at the 

plateau, however, does not depend on the linker flexibility [Figure 2d], but rather is a function 

of the flexibility of the linker connecting the recognition element to the scaffold. This occurs 

because more flexible recognition elements can move to avoid colliding with the surface, an 

effect that presumably explains why the sensors we have characterized here, which use a 

highly flexible his-tag linker, plateau at lower signal suppression (~35% versus upwards of 

50%) than the signal suppression we have previously seen in sensors employing shorter, less 

flexible linkers20–22.  
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The above results suggest that, while the signal change induced by target binding will fall as 

the recognition element increases in size, there is nevertheless “room” to exploit larger 

recognition elements than the largest we have previously employed. As their antibody-

recognizing elements, most commercial treponemal assays employ a combination of up to 

four full-length T. pallidum membrane proteins ranging in size from 15 to 47 kDa29. 

According to our simulation results, we do not expect proteins larger than ~25 kDa to be useful 

Figure 2. (a) To help understand the behavior of E-DNA scaffold sensors, we have developed a simple 

model employing three parameters, the flexibility of the linker connecting the DNA to the surface (𝜽), the 

flexibility of the linker connecting the protein to the scaffold (𝝓), and the radius of the attached protein (𝒓). (b) 

The estimated change in electron transfer rate relative to an unmodified scaffold is a strong function of the 

recognition element size as well as the flexibility of the linker connecting it to the scaffold (where the angle 

given is the width of the distribution that 𝝓 adopts. (c) We see that the electron transfer rate is also strongly 

depended on the flexibility of the linker connecting the scaffold to the surface. (d) If we look at the change in 

electron transfer rate relative to an unmodified scaffold, however, we see that changing the surface linker 

flexibility does not affect the shape of the molecular weight gain curve. 
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as part of scaffold sensors due to the small expected signal change between the unbound state 

and the antibody bound state. Fortunately, ELISAs employing TpN17 as their sole antigen, 

however, have been shown to achieve good clinical sensitivity and specificity for the diagnosis 

of syphilis30.  Because this antigen is much larger than the largest epitopes previously 

employed in sensors of this class, we expected the resulting sensor to produce only relatively 

small gain and peak current, reducing the signal-to-noise ratio24. In response we pursued two, 

complementary methods of improving gain and signaling current.  First, we engineered our 

recombinant TpN17 protein to include only the part of TpN17 corresponding to a previously 

reported crystal structure31, reducing the protein’s molecular weight to 15 kDa. Second, we 

explored several methods of improving the scaffold’s electron transfer rate, which should lead 

to improved peak currents24. We expect from our simulations that increasing the flexibility of 

the linker between the scaffold and the surface should increase the current, even if it does not 

lead to larger signal changes upon binding. In order to verify this, we investigated three 

constructs differing in scaffold flexibility: (1) the relatively rigid, fully-double-stranded DNA 

scaffold we have used previously; (2) a peptide-nucleic-acid (PNA)/DNA hybrid scaffold, 

which we assume is more flexible based off of the conformational flexibility of PNA32; and 

(3) a double stranded DNA scaffold attached to the SAM via a flexible, 18-unit polyethylene 

glycol (PEG) linker. At each step of the fabrication process, we interrogated the sensors with 

square wave voltammetry, measured the peak current, and compared the magnitude of the 

current between constructs as normalized by the surface area of the sensing electrode [Figure 

3].  
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While the PNA/DNA scaffold provided a slightly higher peak current than the double 

stranded DNA scaffold, the PEG linker scaffold easily outperformed both, producing more 

than twice the peak current of the double-stranded DNA scaffold. Based on these results and 

on the ease of its fabrication we employed the PEG linker scaffold in our subsequent 

experiments.  

 

Figure 3. Here we compare the signaling of three sensor architectures varying in scaffold flexibility: a 

fully-double-stranded DNA scaffold (DNA/DNA), a DNA/peptide-nucleic-acid (PNA) scaffold, and a 

double stranded scaffold connected to the surface via a flexible polyethylene glycol (PEG) linker. The PEG 

DNA/DNA scaffold provides approximately twice the current (for a given sized sensor) as our previously 

employed, DNA/DNA scaffold, and thus we have employed it here. For each construct, we measured the 

peak current of nine individually fabricated electrodes and normalized each by the surface area of the 

individual electrode. 
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When tested using monoclonal anti-TpN17 antibodies we see a monotonic relationship 

between signaling current and antibody concentration. To see this, we first established a 

baseline current in buffer solutions (i.e., without antibodies present), followed by titration 

with monoclonal antibodies and recording the signal change after a 20 min equilibration at 

each concentration [Figure 4a]. Fitting the titration curve to a Langmuir isotherm yielded a 

dissociation constant of 3 nM with the signal change saturating at a gain of ~13% after 

addition of effectively saturating (20 nM) antibody [Figure 4b]. Having established that we 

could detect monoclonal antibodies in buffer, we next challenged the sensor against anti-

TpN17 monoclonal antibodies spiked into healthy (sero-negative) human serum. One of the 

chief challenges working in such a complex media is combatting non-specific adsorption of 

material to the surface of the sensor, which can cause anomalous signal changes resulting in 

baseline drift. To minimize such effects, we diluted the serum 20-fold with 1 M NaCl.  After 

Figure 4. We accomplish antibody detection through electrochemical interrogation of the sensor. (a) To 

determine the concentration of antibody present in our sample, we measure the magnitude of the peak 

methylene blue current. Here we show the electrochemical response curves in the presence and absence of 

target, which we then use to form a binding curve.  In order to account for any difference in current not due 

to the reduction of methylene blue, we used linear baseline subtraction normalize between measurements. (b) 

Upon the addition of increasing concentrations of monoclonal antibody, we observe a binding curve that is 

well fit by the expected Langmuir isotherm (R2 = 0.98). The error bars represent the standard deviation of 

three independently fabricated electrodes.  
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the addition of 100 nM monoclonal antibody the sensor effectively equilibrated within 5 min 

and the signal remained stable thereafter [Figure 5]. The signal gain we observe under these 

conditions, however, is lower than that seen in buffer. As expected, in the absence of an 

antibody challenge the sensors exhibited no significant signal change. 

 

As a demonstration of the clinical sensitivity and specificity of our platform we next 

challenged the platform with differentiating between syphilis-positive and syphilis-negative 

human serum samples. To do this we first confirmed the status of four commercially 

sourced, putatively syphilis-positive human samples and four equivalent syphilis-negative 

human samples using a commercially available ELISA [Figure 6a]. One of the syphilis-

positive patients, identified as patient 4, only responded weakly to the ELISA. Nevertheless, 

Figure 5. The sensor rapidly detects monoclonal antibody added to 1:20 diluted syphilis-negative 

human serum. Shown is the signal change seen in the absence and presence of a monoclonal anti-TnP17 

antibody. The error bars represent the standard deviation of three independently fabricated electrodes. 
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the sample absorbance was still above the cutoff threshold determined using the calibration 

samples included in the kit. This was likely a result of the patient having a low antibody 

titer, although without further information from the ELISA manufacturer regarding the 

components of their kit this is speculative. We then measured each of the eight samples 

using our electrodes in order to compare to the ELISA. For each of the patients we prepared 

electrodes and sample dilutions as described above. We then placed the electrodes into the 

sample and performed an immediate baseline current measurement followed by a second 

measurement after 10 min. In every case the signal change between these two measurements 

differentiated the syphilis-positive samples from the negative samples with good statistical 

significance [Figure 6b], including in the case of the weakly reactive by ELISA patient 4.  
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Figure 6. The E-DNA platform can detect endogenous anti-syphilis antibodies in syphilis-positive human 

serum with clinical sensitivity comparable to that of a commercial ELISA. (a) We performed an ELISA on 

human serum samples according to the manufacturer’s instructions in order to verify the infection status of 

our samples and controls. While patient four responded relatively weakly for a positive sample and negative 

four responded strongly for a negative sample, both fell within the appropriate cutoff values as defined by the 

standard samples provided in the ELISA kit. Error bars represent the standard deviation of three 

measurements. (b) We then measured the same four patients and four negative controls utilizing our scaffold 

sensor and were able to detect antibodies in all four samples, including a low-titer sample (patient 4). A 

positive control comprised of 100 nM monoclonal antibody spiked into a negative sample (negative 4) 

presents, as expected, as positive. The values presented represent the signal change after 10 min exposure, 

while the error bars represent the standard deviation of five independently manufactured sensors. 
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Materials and Methods 

Gene design, overexpression, and protein purification: 

We retrieved the nucleotide sequence encoding residues 33-156 of Treponema pallidum 

TpN17 (residue numbering from UniProt entry P29722) from the European Nucleotide 

Archive (accession ID M74825). We introduced a hexahistidine tag and two serine residues 

on the amino terminus for purification purposes, substituted Cys58 with Ser (leaving a 

unique cysteine at position 42), and codon optimized for overexpression in Escherichia coli, 

yielding the gene sequence:  

 

ATGCACCACCACCACCACCACAGCAGCGGCAAGGCGAAAGCGGAGAAGGTGGA

ATGCGCGCTGAAAGGTGGCATTTTCCGTGGTACCCTGCCGGCGGCGGACAGCCC

GGGTATTGATACCACCGTGACCTTTAACGCGGACGGCACCGCGCAGAAGGTTGA

GCTGGCGCTGGAAAAGAAAAGCGCGCCGAGCCCGCTGACCTACCGTGGTACCT

GGATGGTTCGTGAGGACGGCATCGTGGAACTGAGCCTGGTTAGCAGCGAGCAA

AGCAAGGCGCCGCACGAGAAAGAACTGTACGAACTGATTGATAGCAACAGCGT

GCGTTATATGGGTGCGCCGGGTGCGGGCAAGCCGAGCAAAGAGATGGCGCCGT

TCTATGTTCTGAAGAAAACCAAGAAATAA.  

