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Abstract

Direct Complex Envelope Sampling of Bandpass Signals With M-Channel

Blindly Calibrated Time-Interleaved ADCs

Classical receiver architectures demodulate a high frequency bandpass signal to baseband

before sampling the in-phase and quadrature components. With the advent of high-speed

analog-to-digital converters (ADCs) and wide bandwidth sample-and-hold (S/H) circuits,

it has become practicable to sample a bandpass signal directly without any demodulation

operation and then process it with robust DSP technology. Direct sampling methods do

present their own challenges. When a single channel is used to digitize the signal, not all

frequencies above the Nyquist rate are allowed and only signals in certain frequency bands

can be sampled at this minimum rate. As first shown by Kohlenberg, the restriction on

spectral location can be removed with a two-channel time-interleaved ADC (TIADC) where

two ADCs separated by a timing skew independently sample the signal.

In this dissertation, we propose a general and flexible technique for sampling the complex

envelope of a bandpass signal using a nonuniformly interleaved M -channel TIADC. The

bandpass signal is sampled directly by the sub-ADCs, and the overall TIADC sampling

frequency is at or slightly above the Nyquist rate. Reconstruction of the complex envelope

entails inverting a matrix of filters resulting in some TIADC timing skews being forbidden.

The proposed sampling scheme requires the implementation of M digital FIR filters and

can be used to digitize bandpass signals with any carrier frequency in software defined radio

applications. Reconstruction analysis is provided for the case of two, three, and four channels.

Multi-tone and MSK signals are used in simulations to validate the proposed method and

assess its performance. Quadrature sampling, a special case of the two-channel TIADC that

assumes certain parameter relations, is investigated as an approximation technique.

It is well known that gain and timing skew mismatches can severely degrade TIADC per-

formance. To mitigate the effect of these mismatches on complex envelope reconstruction, we

iii



present a novel blind calibration method which assumes that there exists a frequency band

where the complex envelope signal has no power, due for example to oversampling. Mis-

matches give rise to errors in this band, which are extracted and used to estimate adaptively

the gain and timing skew mismatches. Simulations with multi-tone, MSK, and bandlimited

white noise signals demonstrate calibration can significantly improve reconstruction perfor-

mance measured in the mean-square error (MSE) sense. Suggestions for further research are

provided.
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3.11 PSD of the estimated envelope ĉ(n) computed with FIR filters of order N = 60

for a two-channel TIADC with timing skew d = 0.410 close to a forbidden value. 70

3.12 PSD of the estimated envelope ĉ(n) computed with FIR filters of order N = 60

for a two-channel TIADC with gain g−g0 = 0.01 and timing d−d0 = −0.0025

mismatches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.13 MSE in different image bands 1 ≤ ℓ ≤ 20 computed with filters of order

N = 60 for a two-channel TIADC with timing skew d = (ℓ+ 1/4)/(2ℓ). . . . 72
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4.1 PSD of the estimated envelope ĉ(n) for ε = ωb = 0 computed with FIR filters

of order N = 16 for a two-channel TIADC with quadrature timing skew

d0 = 0.05. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2 MSE for the entire range of ε values computed with FIR filters of order N =

10, 20, 30 in the case of quadrature timing skew d0 = 0.05. . . . . . . . . . . 90

4.3 MSE for −200π < ε < 200π computed with FIR filters of order N = 10, 20, 30

in the case of quadrature timing skew d0 = 0.05. . . . . . . . . . . . . . . . . 91

4.4 MSE for the entire range of ε values computed with FIR filters of order N =

10, 20, 30 in the case of quadrature timing skew d0 = 0.05 with 0.10% timing

mismatch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

xi



5.1 Adaptive reconstruction filter implementation and error signal computation,

where 1 ≤ i ≤M − 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2 Zoomed in i-th reconstruction and calibration channel from Fig. 5.1 for 1 ≤

i ≤M − 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.3 Magnitudes of FIR approximation of reconstruction filters Hi,l(e
jω) with i, l =

0, 1 for a Kaiser window of length N + 1 = 61 and parameter β = 6. . . . . . 128

5.4 Magnitude of bandpass FIR filter HBP obtained by using a window of length

81 and parameter β = 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
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Chapter 1

Introduction

1.1 Receiver Architectures

Conventional radar or communication receivers typically rely on mixing and filtering opera-

tions prior to signal digitization [1]. They downconvert a high frequency bandpass signal to

baseband (directly or in stages) and correlate it with two quadrature oscillators to obtain the

in-phase and quadrature signal components which are then sampled by two separate analog-

to-digital converters (ADCs). Most receivers utilize some variant of a heterodyne architecture

shown in Fig. 1.1. The RF front-end bandpass filter HS selects the signal of interest xc(t)

and rejects interference from out-of-band and image band signals. After the signal is down-

converted from carrier to an intermediate frequency (IF), it is passed through the filter HIF

which reduces distortion and dynamic range requirements simplifying subsequent filtering,

amplification, and demodulation [2]. The heterodyne receiver offers great performance in

terms of selectivity and sensitivity. However, this is achieved with the use of high Q-factor

non-integrable RF and IF filters which increase production costs. Furthermore, IF needs to

be carefully selected to provide sufficient image rejection and robust channel selection.

A common alternative is the homodyne receiver with the direct conversion architecture

shown in Fig. 1.2. After xc(t) is selected by the filter HS, it is downconverted directly to
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Figure 1.1: Heterodyne receiver

baseband without an IF stage. This allows for a more integrable RF front-end design and

reduces the number of discrete components. Despite this significant advantage, homodyne

receivers introduce certain problems that are either manageable or entirely absent in hetero-

dyne architectures. LO leakage to the antenna and consequent DC-offsets that arise from

self-mixing create in-band interference. Heterodyne receivers address this by eliminating the

DC-offsets with the IF filter. Other issues associated with homodyne receivers include I/Q

mismatches, sensitivity to even-order distortions, and flicker (1/f) noise of devices [3].

Figure 1.2: Homodyne receiver

The inherent challenges present in conventional receivers motivate a better architecture

with fewer analog components. An RF mixer in particular is a non-linear device that intro-
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duces intermodulation and harmonic distortion, and can be a considerable source of noise

and power loss [4]. With the advent of high-speed ADCs and wide bandwidth sample-and-

hold (S/H) circuits [5], direct sampling methods have become popular in processing bandpass

signals. As shown in Fig. 1.3, xc(t) can be digitized directly without downconversion which

significantly reduces receiver complexity. Here, the filter Hs can be a highly tunable RF

MEMS filter as presented in [6–9].

Figure 1.3: Direct sampling receiver

A direct sampling receiver is highly attractive for software radio applications where it

is desirable to perform analog to digital conversion as close to the antenna as possible and

leave all the heavy processing (filtering, frequency shifting, etc.) to DSP software [10].

Unfortunately, when a single ADC is used in digitization not all sampling frequencies above

the Nyquist rate are permissible, where the Nyquist rate is the frequency equaling twice

the signal bandwidth [11, 12], [13, Sec. 6.4]. Extra constraints on the sampling frequency

are needed to prevent aliasing between the negative and positive spectral images of the

bandpass signal. These constraints depend on the location of the frequency band occupied

by the bandpass signal. Moreover, only signals in certain frequency bands can be sampled

at the Nyquist rate. This creates a significant challenge for software radio receivers since

different sampling frequencies need to be selected for signals in different bands, even if they

have the same bandwidth. A simple way of overcoming spectral mixing of negative and

positive images is to employ Hilbert transform sampling, where two channels are used to

sample the signal and its Hilbert transform [14]. This equates to sampling a single analytic

signal which only has a positive frequency support with Fourier spectrum the same (up to

a scale) as the positive spectrum of the original bandpass signal. Although this approach
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works for all sampling frequencies above the Nyquist rate, its main disadvantage is designing

a practical analog Hilbert transformer [15].

Kohlenberg [11] was the first to recognize as early as 1953 that the restrictions on the

sampling frequency in direct sampling receivers can be removed if instead of a single ADC,

two separate ADCs operating with a time skew are used to sample the bandpass signal. This

time-interleaved scheme shown in Fig. 1.4 does not require a Hilbert transformer. Each ADC

has a sampling rate half of the total sampling frequency. Except for certain values of the

timing offset between the sampling times of the ADCs, Kohlenberg showed that a signal in

any band can be sampled at the Nyquist rate and then reconstructed via two filters from

the two time-interleaved sample sequences.

Figure 1.4: Direct interleaved sampling receiver

1.2 Time-Interleaved ADCs

Kohlenberg’s second-order sampling is a simple two-channel case of a general M -channel

time-interleaved ADC (TIADC) shown in Fig. 1.5. In this architecture first proposed by

Black and Hodges [16], M slower converters are stacked in parallel to alternately sample

the analog signal xc(t) and effectively act as a single high-speed ADC. The sampling rate

of each sub-ADC is M times lower than that of the whole system and can be below the

Nyquist rate. Each channel has its own dedicated S/H circuit that must have a large enough

bandwidth for the entire signal. M sequential time-delayed clocks with equal period produce

a periodic sampling pattern which can be uniform or nonuniform depending on the chosen
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timing offsets between the channels clocks. With a digital multiplexer (MUX), the outputs of

the sub-ADCs are combined into a single digital signal y(n) operating at the total sampling

frequency which must be above the Nyquist rate to avoid aliasing.

Figure 1.5: M -channel time-interleaved ADC

For high speed and high resolution applications, a TIADC can be a more energy-efficient

sampling architecture compared to a single ADC [17, Sec. 1.2]. Unfortunately, mismatch

errors arise when several ADCs are interleaved [18]. For maximum performance, it is required

that the channels be perfectly matched and that each channel’s clock registers a new data

sample at the specified instant. Due to hardware imperfections and limitations, however,

this is not achievable in practice. There can be DC level offsets between the sub-ADCs

which appear in the output signal spectrum as spurious tones at integer multiples of sub-

ADC sampling rate. The sub-ADCs can have different gains resulting in gain mismatches.

The clocks’ sampling instants can be corrupted by skew mismatches and jitter effects which

introduce timing mismatches in the TIADC [19]. Clock skew mismatches are deterministic

and mostly due to device mismatches or power supply disturbances. Jitter error is random

changes on the clock edges mostly due to device noise. Finally, mismatches in bandwidths
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of the S/H circuits create bandwidth mismatches between the channels [20]. Gain, timing,

and bandwidth mismatches all create unwanted input signal images at integer multiples of

sub-ADC sampling rate.

All mismatches are a source of noise and degrade the signal-to-noise-and-distortion ratio

(SNDR) in TIADCs. Preliminary spectrum and signal-to-noise ratio (SNR) analysis was

performed for timing mismatches in [21, 22] and for offset and gain mismatches in [23].

Explicit formulas for the combined offset, gain, and timing mismatch effects are derived

in [24] for M = 2, 4. Extensive SNDR derivations are provided in [25] for the general M -

channel case with arbitrary offset, gain, and timing mismatches. All these results except

for [23] are limited to sinusoidal narrow-band inputs. For wide-band wide-sense stationary

(WSS) and wise-sense cyclostationary (WSCS) signals, the SNR under timing mismatches

is derived in terms of second-order statistics in [26]. Finally, for a general deterministic

bandlimited input the SNR formula is given in [27] as a function of the signal bandwidth for

a two-channel TIADC with timing mismatches.

Correction of mismatches can be performed via TIADC calibration. Offset errors can be

corrected entirely in hardware [28], or alternatively via more clever calibration techniques

based on the least-mean square (LMS) algorithm [29, 30] or random chopper sampling [31].

Correction of gain, timing, and bandwidth mismatches is generally more nuanced. These

mismatches can be calibrated in the analog domain [29] or digitally with robust signal pro-

cessing algorithms [32–35]. The field of TIADC calibration has seen tremendous growth in

the past two decades, and some major results are mentioned in Chapter 5 of this dissertation.

1.3 Dissertation Contributions and Organization

In this dissertation, we propose a novel and flexible direct sampling and reconstruction

scheme for the complex envelope of a bandpass signal using a blindly calibrated M -channel

TIADC. Sampling is performed at or slightly above the Nyquist rate for all signals indepen-
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dent of the location of their frequency band. Reconstruction is all digital and requires the

implementation of M generally complex-valued digital FIR filters and a digital modulator.

Unlike previous publications on bandpass sampling using TIADCs, our universal method

reconstructs the sampled complex envelope of the bandpass signal instead of the analog

bandpass signal itself and so it combines sampling and demodulation into one joint algo-

rithm. A fully blind calibration technique that requires small oversampling is proposed to

correct gain and timing mismatches of the TIADC which can severely degrade reconstruction

performance. To the best knowledge of the author, this dissertation is the first to provide a

complete and rigorous treatment for blind calibration of a nonuniform M -channel bandpass

sampling TIADC.

The main contributions of this dissertation are Chapters 3, 4, and 5. The rest of the disser-

tation is organized as follows. In Chapter 2, we review pertinent background material that is

needed for later chapters. This includes the Fourier transform, baseband sampling, multirate

sampling, first-order and second-order bandpass sampling, and finally stochastic optimiza-

tion. Chapter 3 introduces the complex envelope sampling and reconstruction models for

the general M -channel case and provides reconstructions details for M = 2, 3, 4. Numerous

simulations with multi-tone and MSK signals are used validate the models and analyze the

method performance. Chapter 4 examines a special case of M = 2 known as quadrature

sampling which we demonstrate can function as a robust approximation technique. Chapter

5 starts with a brief literature overview of calibration techniques and then describes in detail

the novel blind gain and timing mismatch calibration algorithm for a M -channel TIADC.

Extensive simulations with three different types of signals are used to reinforce the theory

behind the calibration method. It is assumed that offset errors have already been corrected,

and we do not consider bandwidth mismatch correction [36–41] since bandwidth mismatches

usually play a secondary role to gain and timing mismatches. Chapter 6 draws conclusions

and points to directions for further research.

Our notation generally follows the signal processing notation used in [42] with slight
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modifications when needed/desired. New notation is explained in the text when introduced.

Boldface letters are used for vectors and matrices.
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Chapter 2

Background Material

2.1 Signal Basics

Definitions

Since this dissertation deals primarily with processing of signals, it is useful to start with

the definition of a signal. Defined rigorously, a 1-D signal x is mapping of the form

x : D → F, (2.1)

where F = R or C is the field of real or complex numbers, and D = R if the signal is

continuous in time or D = Z (the set of all integers) if the signal is discrete in time. For the

sake of simplicity, we adopt the standard signal processing notation for signals:

xc(t) : a continuous-time signal for t ∈ R

x(n) : a discrete-time signal for n ∈ Z.

The signals xc(t) and x(n) can real or complex. Throughout the dissertation, we refer to

xc(t) as an analog signal and x(n) as a digital signal.
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The Fourier Transform

Let the L1-norm of xc(t) be defined as

∥xc∥1 :=
∫ ∞

−∞
|xc(t)|dt , (2.2)

and L1(R) := {xc : ∥xc∥1 <∞} be the space of all signals xc(t) with finite L1-norm. Then

for any xc ∈ L1(R), the continuous-time Fourier transform (CTFT) [43,44] is defined by

Xc(jΩ) =

∫ ∞

−∞
xc(t)e

−jΩtdt, (2.3)

where Ω ∈ R is the angular frequency and j =
√
−1. The function Xc(jΩ) is generally

complex-valued and describes the frequency content of xc(t). If Xc(jΩ) ∈ L1(R), the inverse

transform

xc(t) =
1

2π

∫ ∞

−∞
Xc(jΩ)e

jΩtdΩ (2.4)

recovers the time-domain signal xc(t) from its frequency-domain representation. In compact

form, the relationship is written as

xc(t)
FT←→ Xc(jΩ),

where FT stands for the Fourier transform.

For a discrete-time signal x(n) in the Banach space ℓ1(Z) = {x : ∥x∥1 < ∞} equipped

with the norm

∥x∥1 :=
∑
n∈Z

|x(n)| , (2.5)

the discrete-time Fourier transform (DTFT) is defined as

X(ejω) =
∑
n∈Z

x(n)e−jωn , (2.6)
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where ω is a continuous variable representing angular frequency. SinceX(ejω) = X(ej(ω+2πk))

for all k ∈ Z, it suffices to analyze X(ejω) over a band of length 2π. The convenient choice

is the interval [−π, π). The complex-valued X(ejω) can be written in polar form

X(ejω) = |X(ejω)|ej∠X(ejω) (2.7)

with |X(ejω)| representing the magnitude and ∠X(ejω) the phase. GivenX(ejω) ∈ L1[−π, π],

we can construct the original signal x(n) through the inverse discrete-time Fourier Transform

(IDTFT)

x(n) =
1

2π

∫ π

−π

X(ejω)ejωndω . (2.8)

The relationship can be expressed compactly as

x(n)
FT←→ X(ejω) .

Table 2.1 shows selected DTFT properties that are used in this dissertation. The proofs for

these properties are quite straightforward and can be found in [42, Sec. 2.9]. The symbol ∗

denotes the convolution operator, X∗ denotes complex conjugation of X, and ℜ{·} stands

for the real part.

Signal DTFT

x(n), y(n) X(ejω), Y (ejω)

ax(n) + by(n), a, b ∈ R aX(ejω) + bY (ejω)

x(n− d), d ∈ R X(ejω)e−jωd

x(n)ejω0n, ω0 ∈ R mod 2π X(ej(ω−ω0))

x(n) ∗ y(n) X(ejω)Y (ejω)

ℜ{x(n)} 1
2 [X(ejω) +X∗(e−jω)]

Table 2.1: DTFT Properties
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It is important to note that xc ∈ L1(R) and x ∈ ℓ1(Z) are sufficient but not neces-

sary for the existence of Xc(jΩ) and X(ejω), respectively. For example, the signal x(n) =

sin(ωcn)/(πn) for 0 < ωc < π, belongs to the Hilbert space ℓ2(Z) = {x :
∑

n∈Z |x(n)|2 <∞}

and not ℓ1(Z) but still has a Fourier transform which is a boxcar function centered at zero

(a lowpass filter with cutoff frequency ωc). In this case, the equality in (2.6) is meant in

the sense of mean-square convergence [44]. It is possible to define the Fourier transform for

more generalized signals [45] that do not belong to either ℓ1 or ℓ2 such as x(n) = ejω0n for

some ω0 ∈ R mod 2π. This signal has DTFT X(ejω) = 2πδ(ω − ω0) for ω ∈ [−π, π), where

δ(ω) is the Dirac function, which can be easily verified with the inverse transform (2.8) using

Dirac function properties. In this dissertation, we assume all signals have Fourier transforms

and do not concern ourselves with the exact nature of Fourier transform existence.

Linear Time-Invariant Systems

The output y(n) of a discrete single-input single-output (SISO) linear system to an input

x(n) can be written as

y(n) =
∞∑

k=−∞

h(n, k)x(k), (2.9)

where h(n, k) is the time-varying system impulse response denoting the response at time n

to an impulse applied at time k. With the additional assumption of time invariance, the

input-output relationship reduces to a convolution operation

y(n) =
∞∑

k=−∞

h(n− k)x(k) =
∞∑

k=−∞

h(k)x(n− k) = x(n) ∗ h(n) , (2.10)

where the second equality can be shown with a simple change of variable. In frequency

domain, the output is

Y (ejω) = X(ejω)H(ejω) (2.11)

which follows directly from property four in Table 2.1.
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2.2 The Sampling Theorem for Baseband Signals

In many applications, the discrete-time signal x(n) originates from an analog signal xc(t) via

a process called sampling. The sampling theorem has its roots in the works of Whittaker

[46], Nyquist [47], Kotel’nikov [48], Raabe [49], Shannon [50], and Someya [51] and is one

of the most important discoveries of the 20th century. Although it is often credited to

electrical engineers Harry Nyquist and Claude Shannon, a strong case is made by the German

mathematician and harmonic analysis specialist Paul Butzer that the Japanese scientist

Kinnosuke Ogura was the first to establish the result in [52] which remained mostly unknown

outside of Japan until 1992 [53]. Using complex analysis, Butzer et al. [54] have rigorously

proven that Ogura’s first theorem in [52] is equivalent to the classical reconstruction from

samples formula found in DSP textbooks.

In simplest terms, the sampling theorem states that a bandlimited baseband finite energy

analog signal is entirely and uniquely represented by its samples taken at a rate at least

twice the signal bandwidth. We now demonstrate this mathematically following closely the

analysis presented in [42, Chap. 4]. Given a sampling period Ts, the digital signal x(n) can

be related to the analog signal xc(t) in time domain as

x(n) = xc(nTs), n ∈ Z. (2.12)

Establishing the relationship in frequency domain is straightforward but requires some work.

Let

xs(t) = xc(t) ·
∑
n∈Z

δ(t− nTs) =
∑
n∈Z

xc(nTs)δ(t− nTs) =
∑
n∈Z

x(n)δ(t− nTs) (2.13)

be a continuous periodic signal that is equal to xc(t) at nTs,∀n ∈ Z and is zero elsewhere.

The digital signal x(n) can be considered a time normalized version of xs(t) with mapping:

nTs → n. From (2.13), we have
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Xs(jΩ) =
∑
n∈Z

x(n)e−jΩnTs = X(ejω)
∣∣
ω=ΩTs

= X(ejΩTs), (2.14)

where e−jΩnTs is the CTFT of δ(t − nTs), and the second equality follows directly from

(2.6). Xs(jΩ) can also be expressed in terms Xc(jΩ) by recalling that multiplication in time

domain is equivalent to convolution in frequency domain with a scaling factor. Using the

fact ∑
n∈Z

δ(t− nTs)
FT←→ Ωs

∑
k∈Z

δ(Ω− kΩs), (2.15)

where Ωs = 2π/Ts is called the sampling frequency, we have

Xs(jΩ) =
1

2π

[
Xc(jΩ) ∗ Ωs

∑
k∈Z

δ(Ω− kΩs)]

=
1

Ts

∑
k∈Z

Xc

(
j(Ω− kΩs)

)
. (2.16)

From (2.14) and (2.16), it becomes evident that

X(ejω) =
1

Ts

∑
k∈Z

Xc

(
j(
ω

Ts
− k2π

Ts
)
)

(2.17)

consists of an infinite number of amplitude and frequency scaled copies of Xc(jΩ) shifted by

2π. We are now ready to state and prove the sampling theorem, but first need a few simple

definitions.

Definition 1. L2(R) := {xc :
∫
R |xc(t)|

2dt <∞} is the space of finite energy analog signals.

Definition 2. BLB/2(R) := {xc ∈ L2(R) : Xc(jΩ) = 0 ∀ |Ω| > B
2
} is the space of finite

energy analog signals bandlimited to frequency B/2 (the signal bandwidth).

Theorem 1. Let xc(t) ∈ BLB/2(R) ⊂ L2(R). If Ts ≤ 2π/B, then xc(t) is completely
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determined by its samples at t = nTs, n ∈ Z and can be constructed ∀t via interpolation

xc(t) =
∑
n∈Z

x(n)
sin( π

Ts
(t− nTs)

π
Ts
(t− nTs)

. (2.18)

Proof. The key is to carefully analyze the spectrum of the signal xs(t) in equation (2.16).