 

Codon optimization, synthesis, subcloning into a pET-3a vector using 5′ Nde1 and 3′ 

BamH1 restriction sites, and sequencing of the final construct was performed by a 

commercial vendor (GenScript, USA). 
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We transformed the expression construct into E. coli BL21(DE3) cells (New England 

Biolabs, USA) using standard heat shock. Gene overexpression was for 5 h in lysogeny 

broth with 100 μg/mL of carbenicillin at 37°C, 220 rpm, induced by addition of 0.5 mM 

isopropyl β-D-1-thiogalactopyranoside at OD600 > 0.5. Cells were harvested by 

centrifugation and resuspended in 20 mM sodium phosphate, 40 mM imidazole, 500 mM 

NaCl, pH 7.4. Protein purification was at 4° C. Cells were lysed by ultrasonication in 

presence of DNase (Sigma-Aldrich, USA) and RNase (Roche, Switzerland). Cell debris was 

removed by centrifugation at 11,000 rpm for 1 h. TpN17 was purified from the 0.2-μm-

filtered supernatant on a HisTrap HP column (GE Life Sciences, USA), eluting the protein 

via a linear imidazole gradient up to 500 mM. Pure TpN17 fractions were identified on 

SDS-PAGE gels by SafeStain staining (Thermo Fisher, USA) and dialyzed into 1x 

phosphate buffered saline (PBS), pH 7.4 (Sigma-Aldrich, USA), and protein concentration 

was determined by UV/visible spectroscopy.  

 

Sensor fabrication: 

Gold disc electrodes (2 mm diameter) were first mechanically polished in both a 1 µm 

diamond and a 0.05 µm aluminum oxide slurry, followed by electrochemical cleaning by 

successive cycling in both 0.5 M NaOH and 0.5 M H2SO4. An anchor DNA strand which 

had been thiol and methylene blue (MB) modified (HS(CH2)6-CAG TCA GTC AGT CAG 

TCA GTC AGT-MB)) was reduced in a 10 mM TCEP solution for 1 h before being diluted 

to a working concentration of 16 nM in 1xPBS. The DNA sequence used for the anchor 

strand is the same as our group has used previously for other scaffold-type sensors20-24. We 

originally chose this sequence because it was predicted not to interact with itself, thus 
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preventing binding of the complement strand, and our group’s success using this sequence 

as an anchor strand supports this prediction. Electrodes were incubated in the DNA anchor 

solution for 1 h and then rinsed briefly with deionized water. We next coated any remaining 

exposed gold on the electrode with a protective alkane-thiol monolayer by immersing them 

in a 10 mM solution of 6-mercapto-1-hexanol overnight at 4° C.  

 

Successful deposition of both the monolayer and anchor strand was confirmed by placing 

the electrodes in a 1x PBS solution and measuring the methylene blue reduction peak with 

square wave voltammetry using a 25 mV, 60 Hz, signal. A nitrilotriacetic acid (NTA)-

modified complimentary DNA strand was then diluted to 100 nM and the electrodes 

incubated in this solution for 30 min. Binding of the complementary DNA was verified by 

measuring the reduction in magnitude of the MB peak. Following this, TpN17 was bound to 

the assembled scaffold using a His-NTA complex. The electrodes were incubated in a 100 

µM CuSO4 solution in 1x PBS for 15 min. After this, a 15 µL drop of 10 µM His-tagged 

TpN17 was placed on the tip of the electrode and incubated for 45 min. The resulting 

sensors were rinsed, and the attachment of the protein verified by again scanning using 

square wave voltammetry.  

 

Electrochemical measurements: 

Comparative measurements of the anchor strands were performed in 1x PBS buffer. We 

prepared three electrodes for each of our constructs (DNA/DNA, PEG-DNA/DNA, 

DNA/PNA). Prior to depositing the anchor strand, we determined the surface area of each 

electrode by immersing the electrodes into 0.05 M H2SO4 and measuring the area the gold 
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oxide reduction peak. After depositing the anchor strands and forming the alkane-thiol 

monolayer, we used square wave voltammetry (60 Hz, 25 mV signal) to measure the 

methylene blue reduction peak of each construct, using a linear baseline subtraction to 

account for any current difference between the more positive and more negative sides of the 

potential window. We then measured the signal reduction after adding in the complementary 

NTA-labeled oligonucleotide for each electrode as well as the signal reduction due to the 

addition of the TpN17 protein. Finally, we added 100 nM of mouse monoclonal anti-TpN 17 

antibodies (Clone B1707M, Catalog # MBS319589, MyBioSource, USA) in order to verify 

that the signal change due to saturating antibody concentrations remained constant amongst 

all of the sensor constructs.    

 

As with the anchor strand measurements, we performed the antibody titrations in 1x PBS. 

We began by measuring the baseline methylene blue peak current for three electrodes. 

Monoclonal antibodies were then added every subsequent 20 min and the reduction in peak 

current measured. In order to verify that the signal change was not due to degradation of the 

sensor over time, three additional electrodes were prepared and measurements in 1x PBS 

(without the addition of antibodies) were performed contemporaneously with the titration 

measurements.     

 

For measurements of clinical samples, human serum samples for both healthy and syphilis 

positive patients were obtained from a commercial source (Bioreclamation IVT, USA). The 

infection status of each of the positive patients was confirmed via a rapid plasma regain test 

by the vendor. Serum measurements were performed by first diluting samples into their 
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appropriate buffers and then placing sensors in a dilute serum solution and immediately 

beginning to scan using square wave voltammetry at a 25 mV amplitude and 30 Hz. ELISAs 

(Zeus Scientific, USA) were purchased and measurements performed according to 

manufacturer’s instructions. 

 

  



 

 70 

Discussion 

 

Here we have shown that an E-DNA scaffold sensor employing a near-full-length antigen as 

its recognition element can detect diagnostically relevant antibodies at clinically relevant 

concentrations in human serum samples. Despite the relatively large size of the antigenic 

protein it employs, this new treponemal test easily differentiates syphilis positive human 

serum samples from those of healthy control patients in as little as ten minutes via a simple 

assay that requires no reagents other than the dilution buffer. The clinical sensitivity of the 

test compares favorably to that a commercially available ELISA, one of the current gold 

standards for serological diagnosis of syphilis, while taking a fraction of the time (minutes 

as opposed to hours) and being far less complex (far fewer steps) to perform. 

 

Given that not all patients will produce antibodies against any single epitope and that many 

antibodies recognize conformational rather than linear epitopes, the use of a folded antigen 

as our recognition element expands the potential range of diseases that can be diagnosed 

using sensors in this class and opens the door for a more general platform which can be used 

to adapt established clinical assays into point-of-care tests. This increase in generality, 

however, comes at the cost of signal gain. Working in buffer solutions we have previously 

established that recognition elements up to ~25 kDa in size can produce appreciable signal 

change upon binding. While our results in buffer are in line with this observation, our results 

from serum samples lead us to believe that biofouling and the associated loss in signal 

change might reduce the maximum possible size of the recognition element for scaffold 

sensors operating in complex media closer to 15 kDa, although a more rigorous study of this 
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effect would be needed. Even with this restriction in mind, this proof of principle opens the 

door to a wide range of potentially useful full-length and near full-length antigen E-DNA 

sensors based off of this platform, and the precise molecular-weight-limit is likely to depend 

on the specific geometry of the antibody-antigen complex. 
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IV. Towards the rational optimization of aptamers for electrochemical 

sensors 

 

Introduction 

 

Aptamers are short (typically 20 to 70 bases), oligonucleotides that are capable of binding to 

a non-nucleic acid target such as a protein or small molecule1,2. Typically, they have regions 

of self-complementary bases which help define a three-dimensional structure able to bind to 

the target of interest3–5. In the absence of target, however, the three-dimensional structure is 

often unstable, leading to a phenomenon where aptamers can undergo large conformational 

changes between the “bound” and “unbound” states. A major recent advance in sensing has 

been to take advantage of these conformational changes to couple target binding with an 

easily measurable output6–13. One such method is to modify the aptamer with a redox active 

“reporter”, such as methylene blue (MB), and then tether the aptamer to an electrode. In the 

unbound state, the aptamer is unfolded and the redox reporter is far from the surface, 

resulting in slow electron transfer when interrogated. In the presence of target, however, the 

Figure 1. Cartoon schematic showing the basic operation of an electronic aptamer based sensor. In 

the absence of target, the aptamer is in an unstructured state and the average electron transfer rate between 

the methylene blue molecule and the surface is low. In the presence of target, however, the aptamer’s 

structure is stabilized, bringing the methylene blue closer to the surface and increasing the electron transfer 

rate. This change in electron transfer rate can be measured using standard electrochemical methods such 

as square wave voltammetry or chronoamperometry 
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three-dimensional structure is stabilized, locking the redox reporter into a position closer to 

the surface and thereby increasing the electron transfer rate [Figure 1].   

 

While this modification strategy sounds simple in concept, not all aptamers are amenable to 

being transformed into a sensor in such a fashion. It is, therefore, common practice upon 

receiving a new aptamer sequence to then “engineer” it for use as a sensor14,15. Depending 

on the structure of the folded state, it may be necessary to move the redox reporter to 

different locations along the aptamer in order to maximize the difference in electron transfer 

rate between the two states. Alternatively, a researcher might find that the folded state is 

stable when conjugated to the surface, reducing the signal change seen upon target binding. 

In this case, a researcher may choose to truncate complementary regions in the aptamer in 

order to destabilize it or to split the aptamer in two connected with a flexible linker16–18. As 

another strategy, a researcher might attempt to add non-complementary bases before or after 

complementary regions in order to shift the entire aptamer away from the surface15. This 

may be done for several reasons, including attempting to engineer a larger difference in 

electron transfer rate between the bound and unbound states, attempting to move the binding 

pocket away from the surface and therefore give it greater access to the analyte, and 

attempting to minimize disruptive surface effects on the aptamer. A major challenge when 

developing aptamer-based sensors is therefore determining which modifications to make to 

the aptamer in order to maximize the difference between the electron transfer rates of the 

bound and unbound states without sacrificing affinity for the target. 
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While “engineering” implies a careful and scientific approach, in reality this process is semi- 

(or fully) empirical. Specifically, there has been little effort to systematically explore and 

understand the physical effects of any of these modifications. Rather, individual researchers 

typically just order and test a variety of constructs then select the best performing varient. 