Since xc(t) ∈ BLB/2(R), its k-th frequency shifted copy Xc(j(Ω − kΩs)) has a nonzero

frequency support only on the interval Ik = [−B/2 + |k|Ωs , B/2 + |k|Ωs ]. If Ωs ≥ B (or

equivalently Ts ≤ 2π/B), then ⋂
k∈Z

Ik = Ø

ignoring boundary points, and the desired copy Xc(jΩ) on I0 can be obtained with simple

windowing

Xc(jΩ) = Xs(jΩ) ·H(jΩ), (2.19)

where

H(jΩ) =

 Ts |Ω| ≤ Ωco =
Ωs

2
= π

Ts

0 otherwise
(2.20)

is a lowpass filter with gain Ts and cutoff frequency Ωco = π/Ts that satisfies B/2 ≤ Ωco ≤

Ωs −B/2. The filter impulse response is

h(t) = Ts
sin(Ωcot)

πt
=

sin( π
Ts
t)

π
Ts
t

. (2.21)

Converting expression (2.19) to time domain, we have

xc(t) = xs(t) ∗ h(t) =
∑
n∈Z

x(n)h(t− nTs) (2.22)

which simplifies to (2.18) after substituting (2.21) for h(t).

The interpolator h(t) has the properties: i) h(0) = 1, ii) h(nTs) = 0, for n = ±1,±2, . . .,
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which ensure that the constructed signal in (2.18) equals to x(n) at sampling times nTs.

The minimum acceptable sampling frequency Ωs = B equaling twice the signal bandwidth

is referred to as the Nyquist rate. If Ωs < B, then
⋂
k∈Z

Ik ̸= Ø and the spectral copies

Xc(j(Ω − kΩs)) overlap causing aliasing. Recovering xc(t) via interpolation may still be

possible but only for low frequencies. In general, aliasing has catastrophic consequences

since it can result in a reconstructed signal fundamentally different from the original.

At the maximum alias-free sampling period Ts = 2π/B corresponding to the Nyquist

rate, an alternative interpretation of the sampling theorem involves recognizing that the

orthonormal set {ψn(t)}n∈Z, i.e.,

< ψn(t), ψm(t) > =

∫
R
ψn(t)ψm(t)dt = δ(n−m), (2.23)

where ψn(t) = (1/
√
Ts)h(t−nTs), forms an orthonormal basis (ONB) for the space BLB/2(R)

[55, Sec. 2.4]. The interpolation equation (2.18) then simply represents the series expansion

of xc(t) with coefficients

< xc(t), ψn(t) >=

∫
R
xc(t)ψn(t)dt =

√
Ts x(n) . (2.24)

The analysis leading up to Theorem 1 was performed with a single ADC sampling xc(t)

to produce the digital representation x(n). It can be extended to second-order sampling

where a two-channel TIADC takes samples at times t = nT ′
s and t = (n + d)T ′

s for some

0 < d < 1. Here, T ′
s = (2π)/Ω′

s is the sampling period of each sub-ADC, and the overall

sampling frequency Ωs = 2Ω′
s is required to satisfy the sampling theorem (Ωs ≥ B). As

derived in detail in [14], a lowpass filter is used in each channel to interpolate its samples,

and the resulting signals from the two channels are added to reconstruct the original analog

signal. The use of two slower ADCs instead of a single ADC with twice as high sampling

frequency can be advantageous for sampling wide-band signals with a large bandwidth.

Generalizations and various extensions of the sampling theorem are discussed in [56–59].
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2.3 Multirate Basics

In many signal processing applications it is desirable to change the sampling rate of a digital

signal x(n) = xc(nTs) to a new sampling frequency Ω̂s = 2π/T̂s, i.e., we wish to obtain a

new sequence

x̂(n) = xc(nT̂s). (2.25)

In theory, this can be accomplished by reconstructing xc(t) from x(n) using (2.18) and

then sampling it with the new period T̂s. However, going back to the analog domain is

unnecessary since resampling can be accomplished entirely in the digital domain with the

use of two well-known multirate blocks (expander and decimator). An in-depth treatment

of multirate systems is provided in [60]. Here, we only cover the two basic blocks that play

a crucial role in the development of the sampling and reconstruction models presented in

Chapter 3.

If T̂s < Ts, then the net effect is an increase in the sampling rate. We explore this case

first. Suppose we wish to increase the sampling frequency by an integer factor L > 1, i.e.,

it is desired to have T̂s = Ts/L and hence x̂(n) = xc(nTs/L). This can be accomplished by

cascading an L-fold expander shown in Fig. 2.1 with a lowpass filter with gain L and cutoff

frequency π/L. The expander inserts L− 1 zeros between each sample of x(n), and the low

pass filter acts as an interpolator assigning new values to these zeros. The output of the

expander in time domain can be expressed as

xe(n) =
∑
k∈Z

x(k)δ(n− kL) =

 x(n/L) n is integer-multiple of L

0 otherwise ,
(2.26)

↑ L
x(n) xe(n)

Figure 2.1: L-fold expander

17



and in compact form, we write

xe(n) = x(n)
∣∣
↑L . (2.27)

In frequency domain, the spectrum is compressed by a factor of L changing the period from

2π to 2π/L.

Proof. This follows directly from the definition of DTFT (2.6).

Xe(e
jω) =

∑
n∈Z

∑
k∈Z

x(k)δ(n− kL)e−jωn

=
∑
k∈Z

x(k)e−jωkL
∑
n∈Z

δ(n− kL)︸ ︷︷ ︸
1

= X(ejωL). (2.28)

The digital low pass filter

h(n) = L
sin(πn

L
)

πn
=

sin(πn
L
)

πn
L

(2.29)

needed after the expander to generate the desired signal x̂(n) = xc(nTs/L) changes the

spectrum periodicity back to 2π as required for the Fourier transform a digital signal.

If T̂s = LTs > Ts for integer L > 1, then the net effect is a decrease in the sampling rate

resulting in a new signal x̂(n) = xc(nLTs). The process of reducing the sampling rate of a

digital signal is referred to as downsampling. It can be accomplished via an L-fold decimator

shown in Fig. 2.2 with the time domain relationship xd(n) = x(nL) which indicates that the

decimator compresses x(n) by only retaining its samples that are integer-multiple of L. We

use the compact form

xd(n) = x(n)
∣∣
↓L (2.30)

whenever convenient. In frequency domain, the spectrum of the decimated signal xd(n)

consists of L frequency stretched and shifted copies of X(ejω)/L.
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↓ L
x(n) xd(n)

Figure 2.2: L-fold decimator/compressor

Proof. Let sL(n) =
∑

k∈Z δ(n − kL) be a digital L-periodic impulse train, and consider the

signal

z(n) = x(n) · sL(n) =
∑
k∈Z

x(kL)δ(n− kL) =
∑
k∈Z

xd(k)δ(n− kL) (2.31)

with Fourier transform

Z(ejω) =
∑
k∈Z

xd(k)e
−jωkL = Xd(e

jωL) . (2.32)

Equivalently, Xd(e
jω) = Z(ej

ω
L ). From (2.31), it follows that

Z(ejω) =
1

2π
X(ejω)⊛ SL(e

jω), (2.33)

where ⊛ denotes circular convolution and

SL(e
jω) =

2π

L

L−1∑
k=0

δ(ω − k2π
L
) (2.34)

is the DTFT of sL(n). Using (2.34) inside (2.33) leads to

Z(ejω) =
1

L

L−1∑
k=0

X(ej(ω−
2π
L
k)) . (2.35)

Finally, applying the relationship derived in (2.32), we have

Xd(e
jω) =

1

L

L−1∑
k=0

X(ej(
ω
L
− 2π

L
k)) (2.36)

which is periodic with 2π.
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Since downsampling involves throwing away samples, it can result in aliasing if too many

samples are discarded. A large downsampling factor L can cause X(ej
ω
L ) and its 2π-shifted

copies to occupy a band of width larger than 2π and hence overlap. A common remedy is

to lowpass filter the signal x(n) to frequency π/L prior to decimation. This ensures spectral

copies are contained entirely in intervals of length 2π and do not alias with each other. The

downside of this prefiltering is that possibly important frequency information in the range

π/L < ω < π is lost.

In all the above derivations L was assumed to be an integer. It is, however, possible to

increase or decrease the sampling rate of a digital signal by a non-integer rational factor.

This generally requires putting x(n) through an all digital system consisting of an expander,

a lowpass filter, and a decimator [42, Sec. 4.6]. If it is desired to change the sampling

frequency from Ωs to a new frequency Ω̂s = (L1/L2)Ωs, then the expander needs be assigned

the integer factor L1 and the decimator the integer factor L2. The lowpass filter has gain

L1 and cutoff frequency ωc = min(π/L1, π/L2). If L1 > L2, there is an increase in the

sampling rate, and otherwise a decrease if L2 > L1. A practical problem arises when the

values of L1 and L2 are large. It becomes difficult to implement a lowpass filter with a very

small bandwidth. Fortunately, a multistage implementation [61] can be employed where the

expander and decimator factors are decomposed as

L1 =
S∏

i=1

L1,i

L2 =
S∏

i=1

L2,i , (2.37)

where L1,i and L2,i are much smaller integers and S is the number of stages. The i-th stage is

comprised of an expander with factor L1,i , a lowpass filter with gain L1,i and cutoff frequency

ωci = min(π/L1,i , π/L2,i), and a decimator with factor L2,i. The S stages are cascaded and

effectively act a single system changing the sampling rate by the desired factor L1/L2.

Although not always common, it is useful to adopt a notation that distinguishes between
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digital signals with different sampling rates. If x(n) = xc(nTs), then the notation

x[L](n) = xc(n
Ts
L
) (2.38)

with integer L ≥ 2 can be used to denote a new signal with a sampling rate L times higher

than that of x(n). We make use of this notation throughout Chapters 3 and 5.

2.4 Bandpass Signal Representation

A real signal xc(t) is called a bandpass signal if its Fourier transform Xc(jΩ) ̸= 0 only for Ω ∈

Ω+ ∪Ω−, where Ω+ = [ΩL,ΩH ] is called the positive frequency band and Ω− = [−ΩH ,−ΩL]

the negative frequency band. For an amplitude modulated signal with bandwidth B and

carrier frequency Ωc , ΩL = Ωc − B/2, ΩH = Ωc + B/2, and ΩH − ΩL = B. An example of

the Fourier magnitude spectrum of a bandpass signal is shown in Fig. 2.3. Our goal in this

section is to derive various time domain representations for the bandpass signal xc(t).

Figure 2.3: Magnitude spectrum of a bandpass signal

We start with the simple fact that for a real xc(t), its Fourier transform satisfies

Xc(−jΩ) = X∗
c (jΩ), (2.39)

which implies that knowledge of Xc(jΩ) on Ω+ alone is sufficient. Recalling the inverse
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Fourier transform equation (2.4), we have

xc(t) =
1

2π

∫ ∞

−∞
Xc(jΩ)e

jΩtdΩ

=
1

2π

[ ∫ 0

−∞
Xc(jΩ)e

jΩtdΩ +

∫ ∞

0

Xc(jΩ)e
jΩtdΩ

]
=

1

2π

[ ∫ ∞

0

Xc(−jΩ)e−jΩtdΩ +

∫ ∞

0

Xc(jΩ)e
jΩtdΩ

]
=

1

2π

[ ∫ ∞

0

X∗
c (jΩ)e

−jΩtdΩ +

∫ ∞

0

Xc(jΩ)e
jΩtdΩ

]
= ℜ

{
1

2π

∫ ∞

0

2Xc(jΩ)e
jΩtdΩ

}
= ℜ{xac(t)}, (2.40)

where the third equality comes from a change of variables, the fourth equality is a conse-

quence of (2.39), and the fifth equality stems from the identity a + a∗ = 2ℜ{a} for a ∈ C.

The signal

xac(t) =
1

2π

∫ ∞

0

2Xc(jΩ)e
jΩtdΩ (2.41)

is called the analytic signal of xc(t) whose Fourier transform can be expressed as

Xa
c (jΩ) =

 2Xc(jΩ) Ω ≥ 0

0 Ω < 0
= 2Xc(jΩ) · U(Ω), (2.42)

where

U(Ω) =

 1 Ω ≥ 0

0 Ω < 0
(2.43)

is the unit step function. Applying the inverse Fourier transform to both sides of (2.42), we

obtain the time domain relationship

xac(t) = 2xc(t) ∗
[1
2
δ(t) +

j

2πt

]
= xc(t) + jxc(t) ∗

1

πt
= xc(t) + jx̂c(t), (2.44)
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where x̂c(t) is the Hilbert transform [62] of xc(t). Since X
a
c (jΩ) ̸= 0 only for Ω ∈ Ω+, it can

be frequency shifted to baseband to generate the signal bandlimited to frequency B/2,

cc(t) = xac(t)e
−jΩct (2.45)

which is referred to as the complex envelope of xc(t). From (2.40) and (2.45) follows the

most common bandpass signal representation

xc(t) = ℜ{cc(t)ejΩct}. (2.46)

Letting cc(t) = ac(t)+jbc(t), where ac(t) and bc(t) are also bandlimited to B/2, the expression

(2.46) can be simplified to contain only real sinusoidal functions

xc(t) = ac(t) cos(Ωct)− bc(t) sin(Ωct)

= |cc(t)| cos(Ωct+ ∠cc(t)) , (2.47)

where |cc(t)| =
√
a2c(t) + b2c(t) and ∠cc(t) = tan−1[bc(t)/ac(t)]. The baseband signals ac(t)

and bc(t) are referred to as the in-phase and quadrature components of xc(t), respectively.

2.5 First-Order and Second-Order Bandpass Sampling

In many publications, a bandpass signal is sampled with a sampling rate on the order of

its carrier frequency. For the purpose of sampling it is treated as a baseband signal with

highest frequency ΩH , and a sampling frequency Ωs ≥ 2ΩH is chosen to satisfy Theorem 1.

Unfortunately, this approach becomes highly uneconomical for bandpass signals with large

carrier frequencies. For example, consider a signal with carrier frequency Ωc/(2π) = 5.5 GHz

and bandwidth B/(2π) = 1 GHz. Sampling this signal at or above 2× (5.5+ 0.5) = 12 GHz

is far from optimal considering the signal bandwidth is twelve times lower than the minimum
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sampling rate.

It has been known for sometime that a bandpass signal can be sampled with a rate on the

order of its bandwidth B [11,12]. Just as in the case of baseband signals, a minimum sampling

frequency equaling twice the signal bandwidth (the Nyquist rate) can be used to sample a

bandpass signal xc(t) if it meets certain spectral location criteria. Unlike the baseband case,

however, not all sampling frequencies Ωs > 2B are permissible. Extra precaution is needed

to avoid overlap/aliasing between X+(j(Ω − lΩs)) and X−(j(Ω − mΩs)) for all l,m ∈ Z,

where X+(jΩ) and X−(jΩ) denote the signal spectrum on Ω+ and Ω−, respectively. Strict

conditions can be derived for aliasing avoidance and to guarantee signal reconstruction from

its samples. This leads to the first-order sampling theorem for bandpass signals.

Definition 3. BPB(R) := {xc ∈ L2(R) : Xc(jΩ) = 0 ∀ |Ω| < ΩL , |Ω| > ΩH = ΩL +B} is

the space of finite energy bandpass analog signals with bandwidth B = ΩH−ΩL and frequency

support [−ΩH ,−ΩL] ∪ [ΩL,ΩH ].

Theorem 2. Let xc(t) ∈ BPB(R) ⊂ L2(R). If Ωs = 2π/Ts satisfies conditions

2

k

ΩH

B
≤ Ωs

B
≤ 2

k − 1

(
ΩH

B
− 1

)
1 ≤ k ≤

⌊ΩH

B

⌋
, (2.48)

where ⌊a⌋ = max{p ∈ Z | p ≤ a} is the floor function, then the sampling process resulting in

the digital signal x(n) = xc(nTs) is alias free. Moreover, xc(t) is completely determined by

its samples at t = nTs, n ∈ Z and can be reconstructed ∀t via interpolation

xc(t) =
∑
n∈Z

x(n)g(t− nTs), (2.49)

using

g(t) = 2
sin(B

2
t)

πt
Ts

cos(Ωct). (2.50)
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Proof. Let Fs be the set of all forbidden sampling frequencies, i.e., Ωs that result in aliasing.

Then

∀ Ωs ∈ Fs , ∃ Ωp ∈ [ΩL,ΩH ], Ωn ∈ [−ΩH ,−ΩL] and a, b ∈ Z s.t.

Ωp + aΩs = Ωn + bΩs. (2.51)

We can rewrite Ωp + aΩs = Ωn + bΩs as Ωp − Ωn = (b− a)Ωs = kΩs for some k ∈ N. Since

Ωp − Ωn ∈ [2ΩL, 2ΩH ], (2.51) can be stated more compactly as

∀ Ωs ∈ Fs ,∃ k ∈ N s.t. 2ΩL ≤ kΩs ≤ 2ΩH (2.52)

which is both necessary and sufficient for aliasing as further elaborated in [63]. Normalizing

by kB and recalling ΩL = ΩH −B, the two-sided inequality in (2.52) can be rewritten as

2

k

(
ΩH

B
− 1

)
≤ Ωs

B
≤ 2

k

ΩH

B
. (2.53)

Treating ΩH/B as the independent variable and Ωs/B as the dependent variable, (2.53)

indicates that for a fixed k the forbidden sampling rates lie inside a strip. The set Fs is

then a collection of all the strips. The allowed sampling rates are located in between the

(k − 1)-th and k-th forbidden regions and are therefore specified by two inequalities

Ωs

B
≤ 2

k − 1

(
ΩH

B
− 1

)
Ωs

B
≥ 2

k

ΩH

B
, (2.54)

which can be solved for k to yield

k ≤ ΩH

B
. (2.55)

Combining the inequalities in (2.54) and recalling that k is a positive integer gives the

complete characterization of allowed sampling frequencies specified in (2.48).
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The sampled spectrum is described by (2.16). When the sampling is alias free, the original

signal can be extracted with a bandpass filter centered at ±Ωc with gain Ts and bandwidth

B in a straightforward manner

Xc(jΩ) = Xs(jΩ) ·G(jΩ), (2.56)

where

G(jΩ) =

 Ts |Ω± Ωc| ≤ B/2

0 otherwise
(2.57)

has the inverse transform expressed in (2.50). The interpolation formula (2.49) is the time-

domain analog of (2.56).

A graphical representation of conditions (2.48) shown in Fig. 2.4 greatly aids in visualizing

the forbidden and allowed regions. Given the signal bandwidth B and highest frequency ΩH ,

a vertical line can be drawn at ΩH/B. All the line segments that fall inside the white region

constitute the permissible sampling frequencies for the signal of interest. It follows that

signals with the same bandwidth but different carrier frequency may require distinct sampling

rates. This is highly undesirable for radio receivers that digitize signals in different bands.

The theoretical minimum Ωs = 2B is allowed only when ΩH = mB for m ∈ N. This special

case known as integer band positioning is highly impractical as any small deviation in the

carrier frequency and/or sampling rate will lead to choosing a forbidden sampling frequency.

The authors in [12] propose appending a guard band to the signal, but this unnecessarily

increases the bandwidth. Finally, for k = 1 the sampling condition in (2.48) simplifies to

Ωs ≥ 2ΩH which is the familiar sampling theorem for baseband signals. As mentioned earlier,

sampling at or above 2ΩH is highly wasteful when the modulation frequency Ωc is orders

higher than the signal bandwidth B.

The constraints (2.48) on the sampling frequency arise due to xc(t) having frequency

content over two disjoint bands Ω+ and Ω−. Since the analytic signal xac(t) (2.41) has only
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Figure 2.4: Forbidden (gray) and allowed (white) sampling frequencies in first-order sampling
of bandpass signals

a one-sided frequency support over Ω+ with spectrum the same (up to a scale) as xc(t),

sampling this signal bypasses the spectral mixing issues associated with sampling xc(t).

According to (2.44), sampling xac(t) entails a two-channel sampling of xc(t) and its Hilbert

transform x̂c(t). If T
′
s = 2π/Ω′

s with Ω′
s = Ωs/2 ≥ B, then the sampled signal

xa(n) = xac(nT
′
s) = xc(nT

′
s) + jx̂c(nT

′
s) = x(n) + jx̂(n) (2.58)

has a rate of Ω′
s/2π complex samples per second, or Ωs/2π real samples per second. Since

sampling is alias free, xac(t) can be recovered from its samples via interpolation

xac(t) =
∑
n∈Z

xa(n)ga(t− nT ′
s)

=
∑
n∈Z

x(n)ga(t− nT ′
s) + j

∑
n∈Z

x̂(n)ga(t− nT ′
s), (2.59)

using a complex bandpass filter with gain T ′
s over Ω+ and zero elsewhere
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ga(t) =
sin(B

2
t)

πt
T ′
s

ejΩct. (2.60)

Recalling the relationship (2.40), the signal of interest xc(t) can then be reconstructed from

its samples and its Hilbert transform samples as

xc(t) =
∑
n∈Z

x(n)ℜ{ga(t− nT ′
s)} −

∑
n∈Z

x̂(n)ℑ{ga(t− nT ′
s)}, (2.61)

where ℑ{·} refers to taking the imaginary part. The challenge of this method lies in the

design of a practical analog Hilbert transformer.

A more attractive alternative proposed by Kohlenberg [11] that does not involve a Hilbert

transformer consists of using second-order time-interleaved sampling, where the signal xc(t)

is sampled at time instants t = nT ′
s and t = (n+ d)T ′

s for 0 < d < 1. Then for the minimum

rate Ωs = 2Ω′
s = 2B but except for some values of d such as d = 1/2, the interpolation

xc(t) =
∑
n∈Z

x(n)s(t− nT ′
s) +

∑
n∈Z

x(n+ d)s(−t+ (n+ d)T ′
s), (2.62)

where x(n+d) = xc((n+d)T
′
s), reconstructs xc(t) from its two streams of samples no matter

the signal carrier frequency. Proof of this theorem and expression for s(t) can be found

in [11] and [13, Sec. 6.4].

Second-order (two-channel) time-interleaved sampling removes the sampling frequency

restriction imposed by first-order sampling. All signals independent of their band location

can be sampled at the minimum rate 2B. It turns out this result generalizes to M -th order

sampling as discussed in Chapter 3.

2.6 Stochastic Optimization

Consider the stochastic optimization problem that seeks to find θ0 ∈ Rn s.t.
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θ0 = argmin
θ∈Rn

J(θ), (2.63)

where the objective function

J(θ) = EZ[Q(Z,θ)] =

∫
Rq

Q(z,θ)fZ(z)dz (2.64)

is convex. Here, Z is a random vector in Rq with probability density function (PDF) fZ(z),

and E[·] denotes the expectation operator. Assuming J(θ) is twice continuously differen-

tiable, it has a gradient

∇θJ(θ) =



∂J(θ)
∂θ1

∂J(θ)
∂θ2

...

∂J(θ)
∂θn


(2.65)

and n× n Hessian matrix

H(θ) = ∇2
θJ(θ) (2.66)

with (i, j) entry
∂2J(θ)

∂θi∂θj
for 1 ≤ i, j ≤ n. The function J(θ) is then strictly convex if and

only if either one of the following conditions hold true [65]:

i) J(αθ1 + (1− α)θ2) < αJ(θ1) + (1− α)J(θ2) ∀ θ1,θ2 ∈ Rn s.t. θ1 ̸= θ2, and any α

s.t. 0 < α < 1.

ii) H(θ) > 0 ∀ θ ∈ Rn, i.e., the Hessian matrix is positive definite.

The second condition is often more useful in practice as it allows an easy way to distinguish

convex from concave functions after finding the stationary point ∇θJ(θ) = 0. Convex

functions have the important property that if θ0 is a local minimum over a convex subset of

Rn, then it is a global minimum. Moreover, in the vicinity of θ0, J(θ) admits the positive

definite quadratic approximation

J(θ) ≈ 1

2
(θ − θ0)

TH(θ0)(θ − θ0). (2.67)

29



The Gradient Descent

A class of optimization algorithms that iteratively solve (2.63–2.64) rely on gradient infor-

mation to achieve minimization. The simplest of these is the steepest descent method

θ(n+ 1) = θ(n)− µ(n)∇θJ(θ(n)), (2.68)

where θ(n) for n = 0, 1, 2, . . . is the estimate at iteration n, µ(n) is the step size at iteration

n, and θ(n + 1) is the estimate at the next iteration n + 1. At each step, the direction of

search is taken in opposite direction to the gradient at the current estimate θ(n). This is

justified with the simple fact that the direction of gradient indicates the maximal rate of

increase in J(θ), and thus taking steps in the opposite direction ensures rapid decrease. The

step size µ(n) at each iteration can be selected using a perfect line search or a weak search

technique such as Armijo’s method that is based on Wolfe’s conditions [66, Section 8.2].

Alternatively, a constant step size µ(n) = µ can be chosen to reduce algorithm complexity.

For a strongly convex J(θ), the steepest descent converges to the optimal solution θ0 at

a linear rate, but the speed of convergence depends on the condition number of the Hessian

matrix which is defined as the ratio of largest to smallest eigenvalue of H(θ0) [67, Sec. 3.3].

This follows from the quadratic approximation (2.67). A large condition number causes an

exaggerated zigzag behavior in iterations and can severely degrade the convergence of the

algorithm.

To evaluate the gradient of J(θ) in (2.68), some statistical information is needed to carry

out the expectation in (2.64). This information can be the PDF fZ(z) or the first and second

order statistics of Z in the case of a quadratic Q(Z,θ). Unfortunately, a statistical model of

Z is often not available in practical situations. Instead, we can use the observations Z(t) for

1 ≤ t ≤ T , where at each fixed time Z(t) is fZ(z) distributed, to justify the approximation

1

T

T∑
t=1

Q(Z(t),θ) ≈ EZ[Q(Z,θ)] (2.69)
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by the strong law of large numbers (SLLN) for large T . This result holds asymptotically as

T → ∞ when the observations Z(t) are independent and identically distributed (iid) and

Q(Z(t),θ) has a finite variance. If the observations are not iid, then the random process

Z(t) has to obey strong mixing conditions. From (2.69) it follows that the approximation

∇θJ(θ) ≈
1

T

T∑
t=1

∇θQ(Z(t),θ) (2.70)

can be used in (2.68). This approach can be viewed as a batch minimization technique that

processes all observations Z(t), 1 ≤ t ≤ T at the same time.

The Stochastic Gradient Descent

Instead of processing all the observations at once, we can perform the minimization (2.63–

2.64) adaptively using a new observation as it becomes available. The stochastic gradient

descent (SGD) proposed in 1951 by Robbins and Monro [68] skips the expectation operation

when evaluating the gradient of J(θ). It applies the gradient operator directly to Q(Z(n),θ),

where Z(n) is a stationary random process with unknown statistics, which results in the

iteration

θ(n+ 1) = θ(n)− µ(n)∇θQ(Z(n),θ(n)). (2.71)

Assuming µ(n) = µ is a very small constant step size, the iteration (2.71) can be justified

by observing that the effect of L consecutive updates can be expressed as

θ(n+ L) = θ(n)− µ
n+L−1∑
k=n

∇θQ(Z(k),θ(k)). (2.72)

Since µ is very small, θ(k) ≈ θ(n) for n ≤ k ≤ n+ L− 1. Then by the SLLN we have

1

L

n+L−1∑
k=n

∇θQ(Z(k),θ(n)) ≈ ∇θEZ(n)[Q(Z(n),θ(n))] = ∇θJ(θ(n)). (2.73)
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Using this approximation in (2.72) results in

θ(n+ L) ≈ θ(n)− µL∇θJ(θ(n)) = θ(n)− µ̂∇θJ(θ(n)), (2.74)

the right hand side of which has the exact form of steepest descent iteration (2.68) with

constant step size µ̂ = µL. Thus, for L sufficiently large that still ensures θ(k) doesn’t vary

much over the interval [n, n + L − 1], blocks of L consecutive stochastic gradient iterations

behave like single gradient iterations of J(θ). The step size for stochastic gradient is much

smaller than the steepest descent step size.

Classical adaptive algorithms such as LMS and recursive least squares (RLS) can be an-

alyzed using the energy conservation relation proposed by Sayed [69]. This approach has

the advantage that it does not assume a small step size. Its scope, however, is limited since

not all adaptive algorithms obey an energy conservation relation. A more general method

for analyzing the convergence of adaptive algorithms using an ordinary differential equation

(ODE) was pioneered by Ljung [70, 71] and studied in depth by Benveniste, Métivier, and

Priouret [72]. For SGD this technique forms an ODE by averaging the adaptive updating

mechanism of the SGD iteration and views the estimates θ(n) in (2.71) as random fluctua-

tions around the ODE trajectory. When the ODE has a unique and stable equilibrium point

θ∗, it should ideally coincide with the global minimum θ0 of the convex function J(θ) we

wish to minimize. If this is not the case, the adaptive algorithm is biased. In the rest of this

section, we outline the basics of the ODE method which is used in Chapter 5 to examine the

convergence behavior of the novel mismatch calibration algorithm.

The SGD algorithm (2.71) with constant step size µ can be expressed as

θ(n+ 1) = θ(n) + µT(Z(n),θ(n)) (2.75)

with

T(Z(n),θ) = −∇θQ(Z(n),θ). (2.76)
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The ODE corresponding to (2.75) is specified by the mean vector field

dθ

dt
= t(θ) = EZ(n)[T(Z(n),θ)] (2.77)

with initial condition θ(0) = θi denoting the initial estimate in the adaptive algorithm

(2.75). In evaluating t(θ), the parameter θ is held “frozen” so that the distribution of Z(n)

is stationary in (2.77). Using the definition of J(θ) from (2.64), we obtain

dθ

dt
= −∇θJ(θ), (2.78)

which means that for SGD algorithms the ODE is a gradient flow, i.e., its trajectories follow

steepest descent lines of J(θ). Furthermore,

dJ(θ(t))

dt
= ∇T

θJ(θ(t))
dθ

dt
= −||∇θJ(θ(t))||2 (2.79)

implies that along trajectories of the ODE, the objective function J(θ(t)) serves as a Lya-

punov function and is monotone decreasing until a stationary point θ0 satisfying∇θJ(θ0) = 0

is reached. For a convex J(θ) there is only one stationary point corresponding to its global

minimum.

Convergence analysis of adaptive algorithms via the ODE method relies on two theorems

proved rigorously in [72]. The first theorem pertains to the transient phase of the algorithms.

Succinctly, it states that for a small constant step size µ the n-th estimate θ(n) of the

adaptive algorithm (2.75) is within a standard deviation proportional to µ1/2 of the point

θc(µn), where θc(t) is the ODE trajectory. This can be visualized by thinking of the ODE

trajectory as the center of a tube with radius proportional to µ1/2 and adaptive algorithm

trajectories varying randomly within this tube. The second theorem deals with the steady-

state behavior of adaptive algorithms. It assumes the ODE has a unique stable equilibrium

33



point θ∗ and that for SGD the negative of the Hessian matrix of J(θ) at this point

A(θ∗) = −H(θ∗) = −∇2
θJ(θ∗) (2.80)

is asymptotically stable, i.e., all its eigenvalues are strictly in the left half plane. The theorem

then states that as µ decreases to zero, the estimates θ(n) asymptotically become Gaussian

distributed with mean θ∗ and covariance matrix µP, where the matrix P > 0 satisfies

a Lyapunov equation. Thus, a smaller µ guarantees more accurate asymptotic estimates

fluctuating tightly around the desired minimum.
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Chapter 3

Complex Envelope Sampling with

M-channel Time-Interleaved ADCs

Several papers have extended Kohlenberg’s second-order time-interleaved bandpass sampling

result to the case where M nonuniformly interleaved ADCs each operating at Ωs/M , where

Ωs is the total sampling rate of the TIADC, sample the bandpass signal and then M filters

are used to reconstruct the signal. Kida and Kuroda [73] derived a general expression for

the M reconstruction filters but only for the minimum sampling rate Ωs = 2B. Coulson [74]

provided clear formulas for reconstruction filters in time domain with sampling frequency as

a parameter and showed that each filter consists of M bandpass filters when the minimum

sampling rate Ωs = 2B is used. Although flexible and not limited to the minimum rate, his

method is developed entirely in the analog domain. For digital implementation, oversampling

at Ωs ≥ 2MB is required to obtain alias-free digital versions of reconstruction filters. Lin

and Vaidyanathan [75] generalized Coulson’s result to a broader class of bandpass signals

consisting of M disjoint spectral components and extended their method to signals in 2-D

and discrete-time. They demonstrated stability of reconstruction, but did not focus on filter

derivation.

In this chapter we propose a flexible and universal sampling scheme for a bandpass signal
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xc(t) ∈ BPB(R) using a nonuniform M -channel TIADC with timing offsets diT
′
s, where the

timing skews satisfy 0 < di−1 < di < 1 for i = 1, 2, . . . ,M − 1 and T ′
s = 2π/Ω′

s denotes the

sub-ADC sampling period. The sampling frequency of the overall ADC is Ωs = MΩ′
s. We

require Ωs at the minimum to be at the Nyquist rate 2B when M is even and slightly above

2B for M odd. No assumption is made about the carrier frequency Ωc, signal bandwidth B,

and timing skews di, except that the carrier frequency Ωc is greater than B/2, which ensures

that the signal considered is a bandpass signal. Our contributions are the following:

1) In contrast to [73–75] that recover the original signal, we reconstruct the sampled

complex envelope of the bandpass signal from the M sequences produced by the TIADC. So

our method encompasses sampling, demodulation, and I and Q components separation all in

one DSP device. This makes it attractive as a communications receiver front-end deployed

to digitize signals in any frequency band.

2) Unlike [73, 74], both our sampling and reconstruction models are developed entirely

in digital domain, and thus no digitization of analog filters is needed. We show that the

evaluation of the sampled complex envelope requires the implementation of M complex-

valued digital FIR filters and a discrete-time modulator. Detailed step-by-step instructions

for computing these digital reconstruction filters are given. This can assist in implementation

of the proposed technique. An in-depth reconstruction analysis is provided for the cases

M = 2, 3, 4.

3) Existing works on nonuniform time-interleaved bandpass sampling do not examine

reconstruction performance in the presence of TIADC mismatches. In the simulations pre-

sented in Section 3.4, we investigate the performance of our method both under ideal con-

ditions and when the TIADC suffers from gain and timing mismatches. Using multi-tone

and MSK signals, it is demonstrated that the effect of mismatches on complex envelope

reconstruction can be significant.

The results of this chapter have been published by the author in [76].

36



3.1 Complex Envelope Sampling Model

In Fig. 3.1, we consider M -th order time-interleaved sampling of xc(t) ∈ BPB(R) with

mathematical representation (2.46). Here,M ≥ 2, T ′
s denotes the sub-ADC sampling period,

and Ω′
s = 2π/T ′

s is the sub-ADC sampling frequency. The sampling frequency of the overall

ADC is Ωs =MΩ′
s. It is independent of Ωc and assumed to be greater than or equal to the

Nyquist rate 2B. The timing offset between ADC0 and ADCi is Di = diT
′
s, where timing

skews di satisfy 0 < di < 1 and di−1 < di for i = 1, 2, . . . ,M − 1. For di = i/M , the

combination of M sub-ADCs forms a uniform ADC with sampling period Ts = T ′
s/M . As

discussed in Section 2.5, uniform sampling presents challenges in sampling rate selection.

For all other di ̸= i/M , the overall ADC has a nonuniform but periodic sampling pattern.

Figure 3.1: M -th order time-interleaved sampling of bandpass signal xc(t)

Let ℓ ∈ N be defined as

ℓ = round(
Ωc

Ω′
s

), (3.1)

so that Ωc belongs to the frequency band [(ℓ − 1/2)Ω′
s, (ℓ + 1/2)Ω′

s] which corresponds to
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the location of the ℓ-th image copy of a sampled baseband signal and is therefore referred

to here as the ℓ-th image band. It is assumed that ℓ ≥ 1, so that xc(t) is a bandpass signal.

The band [(ℓ − 1/2)Ω′
s, (ℓ + 1/2)Ω′

s] includes the 2ℓ-th and 2ℓ + 1-th Nyquist zones of the

sub-ADCs, and ℓ can be expressed in terms of the Nyquist zone index p as ℓ = ⌊p/2⌋.

The carrier frequency Ωc maps in the digital domain to the discrete modulation frequency

|ωb| ≤ π given by

ωb = ΩcT
′
s mod 2π =

(Ωc

Ω′
s

− ℓ
)
2π . (3.2)

The ℓ-th image band is demonstrated in Fig. 3.2. We have ωb = 0 only when Ωc = ℓΩ′
s.

Although elegant and simple, picking a sampling rate integer fraction of the carrier frequency

may not be feasible in hardware.

Figure 3.2: ℓ-th image band

Sampling: Let E(M) ≥ 0 be the oversampling parameter function defined as

E(M) =

 0 if M is even

2
M−1

if M is odd
(3.3)

forM ≥ 2. Then to ensure the overall TIADC sampling frequency is at or above the Nyquist

rate, we pick

Ωs ≥ (2 + E(M))B =


2B if M is even

M
M−1

2B if M is odd.

(3.4)
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Since Ω′
s = Ωs/M , we have

Ω′
s ≥

(2 + E(M))B

M
=


2B
M

= B
L

if M is even

2B
M−1

= B
L

if M is odd ,

(3.5)

where L = ⌊M/2⌋. If m is an even positive integer, then both M = m and M = m + 1

result in L = m/2. So, the sub-ADC sampling frequency is bounded below by the same

value when m or m+1 number of channels are used. ForM even, the overall ADC sampling

frequency Ωs is bounded below by the Nyquist rate 2B. For M odd, the lower bound is

slightly higher but approaches the Nyquist rate as M grows large since M/(M − 1)→ 1 as

M → ∞. The justification for slight oversampling in the case of odd M is discussed at the

end of the section.

Given (3.4) and recalling the Nyquist rate for cc(t) is B (2×BW{cc(t)} = 2×B/2 = B),

the envelope cc(t) may experience undersampling by a factor of L when the sub-ADCs sample

xc(t). This introduces a second form of aliasing in addition to aliasing between the negative

and positive spectral images. Let c[L](n) = cc(nT
′
s/L) be the complex envelope sampled at

or above its Nyquist rate and C(ejω) its DTFT which contains all information about the

envelope. The sampled sequences xi(n), 0 ≤ i ≤M − 1 from Fig. 3.1 can then be computed

as follows.

x0(n) = xc(nT
′
s) = ℜ{cc(nT ′

s)e
jΩcT ′

sn},

where cc(nT
′
s) = cc(Ln

T ′
s

L
) = c[L](Ln). By observing

ejΩcT ′
sn = ej(ωb+2πℓ)n = ejωbn,

the digital signal x0(n) can be expressed as

x0(n) = ℜ{c[L](Ln)ejωbn}. (3.6)
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Similarly, if

ejΩcT ′
s(n−di) = ej(ωb+2πℓ)(n−di) = ejωb(n−di)e−j2πℓdi ,

then for 1 ≤ i ≤M − 1 the sampled sequence xi(n) can be expressed as

xi(n) = xc((n− di)T ′
s) = xc(L(n− di)

T ′
s

L
)

= ℜ{c[L](L(n− di))ejΩcT ′
s(n−di)}

= ℜ{c[L](L(n− di))ejωb(n−di)e−j2πℓdi}

= ℜ{c[L](Ln− Ldi)ej
ωb
L
(Ln−Ldi)e−j2πℓdi}. (3.7)

In the last expression, c[L](n− Ldi) is a shorthand notation for

c[L](n− Ldi) = fi(n) ∗ c[L](n), (3.8)

where

fi(n) =
sin(π(n− Ldi))
π(n− Ldi)

(3.9)

is the impulse response of the periodic fractional delay filter specified by

Fi(e
jω) = e−jωLdi (3.10)

for −π < ω ≤ π. More generally, the 2π periodic filter Fi(e
jω) can be expressed as

Fi(e
jω) = e−j(ω−q(ω))Ldi (3.11)

for all ω, where for l ∈ Z

q(ω) = l2π for (2l − 1)π ≤ ω < (2l + 1)π (3.12)

represents the quantized value of ω produced by an infinite quantizer with step size 2π.
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From (3.7), xi(n) for 1 ≤ i ≤M − 1 can be written as xi(n) = ℜ{si(n)} with

si(n) = c[L](Ln− Ldi)ej
ωb
L
(Ln−Ldi)e−j2πℓdi . (3.13)

The Fourier transform of sequence si(n) denoted by Si(e
jω) can be computed in steps:

c[L](n)
FT←→ C(ejω)

c[L](n− Ldi)
FT←→ C(ejω)Fi(e

jω)

c[L](n− Ldi)ej
ωb
L
n FT←→ C(ej(ω−

ωb
L
))Fi(e

j(ω−ωb
L
))

c[L](n− Ldi)ej
ωb
L
(n−Ldi) FT←→ C(ej(ω−

ωb
L
))Fi(e

j(ω−ωb
L
))e−jωbdi

c[L](n− Ldi)ej
ωb
L
(n−Ldi)e−j2πℓdi FT←→ C(ej(ω−

ωb
L
))Fi(e

j(ω−ωb
L
))e−j(ωb+2πℓ)di

and finally downsampling by L (n→ nL) results in si(n) from (3.13) with Fourier transform

Si(e
jω) =

1

L

L−1∑
k=0

Fi(e
j(ω

L
−ωb

L
− 2π

L
k))C(ej(

ω
L
−ωb

L
− 2π

L
k))e−j(ωb+2πℓ)di

=
1

L

L−1∑
k=0

Fi(e
j(ω

L
− 2π

L
k))Gi(e

j(ω
L
− 2π

L
k))C(ej(

ω
L
−ωb

L
− 2π

L
k)) (3.14)

where

Gi(e
j ω
L )

△
=

Fi(e
j(ω

L
−ωb

L
))

Fi(e
j ω
L )

e−j(ωb+2πℓ)di

= e−j[q(ωL )−q(ω
L
−ωb

L
)]Ldie−j2πℓdi . (3.15)

For ωb > 0, we obtain

q
(ω
L

)
− q

(ω
L
− ωb

L

)
=

 2π −πL ≤ ω < −πL+ ωb

0 −πL+ ωb ≤ ω < πL ,
(3.16)
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Gi(e
j ω
L ) =

 e−j2π(ℓ+L)di −πL ≤ ω < −πL+ ωb

e−j2πℓdi −πL+ ωb ≤ ω < πL ,
(3.17)

and therefore, Gi(e
j(ω

L
− 2π

L
k)) from (3.14) can be expressed as

Gi(e
j(ω

L
− 2π

L
k)) = Gi(e

j ω
L )
∣∣∣
ω→ ω−2πk

=

 e−j2π(ℓ+L)di −π(L− 2k) ≤ ω < −π(L− 2k) + ωb

e−j2πℓdi −π(L− 2k) + ωb ≤ ω < π(L+ 2k)
(3.18)

for 0 ≤ k ≤ L− 1. For ωb < 0, we have

q
(ω
L

)
− q

(ω
L
− ωb

L

)
=

 0 −πL ≤ ω < πL+ ωb

−2π πL+ ωb ≤ ω < πL ,
(3.19)

Gi(e
j ω
L ) =

 e−j2πℓdi −πL ≤ ω < πL+ ωb

e−j2π(ℓ−L)di πL+ ωb ≤ ω < πL ,
(3.20)

and consequently

Gi(e
j(ω

L
− 2π

L
k)) =

 e−j2πℓdi −π(L− 2k) ≤ ω < π(L+ 2k) + ωb

e−j2π(ℓ−L)di π(L+ 2k) + ωb ≤ ω < π(L+ 2k)
(3.21)

for 0 ≤ k ≤ L − 1. The filter Gi(e
j(ω

L
− 2π

L
k)) is 2πL periodic. It is a frequency scaled and

shifted version of Gi(e
jω) which is 2π periodic as any DTFT and can be expressed as

Gi(e
jω) =

 e−j2π(ℓ+L)di −π ≤ ω < −π + ωb

L

e−j2πℓdi −π + ωb

L
≤ ω < π

(3.22)
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for ωb > 0, and

Gi(e
jω) =

 e−j2πℓdi −π ≤ ω < π + ωb

L

e−j2π(ℓ−L)di π + ωb

L
≤ ω < π

(3.23)

for ωb < 0. Its impulse response is given by

gi(n) =
(−1)nsgn(ωb)

j2πn

(
ej

ωb
L
n − 1

)
×
(
e−j2πsgn(ωb)Ldi − 1

)
e−j2πℓdi (3.24)

for n ̸= 0, where

sgn(ω) =

 1 ω > 0

−1 ω < 0
(3.25)

denotes the sign function, and

gi(n) =
e−j2πℓdi

2π

(
2π − |ωb|

L
+
|ωb|
L
e−j2πsgn(ωb)Ldi

)
(3.26)

for n = 0.

The sampling model can be represented in block diagram form shown in Fig. 3.3. In this

model, Fi(e
jω) is fully determined by the TIADC parameters L and di, whereas the filter

Gi(e
jω) depends on the image band index ℓ of Ωc and its relative location ωb within this band

in addition to L and di. Thus, from a software defined radio perspective, Gi(e
jω) changes if

the frequency band of the signal of interest varies, but Fi(e
jω) stays the same. Compressors

in the model indicate the outputs {x0(n), . . . , xM−1(n)} have a sampling rate L times lower

than the input c[L](n). The oversampling parameter (3.3) ensures L is an integer given by

L = ⌊M/2⌋ instead of L = M/2 which is noninteger for M odd. This helps avoid lowpass

filtering associated with a noninteger sampling rate change discussed in Section 2.3 which

would increase the complexity of the model in Fig. 3.3.
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Figure 3.3: Discrete-time bandpass sampling model.