While this may make sense on an individual level, it would be preferable in the long term to 

construct a predictive model capable describing the effects of aptamer modifications on 

sensor behavior. Unfortunately, developing a complete model of an aptamer interacting with 

its target is an difficult. Given the vast diversity of possible aptamer targets, including 

everything from small molecule drugs weighing a few dozen daltons to proteins weighing 

nearly one hundred kilodaltons, there is no single computational method appropriate for 

simulating the interaction of a generic aptamer with its target. Indeed, if such a model was 

available, it would be possible to perform aptamer selection completely in-silico, rendering 

traditional methods entirely unnecessary. Here, instead, we will focus on the much more 

acheivalbe task of isolating one possible modification strategy, in this case the addition of 

non-complementary bases on the 3’ and 5’ ends of the aptamer, and simulating the resulting 

effect on the electron transfer rate of the aptamer in its bound and unbound states.  
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Results 

 

In order to compare the bound versus the unbound states, we have constructed a kinetic 

Monte Carlo model of a “generic” aptamer system. The model divides our simulation into 

two separate programs, one which addresses the behavior of the unfolded state and one 

which addresses the behavior of the folded state. In doing so, we can compare the behavior 

of the aptamer in the absence of any target and in the presence of saturating amount of 

target. Here we are making the implicit assumption that the folded structure is sufficiently 

unstable in the absence of target that no aptamers are in this conformation unless stabilized 

by the target. Likewise, we assume that the folded state is sufficiently stable such that in the 

presence of saturating amounts of target the bound state will retain its structure over time 

periods significantly longer than the amount of time being simulated (the timescale of the 

simulations, which is defined by the slower electron transfer rate, is typically of the order of 

seconds). While with real sensors we will never experience a situation where all of the 

aptamers on a surface are in the bound or unbound conformations, optimizing the difference 

in electron transfer rate between these two states remains the best way to maximize signal 

gain. Additionally, despite not entirely representing the conditions on the sensor surface, 

these assumptions are in good agreement with empirical observations of the aptamer 

systems which our lab has encountered thus far. For instance, one available aptamer 

explored by our group is an aptamer against the chemotherapy drug doxorubicin. If we 

interrogate a surface bound doxorubicin aptamer with square wave voltammetry, can graph a 

Lovric plot showing the peak electric charge versus the applied frequency, which gives us a 

rough estimate of the distribution of electron transfer frequencies for the doxorubicin 
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aptamer [Figure 2]. After adding 100 µM of doxorubicin, we can clearly see that both the 

bound and unbound states have distinctly different peak electron transfer rates. This 

indicates that there is minimal contribution from unfolded and folded states respectively and 

that we may safely divide our task into two separate programs.  

 

We gain several advantages by dividing the simulation into models of the two distinct states, 

chiefly in being able to greatly simplify each model. First, we do not need to add specific 

logic to address the interaction of the target with the aptamer. This is a poorly studied field 

and, to our knowledge, there are only a few DNA aptamer/target pairs which have been 

studied with crystallography19–24. Thus, due to our dividing of the models, we can avoid all 

uncertainties related to whether the target interacts with the bound or unbound stage, what 

specific orientation of the target relative to the aptamer is needed in order to bind, et cetera, 

while still being able to extract useful information for optimizing other aspects of the 

aptamer design. This simplification also allows us to avoid explicitly modeling base-pair 

Figure 2 Lovric plots of the doxorubicin aptamer show the distribution of electron transfer rates in our 

system. Shown here are plots in the absence of target (a) and presence of saturating amounts of target (b). 

We see two distinctly different distributions, indicating that each state has distinct electron transfer behavior. 

It should be noted that the sudden signal drop around 100 Hz is due to an equipment artifact. 
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interactions, a time and resource intensive task with little bearing on the modification 

strategy being considered. Instead, we can “fix” the conformation of certain base pairs to 

ensure they are properly hydrogen bonded. We then assume that the rest of the bases do not 

interact. 

 

With our general strategy in mind, we begin by examining the simpler problem, modeling 

the unbound, unfolded state. This consists of a single strand of DNA anchored to a surface 

and with a redox reporter conjugated to the last base. We will use a similar Monte Carlo 

approach as described in the previous chapter, albeit with modifications to reflect our 

current system. To initialize the system, we start the simulation in the lowest possible energy 

state, a strand of DNA of length n bases that extends straight up from the surface. For a set 

number of steps, we apply a small deviation to the position of each of the n bases and 

calculate the energy associated with such a deviation. These deviations are made in spherical 

coordinates relative to the reference frame of the base previous and the magnitude is chosen 

such that the bend energy equilibrates around  
3

2
𝑘𝐵𝑇. Here we model the DNA as a freely 

jointed chain which has a bending energy given by: 

𝐸𝐹𝐽𝐶 ≅ 𝑘𝐵𝑇 (
𝐿𝑝

𝐿𝑏
) (1 − cos(𝜙)) 

where Lp is the persistence length of single stranded DNA (~2.2 nm), Lb is the length per 

base (~0.676 nm) [ref25] and 𝜙 is the bend angle between two bases. If the change in energy 

associated with the move is less than zero, the deviation for that base is accepted, while if 

the energy is greater than zero the change is accepted with a probability  

𝑃 = 𝑒
Δ𝐸
𝑘𝐵𝑇 
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We then update the global position of all the bases based off of the spherical coordinates of 

each base calculated relative to the previous base. This process proceeds in much the same 

fashion as described in the previous chapter. We model the self-assembled monolayer on the 

surface of our electrode as a hard exclusion zone lying on the z = 0 plane. After updating the 

positions, we check that all the bases lie above this plane and, if not, we attempt to resolve 

this conflict by relaxing the most recent deviation to the system. The program recalculates 

the positions with a deviation 95% of the magnitude of the original deviation and then 

rechecks for bases lying below the monolayer. This process is repeated iteratively until no 

conflicts are observed. Once we have achieved this, we calculate the effects of the electric 

potential of the surface on the DNA. Here we treat the electric potential as a decaying 

exponential due to screening of the applied voltage by electrolytes in solution: 

𝑉(𝑧) = 𝑉0𝑒
−

𝑧
𝜅 

where  𝑉0 is the voltage at the surface, equal to the reduction potential of methylene blue (-

0.35 V), and 𝜅 is the Debye length in a 150 mM electrolyte solution (~0.785 nm). We then 

calculate a Δ𝑈𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 for each base based off the proposed position of the DNA bases 

compared to the starting position of the DNA bases. Based off this second energy 

calculation, we then use the Monte Carlo algorithm to reevaluate whether to accept or reject 

the change in position.  

 

Once we have iterated through each DNA base in this fashion, we have completed one step 

in the Monte Carlo algorithm and have a new conformation for our DNA. These Monte 

Carlo steps do not inherently give us any information about the amount of time which has 

elapsed, however, making it impossible to calculate an electron transfer rate. In order to 
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account for this, we introduce the “kinetic” portion of our kinetic Monte Carlo algorithm. In 

order to do so, we assign time values to each of our steps by measuring the distance that the 

terminal base has traveled. We then use the diffusion equation to calculate the approximate 

amount of time it would take to diffuse such as distance: 

< Δ𝑥2 > = 6𝐷Δ𝑡 

where D is the length dependent diffusion rate of single stranded DNA as empirically 

measured by Robertson et al.26: 

𝐷 =  3.096 ∗ 10−8(𝑁𝑏𝑎𝑠𝑒𝑠)
−0.571 

here the diffusion rate is given in units of 
𝑛𝑚2

𝑠
 and 𝑁𝑏𝑎𝑠𝑒𝑠 is the length of the single stranded 

DNA. We then can determine whether an electron was transferred between the redox 

reporter and the surface by calculating the distance between the last base (which we assume 

to hold the redox reporter) and the surface. We calculate the probability of an electron being 

transferred as the amount of time elapsed multiplied by the probability of an electron being 

transferred in that conformation according to a 1-D long distance tunneling equation: 

𝑃𝑒𝑇 = 𝑘𝑒𝑇Δ𝑡 = 4400𝑒−1.2∗𝑧𝑟𝑒𝑑𝑜𝑥  Δ𝑡 

where we have chosen the prefactors for the tunneling equation in accordance with 

experimental values for methylene blue in 150 mM phosphate buffered saline27.   

 

For the structured, bound aptamer state, we use a modified version of the single stranded 

DNA algorithm. Instead of inputting a single overall aptamer length, we now have two 

inputs, a “stem” length and a “tail” length corresponding to the number of bases added at the 

3’ or 5’ end before and after the double stranded region of the structured aptamer. It should 

be noted that the model does not explicitly address the structure of the “loop” portion of the 
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aptamer. We believe this to be an acceptable generalization because, since the loop portion 

of the aptamer must begin and end connected to the same double stranded portion of the 

aptamer, the final position of the methylene blue is not affected by the conformation of the 

loop or the interaction of the target with the aptamer. Thus, we only have to simulate the 

region around the stem of the aptamer and can avoid explicitly simulating the loop. To 

demonstrate this experimentally, we once again turn to measuring the electron transfer rate 

of the doxorubicin aptamer, this time with varying lengths of poly-thymine introduced in the 

loop portion of the aptamer. After inserting either 10 or 30 thymine bases in the loop portion 

of the aptamer, we see that the electron transfer rate of the bound state stays the same while 

the electron transfer rate of the unbound state decreases as the aptamer is made longer 

[Figure 3]. This simplification allows us to avoid explicitly addressing the interaction of the 

target with the binding pocket in our simulation. Instead, we proceed in much the same 

fashion as the single stranded simulation up to the length of the stem portion. Once the 

algorithm reaches the final ‘stem” base, it then calculates the position of a complementary 

base, which is assigned as the position of the first “tail” base. The algorithm then continues; 

now calculating distances in the opposite direction, until it reaches the final “tail” base. In 

doing so, we can calculate the position of the final base, and therefore the redox reporter, 

without explicitly calculating the position of the loop. The diffusion constant is calculated as 

the harmonic mean between the diffusion constant of a section double stranded DNA whose 

length corresponds to the length of the unmodified aptamer and the diffusion constant of the 

single stranded additions made to the aptamer before and after the stem-loop.  
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We find that our Monte Carlo model is able to correctly predict the relationship between the 

electron transfer rate for varying lengths of  single stranded DNA. We predict that the 

electron transfer rate should scale with the length of the aptamer with a power law 

dependence of −1.61 ± 0.39 while experimental data shows a power law dependence of 

−2.2 ± 0.3 [ref28]. These results are within the margin of error of one another, indicating 

that our model is able to sufficiently describe the behavior of the open state [Figure 4]. 