3.2 Complex Envelope Reconstruction

We consider the problem of recovering c[L](n) from xi(n), 0 ≤ i ≤ M − 1. Since c[L](n) is

complex, C(ejω) is devoid of symmetries, so knowledge of C(ejω) over the entire frequency

band [−π, π] is needed to recover c[L](n). Recalling the fifth DTFT property from Table 2.1

and given

S0(e
jω) =

1

L

L−1∑
k=0

C(ej(
ω
L
−ωb

L
− 2π

L
k)), (3.27)

we have

X0(e
jω) =

1

2L

L−1∑
k=0

C(ej(
ω
L
−ωb

L
− 2π

L
k)) + C∗(e−j(ω

L
+

ωb
L
+ 2π

L
k)). (3.28)

Before computing Xi(e
ω) for 1 ≤ i ≤M−1, we make a few observations and simplifications.

F ∗
i (e

−j ω
L ) = e+j[−ω

L
−q(−ω

L
)]Ldi = e−j[ωL+q(−ω

L
)]Ldi

= e−j[ωL−q(ω
L
)]Ldi = Fi(e

j ω
L ),
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where we have used the fact that q(−ω
L
) = −q(ω

L
). If

Fi(e
j(ω

L
− 2π

L
k)) = e−j[ωL− 2π

L
k−q(ω

L
− 2π

L
k)]Ldi ,

then let

fi,k(e
j ω
L ) =

Fi(e
(j ω

L
− 2π

L
k))

Fi(e
j ω
L )

= e+j2πkdie−j[q(ωL )−q(ω
L
− 2π

L
k)]Ldi (3.29)

which using

q
(ω
L

)
− q

(
ω

L
− 2π

L
k

)
=

 2π −πL ≤ ω < −πL+ 2πk

0 −πL+ 2πk ≤ ω < πL

can be computed to be

fi,k(e
j ω
L ) = e+j2πkdi ×

 e−j2πLdi −πL ≤ ω < −πL+ 2πk

1 −πL+ 2πk ≤ ω < πL

=

 e−j2π(L−k)di −πL ≤ ω < −πL+ 2πk

e+j2πkdi −πL+ 2πk ≤ ω < πL .
(3.30)

Note that fi,0(e
j ω
L ) = 1. Using the relation Fi(e

j(ω
L
− 2π

L
k)) = fi,k(e

j ω
L )Fi(e

j ω
L ) from (3.29), the

expression (3.14) can be rewritten as

Si(e
jω) =

Fi(e
j ω
L )

L

L−1∑
k=0

fi,k(e
j ω
L )Gi(e

j(ω
L
− 2π

L
k))C(ej(

ω
L
−ωb

L
− 2π

L
k)) (3.31)

which leads to

Xi(e
jω) =

Fi(e
j ω
L )

2L

{ L−1∑
k=0

fi,k(e
j ω
L )Gi(e

j(ω
L
− 2π

L
k))C(ej(

ω
L
−ωb

L
− 2π

L
k))

+
L−1∑
k=0

f ∗
i,k(e

−j ω
L )G∗

i (e
−j(ω

L
+ 2π

L
k))C∗(e−j(ω

L
+

ωb
L
+ 2π

L
k))

}
(3.32)
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for 1 ≤ i ≤M − 1, where

f ∗
i,k(e

−j ω
L ) =

 e−j2πkdi −πL ≤ ω < πL− 2πk

e+j2π(L−k)di πL− 2πk ≤ ω < πL .
(3.33)

Reconstruction: We first expand all the sequences xi(n) by a factor of L to compensate

for the effect of undersampling.

Xe
0(e

jω) = X0(e
jω)

∣∣∣
↑L
= X0(e

jωL)

=
1

2L

L−1∑
k=0

C(ej(ω−
ωb
L
− 2π

L
k)) + C∗(e−j(ω+

ωb
L
+ 2π

L
k)) (3.34)

and

Xe
i (e

jω) = Xi(e
jω)

∣∣∣
↑L
= Xi(e

jωL)

=
Fi(e

jω)

2L

{ L−1∑
k=0

fi,k(e
jω)Gi(e

j(ω− 2π
L
k))C(ej(ω−

ωb
L
− 2π

L
k))

+
L−1∑
k=0

f ∗
i,k(e

−jω)G∗
i (e

−j(ω+ 2π
L
k))C∗(e−j(ω+

ωb
L
+ 2π

L
k))

}
(3.35)

for 1 ≤ i ≤M − 1, where

fi,k(e
jω) =

 e−j2π(L−k)di −π ≤ ω < −π + 2π
L
k

e+j2πkdi −π + 2π
L
k ≤ ω < π

(3.36)

and

f ∗
i,k(e

−jω) =

 e−j2πkdi −π ≤ ω < π − 2π
L
k

e+j2π(L−k)di π − 2π
L
k ≤ ω < π .

(3.37)
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In time domain, L− 1 zeros are inserted between the consecutive samples of xi(n),

xei (n) = xi(n)
∣∣∣
↑L
=

 xi(
n
L
) n = 0,±L,±2L, . . .

0 otherwise .
(3.38)

Expressions (3.34–3.35) indicate that Xe
i (e

jω), 0 ≤ i ≤ M − 1 is a linear combination of

a total of 2L envelope variants, the superposition of which makes it impossible to recover

the desired C(ejω) from a single channel alone. However, combining the information from

all Xe
i (e

jω), we can write the problem in matrix-vector form as



Xe
0(e

jω)

F−1
1 (ejω)Xe

1(e
jω)

...

F−1
i (ejω)Xe

i (e
jω)

...

F−1
M−1(e

jω)Xe
M−1(e

jω)


= M(ejω)

 C(ejω)

C∗(e−jω)

 , (3.39)

where

C(ejω) =



C(ej(ω−
ωb
L
))

...

C(ej(ω−
ωb
L
− 2π

L
k))

...

C(ej(ω−
ωb
L
− 2π

L
(L−1)))


(3.40)

is an L× 1 vector and complex conjugation is performed element-wise. The M × 2L matrix

M(ejω) is given by

M(ejω) =
1

2L

[
P(ejω) P∗(e−jω)

]
(3.41)

with the matrix
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P(ejω) =



1 · · · 1 · · · 1

G1(e
jω) · · · f1,k(e

jω)G1(e
j(ω− 2π

L
k)) · · · f1,L−1(e

jω)G1(e
j(ω− 2π

L
(L−1)))

...
. . .

...
. . .

...

Gi(e
jω) · · · fi,k(e

jω)Gi(e
j(ω− 2π

L
k)) · · · fi,L−1(e

jω)Gi(e
j(ω− 2π

L
(L−1)))

...
. . .

...
. . .

...

GM−1(e
jω) · · · fM−1,k(e

jω)GM−1(e
j(ω− 2π

L
k)) · · · fM−1,L−1(e

jω)GM−1(e
j(ω− 2π

L
(L−1)))


(3.42)

being of size M × L. In (3.41), ∗ refers to complex conjugation of each entry of P(ejω)

without applying the transpose operator to the matrix. The first row of M(ejω) consists of

all ones and is the information row associated with Xe
0(e

jω) from (3.34).

The matrix M(ejω) is a function of timing skews di. From (3.39), envelope reconstruc-

tion entails inverting M(ejω) so a set that characterizes the forbidden timing skews can be

expressed as

F =
{
(d1, . . . , di, . . . , dM−1)

∣∣ Minv(ejω) does not exist
}
, (3.43)

whereMinv(ejω) is a generalized inverse ofM(ejω) of size 2L×M that satisfiesMinv(ejω)M(ejω) =

I2L (the identity matrix of size 2L× 2L) and is given by

Minv(ejω) =

 M−1(ejω) if M is even

M−1
left(e

jω) if M is odd
(3.44)

with

M−1
left(e

jω) =
(
MH(ejω)M(ejω)

)−1
MH(ejω), (3.45)

where H denotes the Hermitian transpose. The left inverse M−1
left(e

jω) exists if M(ejω) has

full column rank, i.e., rank(M(ejω)) = 2L. The component of interest on the RHS of (3.39)
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is C(ej(ω−
ωb
L
)) which can be expressed as

C(ej(ω−
ωb
L
)) =

[
1 0 . . . 0

]
︸ ︷︷ ︸

1× 2L

Minv(ejω)



1

F−1
1 (ejω) 0

. . .

0 F−1
M−1(e

jω)





Xe
0(e

jω)

...

Xe
i (e

jω)

...

Xe
M−1(e

jω)


.

(3.46)

If we define a row vector of reconstruction filters as

H(ejω) =
[
H0(e

jω), . . . , Hi(e
jω), . . . , HM−1(e

jω)
]

= Φ(ejω) diag
{
1, F−1

1 (ejω), . . . , F−1
i (ejω), . . . , F−1

M−1(e
jω)

}
(3.47)

with

Φ(ejω) =
[
Φ0(e

jω), . . . ,Φi(e
jω), . . . ,ΦM−1(e

jω)
]

=

[
1 0 . . . 0

]
︸ ︷︷ ︸

1× 2L

Minv(ejω), (3.48)

then (3.46) can be compactly written as

C(ej(ω−
ωb
L
)) =

M−1∑
i=0

Hi(e
jω)Xe

i (e
jω). (3.49)

In time domain, the filter Hi(e
jω) for 1 ≤ i ≤ M − 1 is simply a noninteger advance of

Φi(e
jω). We have

h0(n) = ϕ0(n)
FT←→ H0(e

jω) = Φ0(e
jω)

hi(n) = ϕi(n+ Ldi)
FT←→ Hi(e

jω) = Φi(e
jω)F−1

i (ejω), (3.50)
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where

ϕi(n+ Ldi) = ϕi(n) ∗
sin(π(n+ Ldi))

π(n+ Ldi)
. (3.51)

Note from (3.48) that only the first row of Minv(ejω) is needed for computing the filters

Hi(e
jω), 0 ≤ i ≤M−1. Since the entries of the matrix P(ejω) in (3.42) are piecewise constant

over [−π, π], the matrix M(ejω), its inverse Minv(ejω), and filters Hi(e
jω) are all piecewise

constant as well. Table 3.1 below provides comprehensive instructions for computing the

impulse responses of reconstruction filters.

Steps for computing hi(n), 0 ≤ i ≤M − 1
1. Compute L = ⌊M/2⌋, ℓ (3.1), and ωb (3.2).
2. Choose a vector of TIADC timing skews (d1, . . . , di, . . . , dM−1).
3. Compute the piecewise constant filters fi,k(e

jω) (3.36) and
Gi(e

j(ω−(2π/L)k)) (3.22–3.23) for 1 ≤ i ≤M − 1, 1 ≤ k ≤ L− 1.
4. Compute the piecewise constant matrix M(ejω) (3.41–3.42)

for ω ∈ [−π, π).
5. Check rank(M(ejω)) = 2L in all frequency segments within the

interval [−π, π]. If not, go back to step 2 and pick another timing
skew vector.

6. Compute the piecewise constant matrix Minv(ejω) (3.44–3.45)
for ω ∈ [−π, π).

7. For 0 ≤ i ≤M − 1, let Φi(e
jω) = Minv

1,i (e
jω) and compute

its impulse response ϕi(n).
8. Let h0(n) = ϕ0(n) and hi(n) = ϕi(n+ Ldi), 1 ≤ i ≤M − 1,

where ϕi(n+ Ldi) is obtained through a noninteger advance
filter as specified in (3.51).

Table 3.1: Detailed step-by-step instructions for computing the impulse responses of recon-
struction filters H0(e

jω), . . . , HM−1(e
jω).

Since C(ej(ω−
ωb
L
)) (3.49) is the DTFT of the modulated signal r[L](n) = c[L](n)ej(ωb/L)n,

c[L](n) can be recovered by demodulating r[L](n). Given c[L](n) = a[L](n) + jb[L](n) which

follows from the definition of the complex envelope in Section 2.4, the sampled in-phase

signal a[L](n) and quadrature signal b[L](n) can be easily decoupled from the knowledge of

c[L](n) by extracting its real and imaginary parts, respectively.

The block diagram in Fig. 3.4 shows complete reconstruction of c[L](n) requires M L-fold
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expanders, M filters, and one modulator. To approximate the filters by causal FIR filters of

order N = 2K, a K-samples delay needs to be included in the implementation as demon-

strated in Fig. 3.5. The new filters Ȟi(e
jω) with i = 0, . . . ,M − 1 are FIR approximations of

the filters e−jωKHi(e
jω) obtained by applying a Kaiser window of length 2K+1 to their ideal

impulse responses. In this case, the output ĉ[L](n − K) of the causal reconstruction block

diagram is only an estimate of the complex envelope at time n − K. While the sequences

xi(n) are real, the impulse responses hi(n) are in general complex. Therefore, the complexity

of the reconstruction technique depicted in Fig. 3.5 when FIR filters of order N are used

is 2M(N + 1) real multiplications and one complex multiplication per complex envelope

sample (the complex multiplication is needed to implement the discrete-time demodulation

by e−j(ωb/L)(n−K)).

Figure 3.4: A mathematical model for recovery of c[L](n) from x0(n), . . . , xM−1(n).

The use of FIR filters to reconstruct the sampled complex envelope c[L](n) of a bandpass

signal by processingM nonuniformly interleaved sample sequences xi(n), 0 ≤ i ≤M −1 can

be justified by observing that it was shown in Section IV of [78] that the uniform samples of

a bandlimited signal can be reconstructed to an arbitrary degree of accuracy by finite length

interpolation of nonuniform samples as long as the average sampling rate of this nonuniform

sampling scheme is above the Nyquist rate. However, two noteworthy differences with [78] is

51



Figure 3.5: A causal implementation of the reconstruction block diagram in Fig. 3.4

that we consider here the reconstruction of the sampled envelope instead of the signal itself,

and because each sequence xi(n) is uniformly sampled, FIR filters can be employed instead

of more general interpolation filters.

Although our proposed TIADC complex envelope sampling and reconstruction technique

described in the last two sections presents some apparent similarities with the multicoset

sampling method described in [79–81], the two methods are actually different. The mul-

ticoset sampling technique considers a fast sampling scheme, which in our notation would

correspond to using a sampling period Ts, and given the uniform samples x(n) = xc(nTs),

it retains only a finite number p < M of substreams xi(m) = x(mM + ci) with ci integer

satisfying 0 ≤ c1 < c2 < . . . < cp < M − 1. Roughly speaking coset sampling retains

only p out of M uniform samples for each sample block of length M , and the “cosets”

correspond to the subgrid {n = mM + ci,m ∈ Z} of Z. Like all TIADC sampling tech-

niques, our method produces also M interlaced sequences xi(m) = xc((m + di)MTs) where

d0 = 0 < d1 < . . . < dM−1 < 1 represent the irregular timing skews, but diM = ci is

usually not integer. Accordingly, the reconstruction technique described in [80, 81] which

relies on the construction of left inverses of Vandermonde matrices is not applicable. Thus

our bandpass sampling technique relies on a more general TIADC structure than considered
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in multicoset sampling. Note also that we employ all M sub-ADC sequences instead of p

out of M substreams. The problem we consider is both simpler and more complicated than

the multiband sampling problem addressed by multicoset sampling techniques. It is simpler,

since we consider bandpass signals with frequency content over [ΩL,ΩH ] and [−ΩH ,−ΩL],

whereas for multiband sampling, the frequency content usually consists of several disjoint

bands in an interval of length B. Multicoset sampling is able to achieve sampling rates

approaching the Landau rate [82] which is below the Nyquist rate 2B since the effective

bandwidth of the signal is less than B. This can be extremely efficient when the signal has

a sparse spectrum. Our problem is also more difficult, since the proposed receiver is not

concerned with sampling and reconstructing the received analog signal, but rather its com-

plex envelope, so it encompasses in a single DSP device an entire communications receiver

front-end, which typically would involve demodulation, I and Q components separation, and

sampling. A few general analogies do exist between our proposed TIADC sampling method

and multicoset sampling. For example, the invertibility condition for matrix M(ejω) in equa-

tion (3.41) (which is used to characterize the forbidden timing skews) is very roughly similar

to the full row rank condition of Vandermonde matrix WL(C,K) in [80].

3.3 Reconstruction for M = 2, 3, 4

In this section, we derive and analyze reconstruction details for the two-channel, three-

channel, and four-channel TIADC. When M = 2, 3 with L = 1, the sub-ADC sampling

frequency Ω′
s defined in (3.5) is greater than or equal to B (the Nyquist rate of cc(t)).

This ensures the only form of aliasing present is from overlap between the negative and

positive spectral images. For L ≥ 2, Ω′
s can be less than B which introduces additional

aliasing from frequency overlap occurring between neighboring positive copies independent

of negative spectral images and frequency overlap occurring between neighboring negative

copies independent of positive spectral images. This is observed in the case of four channels
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where robust filters are needed to remove the effects of two sources of aliasing.

Two-Channel TIADC

Since M = 2 and L = 1, compressors are void in the sampling model in Fig. 3.3, and ex-

panders drop from the reconstruction model in Fig. 3.4. We drop the subscript on d, F (ejω),

and G(ejω) since the timing skew and filters exist only for one channel. The reconstruction

matrix has simple form

M(ejω) =
1

2

 1 1

G(ejω) G∗(e−jω)

 (3.52)

and is invertible as long as its determinant

D(ejω) = det
(
M(ejω)

)
=

1

4
(G∗(e−jω)−G(ejω)) (3.53)

is nonzero. We find

D(ejω) =


j
2
sin(2πℓd) 0 ≤ |ω| ≤ π − |ωb|

j
2
ejπsgn(ω)d sin(π(2ℓ+ sgn(ωb))d) π − |ωb| < |ω| < π .

(3.54)

Accordingly, the determinant D(ejω) will be nonzero as long as the timing skew d is such

that both sin(2πℓd) and sin(π(2ℓ+ sgn(ωb))d) are nonzero. If integers m, q are superscripts

on d, the set of forbidden timing skews defined in (3.43) for the two-channel TIADC can be

expressed as

F =

{
dm = m

2ℓ
1 ≤ m ≤ 2ℓ− 1

dq = q
2ℓ+sgn(ωb)

1 ≤ q ≤ 2ℓ+ sgn(ωb)− 1

}
. (3.55)

Note that for m = ℓ, we have dm = 1/2, so as expected, the half sampling period is a

forbidden timing skew, since in this case the TIADC reduces to a uniform ADC with sampling

period Ts = T ′
s/2. Also, observe that the assumption that Ωc is not in the baseband, which

corresponds to ℓ ≥ 1, is needed to ensure the recovery of C(ej(ω−ωb)), since when ℓ = 0,

54



D(ejω) ≡ 0 over the band −(π − |ωb|) ≤ ω ≤ π − |ωb|.

When M(ejω) is invertible for all ω, we find

[
H0(e

jω) H1(e
jω)

]
=

1

2D(ejω)

[
G∗(e−jω) −F−1(ejω)

]
. (3.56)

Substituting the expressions for D(ejω) and G(ejω) inside (3.56) gives

H0(e
jω) =

ej2πℓd

j sin(2πℓd)
= 1− j cot(2πℓd) (3.57)

for |ω| ≤ π − |ωb| and

H0(e
jω) =

ejπ(2ℓ+sgn(ωb))d

j sin(π(2ℓ+ sgn(ωb))d)

= 1− j cot(π(2ℓ+ sgn(ωb))d) (3.58)

for π − |ωb| < |ω| ≤ π. Observe ℜ{H0(e
jω)} = 1 for all ω and the filter ℑ{H0(e

jω)} is a real

and even function of ω and thus its impulse response is also real and even. So even though

the filter H0(e
jω) is complex, its implementation requires a single real filter. Similarly, for

H1(e
jω) = Φ1(e

jω)F−1(ejω), (3.59)

we find

Φ1(e
jω) =

j

sin(2πℓd)
(3.60)

for |ω| ≤ π − |ωb| and

Φ1(e
jω) =

je−jπsgn(ω)d

sin(π(2ℓ+ sgn(ωb))d)
(3.61)

for π − |ωb| < |ω| < π. The impulse responses of the two filters H0(e
jω) and H1(e

jω) can be
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evaluated in closed form by taking the inverse Fourier transform. They are given by

ℜ{h0(n)} = δ(n), (3.62)

ℑ{h0(n)} = − cot(π(2ℓ+ sgn(ωb))d)δ(n)

+
(
cot(π(2ℓ+ sgn(ωb))d)− cot(2πℓd)

)
× sin((π − |ωb|)n)

πn
, (3.63)

and

ℜ{ϕ1(n)} = 0, (3.64)

ℑ{ϕ1(n)} =
sin((π − |ωb|)n)
πn sin(2πℓd)

− sin((π − |ωb|)n− πd)
πn sin(π(2ℓ+ sgn(ωb)d)

, (3.65)

h1(n) = ϕ1(n+ d). (3.66)

Three-Channel TIADC

We have M = 3 and L = 1, so again compressors and expanders become void. The non-

square reconstruction matrix M(ejω) is given by

M(ejω) =
1

2


1 1

G1(e
jω) G∗

1(e
−jω)

G2(e
jω) G∗

2(e
−jω)

 (3.67)

which has a left inverse if rank(M(ejω)) = 2. Equivalently, the intersection of the sets with

values that cause the subdeterminants of the matrix to be zero should be null. We explore
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this further. Let

M1(e
jω) =

1

2

 1 1

G1(e
jω) G∗

1(e
−jω)

 (3.68)

M2(e
jω) =

1

2

 1 1

G2(e
jω) G∗

2(e
−jω)

 (3.69)

M3(e
jω) =

1

2

 G1(e
jω) G∗

1(e
−jω)

G2(e
jω) G∗

2(e
−jω)

 (3.70)

be the submatrices of M(ejω). The determinants of these 2× 2 matrices and when they are

equal to zero can be computed in a similar way as for the two-channel TIADC. If integers

m1,m2,m3, q1, q2, q3 are superscripts, then

D1(e
jω) = det

(
M1(e

jω)
)
=

1

4
(G∗

1(e
−jω)−G1(e

jω))

=


j
2
sin(2πℓd1) 0 ≤ |ω| ≤ π − |ωb|

j
2
ejπsgn(ω)d1 sin(π(2ℓ+ sgn(ωb))d1) π − |ωb| < |ω| < π ,

(3.71)

F1 =

{
dm1
1 = m1

2ℓ
D1(e

jω) = 0, 1 ≤ m1 ≤ 2ℓ− 1

dq11 = q1
2ℓ+sgn(ωb)

1 ≤ q1 ≤ 2ℓ+ sgn(ωb)− 1

}
, (3.72)

D2(e
jω) = det

(
M2(e

jω)
)
=

1

4
(G∗

2(e
−jω)−G2(e

jω))

=


j
2
sin(2πℓd2) 0 ≤ |ω| ≤ π − |ωb|

j
2
ejπsgn(ω)d2 sin(π(2ℓ+ sgn(ωb))d2) π − |ωb| < |ω| < π ,

(3.73)

F2 =

{
dm2
2 = m2

2ℓ
D2(e

jω) = 0, 1 ≤ m2 ≤ 2ℓ− 1

dq22 = q2
2ℓ+sgn(ωb)

1 ≤ q2 ≤ 2ℓ+ sgn(ωb)− 1

}
, (3.74)
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D3(e
jω) = det

(
M3(e

jω)
)
=

1

4
(G1(e

jω)G∗
2(e

−jω)−G2(e
jω)G∗

1(e
−jω))

=


j
2
sin(2πℓ(d2 − d1)) 0 ≤ |ω| ≤ π − |ωb|

j
2
ejπsgn(ω)(d1+d2) sin(π(2ℓ+ sgn(ωb))(d2 − d1)) π − |ωb| < |ω| < π ,

(3.75)

F3 =

{
(d2 − d1)m3 = m3

2ℓ
D3(e

jω) = 0, 1 ≤ m3 ≤ 2ℓ− 1

(d2 − d1)q3 = q3
2ℓ+sgn(ωb)

1 ≤ q3 ≤ 2ℓ+ sgn(ωb)− 1

}
. (3.76)

Using these expressions, the set of forbidden timing skews for the three-channel TIADC is

given by

F = F1 ∩ F2 ∩ F3

=

{
(dm1

1 , dm2

2 ) = 1
2ℓ
(m1,m2) 1 ≤ m1 < m2 ≤ 2ℓ− 1

(dq1
1 , d

q2
2 ) =

1
2ℓ+sgn(ωb)

(q1, q2) 1 ≤ q1 < q2 ≤ 2ℓ+ sgn(ωb)− 1

}
, (3.77)

where we have used the fact that d2 > d1 (making it so m1 = 2ℓ− 1, q1 = 2ℓ + sgn(ωb)− 1

drop from F1 and m2 = 1, q2 = 1 drop from F2).