 

Figure 3 (a) Lovric plots of the doxorubicin aptamer with varying lengths of poly-T inserted in the loop 

portion of the aptamer show that in the absence of target the electron transfer rate slows as the aptamer is 

lengthened. Here purple is the native aptamer, green is the aptamer with 10 thymine bases inserted, and blue 

is the aptamer with 30 thymine bases inserted. (b) While changing the loop portion of the aptamer predictably 

causes large changes in the electron transfer rate, in the folded state we see little difference between the native 

aptamer (purple), the aptamer with 10 poly-T (green), and with 30 poly-T (blue). 
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For the closed state of the “aptamer”, we chose to investigate the effects of adding bases 

before and after the stem portion of the aptamer. This one of several strategies employed in 

engineering aptamers in an attempt to improve signal gain. The expectation is that while this 

will move the binding pocked farther from the surface, potentially allowing the aptamer to 

better bind with its target, it will also lead to slower electron transfer in the bound state. 

Since the signal change is dependent on the difference between the states, however, it is 

possible to achieve better overall performance despite slower rates in the closed state as long 

as the electron transfer rate of the open state decreases more quickly than that of the closed 

state. Specifically, we will examine one modification strategies in which we add bases both 

Figure 4 A comparison of the simulated electron transfer rate (black) with data measured via 

chronoamperometry (red) shows good agreement between our model and experimental results for 

unstructured, unbound, DNA  
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before and after the stem with the goal of balancing out the detrimental effect of adding 

bases before the stem.  

 

From the simulations, we see a noticeable difference between the symmetric and asymmetric 

cases. Plotted below is the simulated electron transfer rate for the unfolded state versus the 

electron transfer rate of asymmetrically and symmetrically modified aptamers with a 25-

base loop [Figure 5]. As further bases are added around the stem, it increases the length of 

the aptamer in the unfolded state as well. It is therefore possible to gain a rough estimate of 

the performance of an aptamer construct by drawing a vertical line at a given total base 

length and taking the difference between the electron transfer rate of the unfolded state and 

one of the two competing folded states. Because the model assumes one base is present after 

the stem loop, we see that initially the symmetric and asymmetric cases are the same and 

only differ slightly due to noise arising from the random fluctuations due to the nature of the 

Monte Carlo simulation. As the number of additional bases grows, however, we see that the 

electron transfer rate of the asymmetric case falls off more rapidly than the symmetric case, 

likely due to the symmetric case allowing for more states where the redox reporter is able to 

approach the surface. Eventually, however, the gap between the asymmetric and symmetric 
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states narrows before vanishing all together after adding approximately 16 bases to the 

original stem-loop. It is worth noting that the electron transfer rate of both cases decreases 

faster than that of the unfolded aptamer, indicating that all modifications of this sort will 

have a negative effect on the observed signal change. If a researcher wishes to perform such 

a modification on their construct for reasons other than changing the electron transfer rate 

(such as moving the binding pocket away from the electrode surface), then this model 

advises that such modifications should be kept as short as possible in order to minimize the 

negative effect they will have on the electron transfer rate.  

Figure 5. As we add bases to the stem loop, we see that regardless of modification strategy the 

electron transfer rate of the closed state falls off faster than the electron transfer rate of the open state. Here 

the dotted line represents the simulated electron transfer rate of an aptamer in the unbound state, while the 

solid line represents the electron transfer rate of the bound state. Experimental date is shown as solid dots 

where the error bars represent the uncertainty of the exponential decay fit. 
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In order to confirm the accuracy of our model, we ordered a series of stem-loop DNA 

constructs to stand in for a generic “aptamer”. Each construct maintained the same 25-base 

“structured” region consisting of 5 complementary bases forming the stem with 15 non-

complementary bases forming the loop. The sequence itself was chosen off past studies 

which have shown this sequence to be highly stable at room temperature29. We then added 

varying numbers of thymine bases on either the 3’ or on the 3’ and 5’ ends of the stem in a 

manner consistent with simulated structure from our Monte Carlo model. We measured the 

electron transfer rate for each sequence using chronoamperometry and compared it against 

the electron transfer rate of the simulated model [Figure 5]. We found our experimental 

results to be in good agreement with the simulations, thus validating our approach.    
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Materials and Methods 

 

Simulations: 

Simulations were performed using a custom MATLAB script the details of which are given 

above. The code itself is provided in Appendix B. For each data point, the program was 

allowed to run until it measured 100 electron transfer events, at which point it reported the 

total elapsed time. The electron transfer rate was then simply calculated as the number of 

electrons transferred divided by the elapsed time.  

 

Electrode fabrication: 

To confirm the results of our simulation, we performed electrochemical measurements of the 

electron transfer rate of a step-loop construct. We began by polishing 2 mm diameter gold 

disc electrodes in a 1 µm diamond slurry followed by polishing in a 0.05 µm aluminum 

oxide slurry. The electrodes were then electrochemically cleaned by successive cycling in 

both 0.5 M NaOH and 0.5 M H2SO4. For doxorubicin measurements, we used an aptamer 

with the following sequence as the parent aptamer: 5’ - ACC ATC TGT GTA AGG nT 

GGT AAG GGG TGG T – 3’ where nT represents varying lengths of poly-thymine. To 

simulate aptamers in their folded conformation, we conjugated closed stem loops with 

various modifications made to the 3’ and 5’ end to our electrodes. The various constructs all 

contained a thiol group and a methylene blue (MB) modification and followed the same 

sequence (nT- TCG CGC GAT CGG CGT TTT AGC GCG T-nT) where nT represents 

varying lengths of poly-thymine. Constructs were reduced in a 10 mM TCEP solution for 1 

h then diluted to a concentration of 100 nM in 1xPBS. This sequence was chosen because it 
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has previously been shown to form stable stem-loops. We incubated the electrodes in the 

stem-loop solution for 1 h and then rinsed briefly with deionized water. To protect the 

surface of the electrode, we then immersing them in a 10 mM solution of 6-mercapto-1-

hexanol overnight at 4° C, coating any remaining exposed gold on the electrode with an 

alkane-thiol monolayer. 

 

Electrochemical measurements: 

We used Lovric plots were to illustrate the difference between the electron transfer behavior 

of the bound versus unbound states. To perform these measurements, we scanned electrodes 

with square wave voltammetry (using a custom script written for a CH instruments 

potentiostat) for a set number of frequencies and then extracted the peak current observed at 

each. The Lovric plots were then constructed by dividing the peak current by the frequency 

being measured. While these measurements are easy to perform and analyze, due to the low 

frequency resolution of the Lovric plots, we chose to use chronoamperometry to better 

determine the electron transfer rate of the stem-loop constructs for comparing to our model. 

For these measurements, after successfully modifying the gold electrodes, we performed a 

cyclic voltammetry sweep from -0.1 V to -0.4 V in order to confirm the presence of the 

methylene blue modified DNA on the surface and to determine the precise voltages to be 

used during the chronoamperometry portion of the experiment. We then began the 

chronoamperometry sweep with the methylene blue in a fully oxidized state before jumping 

to a reducing potential as determined by the cyclic voltammetry scan and measuring the 

resulting current decay. Due to limitations of the instrument, in order to capture the full 

current decay we performed three measurements at varying sensitivities and used a custom 
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MATLAB script to reconstruct the full decay [Figure 5]. To reduce noise, each measurement 

was repeated 50 times and the average current decay was used to extract the electron transfer 

rate. We fit the portion of the decay corresponding to the methylene blue reduction to a 

single exponential decay, allowing us to extract the electron transfer rate for each stem-loop 

construct.  
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Conclusion 

 

Adapting aptamers to be used in sensors is a laborious and expensive task which depends 

largely on trial and error. In an attempt to help streamline this task, we have developed a 

Monte Carlo model which simulates the electron transfer rate of a generic aptamer and 

examines how modifications to the aptamer might affect the difference in electron transfer 

rates between the bound and unbound states. To validate our model, we examined how the 

addition of poly-thymine at the 3’ and 5’ ends of an aptamer influences the performance of 

the resulting sensor. Our simulation shows that the addition of poly-thymine reduces the 

electron transfer rate of the bound state by a larger degree than that of the unbound state. 

This indicates that such a modification strategy would not improve the performance of a 

sensor, but rather would actually make it worse. This is backed up by experimental evidence 

which shows that for a stem-loop construct with varying lengths of poly-thymine added 

around the 3’ and 5’ ends we see a similar effect, albeit with far fewer data points to define 

the shape of the curve.  