If we define and simplify

D(ejω) = det
(
4MH(ejω)M(ejω)

)
= 9− ∥1 +G1(e

jω)G1(e
−jω) +G2(e

jω)G2(e
−jω)∥2

= 9−
(
1 +G1(e

jω)G1(e
−jω) +G2(e

jω)G2(e
−jω)

)
×(

1 +G1(e
jω)G1(e

−jω) +G2(e
jω)G2(e

−jω)
)∗

= 6− 2ℜ{G1(e
jω)G1(e

−jω)} − 2ℜ{G2(e
jω)G2(e

−jω)} −

2ℜ{G1(e
jω)G1(e

−jω)G∗
2(e

jω)G∗
2(e

−jω)}, (3.78)

then

M−1
left(e

jω) =
2

D(ejω)
×

58





2−G∗
1(e

jω)G∗
1(e

−jω) 2G∗
1(e

jω)− 2G∗
2(e

jω)−

−G∗
2(e

jω)G∗
2(e

−jω) G1(e
−jω)

(
1 +G∗

2(e
jω)G∗

2(e
−jω)

)
G2(e

−jω)
(
1 +G∗

1(e
jω)G∗

1(e
−jω)

)
2−G1(e

jω)G1(e
−jω) 2G1(e

−jω)− 2G2(e
−jω)−

−G2(e
jω)G2(e

−jω) G∗
1(e

jω)
(
1 +G2(e

jω)G2(e
−jω)

)
G∗

2(e
jω)

(
1 +G1(e

jω)G1(e
−jω)

)


.

(3.79)

In calculating both (3.78) and (3.79), we have made use of simplifications

Gi(e
jω)G∗

i (e
jω) = ∥Gi(e

jω)∥2 = 1

Gi(e
−jω)G∗

i (e
−jω) = ∥Gi(e

−jω)∥2 = 1

for i = 1, 2. These follow directly from definitions (3.22–3.23) which can be further used to

find

D(ejω) =


D1(d1, d2, ℓ) 0 ≤ |ω| ≤ π − |ωb|

D2(d1, d2, ℓ) π − |ωb| < |ω| ≤ π

(3.80)

with

D1(d1, d2, ℓ) = 6 − 2
[
cos(2π2ℓd1) + cos(2π2ℓd2)

+ cos(2π2ℓd1) · cos(2π2ℓd2) + sin(2π2ℓd1) · sin(2π2ℓd2)
]

(3.81)

and

D2(d1, d2, ℓ) = 6 − 2
[
cos(2π(2ℓ+ sgn(ωb))d1) + cos(2π(2ℓ+ sgn(ωb))d2)

+ cos(2π(2ℓ+ sgn(ωb))d1) · cos(2π(2ℓ+ sgn(ωb))d2)

+ sin(2π(2ℓ+ sgn(ωb))d1) · sin(2π(2ℓ+ sgn(ωb))d2)
]
. (3.82)
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The filters given by

Φ(ejω) =
[
Φ0(e

jω),Φ1(e
jω),Φ2(e

jω)
]

= [1 0]M−1
left(e

jω)

=
2

D(ejω)
×

2−G∗
1(e

jω)G∗
1(e

−jω) 2G∗
1(e

jω)− 2G∗
2(e

jω)−

−G∗
2(e

jω)G∗
2(e

−jω) G1(e
−jω)

(
1 +G∗

2(e
jω)G∗

2(e
−jω)

)
G2(e

−jω)
(
1 +G∗

1(e
jω)G∗

1(e
−jω)

)


(3.83)

can now be computed in closed form.

Φ0(e
jω) =

 Φ1
0 0 ≤ |ω| ≤ π − |ωb|

Φ2
0 π − |ωb| < |ω| < π ,

(3.84)

where

Φ1
0 =

2

D1(d1, d2, ℓ)

[
2− cos(2π2ℓd1)− cos(2π2ℓd2)

−j
(
sin(2π2ℓd1) + sin(2π2ℓd2)

)]
(3.85)

and

Φ2
0 =

2

D2(d1, d2, ℓ)

[
2− cos(2π(2ℓ+ sgn(ωb))d1)− cos(2π(2ℓ+ sgn(ωb))d2)

−j
(
sin(2π(2ℓ+ sgn(ωb))d1) + sin(2π(2ℓ+ sgn(ωb))d2)

)]
. (3.86)

Φ1(e
jω) =


Φ1

1 −π < sgn(ωb) · ω < −(π − |ωb|)

Φ2
1 0 ≤ |ω| ≤ π − |ωb|

Φ3
1 π − |ωb| < sgn(ωb) · ω < π ,

(3.87)
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where

Φ1
1 =

2

D2(d1, d2, ℓ)

[
2 cos(2π(ℓ+ sgn(ωb))d1)− cos(2πℓd1)

− cos(2π(ℓd1 − (2ℓ+ sgn(ωb))d2)) + j
(
2 sin(2π(ℓ+ sgn(ωb))d1)

+ sin(2πℓd1) + sin(2π(ℓd1 − (2ℓ+ sgn(ωb))d2))
)]
, (3.88)

Φ2
1 =

2

D1(d1, d2, ℓ)

[
cos(2πℓd1)− cos(2πℓ(d1 − 2d2))

+j
(
3 sin(2πℓd1) + sin(2πℓ(d1 − 2d2))

)]
, (3.89)

and

Φ3
1 =

2

D2(d1, d2, ℓ)

[
2 cos(2πℓd1)− cos(2π(ℓ+ sgn(ωb))d1)

− cos(2π((ℓ+ sgn(ωb))d1 − (2ℓ+ sgn(ωb))d2))

+ j
(
2 sin(2πℓd1) + sin(2π(ℓ+ sgn(ωb))d1)

+ sin(2π((ℓ+ sgn(ωb))d1 − (2ℓ+ sgn(ωb))d2))
)]
. (3.90)

Φ2(e
jω) =


Φ1

2 −π < sgn(ωb) · ω < −(π − |ωb|)

Φ2
2 0 ≤ |ω| ≤ π − |ωb|

Φ3
2 π − |ωb| < sgn(ωb) · ω < π ,

(3.91)

where

Φ1
2 =

2

D2(d1, d2, ℓ)

[
2 cos(2π(ℓ+ sgn(ωb))d2)− cos(2πℓd2)

− cos(2π(ℓd2 − (2ℓ+ sgn(ωb))d1)) + j
(
2 sin(2π(ℓ+ sgn(ωb))d2)

+ sin(2πℓd2) + sin(2π(ℓd2 − (2ℓ+ sgn(ωb))d1))
)]
, (3.92)
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Φ2
2 =

2

D1(d1, d2, ℓ)

[
cos(2πℓd2)− cos(2πℓ(d2 − 2d1))

+j
(
3 sin(2πℓd2) + sin(2πℓ(d2 − 2d1))

)]
, (3.93)

and

Φ3
2 =

2

D2(d1, d2, ℓ)

[
2 cos(2πℓd2)− cos(2π(ℓ+ sgn(ωb))d2)

− cos(2π((ℓ+ sgn(ωb))d2 − (2ℓ+ sgn(ωb))d1))

+ j
(
2 sin(2πℓd2) + sin(2π(ℓ+ sgn(ωb))d2)

+ sin(2π((ℓ+ sgn(ωb))d2 − (2ℓ+ sgn(ωb))d1))
)]
. (3.94)

The impulse responses of the filters are given by

ϕ0(n) = Φ2
0 δ(n) + (Φ1

0 − Φ2
0)×

sin((π − |ωb|)n)
πn

, (3.95)

h0(n) = ϕ0(n). (3.96)

ϕ1(n) = Φ2
1 ×

sin((π − |ωb|)n)
πn

+
sin( |ωb|

2
n)

πn
×

[
Φ1

1 e
−jsgn(ωb)(π−

|ωb|
2

)n + Φ3
1 e

+jsgn(ωb)(π−
|ωb|
2

)n

]
, (3.97)

h1(n) = ϕ1(n+ d1). (3.98)

ϕ2(n) = Φ2
2 ×

sin((π − |ωb|)n)
πn

+
sin( |ωb|

2
n)

πn
×

[
Φ1

2 e
−jsgn(ωb)(π−

|ωb|
2

)n + Φ3
2 e

+jsgn(ωb)(π−
|ωb|
2

)n

]
, (3.99)

h2(n) = ϕ2(n+ d2). (3.100)

Reconstruction filters associated with the three-channel TIADC have more challenging
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closed-form expressions in comparison to the case of two channels. This is due to the left

inverse being more computationally intensive than a regular inverse.

Four-Channel TIADC

Let Γ be the set of all sub-ADC sampling rates in the case of M = 4 and L = 2. Since

inf Γ = B/2 from (3.5), spectral images may have width greater than 2π in digital domain

due to undersampling of the envelope. As mentioned in the beginning of the section, this

creates additional aliasing that will need to be removed in the reconstruction. The matrix

M(ejω) can be written as

M(ejω) =
1

4



1 1 1 1

G1(e
jω) ej2πsgn(ω)d1G1(e

j(ω−π)) G∗
1(e

−jω) ej2πsgn(ω)d1G∗
1(e

−j(ω+π))

G2(e
jω) ej2πsgn(ω)d2G2(e

j(ω−π)) G∗
2(e

−jω) ej2πsgn(ω)d2G∗
2(e

−j(ω+π))

G3(e
jω) ej2πsgn(ω)d3G3(e

j(ω−π)) G∗
3(e

−jω) ej2πsgn(ω)d3G∗
3(e

−j(ω+π))


.

(3.101)

Since the phase-shifting filters Gi(e
jω), G∗

i (e
−jω), Gi(e

j(ω−π)), G∗
i (e

−j(ω+π)) for i = 1, 2, 3 are

piecewise, we can show the matrix M(ejω) is piecewise constant on six segments in the

interval [−π, π] as shown in Fig. 3.6 for ωb > 0 and ωb < 0. These segments can be expressed

as three reconstruction regions

R1 : 0 ≤ |ω| <
|ωb|
2

R2 :
|ωb|
2
≤ |ω| < π − |ωb|

2

R3 : π −
|ωb|
2
≤ |ω| < π

over which the inverse matrix M−1(ejω) and reconstruction filters Hi(e
jω), i = 0, 1, 2, 3 must

be computed. Unfortunately, obtaining general closed-form expressions of these filters is
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no easy task since computing the general expression for the determinant and inverse of the

matrix M(ejω) (3.101) is not simple. An analytical representation of the set of forbidden

timing skews F is not feasible either for the same reason. However, it is easy to show that

det(M(ejω)) = 0 in at least two of the regions R1, R2, R3 for d1 = 1/4, d2 = 1/2, d3 = 3/4

and ℓ ≥ 1. This is expected since this choice of timing skews gives a uniform ADC with

sampling period Ts = T ′
s/4.

ω
ωb

2
π − ωb

2 π−ωb

2
−(π − ωb

2
)−π

a)

ω
−ωb

2
π + ωb

2 πωb

2
−(π + ωb

2
)−π

b)

Figure 3.6: Reconstruction regions for the four-channel TIADC: a) ωb > 0, b) ωb < 0

In Appendix A, reconstruction filters and their impulse responses are computed for ℓ = 5

and ωb = π/2. The values d1 = 0.375, d2 = 0.625, d3 = 0.875 are chosen midway between

forbidden timing skews that give a uniform ADC. The filters are piecewise and evaluated

in each region of Fig. 3.6a). They are used in Section 3.4 to demonstrate complex envelope

reconstruction in the case of four-channel TIADC.

3.4 Simulations

To validate our proposed direct sampling method, we demonstrate through various simula-

tions complex envelope reconstruction for the two-channel, three-channel, and four-channel

TIADC. Multi-tone and MSK signals are used to assess the method performance.
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Reconstruction of a Multi-Tone Complex Envelope

Consider a bandpass signal xc(t) ∈ BPB(R) with carrier frequency Fc = Ωc/(2π) = 5.15GHz,

and continuous-time envelope

cc(t) = 2 cos(400× 106 × 2πt)

+j[sin(400× 106 × 2πt) + cos(175× 106 × 2πt)]

=
3

2
ej400×106×2πt +

1

2
e−j400×106×2πt

+
j

2
[ej175×106×2πt + e−j175×106×2πt] (3.102)

which has bandwidth (B/2)/(2π) = 400 MHz. The bandwidth of xc(t) is then B/(2π) = 800

MHz.

For M = 2, the sub-ADC sampling frequency must satisfy condition (3.5),

Ω′
s ≥ B.

Choosing F ′
s = Ω′

s/(2π) = 1GHz, we can write

Fc = 5F ′
s + 150 MHz

which implies ℓ = 5, i.e., Fc is located in the 5-th image band, and

ωb =
150

1000
× 2π = 0.3π.

The discrete-time envelope obtained by sampling cc(t) with sampling period T ′
s = 1/F ′

s is

c(n) = cc(nT
′
s) =

3

2
ej0.8πn +

1

2
e−j0.8πn

+
j

2
[ej0.35πn + e−j0.35πn]. (3.103)
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This signal has four tones located at±0.8π and±0.35π, but the tone at 0.8π has an amplitude

three times larger than the tones at −0.8π and ±0.35π.

To sample xc(t), we select a TIADC with nominal timing skew d0 = 0.425, which is

approximately half-way between two forbidden timing skews dm=4 = 0.4 and dq=5 = 0.454.

Then the discrete-time signals generated by the sub-ADCs are given by

x0(n) = ℜ{c(n)ejωbn}+ v0(n)

=
3

2
cos(0.9πn) +

1

2
cos(0.5πn)

+
1

2
[− sin(0.65πn) + sin(0.05πn)] + v0(n), (3.104)

and

x1(n) = ℜ{c(n− d0)ejωb(n−d0)e−j2πℓd0}+ v1(n)

=
3

2
cos(0.9π(n− d0)− 0.9π)

+
1

2
cos(0.5π(n− d0) + π/4)

−1

2
sin(0.65π(n− d0)− π/4)

+
1

2
sin(0.05π(n− d0) + π/4)] + v1(n) . (3.105)

In the above expressions v0(n) and v1(n) are white noise sequences modelling the combined

effect of thermal and quantization noises. The sub-ADC SNR is 61.8dB. The signals x0(n)

and x1(n) have the same power spectral density (PSD) plotted in Fig. 3.7, where f = ω/(2π).

It is computed by using the periodogram method with a Kaiser window for a data segment

with 104 samples. The block diagram in Fig. 3.5 is used to compute the estimated envelope

ĉ(n). The FIR filters Ȟ0(e
jω) and Ȟ1(e

jω) shown in Fig. 3.8 have order N = 60 and are

obtained by applying a Kaiser window with parameter β = 6 to the time-shifted by K = N/2

ideal impulse responses h0(n) and h1(n).

The PSD of the estimated envelope ĉ(n) is shown in Fig. 3.9. It is again evaluated
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Figure 3.7: PSD of signals x0(n) and x1(n) for a two-channel TIADC in the presence of
additive white noise.

Figure 3.8: Magnitude responses of FIR filters Ȟ0(e
jω) and Ȟ1(e

jω) of order N = 60 for the
two-channel TIADC.

by using the windowed complex data periodogram method for a data block of length 104

samples. The periodogram is scaled so that a complex tone with unit amplitude corresponds

to 0dB. In addition to the four desired tones at ±0.8π and ±0.35π, four secondary tones

are present representing the residual spectral components of e−j2ωbnc∗(n) = e−j0.6πnc∗(n),
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which are located at 0.6π, 0.2π, −0.25π, and −0.95π. Since the dominant tone of c∗(n)

is located at −0.8π, the highest secondary tone in the PSD of ĉ(n) is located at 0.6π =

−0.6π − 0.8π mod (2π), yielding a SFDR of about 65dB. It is worth also noting that the

secondary tone at −0.95π is higher than the secondary tones at −0.25π and 0.2π which

should in theory be at the same level. This is due to the fact that the filters H0(e
jω)

and H1(e
jω) have discontinuities at ±(π− |ωb|) = ±0.7π so that after windowing, the filters

exhibit nonideal filtering characteristics in transition bands about these discontinuity points.

After modulation by e−jωbn = e−j0.3πn, the nonideal filtering bands become located about −π

and 0.4π, which explains the higher level of the secondary tone at −0.95π. Lengthening the

filters Ȟi(e
jω), i = 0, 1 removes this transition band effect. Significantly increasing the order

of the filters makes them behave almost ideally as demonstrated in Fig. 3.10 where secondary

tones have completely vanished into the noise floor and near-perfect envelope reconstruction

is achieved. Finally, since the exact envelope c(n) is known, the error c̃(n) = c(n) − ĉ(n)

can be evaluated. Table 3.2 displays the mean-square error (MSE) for selected values of N .

Increasing the filter order beyond N = 80 results in negligible performance improvement as

measured by the MSE.
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Figure 3.9: PSD of the estimated envelope ĉ(n) computed with FIR filters of order N = 60
for a two-channel TIADC with timing skew d0 = 0.425.
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Figure 3.10: PSD of the estimated envelope ĉ(n) computed with FIR filters of order N = 300
for a two-channel TIADC with timing skew d0 = 0.425.

N 20 40 60 80 100 140 200 300

MSE (dB) -34.64 -46.03 -53.42 -54.04 -54.22 -54.34 -54.38 -54.4

Table 3.2: MSE vs N for a two-channel TIADC with timing skew d0 = 0.425.

To illustrate the slight degradation in performance which occurs if the timing skew d is

close to a forbidden value, consider the case where d = 0.4 + ε is close to forbidden value

dm=4 = 0.4. The PSD of the reconstructed complex envelope for ε = 0.01 is shown in

Fig. 3.11. The secondary tones are approximately at the same level as in Fig. 3.9, but the

piecewise constant filtering operation is applied to the noise floor. This is due to the fact

that since D(ejω) from (3.54) is close to zero inside the interval [−0.7π, 0.7π], the magnitudes

of filters Hi(e
jω), i = 0, 1 are not evaluated as accurately inside this band as outside. After

demodulation by e−0.3πn, the effect of mismatched filter magnitudes is exhibited in bands

[−π, 0.4π] and [0.4π, π]. The reconstruction MSE is −47.27dB, so that a bad timing skew

positioning results in a slight performance loss. However, a timing skew too close to a

forbidden value can severely degrade reconstruction. For example, the MSE is −27.54dB for

ε = 0.001 and −7.48dB for ε = 0.0001.

Up to this point the reconstruction filters Hi(e
jω), i = 0, 1 have been computed under

the assumption that the two sampling channels are perfectly matched and that the timing

69



-0.5 0 0.5

-140

-120

-100

-80

-60

-40

-20

0

20

Figure 3.11: PSD of the estimated envelope ĉ(n) computed with FIR filters of order N = 60
for a two-channel TIADC with timing skew d = 0.410 close to a forbidden value.

skew d is known exactly. To assess the effect of mismatches on the performance of the

two-channel TIADC, assume that the relative gain of the second channel compared to the

first channel is g = 1.01, and that the actual timing skew d satisfies d = d0 − 0.0025,

where d0 denotes the nominal timing skew used to design the reconstruction filters. When

reconstruction filters based on nominal values g0 = 1 and d0 = 0.425 are used to evaluate

ĉ(n), the estimated envelope has the PSD shown in Fig. 3.12. In this case the secondary tones

are much higher than in Fig. 3.9 (the secondary tone at 0.6π is now at -22dB) and the MSE

is only −17.80dB, so that the presence of 1% gain mismatch and 0.25% timing mismatch

results in a degradation of 43dB in SFDR and 35dB in MSE performance. Tables 3.3–3.5

display the MSE for various gain and timing mismatches. This data indicates reconstruction

is more sensitive to timing mismatches than to gain mismatches. This should not come as a

surprise, since the expression (3.105) for x1(n) includes a 2πℓd phase shift. Thus when the

image band index ℓ is sufficiently large, a relatively small timing mismatch d− d0 results in

a large phase shift.

Finally, it is worth determining the performance of the two-channel TIADC in different

image bands. Suppose F ′
s is still fixed at 1GHz, but the carrier frequency takes on values
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Figure 3.12: PSD of the estimated envelope ĉ(n) computed with FIR filters of order N = 60
for a two-channel TIADC with gain g− g0 = 0.01 and timing d− d0 = −0.0025 mismatches.

g − g0 1% 3% 5% 10% 15% 20% 25%

MSE (dB) -36.64 -25.95 -22.48 -16.44 -12.91 -10.40 -8.46

Table 3.3: MSE for a two-channel TIADC with filters of order N = 60 in the presence of
gain mismatches (g0 = 1).

d− d0 0.01% 0.05% 0.10% 0.15% 0.20% 0.25% 0.50%

MSE (dB) -45.79 -31.96 -25.89 -22.34 -19.84 -17.88 -11.86

Table 3.4: MSE for a two-channel TIADC with filters of order N = 60 in the presence of
timing mismatches (d0 = 0.425).

g − g0 1% 1% 2.5% 2.5% 5% 5%

d− d0 0.01% 0.10% 0.10% 0.25% 0.25% 0.50%

MSE (dB) -36.23 -25.50 -23.95 -17.43 -16.44 -11.31

Table 3.5: MSE for a two-channel TIADC with filters of order N = 60 in the presence of
gain and timing mismatches (g0 = 1, d0 = 0.425).

Fc = 1.15, 2.15, 3.15, 4.15, . . . , 20.15 GHz so that 1 ≤ ℓ ≤ 20. Fig. 3.13 shows the MSE for

all ℓ where a permissible timing skew is chosen as d = (ℓ + 1/4)/(2ℓ) and the filters are of

order N = 60. We infer comparable performance can be achieved in all image bands. In

the presence of timing mismatches, however, performance suffers as ℓ increases for reasons

stated in the preceding paragraph. Table 3.6 demonstrates this in the case of 0.10% timing
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mismatch.
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Figure 3.13: MSE in different image bands 1 ≤ ℓ ≤ 20 computed with filters of order N = 60
for a two-channel TIADC with timing skew d = (ℓ+ 1/4)/(2ℓ).

ℓ 1 2 3 5 7 10 15 20

MSE (dB) -31.23 -29.87 -27.60 -24.07 -21.52 -18.69 -15.34 -12.97

Table 3.6: MSE vs ℓ for a two-channel TIADC with filters of order N = 60 and timing skew
mismatch d = (ℓ+ 1/4)/(2ℓ)− 0.0010.

For M = 3, we consider xc(t) with the same envelope given in (3.102) and the same

carrier frequency Fc = 5.15GHz. The oversampling parameter in (3.3) is E(3) = 1, which

means the sub-ADC sampling frequency must again satisfy

Ω′
s ≥ B.

Picking F ′
s = 1GHz just as in the case of two channels, we have the same image band

index ℓ = 5, discrete modulation frequency ωb = 0.3π, and sampled complex envelope

specified in (3.103). Consider two forbidden timing skew vectors from the set (3.77) with

m1 = 4,m2 = 8, q1 = 5, and q2 = 10:

(d41, d
8
2) =

1

2ℓ
(4, 8) = (0.4, 0.8)
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(d51, d
10
2 ) =

1

2ℓ+ sgn(ωb)
(5, 10) = (0.454, 0.909).

Choosing the nominal timing skews approximately halfway between these, we obtain

(d01, d
0
2) = (0.425, 0.85).

The PSD of the estimated envelope ĉ(n) is shown in Fig. 3.14, and the frequency responses

of FIR filters Ȟi(e
jω), i = 0, 1, 2 of order N = 60 with Kaiser parameter β = 6 are plotted

in Fig. 3.15. Similar to the case of two channels, the reconstructed envelope has the four

desired tones along with four secondary tones that diminish in magnitude as the order of the

filters is increased. The dominant secondary tone at 0.6π yields a SFDR of about 58dB. The

MSE is −46.9dB. The transition band effect can be observed if we lower the filters order to

N = 40. This is demonstrated in Fig. 3.16, where the secondary tone at −0.95π is higher

than the secondary tones at −0.25π and 0.2π. Table 3.7 displays the MSE for different N .

Little performance is gained beyond N = 100 where the MSE starts to saturate around

−48dB.
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Figure 3.14: PSD of the estimated envelope ĉ(n) computed with FIR filters of order N = 60
for a three-channel TIADC with timing skews d01 = 0.425 and d02 = 0.85.
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Figure 3.15: Magnitude responses of FIR filters Ȟ0(e
jω),Ȟ1(e

jω), and Ȟ2(e
jω) of order N =

60 for the three-channel TIADC.

N 40 60 80 100 120 160 200 300

MSE (dB) -41.46 -46.9 -47.49 -47.92 -48.03 -48.06 -48.08 -48.08

Table 3.7: MSE vs N for the three-channel TIADC with timing skews d01 = 0.425 and
d02 = 0.85.

Consider the case where d1 = 0.4 + ε and d2 = 0.8 + ε, i.e., the timing skews are close to

the forbidden vector (d41, d
8
2) = (0.4, 0.8). The PSD of the reconstructed envelope for ε = 0.01

is shown in Fig. 3.17. Since D1(d1, d2, ℓ) in (3.81) is close to zero, reconstruction suffers in

the region [−π, 0.4π]. The MSE is −35.66dB, so a slight positioning in the vicinity of a

forbidden timing skew vector causes a drop of roughly 11dB in performance. For ε = 0.001,

the MSE jumps all the way up to −15.49dB. Other simulations not shown here indicate
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Figure 3.16: PSD of the estimated envelope ĉ(n) computed with FIR filters of order N = 40
for a three-channel TIADC with timing skews d01 = 0.425 and d02 = 0.85.

that not all forbidden timing skew vectors are equally sensitive. For example, if we were

to pick d1 = 0.454 + ε and d2 = 0.909 + ε, i.e., timing skews in the vicinity of forbidden

vector (d51, d
10
2 ) = (0.454, 0.909), the MSE would be −45.34dB for ε = 0.01 and −28.69dB

for ε = 0.001.
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Figure 3.17: PSD of the estimated envelope ĉ(n) computed with FIR filters of order N = 60
for a three-channel TIADC with timing skews d1 = 0.41 and d2 = 0.81 close to forbidden
values.
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To investigate the performance of the three-channel TIADC in the presence of gain and

timing mismatches, suppose the relative gains of the second and third channel compared

to the first channel are g1 = 1.01 and g2 = 1.02, respectively. Moreover, the actual timing

skews satisfy d1 = d01− 0.0025 and d2 = d02− 0.0050, where d01, d
0
2 denote the nominal timing

skews used to design the reconstruction filters. When ĉ(n) is evaluated with reconstruction

filters based on g01 = 1, g02 = 1, d01 = 0.425, and d02 = 0.85, the estimated envelope has

the PSD shown in Fig. 3.18. The presence of 1%, 2% gain mismatches and 0.25%, 0.50%

timing mismatches lowers the SFDR to 19dB and gives a MSE of only −13.23dB. Tables

3.8–3.10 contain the MSE for various gain and timing mismatches. Just as in the case of

two channels and for the same reasons, reconstruction is affected significantly more by the

timing mismatches than gain mismatches. This can be highly problematic especially for

signals with carrier frequencies in higher image bands.
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Figure 3.18: PSD of the estimated envelope ĉ(n) computed with FIR filters of order N = 60
for a three-channel TIADC with gain g1 − g01 = 0.01, g2 − g02 = 0.02 and timing d1 − d01 =
−0.0025, d2 − d02 = −0.0050 mismatches.

For M = 4, we again consider the envelope given in (3.102), but the signal xc(t) now has
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g1 − g01 0% 1% 1% 2.5% 5% 10% 20%

g2 − g02 1% 1% 2% 5% 10% 15% 25%

MSE (dB) -40.47 -39.00 -33.13 -24.54 -18.31 -14.52 -9.82

Table 3.8: MSE for the three-channel TIADC with filters of order N = 60 in the presence
of gain mismatches (g01 = 1, g02 = 1).

d1 − d01 0.10% 0.10% 0.25% 0% 0.25% 0.5% 0.5%

d2 − d02 0% 0.10% 0% 0.25% 0.25% 0.5% 1%

MSE (dB) -33.08 -26.71 -24.97 -19.48 -18.73 -12.70 -7.46

Table 3.9: MSE for the three-channel TIADC with filters of order N = 60 in the presence
of timing mismatches (d01 = 0.425, d02 = 0.85).

g1 − g01 1% 1% 0% 1% 5% 10% 1% 12%

g2 − g02 1% 0% 1% 1% 5% 10% 1% 12%

d1 − d01 0.10% 0.25% 0% 0.25% 0.25% 0.25% 0.50% 0.50%

d2 − d02 0.10% 0% 0.25% 0.25% 0.25% 0.25% 0.50% 0.50%

MSE (dB) -26.45 -24.86 -19.41 -18.65 -17.38 -14.89 -12.65 -10.67

Table 3.10: MSE for the three-channel TIADC with filters of order N = 60 in the presence
of gain and timing mismatches (g01 = 1, g02 = 1, d01 = 0.425, d02 = 0.85).

carrier frequency Fc = 2.625GHz. From (3.5), we must have

Ω′
s ≥

B

2
= 400× 106 × 2π.

Choosing F ′
s = 500 MHz satisfies this condition and gives ℓ = 5 along with discrete modu-

lation frequency

ωb =
125

500
× 2π =

π

2
.

The discrete-time envelope obtained by sampling cc(t) with sampling period T ′
s/2 = 1/(2F ′

s)

is

c[2](n) = cc(n
T ′
s

2
) =

3

2
ej0.8πn +

1

2
e−j0.8πn

+
j

2
[ej0.35πn + e−j0.35πn] (3.106)
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which is the same as (3.103) for the case of two and three channels. If we choose the nominal

timing skews as d01 = 0.375, d02 = 0.625, and d03 = 0.875, the filters from Appendix A can

be used in reconstruction. Fig. 3.19 plots the MSE between the TIADC outputs in Fig.

3.1 with additive noise and corresponding outputs in the sampling model in Fig. 3.3. The

filters Gi(e
jω) and Fi(e

jω) for i = 1, 2, 3 in Fig. 3.3 are approximated by FIR filters of order

N = 40, 50, 60, 80, 140, 250 and Kaiser parameter β = 6. For x0(n), the MSE is at the noise

power −60dB for all N . For xi(n), i = 1, 2, 3 the MSE converges to −60dB as N grows large.

High filter order is of no consequence here since the goal is validation of the sampling model

in Fig. 3.3 for M = 4 and not implementation.

Figure 3.19: Verification of the sampling model in Fig. 3.3 for the four-channel TIADC using
a multi-tone complex envelope.

The PSD of digital signals x0(n), x1(n), x2(n), x3(n) is the same and plotted in Fig. 3.20.

It contains tones at ±0.1π,±0.2π,±0.8π, and ±0.9π. The FIR reconstruction filters Ȟi(e
jω),

i = 0, 1, 2, 3 of order N = 80 and Kaiser parameter β = 6 have frequency responses shown

in Fig. 3.21. The PSD of the estimated envelope in Fig. 3.22 contains the four desired tones

at ±0.35π,±0.8π and three secondary tones around each of these desired tones. The SFDR

is 51dB and the MSE about −43dB. The secondary tones gradually disappear as the filter

order N increases. From table 3.11, we observe the MSE approaches a limit of −45.51dB.
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Figure 3.20: PSD of signals x0(n), x1(n), x2(n), and x3(n) for a four-channel TIADC in the
presence of additive white noise.

Figure 3.21: Magnitude responses of FIR filters Ȟ0(e
jω),Ȟ1(e

jω),Ȟ2(e
jω), and Ȟ3(e

jω) of
order N = 80 for the four-channel TIADC.

N 40 60 80 100 180 300
MSE (dB) -23.94 -36.09 -43.01 -44.79 -45.48 -45.51

Table 3.11: MSE vs N for the four-channel TIADC with timing skews d01 = 0.375, d02 = 0.625,
and d03 = 0.875.

Suppose the actual gains on the second, third, and fourth channel are g1 = 1.01, g2 =

1.025, and g3 = 1.05, respectively, and the actual timing skews are given by d1 = d01−0.0025,

d2 = d02 − 0.0050, and d3 = d03 − 0.0075 where d01, d
0
2, d

0
3 denote the nominal timing skews
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Figure 3.22: PSD of the estimated envelope ĉ[2](n) computed with FIR filters of order N = 80
for a four-channel TIADC with timing skews d01 = 0.375, d02 = 0.625, and d03 = 0.875.

used to design the reconstruction filters. The PSD of ĉ[2](n) in the presence of these gain and

timing mismatches is shown in Fig. 3.23. The secondary tones are significantly higher giving

a SFDR of only 16dB. The MSE has jumped up to −10.49dB. Tables 3.12–3.14 present the

MSE in the case of various gain and timing mismatches. Performance degradation can be

significant depending on the magnitude of timing skew mismatches.
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Figure 3.23: PSD of the estimated envelope ĉ[2](n) computed with FIR filters of order N = 80
for a four-channel TIADC with gain g1 − g01 = 0.01, g2 − g02 = 0.025, g3 − g03 = 0.05 and
timing d1 − d01 = −0.0025, d2 − d02 = −0.0050, d3 − d03 = −0.0075 mismatches.
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g1 − g01 1% 1% 1% 7.5% 10% 10% 15% 25%

g2 − g02 1% 2.5% 5% 7.5% 10% 15% 15% 25%

g3 − g03 1% 5% 10% 7.5% 10% 20% 20% 25%

MSE (dB) -35.99 -26.00 -19.86 -19.4 -16.91 -12.86 -12.11 -8.95

Table 3.12: MSE for the four-channel TIADC with filters of order N = 80 in the presence
of gain mismatches (g01 = 1, g02 = 1, g03 = 1).

d1 − d01 0% 0.10% 0.25% 0.25% 0.25% 0.5% 0.5% 1%

d2 − d02 0% 0.10% 0% 0% 0.50% 0.5% 0.5% 1%

d3 − d03 0.10% 0.10% 0% 0.25% 0.25% 0.5% 1% 1%

MSE (dB) -28.08 -25.97 -18.36 -15.40 -14.31 -11.99 -8.05 -6.00

Table 3.13: MSE for the four-channel TIADC with filters of order N = 80 in the presence
of timing mismatches (d01 = 0.375, d02 = 0.625, d03 = 0.875).

g1 − g01 1% 1% 0% 5% 5% 10% 10% 12%

g2 − g02 1% 3% 5% 5% 7.5% 10% 15% 12%

g3 − g03 1% 5% 5% 5% 10% 10% 20% 12%

d1 − d01 0.10% 0.10% 0% 0.25% 0.50% 0.50% 0.50% 0.75%

d2 − d02 0.10% 0.10% 0% 0.25% 0.25% 0.50% 0.75% 0.75%

d3 − d03 0.10% 0.10% 0.25% 0.25% 0.25% 0.50% 0.50% 0.75%

MSE (dB) -25.61 -22.96 -18.12 -16.65 -12.37 -10.47 -8.09 -7.25

Table 3.14: MSE for the four-channel TIADC with filters of order N = 80 in the presence
of gain and timing mismatches (g01 = 1, g02 = 1, g03 = 1, d01 = 0.375, d02 = 0.625, d03 = 0.875).

Reconstruction of the Complex Envelope of a MSK Signal

We now apply the proposed reconstruction method to a practical communication signal.

Suppose the bandpass signal xc(t) ∈ BPB(R) is a minimum-shift keying (MSK) signal with

carrier frequency Fc = 2.625GHz and continuous-time envelope

cc(t) =
∞∑

k=−∞

I2k p(t− 2kTb)− j
∞∑

k=−∞

I2k+1 p(t− (2k + 1)Tb), (3.107)

where

p(t) =

 sin( πt
2Tb

) 0 ≤ t ≤ 2Tb

0 otherwise
(3.108)
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and Il ∈ {−1, 1} ∀l ∈ Z with Pr(Il = +1) = Pr(Il = −1) = 1/2. The bandwidth B of

xc(t) is set to the bandwidth that contains 99% of total signal power which is given by

1.2× (2π/Tb) [83], [84, Sec. 3.4]. Choosing Tb = 1.5× 10−9 gives B/(2π) = 800 MHz.

To sample xc(t), we use the same four-channel TIADC (M = 4) with sub-ADC sampling

frequency F ′
s = 500MHz and nominal timing skews d01 = 0.375, d02 = 0.625, d03 = 0.875.

Therefore, ℓ = 5 and ωb = π/2 just as in the case of a multi-tone signal. The sampled

complex envelope is given by

c[2](n) =
∞∑

k=−∞

I2k m1(n, k)− j
∞∑

k=−∞

I2k+1 m2(n, k) , (3.109)

where

m1(n, k) =

 sin
(
π
3
(n− 3k)

)
3k ≤ n < 3(k + 1)

0 otherwise
(3.110)

and

m2(n, k) =

 sin
(
π
3
(n− 3(k + 1

2
))
)
⌈3(k + 1

2
)⌉ ≤ n ≤ ⌊3(k + 3

2
)⌋

0 otherwise .
(3.111)

The PSD of c[2](n) is continuous as shown in Fig. 3.24. When FIR filters Ȟi(e
jω), i = 0, 1, 2, 3

of order N = 80 and Kaiser parameter β = 6 are used in reconstruction, the MSE is −35dB.

The PSD of the estimated envelope ĉ[2](n) is shown in Fig. 3.25. As observed in Table 3.15,

the approximation is robust and improves with increasing N . However, longer filters are

needed to match the best performance achieved (about −45dB) with a multi-tone signal.

This is understandable given MSK has a higher signal complexity.

N 40 60 80 100 200 300 400
MSE (dB) -27.6 -32.2 -35 -36.6 -39.7 -41.5 -44.1

Table 3.15: MSE vs N for the envelope of a MSK signal sampled with a four-channel TIADC
with timing skews d01 = 0.375, d02 = 0.625, and d03 = 0.875.
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Figure 3.24: PSD of the theoretical envelope c[2](n) of a MSK signal sampled with a four-
channel TIADC with timing skews d01 = 0.375, d02 = 0.625, and d03 = 0.875.
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Figure 3.25: PSD of the estimated MSK envelope ĉ[2](n) computed with filters of orderN = 80
for a four-channel TIADC with timing skews d01 = 0.375, d02 = 0.625, and d03 = 0.875.

Table 3.16 investigates performance deterioration when the TIADC suffers from gain and

timing mismatches. Five percent gain mismatch and less than one percent timing mismatch

in all the channels causes about a 25dB drop in MSE.
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g1 − g01 1% 1% 1% 2% 1% 5%

g2 − g02 1% 3% 3% 4% 2.5% 5%

g3 − g03 1% 5% 5% 6% 5% 5%

d1 − d01 0.10% 0.10% 0.10% 0.25% 0.25% 0.75%

d2 − d02 0.10% 0.10% 0.15% 0.30% 0.50% 0.75%

d3 − d03 0.10% 0.10% 0.20% 0.35% 0.75% 0.75%

MSE (dB) -27.69 -26.11 -23.46 -18.31 -13.55 -10.75

Table 3.16: MSE for the MSK envelope computed with filters of order N = 80 in the presence
of a four-channel TIADC gain and timing mismatches (g01 = g02 = g03 = 1, d01 = 0.375,
d02 = 0.625, d03 = 0.875).

Concluding Remarks

We have demonstrated successful envelope reconstruction for multi-tone and MSK signals.

Performance as measured by the MSE between the theoretical and estimated envelope de-

pends on the complexity of both the input signal and reconstruction filters. As the number

of TIADC channels M increases, the number of transition regions in frequency domain of

the filters also increases. Estimation suffers in these regions, and therefore the use of more

channels results in relatively higher reconstruction error (worse MSE). Finally, sensitivity to

gain and timing mismatches presents a significant challenge for hardware implementation.

This highlights the importance of accurate TIADC calibration.
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Chapter 4

Quadrature Sampling and

Approximation

A special case of Kohlenberg’s second-order bandpass sampling called quadrature sampling

was first studied by Grace and Pitt [85]. The sub-ADC sampling rate is chosen as an

integer fraction of the carrier frequency, while the timing offset is equal to a quarter of the

carrier period plus possibly an integer multiple of the carrier period. The total minimum

sampling rate achieved is 2B((Ωc/B)/⌊Ωc/B⌋) which equals to the Nyquist rate 2B only

when the carrier frequency Ωc = kB, for some positive integer k. Using the theory of

orthogonal expansions, Brown [86] sharpened this result and obtained the minimum sampling

rate 2B((2Ωc/B)/⌊2Ωc/B⌋) which reduces to 2B when Ωc = mB/2, for any positive integer

m. Brown later improved his result in [87] arriving at 2B{((2Ωc/B) + 1)/⌊(2Ωc/B) + 1⌋},

but his new method allows the carrier frequency Ωc to vary.

Quadrature sampling is highly appealing since the data sequences generated by the sub-

ADCs are the sampled in-phase and quadrature signal components, i.e., the sampled complex

envelope of the bandpass signal. As shown in [87], these baseband signals have easy recon-

struction formulas in terms of the samples of the original signal. The drawback of quadrature

sampling is its strict parameter selection which can lead to implementation issues. Ensur-
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ing the carrier frequency is exactly an integer multiple of the sub-ADC sampling frequency

may not be feasible in practice. Moreover, the timing offset between the two ADCs can be

really small if the carrier frequency of the signal is very large. Other choices of the sampling

frequency, carrier frequency, and sub-ADC offset were explored by Sun and Signell [88, 89],

but they also involve constraints that can make design of flexible receivers challenging.

In this brief chapter, we provide sampling and reconstruction details for the quadra-

ture sampling case using derivations of the two-channel TIADC from Section 3.3 and then

investigate quadrature sampling as an approximation technique. Specifically, we show re-

construction filters in the case of quadrature sampling have simple forms and can be used

to estimate the complex envelope even when the carrier frequency is not exactly an integer

multiple of the sub-ADC sampling rate as required for quadrature sampling. This approx-

imation can be highly robust if filters of sufficiently large (but practical) order are used in

the reconstruction. Performance as measured by MSE deteriorates when the timing skew

deviates from its ideal value set by quadrature sampling due to TIADC timing mismatches.

The results of this chapter have been published by the author in [90].

4.1 Quadrature Sampling and Reconstruction

Unlike previously published results on two-channel TIADC sampling of bandpass signals,

our proposed sampling and reconstruction method places no restriction on Ωc, Ωs, B and

d beyond Ωc > Ω′
s/2 ≥ B/2 (Ωc cannot be in the baseband and Ωs is at a minimum at

the Nyquist rate 2B). Earlier results [85, 86, 88, 89] typically assume relations between Ωs

and Ωc and between d and Ωc. For example for quadrature sampling as originally proposed

by Grace and Pitt [85] and further investigated by others [86, 91], Ω′
s = Ωc/ℓ with ℓ ∈ N,

so that Ωc is exactly at the center of the ℓ-th image band resulting in ωb = 0. Brown’s

quadrature sampling [86] also permits the carrier frequency to be Ωc = (ℓ ± 1/2)Ω′
s which

in the digital domain maps to ωb = ±π, but we do not consider this case here. The timing
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offset between the two ADCs in quadrature sampling is chosen as D = Tc/4+pTc with p ∈ Z

and Tc = 2π/Ωc. The timing skew is then given by

d =
D

T ′
s

=
1

4ℓ
+
p

ℓ
, (4.1)

so 2πℓd = π/2 + 2πp. The sampled sequences in (3.6) and (3.7) reduce to

x0(n) = a(n) = ac(nT
′
s)

x1(n) = b(n− d) = bc((n− d)T ′
s) (4.2)

so that the two sub-ADCs sample independently the in-phase and quadrature components

of the bandpass signal. The phase-shifting filter in (3.22–3.23) reduces to G(ejω) = −j, and

the determinant of matrix M(ejω) becomes D(ejω) = j/2 which is constant and nonzero for

all ω ∈ [−π, π) indicating the timing skew (4.1) is not forbidden. This can also be verified

from (3.55) by observing

d =
1

4ℓ
+
p

ℓ
=

1/2 + 2p

2ℓ
=

2p1
2

2ℓ
̸= m

2ℓ

for 1 ≤ m ≤ 2ℓ− 1 and any integer p. Reconstruction filters simplify to

H0(e
jω) = 1

H1(e
jω) = jejωd, (4.3)

with respective impulse responses

h0(n) = δ(n)

h1(n) = j
sin[π(n+ d)]

π(n+ d)
. (4.4)
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From a practical standpoint, reconstruction is greatly simplified since only a non-integer

advance filter is required which can be implemented causally with insertion of a delay. In

spite of its elegance, quadrature sampling does present challenges. The timing skew d in

(4.1) becomes quite small for signals located in higher image bands imposing strict jitter

requirements for the sampling clocks and necessitating TIADC calibration. Moreover, the

carrier frequency of the received signal may not be exactly an integer multiple of the sub-

ADC sampling rate. This latter issue motivates assessing envelope reconstruction in the

presence of carrier frequency deviations away from its ideal value. Let Ω0
c = ℓΩ′

s be the

theoretical carrier frequency desired and

Ωc = Ω0
c + ε (4.5)

the actual signal carrier frequency at the receiver. The frequency offset technically satisfies

|ε| < Ω′
s/2, but in practice is much smaller. Evaluating (3.2) using (4.5) gives ωb = εT ′

s, so

different digital signals x0(n), x1(n) are generated based on expressions (3.6–3.7) as ε varies.