 

As electrochemical DNA based sensors mature, it will become increasingly important to 

understand the physics behind how they work in order to better optimize them for specific 

applications. While experimental evidence will always be necessary to validate 

computational models, to perform the full equivalent experiment to our simulations, we 

would have had to design, purchase, and evaluate approximately 20 DNA sequences. Such a 

task would have taken weeks to months to complete as opposed to the few hours required to 

run our program. Thus, while models such as ours cannot entirely replace benchtop 
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measurements, they can be used to help identify promising paths forwards and help avoid 

wasting time and resources on unrewarding or unlikely to succeed strategies.  
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Appendix A: Real-time video analysis 

% Code for performing real-time analysis of fluorescence in microfluidic 
% channel (Chapter II) 
function [dat,top_dat,time,background] = vid_analysis8(numbframe,numbroi) 
close all 
%Initialize Camera 
delete(imaqfind); 
vidobj = videoinput('hamamatsu',1,'MONO16_1344x1024'); 
src = getselectedsource(vidobj); 
%Set initial values  
set(src,'ExposureTime',0.2) 
set(vidobj, 'FramesPerTrigger', 1); 
set(vidobj, 'TriggerRepeat', Inf); 
triggerconfig(vidobj, 'manual'); 

  
%Take a snap shot to set ROI 
preview(vidobj); 
rawsnap = getsnapshot(vidobj); 
snap = imadjust(rawsnap); 
imshow(snap); 
[matrix_of_roi] = selectROImask(snap,numbroi); 
backgroundroi = selectbackground(rawsnap,snap); 

  
%Start live(-ish) video analysis 
start(vidobj); 
[dat,top_dat,time,background] = 

analyze_frames(vidobj,matrix_of_roi,numbframe,numbroi,backgroundroi); 
stop(vidobj); 
end 

  

  
%ROI function 
function [matrix] = selectROImask(movie_frame_in,num) 
%Specify Region of Interest 
ROI_img = imshow(movie_frame_in); 
matrix = zeros(num,4); 
%Zoom in (press enter to finish zooming) 
zoom on; 
waitfor(gcf,'CurrentCharacter',char(13)) 

  
%Select a rectangular region (double click to select) 
rec_selec = imrect; 
chec = wait(rec_selec); 
pos = getPosition(rec_selec); 

  
matrix(1,1) = pos(1); %Xmin 
matrix(1,2) = pos(2); %Ymin 
matrix(1,3) = matrix(1,1)+pos(3); %Xmax 
matrix(1,4) = matrix(1,2)+pos(4); %Ymax 

  
for ii = 2:num 
    rec_selec = imrect; 
    position = wait(rec_selec); 
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    matrix(ii,1) = position(1); %Xmin 
    matrix(ii,2) = position(2); %Ymin 
    matrix(ii,3) = matrix(ii,1)+pos(3); %Xmax 
    matrix(ii,4) = matrix(ii,2)+pos(4); %Ymax 
    %ii = ii+1; 
end 
close all 
end 

  
function backbrightroi = selectbackground(~,adjusted_frame_in) 
ROI_img = imshow(adjusted_frame_in); 
zoom on; 
waitfor(gcf,'CurrentCharacter',char(13)) 
backbrightroi = zeros(1,4); 
%Select a rectangular region (double click to select) 
rec_selec = imrect; 
chec = wait(rec_selec); 
pos = getPosition(rec_selec); 
backbrightroi(1,1) = pos(1); %Xmin 
backbrightroi(1,2) = pos(2); %Ymin 
backbrightroi(1,3) = backbrightroi(1,1)+pos(3); %Xmax 
backbrightroi(1,4) = backbrightroi(1,2)+pos(4); %Ymax 
end 

  

  
function [all_centers,radii,beads] = 

o_detect_outliers(videoframe,modframe) 
    %Modified version of o_detect which removes outliers and returns same 

radius for all. Output includes 
    %all circle detect data and the average brighness 
    [centers,~] = imfindcircles(videoframe,[6 

13],'ObjectPolarity','bright','Sensitivity',0.90,'Method','TwoStage'); 
    [centers2,~] = imfindcircles(videoframe,[6 

11],'ObjectPolarity','dark','Sensitivity',0.80,'Method','TwoStage'); 

     
    %Establish coordinate grid 
    [x,y]= meshgrid(1:size(modframe,2),1:size(modframe,1)); 

     
    %create array to hold bead brightness data 
    all_centers = cat(1,centers,centers2); 
    dimens = size(all_centers); 
    numtotal = dimens(1); 
    beads = zeros(1,numtotal);  
    radii = zeros(1,numtotal); 

     
    if numtotal <= 1 
        beads(beads==0) = NaN; 
        radii = zeros(1,numtotal) + 7; 

        
    else 

  
        for jj=1:numtotal; 
            mask_temp = zeros(size(modframe)); 
            xc = all_centers(jj,1); 
            yc = all_centers(jj,2); 
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            radii(jj) = 7; 
            mask_temp = (x-xc).^2 + (y-yc).^2 < 49; 
            filt = videoframe.*uint16(mask_temp); 
            beads(jj) = sum(sum(filt)); 
        end 
    end 
end 

  

  

  
function 

[corrected_avgbright,corrected_topval,corrected_times,background4later] = 

analyze_frames(objinput,roi_matrix,numframes,numroi,backroi) 

  
%Reserve some memory 
avgbright = zeros(numframes,1); 
avgtopvalues = zeros(numframes,1); 
times = zeros(numframes,1); 
captionFontSize = 14; 
bead_buffer = zeros(50,1); 
bead_buffer(bead_buffer==0)=NaN; 
background4later = zeros(numframes,1); 
%Cycle through frames 
ii=2; 
waitfor(gcf,'CurrentCharacter',char(13)) 
while double(get(gcf,'CurrentCharacter'))~=27 
 tic 
    %Filter out everything but ROI and find the edges 
    trigger(objinput); 
    big_img = getdata(objinput); 
    ymin1 = roi_matrix(1,2); 
    ymax1 = roi_matrix(1,4); 
    xmin1 = roi_matrix(1,1); 
    xmax1 = roi_matrix(1,3); 
    originalImage = big_img(ymin1:ymax1,xmin1:xmax1); 
    for jj = 2:numroi 
        ymin = roi_matrix(jj,2); 
        ymax = roi_matrix(jj,4); 
        xmin = roi_matrix(jj,1); 
        xmax = roi_matrix(jj,3); 
        temp_img = big_img(ymin:ymax,xmin:xmax); 
        originalImage = cat(2,originalImage,temp_img); 
        %jj = jj+1; 
    end 

     
    %Measure background signal for later normalization 
    backymin = round(backroi(1,2)); 
    backymax = round(backroi(1,4)); 
    backxmin = round(backroi(1,1)); 
    backxmax = round(backroi(1,3)); 
    backgroundimg = big_img(backymin:backymax,backxmin:backxmax); 
    backbright = mean(mean(backgroundimg)); 
    background_bead = pi*49*backbright; 
    %backmin = background_bead-500; 
    backmax = background_bead+600; 
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    % Create figure and show original feed 
    set(gcf, 'units','normalized','outerposition',[0 0 1 1]); 
    drawnow; 
    subplot(2, 3, 2) 
    dup = imadjust(originalImage); 
    imshow(dup) 
    caption = sprintf('Video feed'); 
    title(caption, 'FontSize', captionFontSize); 
    axis image;  

  
    subplot(2, 3, 1) 
    dup2 = imadjust(big_img); 
    imshow(dup2); 
    caption = sprintf('Full video feed'); 
    title(caption, 'FontSize', captionFontSize); 
    %Show masked video feed 
    maskedImage = originalImage; 
    subplot(2, 3, 4) 
    imshow(backgroundimg) 
    caption = sprintf('Background feed'); 
    title(caption, 'FontSize', captionFontSize); 

  
    %Show circle detection done on masked video feed and calculate 

brightness 
    finaldup = maskedImage; 
    subplot(2, 3, 5) 
    imshow(dup) 
    caption = sprintf('Analysis program'); 
    title(caption, 'FontSize', captionFontSize); 
    [cent,radi,values] = o_detect_outliers(originalImage,finaldup); 
    numbercircles = length(values); 
    values = rot90(values,-1); 

  
    if numbercircles == 0 
        avgbright(ii) = NaN; 
    else 
        %Eliminate beads found to be within threshold value of background 

  
        values(values<backmax) = NaN; 
        backgroundIndex = find(isnan(values)); 
        radi(backgroundIndex) = 1; 
        %Take beads found to be above background and add them to bead 
        %history. If beads are found to be above 3 STD from avg history, 
        %ignore for now 
        bead_buffer = vertcat(bead_buffer(numbercircles:50),values); 
        buffermean = nanmean(bead_buffer); 
        bufferstd = nanstd(bead_buffer); 
        outlierIndex = find(abs(bead_buffer-buffermean) > 3*bufferstd); 
        outlierIndex = outlierIndex - 51 + numbercircles; 
        actualindex = outlierIndex(outlierIndex>0); 
        %values 
        values(actualindex) = NaN; 
        %values 
        radi(actualindex) = 1; 
        avgbright(ii) = nanmean(values); 
        avgbright(ii) = avgbright(ii)-background_bead; 
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        h = viscircles(cent,radi); 

         
        %Take top half of values (experimental...) 
        numNaN = sum(isnan(values)); 
        numbeads = length(values) - numNaN; 
        num2count = ceil(numbeads/2); 
        sortedvalues = sort(values,'descend'); 
        topvalues = sortedvalues(1:num2count); 
        avgtopvalues(ii) = mean(topvalues) - background_bead; 
    end 

  
    elapsedtime = toc; 
    times(ii) = times(ii-1)+elapsedtime; 
    subplot(2,3,6) 
    plot(times(2:ii),avgbright(2:ii)) 
    background4later(ii) = background_bead; 
    ii=ii+1; 
end 

  
%Shift data over one value to get rid of annoying avg_bright = 0 at t = 0 
corrected_avgbright = avgbright; 
corrected_topval = avgtopvalues; 
corrected_topval(1) = avgtopvalues(2); 
corrected_avgbright(1) = avgbright(2); %fix starting value is 0 later... 
background4later(1) = background4later(2); %ditto... 
corrected_times = times./60; 
end 
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Appendix B: Monte-Carlo simulation of scaffold sensor 

 

function [mol_weight,cur] = func_MC_dna4(yy,flexangle,protang) 
%Inputs are yy    ==> number of DNA strands to simulate (usually between 

50000 
%                     to 100000 
%           angle ==> angle in radians by which the DNA can vary from 
%                     perpendicular 
% 
%Outputs are mol_weight ==> a string containing molecular weights 
%            cur        ==> the current at each MW 

  
disp 

'======================================================================== 

' 
disp '                       Anchor Strand Simulation                          

' 
disp 

'======================================================================== 

' 

  
cur = zeros(1,37); 
mol_weight = zeros(1,37); 
%Cycle through molecular weights from 5 to 150 
for uu = 1:30 
    disp 'Current MW: ' 
    mol_weight(uu) = 5*uu 
    disp 'Current current: ' 
    cur(uu) = MC_current_calc(yy,mol_weight(uu),flexangle,protang); 
end 

  
%Also do MW = 200 kDa and 250 kDa 
disp 'Current MW: ' 
mol_weight(31) = 160 
disp 'Current current: ' 
cur(31) = MC_current_calc(yy,mol_weight(31),flexangle,protang); 
disp 'Current MW: ' 
mol_weight(32) = 170 
disp 'Current current: ' 
cur(32) = MC_current_calc(yy,mol_weight(32),flexangle,protang); 
disp 'Current MW: ' 
mol_weight(33) = 180 
disp 'Current current: ' 
cur(33) = MC_current_calc(yy,mol_weight(33),flexangle,protang); 
disp 'Current MW: ' 
mol_weight(34) = 190 
disp 'Current current: ' 
cur(34) = MC_current_calc(yy,mol_weight(34),flexangle,protang); 
disp 'Current MW: ' 
mol_weight(35) = 200 
disp 'Current current: ' 
cur(35) = MC_current_calc(yy,mol_weight(35),flexangle,protang); 
disp 'Current MW: ' 
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mol_weight(36) = 225 
disp 'Current current: ' 
cur(36) = MC_current_calc(yy,mol_weight(36),flexangle,protang); 
disp 'Current MW: ' 
mol_weight(37) = 250 
disp 'Current current: ' 
cur(37) = MC_current_calc(yy,mol_weight(37),flexangle,protang); 

  
%Plot results... 
plot(mol_weight,cur) 
end 

  

  

  
function avg_current = MC_current_calc(aa,MW,angle,protangle) 

  
%Set aside some memory and define constants 
Lp = 534; %Persistance length of dsDNA 
num = 27; %Number of bases 
beadwidth = 3.01; %ANGSSTROMS! DOUBLE CHECK VALUES! 
r = beadwidth/2; 
avgw = .6178; %THIS IS AVERAGE TWIST IN RADIANS 
l = 3.38; %BEAD TO BEAD LENGTH (Angstroms) 
kb = 1; %SUBSTITUTE BOLTZMANS CONST 
T = 300; %TEMPERATURE 
totalenergy = zeros(1,aa); 
finalz = zeros(1,aa); 
protein_location = zeros(1,aa); 
probability_config = zeros(1,aa); 
k_eT = zeros(1,aa); 
prob_eT = zeros(1,aa); 
numAA = MW/.110; 
%Rg = .395*(numAA)^(0.6) + 7.257; 
Rg = 7.78.*MW.^(.37); 

  
parfor ii = 1:aa 

     
    utracker = 0; 
    wtracker = 0; 

  
    %Give the DNA an initial position and angle due to carbon-carbon 
    %bonds linking it to the surface 
    shiftu = (angle)*randn; 
    shiftw = 2*pi*rand; 
    initialw = shiftw; 
    rotate_u = [cos(shiftu),0,sin(shiftu);0,1,0;-

sin(shiftu),0,cos(shiftu)]; 
    rotate_w = [cos(initialw),-

sin(initialw),0;sin(initialw),cos(initialw),0;0,0,1]; 
    positions = 

[6*sin(shiftu)*cos(shiftw),6*sin(shiftu)*sin(shiftw),6*cos(shiftu)]; 

     
    %Now calculate the actual positions of the backbone 
    baseposition = [10,0,0]; 
    otherbase = [-10,0,0]; 
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    corrected_base_pos = rotate_w*(rotate_u*baseposition'); 
    corrected_other_base = rotate_w*(rotate_u*otherbase'); 
    actual_base_pos = corrected_base_pos' + positions; 
    actual_other_base = corrected_other_base' + positions; 
    %shift_comp_w = 0; 
    bendenergy = zeros(1,num-1); 
    twistenergy = zeros(1,num-1); 
    Uelectrostatic = zeros(1,num-1); 
    %electrostaticenergy = zeros(1,num); 

  

     
    %Generate positions for each of the base pairs 
    for jj = 2:num 
        %Choose a random bending angle and rotation angle 
        rand_u = (pi/60)*randn; 
        rand_w = 0; 
        base_rand_w = avgw + 0.0125*avgw*randn; 

         
        %Calculate cartesian coordinates of jjth bead in reference frame 

of jj-1 bead 
        rotated_ref_pos = 

[l*sin(rand_u)*cos(rand_w),l*sin(rand_u)*sin(rand_w),l*cos(rand_u)]; 
        base_ref_pos = [10*cos(shiftw),10*sin(shiftw),0]; 
        comp_base_ref_pos = [10*cos(-shiftw+pi),10*sin(-shiftw+pi),0]; 

         
        %Calculate rotation matricies needed to shift n-1 bead frame to 

default frame    
        rotate_u = [cos(shiftu),0,sin(shiftu);0,1,0;-

sin(shiftu),0,cos(shiftu)]; 
        rotate_w = [cos(initialw),-

sin(initialw),0;sin(initialw),cos(initialw),0;0,0,1]; 

         
        %Apply rotation matricies to go from bead frame to default frame 
        corrected_ref_pos = rotate_w*(rotate_u*rotated_ref_pos'); 
        corrected_base_pos = rotate_w*(rotate_u*base_ref_pos'); 
        corrected_comp_base = rotate_w*(rotate_u*comp_base_ref_pos'); 

         
        %And then get everything from (0,0,0) frame 
        pos_previous = positions(:,:,jj-1); 
%         comp_pos_previous = actual_base_pos(:,:,jj-1); 
%         otherbase_previous = actual_other_base(:,:,jj-1); 
        actual_pos = corrected_ref_pos' + pos_previous; 
        comp_actual_pos = corrected_base_pos'+actual_pos; 
        comp_base_pos = corrected_comp_base' + actual_pos; 

        
        %Record position, twist, bend for bead jj 
        positions = cat(3,positions,actual_pos); 
        actual_base_pos = cat(3,actual_base_pos,comp_actual_pos); 
        actual_other_base = cat(3,actual_other_base,comp_base_pos); 

         

  

         
        %Keep track of overall shift in reference frame for next bead 
        shiftu = shiftu+rand_u; 
        shiftw = shiftw+base_rand_w; 
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        utracker(jj) = rand_u; 
        wtracker(jj) = rand_w; 

         
        %Calculate energy of bead jj in terms of kT's 
        bendenergy(jj-1) = (Lp/l)*(1-cos(rand_u)); 
        %twistenergy(jj-1) = 0; 
        twistenergy(jj-1) = 0.5*203.49*(base_rand_w-avgw)^2; 
        Uelectrostatic(jj) = 0;%0.001*(38.63)*(2.053)*exp(-

comp_base_pos(3)/7)+(38.63)*(2.053)*exp(-comp_actual_pos(3)/7);  
        %This is the electrostatic energy between each base and the 

surface, normalized by kT, given all of the shit in 
        %your lab notebook from 1/16/18 (page 26). Includes salt screening 
        %for 150mM salt (i.e. 1x PBS) 
    end 

     

    %Add the protein on the end of the DNA chain. Right now we are not 
    %considering bend energy or twist energy here. Note that the protein 
    %position is given in the 'positions' variable and is attached to the 
    %backbone 

     
    rand_uAA = (protangle)*rand; 
    rand_wAA = 0.25*avgw*randn; 
    backbone_pos_previous = actual_base_pos(:,:,num); 
    rotated_ref_pos = 

[(l+Rg)*sin(rand_uAA)*cos(rand_wAA),(l+Rg)*sin(rand_uAA)*sin(rand_wAA),(l+

Rg)*cos(rand_uAA)]; 
    prot_rotate_u = [cos(shiftu),0,sin(shiftu);0,1,0;-

sin(shiftu),0,cos(shiftu)]; 
    prot_rotate_w = [cos(shiftw),-

sin(shiftw),0;sin(shiftw),cos(shiftw),0;0,0,1]; 
    prot_corrected_ref_pos = 

prot_rotate_w*(prot_rotate_u*rotated_ref_pos'); 
    actual_pos = prot_corrected_ref_pos' + backbone_pos_previous; 
    positions = cat(3,positions,actual_pos); %Access to the protein 

location is in the 'positions' variable at index num+1 

     
    %Now consider the placement of the methylene blue (which should be 
    %normal to the last AA on the anchor strand and ~7 angtroms away 

     
    uMB = pi/2; 
    wAA = 0; 
    MB_pos_previous = actual_other_base(:,:,num); 
    rotated_ref_pos = 

[7*sin(uMB)*cos(wAA),7*sin(uMB)*sin(wAA),7*cos(uMB)]; 
    rotate_u = [cos(shiftu),0,sin(shiftu);0,1,0;-

sin(shiftu),0,cos(shiftu)]; 
    rotate_w = [cos(shiftw),-

sin(shiftw),0;sin(shiftw),cos(shiftw),0;0,0,1]; 
    corrected_ref_pos = rotate_w*(rotate_u*rotated_ref_pos'); 
    actual_pos = corrected_ref_pos' + MB_pos_previous; 
    positions = cat(3,positions,actual_pos); %Access to the MB location is 

in the 'positions' variable at index num+2 

     
     x = positions(:,1,:,:); 
     y = positions(:,2,:,:); 
     z = positions(:,3,:,:); 
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     zz = z(num+1); %This is z-location of protein 

  

      
     %Check to see if the protein is in contact with the monolayer and 
     %calculate energies 
     if zz<(Rg+9.24) %9.24 is approx the length of mercaptohexanol in 

Angstroms 
         totalenergy(ii) = NaN; 
         finalz(ii)= z(num); 
         zMB = z(num+2); 
         protein_location(ii) = zz; 
         probability_config(ii) = 0; 
         k_eT(ii) = NaN; 
     else 
        totalenergy(ii) = sum(bendenergy) + sum(twistenergy); 
        finalz(ii) = z(num); 
        zMB = z(num+2); 
        if zMB<9.25 
            zMB = 9.25; 
        end 
        protein_location(ii) = zz; 
        probability_config(ii) = exp(-totalenergy(ii)); 
        k_eT(ii) = 4400*(exp(-(zMB-9.24)*(1.2))); 
     end 
end 