Although ωb is nonzero for all ε ̸= 0, the complex envelope can be reconstructed approxi-

mately using the quadrature case filters (4.3) which were computed under the assumption

that ωb = 0. The performance of this method is analyzed in the next section.

4.2 Simulations

Consider a bandpass signal xc(t) ∈ BPB(R) with theoretical carrier frequency F 0
c = Ω0

c/(2π) =

5 GHz, and continuous-time envelope given in (3.102) with bandwidth (B/2)/(2π) = 400

MHz. The choice of sub-ADC sampling frequency F ′
s = Ω′

s/(2π) = 1 GHz is above B/(2π) =

800 MHz to satisfy (3.5). Since

Fc = F 0
c +

ε

2π
= 5F ′

s +
ε

2π
,
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and |ε|/(2π) < F ′
s/2, we have ℓ = 5, i.e., Fc is located in the 5-th image band. The value

of ωb varies with different ε, but is close to zero for ε sufficiently small. The discrete-time

envelope obtained by sampling cc(t) with sampling period T ′
s = 1/F ′

s is the digital signal in

(3.103).

To sample xc(t), we select a TIADC with nominal timing skew d0 = 1/(4ℓ) = 0.05 which

is the simplest case of quadrature timing skew from (4.1). In the simulations two independent

white noise sequences modelling the effect of thermal and quantization noises are added to

the sub-ADC outputs x0(n), x1(n). The sub-ADC SNR is 61.8dB. In the reconstruction

block diagram in Fig. 3.5, quadrature filters (4.3) are used as an approximation to the actual

filters given in (3.57–3.61).

The PSD of the estimated envelope ĉ(n) is plotted in Fig. 4.1 when ε = 0, i.e. Fc = F 0
c

and ωb = 0. This is the ideal case where the quadrature filters are the true reconstruction

filters and not an approximation. The PSD is computed via the periodogram method which

is scaled so that a complex tone with unit amplitude corresponds to 0dB. The FIR filters have

order N = 16 and Kaiser parameter β = 6. The estimated envelope has correct positioning

and scaling of the four desired tones indicating successful reconstruction. Given the error

c̃(n) = c(n)− ĉ(n), the MSE is −50.56dB.
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Figure 4.1: PSD of the estimated envelope ĉ(n) for ε = ωb = 0 computed with FIR filters of
order N = 16 for a two-channel TIADC with quadrature timing skew d0 = 0.05.
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The MSE is plotted in Fig. 4.2 for |ε|/(2π) < F ′
s/2 = 500 MHz when different filter

orders are used to estimate the envelope. Higher filter orders N = 20, 30 offer significant

performance gain around ε = 0 in comparison to N = 10, but present little to no advantage

beyond |ε|/(2π) > 100 MHz. This can be better observed in Fig. 4.3 that plots the MSE on a

smaller domain focusing on more realistic values of ε. In the case of N = 30, frequency offsets

up to ±40 MHz can be tolerated without any performance loss. In this range ωb ≈ 0, so

the filters (3.57–3.61) strongly resemble quadrature filters (4.3) used in envelope estimation.

However, implementing filters of length N + 1 = 31 may not be desirable depending on the

application and power consumption constraints.

It is worth observing the MSE is not symmetric with respect to ε = 0. This asymmetry

is due to the fact that for ωb > 0 the approximation of the dominant tone of c(n) at +0.8π

is slightly worse than in the case of ωb < 0. Expressed differently, for ωb > 0 the PSD of the

error function contains the dominant tone +0.8π, while for ωb < 0 it’s made up entirely of

nondominant tones. The asymmetry can also be observed in the tail behavior of the MSE

in Fig. 4.2. For ε > 0 the MSE curves approach −9dB, while for ε < 0 they converge to

−16dB.
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Figure 4.2: MSE for the entire range of ε values computed with FIR filters of order N =
10, 20, 30 in the case of quadrature timing skew d0 = 0.05.

90



-100 -80 -60 -40 -20 0 20 40 60 80 100
-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

Figure 4.3: MSE for −200π < ε < 200π computed with FIR filters of order N = 10, 20, 30
in the case of quadrature timing skew d0 = 0.05.
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Figure 4.4: MSE for the entire range of ε values computed with FIR filters of order N =
10, 20, 30 in the case of quadrature timing skew d0 = 0.05 with 0.10% timing mismatch.

Given the nominal quadrature timing skew d0 = 0.05 is quite small, it can impose strin-

gent jitter specifications on the two sampling clocks of the TIADC. This motivates assessing

quadrature approximation performance when the TIADC suffers from timing skew mis-

matches. Fig. 4.4 shows the MSE curves in the case when d − d0 = 0.0010, i.e., there is
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a 0.10% mismatch between the nominal parameter d0 and the true parameter d. Compar-

ing this figure with Fig. 4.2, we note the MSE drops by 30dB in the vicinity of ε = 0 for

N = 20, 30, but only by 7dB for N = 10. Thus, unlike in the case N = 10 where estimation

is limited more by the low filter order than timing mismatch, higher filter orders N = 20, 30

lose their robust approximation when the timing skew is inaccurate. This indicates TIADC

calibration is especially necessary when higher order filters are used in envelope reconstruc-

tion. The tails of the MSE curves in Fig. 4.4 have a very similar convergence behavior to

the ones in Fig. 4.2.
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Chapter 5

Blind Calibration of Gain and Timing

Mismatches in M-channel Bandpass

Sampling Time-Interleaved ADCs

As demonstrated in Chapters 3 and 4 simulations, the proposed complex envelope recon-

struction technique is sensitive to TIADC gain and timing skew mismatches. This moti-

vates a calibration algorithm that can estimate mismatches and compensate for their ef-

fect. TIADC calibration techniques can be divided in two categories, depending on whether

the normal ADC operation is suspended during calibration phases. Foreground calibration

techniques interrupt the ADC operation by using a known test signal and identify mis-

matches by using equalizer type of methods [92–94] or more recently by employing genetic

algorithms [95, 96]. Background or blind methods identify mismatches while the ADC is

operating normally. They rely on some a priori signal knowledge, such as the absence of

signal energy in certain frequency bands (this can be achieved for example if the signal

is oversampled [33, 34, 97–102]), stationarity properties of the signal [32, 103–106], or source

spectrum sparsity [107,108]. Foreground methods have the disadvantage of lowering the ADC

throughput, but they are highly scalable and robust to modelling inaccuracies. Background

93



methods are more efficient and have the advantage of being able to track continuously ADC

parameter changes, but they require additional digital filtering operations. In this respect,

it is important to note that majority of existing TIADC calibration methods are restricted

to baseband signals and thus cannot be applied directly to our proposed bandpass TIADC

architecture.

In recent years, some techniques have been developed for calibrating bandpass sampling

TIADCs. For example, semi-blind methods discussed in [109–111] inject a known test signal

in a frequency band free of power prior to digitization, evaluate the distortions caused by

TIADC mismatches, and then remove the test signal from the TIADC output. They are,

however, limited to uniformly interleaved bandpass sampling ADCs. Some fully blind tech-

niques [112–116] also assume that the TIADC is ideally uniform and select the overall ADC

sampling frequency on the basis of first-order bandpass sampling condition (2.48) to avoid

aliasing. Calibration of a nonuniform bandpass TIADC does have presence in the literature

(although very little). The authors in [117,118] consider timing skew calibration for Kohlen-

berg’s [11] second-order nonuniform bandpass sampling. While [117] utilizes training signals

to perform timing skew estimation, [118] relies on detection of wide-sense stationarity in the

reconstructed signal for blind parameter estimation.

All of the mentioned bandpass calibration techniques sample and reconstruct the analog

bandpass signal and not its envelope. In this chapter, we propose a novel bandpass calibration

method tailored to the complex envelope sampling and reconstruction technique discussed

in Chapter 3. Our method is universal and works for any number of channels M . We

leverage the digital filtering operations used to compute the envelope in order to perform

TIADC calibration. As in [33, 99], it is assumed that the signal is slightly oversampled, by

say 20%. This creates a frequency band where the complex envelope does not have any

spectral content. Therefore the presence of energy in this band indicates that the TIADC

gain and timing skew estimates used in the reconstruction are incorrect. By implementing

a complex bandpass filter which extracts the signal power in this band, we construct an
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error signal whose power is minimized adaptively to estimate the gain and timing skew

mismatches. We rigorously study the error signal, analyze the convergence behavior of the

estimation algorithm, and demonstrate the efficacy of the proposed calibration method with

simulations using multi-tone, white noise, and MSK signals.

Instead of correcting the mismatches of each channel with respect to their nominal values,

the calibration method we consider corrects relative mismatches with respect to a reference

channel. This is advantageous since relative channel mismatches are smaller in magnitude

than absolute mismatches in each channel. Moreover, only M − 1 instead of M sub-ADCs

need to be calibrated. The common choice for the reference channel is the first sub-ADC. We

follow this convention in developing our proposed calibration technique. Finally, mismatches

are allowed to vary over time, but we assume the variations are small and not abrupt.

5.1 Blind TIADC Calibration Method

Consider M -channel TIADC sampling of xc(t) ∈ BPB(R) shown in Fig. 3.1. In practice,

semiconductor imperfections and other hardware limitations make it impossible to match

the sub-ADCs to their design specifications. For a desired sub-ADC timing skew d0i with

1 ≤ i ≤ M − 1, due to circuit imperfections, the actual timing skew is di and the sub-ADC

relative gain gi differs from its ideal value g0i = 1. Typically, the mismatches

γi = gi − g0i = gi − 1

δi = di − d0i (5.1)

are small, say about 1% or less, but they contribute to a significant loss of ADC resolution.

Mismatch values are of course unknown and must be estimated. Since the first sub-ADC is

used as a reference channel, its output is still given by

x0(n) = ℜ{c[L](Ln)ejωbn}, (5.2)
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which is the same expression as (3.6). The output of the i-th sub-ADC with gain and timing

skew mismatches can be expressed as

xi(n) = gi ×ℜ{c[L](L(n− di))ejωb(n−di)e−j2πℓdi}

= (1 + γi)×ℜ{c[L](L(n− (d0i + δi)))e
jωb(n−(d0i+δi))e−j2πℓd0i e−j2πℓδi} (5.3)

for 1 ≤ i ≤M − 1. The fractional delay filter in Fig. 3.3 changes from (3.10) to

Fi(e
jω; gi, di) = gie

−jωLdi (5.4)

for −π < ω ≤ π, where we have made explicit the dependency on gi and di. The filters

(3.22–3.23) and (3.37) are still given by the same expressions, but we can write them as

Gi(e
jω; di) and fi,k(e

jω; di), respectively, due to their dependency on di.

Let g,d ∈ RM−1 defined as

g = [g1, . . . , gi, . . . , gM−1]
T

d = [d1, . . . , di, . . . , dM−1]
T (5.5)

be the vector of TIADC channel gains and timing skews, respectively. Here, T denotes the

transpose operator. The reconstruction matrix (3.41) is a function of d and so from now on

we write it as M(ejω;d). While the first reconstruction filter H0(e
jω;d) in (3.47) depends

on d only, the others Hi(e
jω; gi,d) for 1 ≤ i ≤M − 1 have an additional dependency on the

gain gi of their channel. If we define

θ =

 g

d

 ∈ R2(M−1), (5.6)
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then the expression (3.49) can be stated in time domain as

r[L](n;θ) = h0(n;d) ∗ xe0(n) +
M−1∑
i=1

hi(n; gi,d) ∗ xei (n) , (5.7)

where xei (n), 0 ≤ i ≤ M − 1 are the expanded TIADC outputs given in (3.38). Thus,

reconstruction is a function of θ which is unknown and must be estimated. We let θ̂ = [ĝ, d̂]T

be an estimate of θ and

θ0 =

 g0

d0

 =



g01
...

g0M−1

d01
...

d0M−1


=



1M−1

d01
...

d0M−1


(5.8)

the nominal parameter vector, where 1M−1 is a column vector of size M − 1 consisting of all

ones. Since mismatches are small, it is assumed that θ, θ̂, and θ0 are all close to each other.

The goal of the calibration will be to accurately estimate θ using the known θ0 as a starting

point. The mismatch parameter vector is given by

θ − θ0 =

 γ

δ

 (5.9)

with gain mismatches vector

γ = [γ1, . . . , γi, . . . , γM−1]
T (5.10)

97



and timing skew mismatches vector

δ = [δ1, . . . , δi, . . . , δM−1]
T . (5.11)

Since θ is unknown, its estimate θ̂ can be used in reconstruction (5.7), i.e., we can use

impulse responses of filters H0(e
jω; d̂) and Hi(e

jω; ĝi, d̂), 1 ≤ i ≤ M − 1. However, to avoid

updating the filters each time the vector θ̂ is updated, we exploit the fact that the estimated

mismatch vector θ̂ − θ0 is small and thus we can perform first-order expansions of filters

around the nominal vector θ0.

H0(e
jω; d̂) = H0(e

jω;d0 + δ̂)

= H0(e
jω;d0) + δ̂T∇d̂H0(e

jω;d0)

= H0(e
jω;d0) +

M−1∑
l=1

δ̂l
∂H0

∂d̂l
(ejω;d0)

= H0,0(e
jω) +

M−1∑
l=1

δ̂lH0,l(e
jω), (5.12)

where we define

H0,0(e
jω) = H0(e

jω;d0),

H0,l(e
jω) =

∂H0

∂d̂l
(ejω;d0) .

For 1 ≤ i ≤M − 1,

Hi(e
jω; ĝi, d̂) = Hi(e

jω; g0i + γ̂i,d
0 + δ̂)

= Hi(e
jω; g0i ,d

0) + γ̂i
∂Hi

∂ĝi
(ejω; g0i ,d

0) +
M−1∑
l=1

δ̂l
∂Hi

∂d̂l
(ejω; g0i ,d

0)

= (1− γ̂i)Hi,0(e
jω) +

M−1∑
l=1

δ̂lHi,l(e
jω), (5.13)
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where

Hi,0(e
jω) = Hi(e

jω; g0i ,d
0),

Hi,l(e
jω) =

∂Hi

∂d̂l
(ejω; g0i ,d

0) ,

and we have made use of the observation

∂Hi

∂ĝi
(ejω; g0i ,d

0) = −Hi(e
jω; g0i ,d

0).

We can therefore express (5.7) as

r[L](n; θ̂) = r[L]0 (n; d̂) +
M−1∑
i=1

r[L]i (n; ĝi, d̂) (5.14)

with

r[L]0 (n; d̂) = xe0(n) ∗ h0,0(n) +
M−1∑
l=1

δ̂l
(
xe0(n) ∗ h0,l(n)

)
r[L]i (n; ĝi, d̂) = (1− γ̂i)

(
xei (n) ∗ hi,0(n)

)
+

M−1∑
l=1

δ̂l
(
xei (n) ∗ hi,l(n)

)
, (5.15)

where h0,0(n), h0,l(n), hi,0(n), and hi,l(n) for 1 ≤ i, l ≤M − 1 are impulse responses of filters

H0,0(e
jω), H0,l(e

jω), Hi,0(e
jω), and Hi,l(e

jω), respectively.

Since the estimated parameter vector θ̂ is used in reconstruction, the output signal

r[L](n; θ̂) differs from the exact signal r[L](n;θ) = c[L](n)ej(ωb/L)n that would be obtained

for the correct parameter vector θ. Therefore, we can use differences between r[L](n; θ̂) and

the correct signal r[L](n;θ) to calibrate the TIADC. In a blind calibration method, the signal

r[L](n;θ) is unknown, but we can exploit known properties of c[L](n) to infer some information

about r[L](n;θ) to estimate the parameter vector θ.

The blind calibration scheme we propose estimates θ adaptively by extracting from

r[L](n; θ̂) an error signal e[L](n; θ̂) whose power provides a measure of how far the estimated
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vector θ̂ is from the true vector θ. To accomplish this, we assume cc(t) is oversampled so

that c[L](n) = cc(nT
′
s/L) has zero power in frequencies around ±π. This is guaranteed to

happen when the sampling frequency LΩ′
s of cc(t) is above its Nyquist rate B. Therefore,

we assume that the complex envelope cc(t) is oversampled with oversampling ratio

α =
LΩ′

s −B
LΩ′

s

. (5.16)

It is easy to show that

α =
Ωs − Ωs,min

Ωs

, (5.17)

where

Ωs,min =


2B if M is even

M
M−1

2B if M is odd

(5.18)

from (3.4) is the minimum permissible sampling frequency of the overall TIADC. In this

case the DTFT C(ejω) of the sampled envelope sequence c[L](n) satisfies

C(ejω) = 0 (5.19)

over interval [(1 − α)π, (1 + α)π] and all its 2π-shifted copies. This implies that when the

estimated parameter vector θ̂ coincides with the correct vector θ, the signal r[L](n;θ) =

c[L](n)ej(ωb/L)n has no frequency content in the band I = [ωb

L
+ (1− α)π, ωb

L
+ (1 + α)π] and

its 2π-shifted copies. Consider therefore the discrete-time bandpass filter

HBP(e
jω) =

 1 ω ∈ I mod (2π)

0 otherwise .
(5.20)

It can be viewed as an ideal lowpass filter for the band [−απ, απ] modulated by (ωb/L) + π,
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so that its impulse response is given by

hBP (n) = (−ej
ωb
L )n

sin(απn)

πn
. (5.21)

Then, let

e[L](n; θ̂) = hBP (n) ∗ r[L](n; θ̂) (5.22)

denote the error signal obtained by extracting from r[L](n; θ̂) its frequency content in the

band I. Since e[L](n; θ̂) = 0 whenever θ̂ = θ, the estimation scheme we propose minimizes

adaptively the power

J(θ̂) =
1

2
E[|e[L](n; θ̂)|2] (5.23)

of complex signal e[L](n; θ̂). This approach is justified rigorously in Section 5.2 by showing

that if the complex envelope random process c[L](n) is WSS, in the vicinity of θ, J(θ̂) can

be approximated by a positive definite quadratic function of ϵi = γ̂i − γi and ηi = δ̂i − δi for

1 ≤ i ≤M − 1, provided c[L](n) satisfies certain spectral frequency content conditions. This

ensures that by minimizing J(θ̂) iteratively, starting with the nominal value

θ̂(0) = θ0, (5.24)

the iterates will converge to the correct true parameter vector θ.

If the gradient of function J(θ̂) is available, which is typically not the case since the eval-

uation of the ensemble average in (5.23) requires knowledge of the statistics of the envelope

process c[L](n), J(θ̂) can be minimized by using a steepest descent iteration of the form

θ̂(n+ 1) = θ̂(n)− µg(n)∇θ̂J(θ̂(n)) (5.25)

discussed in detail in Section 2.6, where µg(n) > 0 denotes the step size at iteration n. In

the absence of the gradient of J(θ̂), we apply a stochastic gradient approximation, where
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the expectation in (5.23) is replaced by its instantaneous value, which yields the adaptive

estimation algorithm

θ̂(n+ 1) = θ̂(n)− µ(n)∇θ̂

(1
2
|e[L](n; θ̂(n))|2

)
= θ̂(n)− µ(n)ℜ{(e[L](n; θ̂(n)))∗ ∇θ̂e

[L](n; θ̂(n))} (5.26)

with initial condition (5.24). As mentioned in Section 2.6, the value of step size µ(n) > 0

used for this recursion is much smaller than µg(n) for the steepest descent algorithm (5.25).

The recursion (5.26) requires the computation of the gradient of e[L](n; θ̂) with respect

to θ̂, i.e., we need to calculate ∂
∂ĝi
e[L](n; θ̂) and ∂

∂d̂i
e[L](n; θ̂) for all 1 ≤ i ≤M − 1. To do so,

it is convenient to first decompose the error signal e[L](n; θ̂) using its definition (5.22) and

expressions (5.14-5.15) as

e[L](n; θ̂) = e[L]0 (n; d̂) +
M−1∑
k=1

e[L]k (n; ĝk, d̂) (5.27)

with

e[L]0 (n; d̂) = xe0(n) ∗ h0,0(n) ∗ hBP (n) +
M−1∑
l=1

δ̂l
(
xe0(n) ∗ h0,l(n) ∗ hBP (n)

)
e[L]k (n; ĝk, d̂) = (1− γ̂k)

(
xek(n) ∗ hk,0(n) ∗ hBP (n)

)
+

M−1∑
l=1

δ̂l
(
xek(n) ∗ hk,l(n) ∗ hBP (n)

)
. (5.28)

We now obtain

∂

∂ĝi
e[L](n; θ̂) =

∂

∂ĝi
e[L]i (n; ĝi, d̂) = −

(
xei (n) ∗ hi,0(n) ∗ hBP (n)

)︸ ︷︷ ︸
e
[L]
i,0 (n)

= −e[L]i,0(n) , (5.29)
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where we have defined the signal e[L]i,0(n) as shown. Similarly,

∂

∂d̂i
e[L](n; θ̂) =

∂

∂d̂i
e[L]0 (n; d̂) +

M−1∑
k=1

∂

∂d̂i
e[L]k (n; ĝk, d̂)

=
(
xe0(n) ∗ h0,i(n) ∗ hBP (n)

)︸ ︷︷ ︸
e
[L]
0,i (n)

+
M−1∑
k=1

(
xek(n) ∗ hk,i(n) ∗ hBP (n)

)︸ ︷︷ ︸
e
[L]
k,i(n)

=
M−1∑
k=0

e[L]k,i(n) (5.30)

where we have again defined the signals e[L]k,i(n) for 0 ≤ k ≤M − 1 as shown.