  
%Go through and normalize the probability function 
totalprob = sum(probability_config); 
normal_prob = probability_config./totalprob; 

  

  
%for each configuration, find the probability of electron transfer 

  
for zzz = 1:aa 
    prob_eT(zzz) = k_eT(zzz)*normal_prob(zzz); 
end 
avg_current = nansum(prob_eT); 
end 
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Appendix C: Monte-Carlo simulation of aptamer-based sensors 

%Function to calculate electron transfer rate of ssDNA 
function [keT_observed,count_yes,MBpos,keT,positions,delE_average_history] 

= MCss_DNA_3(nsteps,lengthDNA) 
count_yes = 0; 
count_no = 0; 
T = 300; %Temp in kelvin 
Lb = .676; %length per base in nanometers of ssDNA 
Lp = 2.223; %persistence length of ssDNA in nm 
MBpos = zeros(nsteps,1); 
keT = zeros(nsteps,1); 
magnitude_bend_shift = 1;  
magnitude_twist_shift = 1;  
delE_average_history = zeros(1,nsteps); 
time = 0; 
electrons_transfered = 0; 
diff_const = (3.096e8)*(lengthDNA)^(-.571); % nm^2/s taken from Lukacs et  
                                            % al J. Bio. Chem. 1999 

(initial value) and Robertson 
                                            % et al. PNAS 2006 (for the 
                                            % length dependence)  

  
%Create initial ssDNA complex standing straight up 
delE_history = []; 

  

  
xpos = zeros(lengthDNA,1); 
ypos = zeros(lengthDNA,1); 
zpos = zeros(lengthDNA,1); 

  
for jj = 1:lengthDNA 
    zpos(jj) = jj*Lb; 
end 
bend = zeros(lengthDNA,1); 
twist = zeros(lengthDNA,1);     

  
%start changing the structure 
positions = [xpos,ypos,zpos]; 

  
for kk = 1:nsteps 
    pos_old = positions(lengthDNA,:); 
    delE_total  = 0; 
    for ll = 1:lengthDNA 

  
        %Choose random bend/twist 
        delta_rand_bend = (randn-.5)*magnitude_bend_shift;  
        delta_rand_twist = 2*pi*rand-pi; %Changed to be FJC model... 
        %delta_rand_twist = (randn-.5)*magnitude_twist_shift;  
        bend_temp = bend; 
        twist_temp = twist;       
        bend_temp(ll) = bend(ll) + delta_rand_bend; 
        twist_temp(ll) = twist(ll) + delta_rand_twist; 



 

 111 

        temppositions = 

update_position2(lengthDNA,Lb,positions,bend_temp,twist_temp,ll); 
        count_while = 0; 
        %Check if everything is above z = 0 plane, update if not 
        while all(temppositions(:,3)>0)==0 
            count_while = count_while+1; 
            temppositions(:,3); 
            delta_rand_bend = 0.9*delta_rand_bend; 
            delta_rand_twist = 0.9*delta_rand_twist; 
            bend_temp(ll) = bend(ll) + delta_rand_bend; 
            twist_temp(ll) = twist(ll) + delta_rand_twist; 
            temppositions = 

update_position2(lengthDNA,Lb,positions,bend_temp,twist_temp,ll); 
            if count_while > 1000 
                delta_rand_bend 
                delta_rand_twist 
                ll 
                kk 
                positions 
                temppositions 
                'While-loop is stuck' 
                return 
            end 

                 
        end 

  
        'done!'; 
        %Calculate internal bend energy 
        del_E_bend = -(Lp/Lb)*(1-cos(bend(ll))) + (Lp/Lb)*(1-

cos(bend_temp(ll)));  
        del_E_twist = 0;  
        del_E = del_E_bend + del_E_twist; 

  
        %Depending on the energy, update bend/twist 
        if del_E < 0 ||  exp(-del_E) > rand  

  
            deltaU_electro = calc_electrostatics(positions,temppositions,-

.25); 

  
                if deltaU_electro < 0 ||  exp(-deltaU_electro) > rand  
                    positions = temppositions; 
                    twist = twist_temp; 
                    bend = bend_temp; 
                    delE_total = delE_total + deltaU_electro; 
                    'yes'; 
                    count_yes = count_yes + 1; 
                else 
                    'no; electrostatics'; 
                    count_no = count_no +1; 
                end 

  
        else 
            count_no = count_no +1; 

  
            'no'   ;               
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        end 

  
        delE_total = delE_total + del_E;  
%             xpos = positions(:,1); 
%             ypos = positions(:,2); 
        zpos = positions(:,3); 
%             figure  
%             plot3(xpos,ypos,zpos) 
    end 

     
    pos_new = positions(lengthDNA,:); 
    diff_dist = norm(pos_old.^2 - pos_new.^2); 
    timestep = (diff_dist^2)/(6*diff_const); 

     

    delE_history = [delE_history, delE_total];  
    time = time+timestep; 
    zMB = positions(lengthDNA,3); 
    MBpos(kk) = zMB; 
    keT(kk) = 4400*(exp(-(zMB)*(1.2)));  
    prob_eT = keT(kk)*timestep; 

     
    %Determine if electron transfer happens 
    if prob_eT > rand 
        electrons_transfered = electrons_transfered+1 
        time 
        kk 
        'rate (Hz)' 
        electrons_transfered/time 
        if electrons_transfered > 100 
            keT_observed = electrons_transfered/time; 
            return 
        end 
    end 

     

  
end 
%Take z pos of final base and use to calculate keT 

  
keT_observed = electrons_transfered/time; 
delE_average_history = delE_average_history + delE_history; 
delE_average_history = delE_average_history./(lengthDNA);    
%  count_yes 
%  count_no 

    

             

             

 
%Function to calculate electron transfer rate of bound-state aptamer 
function [keT_observed,count_yes,MBpos,keT,positions] = 

MC_aptamer2(nsteps,length_stem,length_tail) 
count_yes = 0; 
count_no = 0; 
T = 300; %Temp in kelvin 
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Lb = .676; %length per base in nanometers of ssDNA 
Lp = 2.223; %persistence length of ssDNA in nm 
MBpos = zeros(nsteps,1); 
keT = zeros(nsteps,1); 
magnitude_bend_shift = 1;  
magnitude_twist_shift = 1;  
delE_average_history = zeros(1,nsteps); 
time = 0; 
electrons_transfered = 0; 
lengthDNA = length_stem+length_tail; 
diff_const = 2*(((3.096e8)*(lengthDNA)^(-.6))^(-1) + (1.2e8)^(-1))^(-1); % 

nm^2/s taken from Lukacs et  
                                            % al J. Bio. Chem. 1999 

(initial value) and Robertson 
                                            % et al. PNAS 2006 (for the 
                                            % length dependence) VALUE IS 

-.571 

  
temp_top_pos = [0,0,(length_tail+4)*Lb]; 
time_old = 0; 
%Create initial ssDNA complex standing straight up 
delE_history = []; 
xpos = zeros(lengthDNA,1); 
ypos = zeros(lengthDNA,1); 
zpos = zeros(lengthDNA,1); 

  
for jj = 1:length_stem 
    zpos(jj) = jj*Lb; 
end 

  

for jj = 1:length_tail 
    ind = length_stem+jj; 
    zpos(ind) = zpos(length_stem) - (jj-1)*Lb; 
    xpos(ind) = 2; 
end 

  
bend = zeros(lengthDNA,1); 
twist = zeros(lengthDNA,1);     

  
%start changing the structure 
positions = [xpos,ypos,zpos]; 
kk = 0; 

  
%This keeps the code from taking forever to run but returns slightly 
%noisier data... 
if lengthDNA < 6 
    max_electrons = 100; 
elseif lengthDNA < 10 
    max_electrons = 75; 
elseif lengthDNA < 14 
    max_electrons = 50; 
else 
    max_electrons = 30; 
end 
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%Main loop 
while electrons_transfered < max_electrons 
    kk = kk+1; 
    pos_old = positions(lengthDNA,:); 
    pos_old_top = temp_top_pos; 
    delE_total  = 0; 
    for ll = 1:lengthDNA 

  
        %Choose random bend/twist 
        delta_rand_bend = (randn-.5)*magnitude_bend_shift;  
        delta_rand_twist = 2*pi*(rand-.5);  
        %delta_rand_twist = (randn-.5)*magnitude_twist_shift;  

  
        bend_temp = bend; 
        twist_temp = twist;       
        bend_temp(ll) = bend(ll) + delta_rand_bend; 
        twist_temp(ll) = twist(ll) + delta_rand_twist; 

  
        [temppositions,temp_top_pos] = 

update_position_aptamer(length_stem,length_tail,Lb,positions,bend_temp,twi

st_temp,ll); 
        count_while = 0; 
        %Check if everything is above z = 0 plane, update if not 
        while all(temppositions(:,3)>0)==0 
            count_while = count_while+1; 
            temppositions(:,3); 
            delta_rand_bend = 0.9*delta_rand_bend; 
            delta_rand_twist = 0.9*delta_rand_twist; 
            bend_temp(ll) = bend(ll) + delta_rand_bend; 
            twist_temp(ll) = twist(ll) + delta_rand_twist; 
            [temppositions,temp_top_pos] = 

update_position_aptamer(length_stem,length_tail,Lb,positions,bend_temp,twi

st_temp,ll); 
        end 

  
        'done!'; 
        %Calculate internal bend energy 
        del_E_bend = -(Lp/Lb)*(1-cos(bend(ll))) + (Lp/Lb)*(1-

cos(bend_temp(ll)));  
%         del_E_twist = 0;  
        del_E = del_E_bend; 

  
        %Depending on the energy, update bend/twist 
        if del_E < 0 ||  exp(-del_E) > rand  

  
            deltaU_electro = calc_electrostatics(positions,temppositions,-

.35); 

  
                if deltaU_electro < 0 ||  exp(-deltaU_electro) > rand  
                    positions = temppositions; 
                    twist = twist_temp; 
                    bend = bend_temp; 
                    delE_total = delE_total + deltaU_electro; 
                    'yes'; 
                    count_yes = count_yes + 1; 
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                else 
                    'no; electrostatics'; 
                    count_no = count_no +1; 
                end 

  
        else 
            count_no = count_no +1; 

  
            'no'   ;               

  
        end 

  
        delE_total = delE_total + del_E;  
%             xpos = positions(:,1); 
%             ypos = positions(:,2); 
        zpos = positions(:,3); 
%             figure  
%             plot3(xpos,ypos,zpos) 
    end 

     
    pos_new = positions(lengthDNA,:); 
    top_pos_new = temp_top_pos; 

     
    diff_dist_top = norm(top_pos_new.^2 - pos_old_top.^2); 
    diff_dist = norm(pos_old.^2 - pos_new.^2); 

     
    max_diff_dist = max([diff_dist, diff_dist_top]); 
    timestep = (max_diff_dist^2)/(6*diff_const); 

     

    delE_history = [delE_history, delE_total];  
    time = time+timestep; 
    zMB = positions(lengthDNA,3); 
    MBpos(kk) = zMB; 
    keT(kk) = 4400*(exp(-(zMB)*(1.2)));  
    prob_eT = keT(kk)*timestep; 

     
    %Determine if electron transfer happens 
    if prob_eT > rand 
        time_new = time; 
        time_diff = time_new-time_old; 
        if time_diff>.0005 
            electrons_transfered = electrons_transfered+1 
            time 
            time_diff 
            kk 
            'rate (Hz)' 
            electrons_transfered/time 
            time_old = time_new; 
        end 
        if electrons_transfered > 100 
            keT_observed = electrons_transfered/time; 
            return 
        end 
    end 
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end 
%Take z pos of final base and use to calculate keT 

  
keT_observed = electrons_transfered/time; 
%delE_average_history = delE_average_history + delE_history; 
%delE_average_history = delE_average_history./(lengthDNA);    
%  count_yes 
%  count_no 

    

             

             

 
%function to calculate electrostatic effects 
function deltaU = 

calc_electrostatics(positions_before,positions_after,voltage) 
%Testing GitHub updates with this comment. Please ignore... 
q_star = 38.92; % q/kT in Volts^-1 at 25 Celcius 
z_before = positions_before(:,3); 
z_after = positions_after(:,3); 
num_bases = length(z_before); 
u_before = zeros(1,num_bases); 
u_after = zeros(1,num_bases); 

  
%Here we model the voltage as an exponential decay with a debye length of 
%.785 nm, equivalent to that of a 150 mM electrolyte solution (i.e. 1xPBS 

solution) 
for ii = 1:num_bases 
    u_before(ii) = -voltage*q_star*exp(-z_before(ii)/.785); 
    u_after(ii) = -voltage*q_star*exp(-z_after(ii)/.785); 
end 

  
deltaU = sum(u_after)-sum(u_before); 
% deltaU = 0.1*deltaU; 

 

 

%Function handling position updates for bound state aptamer 
function [positions,temp_position] = 

update_position_aptamer(length_stem,length_tail,Lb,positions,bend_temp,twi

st_temp,ll) 
lengthDNA = length_stem+length_tail; 

  
if ll > length_stem 
    ll = length_stem; 
end 

  
if ll <= length_stem 
    %Calculate positions of the stem bases first 
    for ii = ll:length_stem 

  
        if ii == 1 
            position_last = [0,0,0]; 
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        else 
            position_last = positions(ii-1,:); 
        end 

  
        current_bend = bend_temp(ii); 
        current_twist = twist_temp(ii); 

  
        shiftu = sum(bend_temp(1:ii)) - current_bend; 
        shiftw = sum(twist_temp(1:ii)) - current_twist; 

  
        rotated_ref_pos = 

[Lb*sin(current_bend)*cos(current_twist),Lb*sin(current_bend)*sin(current_

twist),Lb*cos(current_bend)]; 
        rotate_u = [cos(shiftu),0,sin(shiftu);0,1,0;-

sin(shiftu),0,cos(shiftu)]; 
        rotate_w = [cos(shiftw),-

sin(shiftw),0;sin(shiftw),cos(shiftw),0;0,0,1]; 
        corrected_base_pos = rotate_w*(rotate_u*rotated_ref_pos'); 

  
        positions(ii,:) = position_last + corrected_base_pos'; 
        position_last = positions(ii,:); 
    end 

     
    %Calculate the position of the last complementary base 
    shiftufinal = sum(bend_temp(1:length_stem)); 
    shiftwfinal = sum(twist_temp(1:length_stem)); 
    comp_transformation = [2*cos(shiftufinal), 2*sin(shiftwfinal), 0]; 
    rotate_u = [cos(shiftufinal),0,sin(shiftufinal);0,1,0;-

sin(shiftufinal),0,cos(shiftufinal)]; 
    rotate_w = [cos(shiftwfinal),-

sin(shiftwfinal),0;sin(shiftwfinal),cos(shiftwfinal),0;0,0,1]; 
    corrected_comp = rotate_w*(rotate_u*comp_transformation'); 
    positions(length_stem+1,:) = positions(length_stem,:) + 

corrected_comp'; 
    positions_last = positions(length_stem+1,:); 

     
    %calculate the position of the top-most complementary base (assuming 5 
    %total complementary bases) 
    rotated_ref_pos = 

[12*Lb*sin(current_bend)*cos(current_twist),12*Lb*sin(current_bend)*sin(cu

rrent_twist),12*Lb*cos(current_bend)]; 
    rotate_u = [cos(shiftu),0,sin(shiftu);0,1,0;-

sin(shiftu),0,cos(shiftu)]; 
    rotate_w = [cos(shiftw),-

sin(shiftw),0;sin(shiftw),cos(shiftw),0;0,0,1]; 
    corrected_base_pos = rotate_w*(rotate_u*rotated_ref_pos'); 
    temp_position = positions(length_stem,:) + corrected_base_pos'; 

     
    %Calculate positions of the tail bases 
    for mm = 2:length_tail 
        index = length_stem + mm; 
        current_bend = bend_temp(index); 
        current_twist = twist_temp(index); 
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        shiftu = shiftufinal - sum(bend_temp(length_stem+1:index)) + 

current_bend; 
        shiftw = shiftwfinal - sum(twist_temp(length_stem+1:index)) + 

current_twist; 

         
        rotated_ref_pos = 

[Lb*sin(current_bend)*cos(current_twist),Lb*sin(current_bend)*sin(current_

twist),Lb*cos(current_bend)]; 
        rotate_u = [cos(shiftu),0,sin(shiftu);0,1,0;-

sin(shiftu),0,cos(shiftu)]; 
        rotate_w = [cos(shiftw),-

sin(shiftw),0;sin(shiftw),cos(shiftw),0;0,0,1]; 
        corrected_base_pos = rotate_w*(rotate_u*rotated_ref_pos'); 

         
        positions(index,:) = positions_last - corrected_base_pos'; 
        positions_last = positions(index,:); 
    end 
%if ll starts after the complementary base, there is no need to calculate 

stem base positions     
elseif ll == length_stem+1 
    shiftufinal = sum(bend_temp(1:length_stem)); 
    shiftwfinal = sum(twist_temp(1:length_stem)); 
    comp_transformation = [2*cos(shiftufinal), 2*sin(shiftwfinal), 0]; 
    rotate_u = [cos(shiftufinal),0,sin(shiftufinal);0,1,0;-

sin(shiftufinal),0,cos(shiftufinal)]; 
    rotate_w = [cos(shiftwfinal),-

sin(shiftwfinal),0;sin(shiftwfinal),cos(shiftwfinal),0;0,0,1]; 
    corrected_comp = rotate_w*(rotate_u*comp_transformation'); 
    positions(length_stem+1,:) = positions(length_stem,:) + 

corrected_comp'; 
    positions_last = positions(length_stem+1,:); 

     
    %Calculate positions of the tail bases 
    for mm = 2:length_tail 
        index = length_stem + mm; 
        current_bend = bend_temp(index); 
        current_twist = twist_temp(index); 

         
        shiftu = shiftufinal - sum(bend_temp(length_stem+1:index)) + 

current_bend; 
        shiftw = shiftwfinal - sum(twist_temp(length_stem+1:index)) + 

current_twist; 

         
        rotated_ref_pos = 

[Lb*sin(current_bend)*cos(current_twist),Lb*sin(current_bend)*sin(current_

twist),Lb*cos(current_bend)]; 
        rotate_u = [cos(shiftu),0,sin(shiftu);0,1,0;-

sin(shiftu),0,cos(shiftu)]; 
        rotate_w = [cos(shiftw),-

sin(shiftw),0;sin(shiftw),cos(shiftw),0;0,0,1]; 
        corrected_base_pos = rotate_w*(rotate_u*rotated_ref_pos'); 

         
        positions(index,:) = positions_last - corrected_base_pos'; 
        positions_last = positions(index,:); 
    end 
else 
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    shiftufinal = sum(bend_temp(1:length_stem)); 
    shiftwfinal = sum(twist_temp(1:length_stem)); 
        %Calculate positions of the tail bases 
    for nn = ll:length_tail 

         
        index = length_stem + nn; 
        positions_last = positions(index-1,:); 
        current_bend = bend_temp(index); 
        current_twist = twist_temp(index); 

         
        shiftu = shiftufinal - sum(bend_temp(length_stem+1:index)) + 

current_bend; 
        shiftw = shiftwfinal - sum(twist_temp(length_stem+1:index)) + 

current_twist; 

         

        rotated_ref_pos = 

[Lb*sin(current_bend)*cos(current_twist),Lb*sin(current_bend)*sin(current_

twist),Lb*cos(current_bend)]; 
        rotate_u = [cos(shiftu),0,sin(shiftu);0,1,0;-

sin(shiftu),0,cos(shiftu)]; 
        rotate_w = [cos(shiftw),-

sin(shiftw),0;sin(shiftw),cos(shiftw),0;0,0,1]; 
        corrected_base_pos = rotate_w*(rotate_u*rotated_ref_pos'); 

         
        positions(index,:) = positions_last - corrected_base_pos'; 
    end 
end 

         

 