The parameter vector estimate θ̂(n) is evaluated adaptively by substituting gradient

component expressions (5.29) and (5.30) inside recursion (5.26). As shown in Fig. 5.1,

the proposed reconstruction and calibration algorithm requires M2 fixed filters Hi,l(e
jω) for

0 ≤ i, l ≤ M − 1 based on first-order expansions of Hi(e
jω), M2 copies of the bandpass

filter HBP(e
jω) to extract error signals e[L](n; θ̂), e[L]0,l(n) for 1 ≤ l ≤ M − 1, and e[L]i,l(n) for

1 ≤ i ≤M −1 and 0 ≤ l ≤M −1, andM2−1 taps involving estimated mismatches γ̂ and δ̂

that need to be adapted. The output ĉ[L](n) is an estimate of the sampled complex envelope

c[L](n) since first order filter expansions in (5.12–5.13) ignore higher order terms. The ideal

impulse responses of filters Hi,l(e
jω) and HBP(e

jω) are noncausal and IIR, but causal FIR

implementations of these filters can be obtained by windowing and inclusion of appropriate

delays. It is also worth observing that the implementation of the copies of bandpass filter

HBP(e
jω) used to generate the error signals is required only during calibration phases. After

convergence, if the values of gi and di for 1 ≤ i ≤ M − 1 are not expected to change, the

estimation algorithm (5.26) and associated bandpass filters can be turned off to save power,

until a new calibration update is required. However, if power consumption is not a significant

consideration, it may be beneficial to keep running the recursion (5.26) in the background to

track drifts in the values of gi and di due to variations in TIADC operating conditions, such

as temperature changes. A close-up of the i-th reconstruction channel for 1 ≤ i ≤ M − 1 is
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Figure 5.1: Adaptive reconstruction filter implementation and error signal computation,
where 1 ≤ i ≤M − 1.
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shown in Fig. 5.2.

↑ L

⊗
(1− γ̂i)

⊗
δ̂1

⊗
δ̂l

⊗
δ̂M−1

e[L]i,0(n)
HBP(e

jω)

e[L]i,1(n)
HBP(e

jω)

e[L]i,l(n)
HBP(e

jω)

e[L]i,M−1
(n)

HBP(e
jω)

xi(n) xei (n)

Hi,0(e
jω)

Hi,1(e
jω)

⊕ r[L]i (n; ĝi, d̂)

Hi,l(e
jω)

Hi,M−1(e
jω)

Figure 5.2: Zoomed in i-th reconstruction and calibration channel from Fig. 5.1 for 1 ≤ i ≤
M − 1.
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5.2 Quadratic Approximation of J(θ̂)

In this section, we derive a quadratic approximation of J(θ̂) in the vicinity of the true

parameter θ. Moreover, we argue that J(θ̂) is convex and achieves its minimum at θ̂ = θ.

We start by recalling from Fig. 3.4 that the DTFT of signal r[L](n; θ̂) can be expressed as

R(ejω; θ̂) =
[
H0(e

jω; d̂), . . . , Hi(e
jω; ĝi, d̂), . . . , HM−1(e

jω; ĝM−1, d̂)
]


Xe
0(e

jω)

...

Xe
i (e

jω)

...

Xe
M−1(e

jω)


. (5.31)

Using (3.39) and (3.47), this expression can be simplified to

R(ejω; θ̂) =

[
1 0 . . . 0

]
Minv(ejω; d̂)

×diag
{
1, F−1

1 (ejω; ĝ1, d̂1), . . . , F
−1
i (ejω; ĝi, d̂i), . . . , F

−1
M−1(e

jω; ĝM−1, d̂M−1)
}

×diag
{
1, F1(e

jω; g1, d1), . . . , Fi(e
jω; gi, di), . . . , FM−1(e

jω; gM−1, dM−1)
}

×M(ejω;d)

 C(ejω)

C∗(e−jω)

 = L(ejω; θ̂)

 C(ejω)

C∗(e−jω)

 , (5.32)

where the L× 1 vector C(ejω) is given in (3.40) and the 1× 2L vector L(ejω; θ̂) is

L(ejω; θ̂) =

[
1 0 . . . 0

]
Minv(ejω; d̂)

×diag
{
1, g1

ĝ1
ejωL(d̂1−d1) . . . , gi

ĝi
ejωL(d̂i−di), . . . , gM−1

ĝM−1
ejωL(d̂M−1−dM−1)

}
M(ejω;d) . (5.33)

We perform a first-order Taylor series expansion of L(ejω; θ̂) in the vicinity of the true

parameter vector θ,

L(ejω; θ̂) = L(ejω;θ + h) ≈ L(ejω;θ) + hT∇θ̂L(e
jω;θ) , (5.34)
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where

h = θ̂ − θ =
[
γ̂1 − γ1, . . . , γ̂M−1 − γM−1, δ̂1 − δ1, . . . , δ̂M−1 − δM−1

]T
=

[
ϵ1, . . . , ϵM−1, η1, . . . , ηM−1

]T
(5.35)

is the vector of estimated mismatches. The first term on the right hand side of (5.34) is the

simple 1× 2L row vector

L(ejω;θ) =

[
1 0 . . . 0

]
from definition of L(ejω; θ̂) in (5.33). The expansion in (5.34) can then be written as

L(ejω; θ̂) ≈
[
1 0 . . . 0

]
+

M−1∑
i=1

ϵiLγi(e
jω) +

M−1∑
i=1

ηiLδi(e
jω) , (5.36)

with Lγi(e
jω) and Lδi(e

jω) defined as

Lγi(e
jω) =

∂

∂ĝi
L(ejω;θ)

Lδi(e
jω) =

∂

∂d̂i
L(ejω;θ) (5.37)

for 1 ≤ i ≤M − 1. We find

Lγi(e
jω) = −

[
1 0 . . . 0

]
Minv(ejω;d)

×



0 · · · 0 · · · 0

0 · · · 0 · · · 0

...
. . .

...
. . .

...

0 · · · 1/gi · · · 0

...
. . .

...
. . .

...

0 · · · 0 · · · 0

 (i+ 1, i+ 1) element

M(ejω;d) , (5.38)

and
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Lδi(e
jω) =

[
1 0 . . . 0

]
Minv(ejω;d)

×


jωL



0 · · · 0 · · · 0

0 · · · 0 · · · 0

...
. . .

...
. . .

...

0 · · · 1 · · · 0

...
. . .

...
. . .

...

0 · · · 0 · · · 0

 (i+ 1, i+ 1) element

M(ejω;d)− ∂

∂di
M(ejω;d)


. (5.39)

In the last expression

∂

∂di
M(ejω;d) =

1

2L

[
Z(ejω; di) Z∗(e−jω; di)

]
, (5.40)

where Z(ejω; di) is of size M × L, and all its rows are zero except the (i + 1)-th row which

is given by

[
T0(e

jω)Gi(e
jω; di), . . . , Tk(e

jω)fi,k(e
jω; di)Gi(e

j(ω− 2π
L
k); di), . . . ,

TL−1(e
jω)fi,L−1(e

jω; di)Gi(e
j(ω− 2π

L
(L−1)); di)

]
. (5.41)

Here,

Tk(e
jω) =

∂

∂di
ln
(
fi,k(e

jω; di)Gi(e
j(ω− 2π

L
k); di)

)
for 0 ≤ k ≤ L− 1. Evaluating this expression, we obtain

Tk(e
jω) =

 −j2π(ℓ− k + L) −π ≤ ω < −π + 2π
L
k + ωb

L

−j2π(ℓ− k) −π + 2π
L
k + ωb

L
≤ ω < π

(5.42)

for ωb > 0 and
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Tk(e
jω) =

 −j2π(ℓ− k) −π ≤ ω < π + 2π
L
k + ωb

L

−j2π(ℓ− k − L) π + 2π
L
k + ωb

L
≤ ω < π

(5.43)

for ωb < 0.

Using the approximation (5.36) and observing that the bandpass filter HBP(e
jω) has been

selected such that

HBP(e
jω)C(ej(ω−

ωb
L
)) = 0 , (5.44)

the DTFT of error signal e[L](n; θ̂) can be expressed as

E(ejω; θ̂) = HBP(e
jω)R(ejω; θ̂)

≈
M−1∑
i=1

HBP(e
jω)

(
ϵiLγi(e

jω) + ηiLδi(e
jω)

)
·

 C(ejω)

C∗(e−jω)


=

M−1∑
i=1

L−1∑
k=1

(
ϵiNγi,k(e

jω) + ηiNδi,k(e
jω)

)
C(ej(ω−

ωb
L
− 2π

L
k))

+
M−1∑
i=1

L−1∑
k=0

(
ϵiN̂γi,k(e

jω) + ηiN̂δi,k(e
jω)

)
C∗(e−j(ω+

ωb
L
+ 2π

L
k)) , (5.45)

with

Nγi,k(e
jω) = HBP(e

jω)Lγi(e
jω)



0

...

1

...

0

0L×1



(k + 1) row

︸ ︷︷ ︸
2L× 1

= −HBP(e
jω)

[
1 0 . . . 0

]
Minv(ejω;d)
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×



0

...

1
2Lgi

fi,k(e
jω; di)Gi(e

j(ω− 2π
L
k); di)

...

0


(i+ 1) row

= − 1

2Lgi
HBP(e

jω)Φi(e
jω;d)fi,k(e

jω; di)Gi(e
j(ω− 2π

L
k); di) (5.46)

where the last equality makes use of definition (3.48). Similar calculations lead to

N̂γi,k(e
jω) = HBP(e

jω)Lγi(e
jω)



0L×1

0

...

1

...

0


(L+ k + 1) row

︸ ︷︷ ︸
2L× 1

= − 1

2Lgi
HBP(e

jω)Φi(e
jω;d)f ∗

i,k(e
−jω; di)G

∗
i (e

−j(ω+ 2π
L
k); di) , (5.47)

Nδi,k(e
jω) = HBP(e

jω)Lδi(e
jω)



0

...

1

...

0

0L×1



(k + 1) row

︸ ︷︷ ︸
2L× 1

=
jωL− Tk(ejω)

2L
HBP(e

jω)Φi(e
jω;d)fi,k(e

jω; di)Gi(e
j(ω− 2π

L
k); di) , (5.48)
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and

N̂δi,k(e
jω) = HBP(e

jω)Lδi(e
jω)



0L×1

0

...

1

.

..

0


(L+ k + 1) row

︸ ︷︷ ︸
2L× 1

=
jωL− T ∗

k (e
−jω)

2L
HBP(e

jω)Φi(e
jω;d)f ∗

i,k(e
−jω; di)G

∗
i (e

−j(ω+ 2π
L
k); di). (5.49)

The approximation (5.45) can be alternatively expressed as

E(ejω; θ̂) ≈
L−1∑
k=1

Ak(e
jω)C(ej(ω−

ωb
L
− 2π

L
k))+

L−1∑
k=0

Âk(e
jω)C∗(e−j(ω+

ωb
L
+ 2π

L
k)) , (5.50)

where

Ak(e
jω) =

M−1∑
i=1

ϵiNγi,k(e
jω) + ηiNδi,k(e

jω)

Âk(e
jω) =

M−1∑
i=1

ϵiN̂γi,k(e
jω) + ηiN̂δi,k(e

jω) (5.51)

which indicates that error signal E(ejω; θ̂) consists of frequency translated variants of the

complex envelope of the kind

q[L]k (n) = c[L](n)ej(
ωb
L
+ 2π

L
k)n FT←→ Qk(e

jω) = C(ej(ω−
ωb
L
− 2π

L
k))

q̂[L]k (n) = (c[L](n))∗e−j(
ωb
L
+ 2π

L
k)n FT←→ Q̂k(e

jω) = C∗(e−j(ω+
ωb
L
+ 2π

L
k)). (5.52)

In time domain the error signal has the representation

e[L](n; θ̂) ≈
L−1∑
k=1

ak(n) ∗ q[L]k (n)+
L−1∑
k=0

âk(n) ∗ q̂[L]k (n) , (5.53)

111



where ak(n) and âk(n) are the impulse responses of LTI filters Ak(e
jω) and Âk(e

jω), respec-

tively.

To evaluate the power of e[L](n; θ̂), we assume that the complex envelope process c[L](n)

is zero-mean WSS, i.e., that the complex autocorrelation function

Rc(m) = E[c[L](n+m)(c[L](n))∗] (5.54)

depends on m only. The power spectral density (PSD) of c[L](n) is then defined as the DTFT

of Rc(m),

Sc(e
jω) =

∑
m∈Z

Rc(m)e−jωm . (5.55)

It is 2π-periodic, non-negative, and real (since Rc(m) = R∗
c(−m)) but not necessarily even.

Equation (5.53) indicates that to derive the expression for the autocorrelation and PSD

of e[L](n; θ̂), we must first analyze the individual and joint second-order statistics of signals

q[L]k (n) and q̂[L]k (n). To do so, we start with the observation that the sampled complex envelope

possesses the circularity property

E[c[L](n+m)c[L](n)] = 0 (5.56)

which is a consequence of the fact that if xc(t) is a zero-mean real WSS bandpass process,

its complex envelope cc(t) is zero-mean, circular and WSS, so that the sampled envelope

c[L](n) = cc(nT
′
s/L) has the same properties [119]. The circularity property can also be

obtained from Rice’s representation for bandpass WSS random signals [120, Sec 8.7]. From

this property of c[L](n) we deduce that for arbitrary integers k and l, q[L]k (n) and q̂[L]l (n) are

uncorrelated since

E[q[L]k (n+m)(q̂[L]l (n))∗] = E[c[L](n+m)c[L](n)]

×ej(
ωb
L
+ 2π

L
k)(n+m)ej(

ωb
L
+ 2π

L
l)n
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= 0 (5.57)

The cross-correlation of q[L]k (n) and q[L]l (n) is given by

Rqkql(m,n) = E[q[L]k (n+m)(q[L]l (n))∗]

= E[c[L](n+m)(c[L](n))∗]ej(
ωb
L
+ 2π

L
k)mej

2π
L
(k−l)n

= Rc(m)ej(
ωb
L
+ 2π

L
k)mej

2π
L
(k−l)n

= Rc(m)ej(
ωb
L
+ 2π

L
k)mej2παn (5.58)

so for k = l it is WSS, but for k ̸= l it is cyclostationary [121, Chap. 12] with cycle frequency

α = k−l
L
. Specifically, when viewed as a function of n, Rqkql(m,n) is periodic with period

L, i.e., Rqkql(m,n + aL) = Rqkql(m,n) for a ∈ Z, and thus admits a Discrete Fourier Series

(DFS) expansion of the form

Rqkql(m,n) =
∑
α

Rα
qkql

(m)ej2παn (5.59)

with DFS coefficient

Rα
qkql

(m) =
1

L

L−1∑
n=0

Rqkql(m,n)e
−j2παn . (5.60)

Comparing the last expression in (5.58) with the DFS (5.59), it is obvious that the expansion

includes only a single term at cycle frequency α = k−l
L

with the cyclic cross-correlation at

cycle frequency α (coefficient) specified by

Rα
qkql

(m) = Rc(m)ej(
ωb
L
+ 2π

L
k)m . (5.61)

The cross-cyclic spectrum of q[L]k (n) and q[L]l (n) is given by the Fourier transform of Rα
qkql

(m),

Sα
qkql

(ejω) = Sc(e
j(ω−ωb

L
− 2π

L
k)) , (5.62)
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where Sc(e
jω) was defined in (5.55). Similarly, the cross-correlation of q̂[L]k (n) and q̂[L]l (n) is

given by

Rq̂k q̂l(m,n) = E[q̂[L]k (n+m)(q̂[L]l (n))∗]

= E[(c[L](n+m))∗c[L](n)]e−j(
ωb
L
+ 2π

L
k)me−j 2π

L
(k−l)n

= R∗
c(m)e−j(

ωb
L
+ 2π

L
k)me−j 2π

L
(k−l)n

= R∗
c(m)e−j(

ωb
L
+ 2π

L
k)mej2πα̂n

= (Rqkql(m,n))
∗ . (5.63)

For k = l it is WSS and for k ̸= l it is cyclostationary with cycle frequency α̂ = −k−l
L

= −α.

The cyclic cross-correlation at cycle frequency α̂ is given by

Rα̂
q̂k q̂l

(m) = R∗
c(m)e−j(

ωb
L
+ 2π

L
k)m

= Rc(−m)e−j(
ωb
L
+ 2π

L
k)m

=
1

L

L−1∑
n=0

Rq̂k q̂l(m,n)e
−j2πα̂n , (5.64)

and the corresponding cross-cyclic spectrum is

Sα̂
q̂k q̂l

(ejω) = Sc(e
−j(ω+

ωb
L
+ 2π

L
k)) . (5.65)

It then follows from (5.53) that e[L](n; θ̂) is cyclostationary and for α = p
L
its cyclic autocor-

relation at cycle frequency α is given by

Rα
e (m; θ̂) ≈

∑
k−l=p

ak(m) ∗Rα
qkql

(m) ∗ a∗l (−m)

+∑
k−l=−p

âk(m) ∗Rα̂
q̂k q̂l

(m) ∗ â∗l (−m) (5.66)

114



and cyclic spectrum

Sα
e (e

jω; θ̂) ≈
∑
k−l=p

Ak(e
jω)A∗

l (e
jω)Sα

qkql
(ejω)

+∑
k−l=−p

Âk(e
jω)Â∗

l (e
jω)Sα̂

q̂k q̂l
(ejω) . (5.67)

The error autocorrelation function that is periodic with L

Re(n,m; θ̂) = E[e[L](n+m; θ̂)(e[L](n; θ̂))∗] = Re(n+ L,m; θ̂) (5.68)

has the DFS expansion

Re(n,m; θ̂) =
∑
α

Rα
e (m; θ̂)ej2παn (5.69)

with α = p
L
and

Rα
e (m; θ̂) =

1

L

L−1∑
n=0

Re(n,m; θ̂)e−j2παn . (5.70)

Evaluating (5.70) for α = 0 and m = 0, we obtain

R0
e(0; θ̂) =

1

L

L−1∑
n=0

Re(n, 0; θ̂)

=
1

L

L−1∑
n=0

E[|e[L](n; θ̂)|2]

= E

[
1

L

L−1∑
n=0

|e[L](n; θ̂)|2
]
, (5.71)

where the second equality follows from (5.68). Now, assuming the error process e[L](n; θ̂) is

cycloergodic, by SLLN we have

R0
e(0; θ̂) = lim

N→∞

1

LN

LN−1∑
n=0

|e[L](n; θ̂)|2 ≈ 1

T

T−1∑
n=0

|e[L](n; θ̂)|2 (5.72)
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for a large T such that LN ≤ T < L(N+1). From (5.72) we conclude R0
e(0; θ̂) is the average

power of the error process e[L](n; θ̂) which we denote as Pe. Equation (5.71) indicates that

the computation of Pe requires the second order statistics of e[L](n; θ̂) at L consecutive time

instants. We can equivalently write

Pe = E

[
1

L

L−1∑
k=0

|e[L](n+ k; θ̂)|2
]
, (5.73)

and the objective function J(θ̂) then is

J(θ̂) =
1

2
Pe =

1

2
E

[
1

L

L−1∑
k=0

|e[L](n+ k; θ̂)|2
]

(5.74)

instead of (5.23), however the proposed SGD iteration (5.26) can still be used to minimize

J(θ̂) as justified in Section 5.3. The average power can also be expressed in frequency domain

via the Fourier transform relationship

Pe = R0
e(0; θ̂) =

1

2π

∫ π

−π

S0
e (e

jω; θ̂)dω . (5.75)

We compute this integral to show that

J(θ̂) =
1

4π

∫ π

−π

S0
e (e

jω; θ̂)dω (5.76)

admits a quadratic approximation. Using (5.67), the integrand is given by

S0
e (e

jω; θ̂) ≈
L−1∑
k=1

|Ak(e
jω)|2Sc(e

j(ω−ωb
L
− 2π

L
k))

+
L−1∑
k=0

|Âk(e
jω)|2Sc(e

−j(ω+
ωb
L
+ 2π

L
k)) (5.77)

which requires the evaluation of |Ak(e
jω)|2 and |Âk(e

jω)|2.
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|Ak(e
jω)|2 = Ak(e

jω)A∗
k(e

jω)

=

(M−1∑
i=1

ϵiNγi,k(e
jω) + ηiNδi,k(e

jω)

)
×

(M−1∑
l=1

ϵlN
∗
γl,k

(ejω) + ηlN
∗
δl,k

(ejω)

)

=
|HBP(e

jω)|2

4L2

{M−1∑
i=1

[ ϵ2i
g2i

+ η2i |jωL− Tk(ejω)|2
]
|Φi(e

jω;d)|2 +
M−1∑
i,l=1
i ̸=l

[ ϵiϵl
gigl

+ηiηl|jωL− Tk(ejω)|2 +
ϵiηl
gi

(Tk(e
jω)− jωL)∗ + ηiϵl

gl
(Tk(e

jω)− jωL)
]
Bk

i,l(e
jω)

}
(5.78)

with

Bk
i,l(e

jω) = Φi(e
jω;d)Φ∗

l (e
jω;d)fi,k(e

jω; di)f
∗
l,k(e

jω; dl)

×Gi(e
j(ω− 2π

L
k); di)G

∗
l (e

j(ω− 2π
L
k); dl) . (5.79)

Similarly,

|Âk(e
jω)|2 = Âk(e

jω)Â∗
k(e

jω)

=

(M−1∑
i=1

ϵiN̂γi,k(e
jω) + ηiN̂δi,k(e

jω)

)
×

(M−1∑
l=1

ϵlN̂
∗
γl,k

(ejω) + ηlN̂
∗
δl,k

(ejω)

)

=
|HBP(e

jω)|2

4L2

{M−1∑
i=1

[ ϵ2i
g2i

+ η2i |jωL− T ∗
k (e

−jω)|2
]
|Φi(e

jω;d)|2 +
M−1∑
i,l=1
i ̸=l

[ ϵiϵl
gigl

+ηiηl|jωL− T ∗
k (e

−jω)|2 + ϵiηl
gi

(T ∗
k (e

−jω)− jωL)∗ + ηiϵl
gl

(T ∗
k (e

−jω)− jωL)
]
B̂k

i,l(e
jω)

}
(5.80)

with

B̂k
i,l(e

jω) = Φi(e
jω;d)Φ∗

l (e
jω;d)f ∗

i,k(e
−jω; di)fl,k(e

−jω; dl)

×G∗
i (e

−j(ω+ 2π
L
k); di)Gl(e

−j(ω+ 2π
L
k); dl) . (5.81)
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From (5.79) and (5.81), we observe the following quick facts for i ̸= l,

Bk
i,l(e

jω) =
(
Bk

l,i(e
jω)

)∗
B̂k

i,l(e
jω) =

(
B̂k

l,i(e
jω)

)∗
.

In these expressions “k” is a superscript and not power. With some computation we can

then evaluate (5.76) to obtain

J(θ̂) ≈
L−1∑
k=1

{M−1∑
i=1

ϵ2iJ
k
γi
+ η2i J

k
δi
+

M−1∑
i,l=1
i ̸=l

ϵiϵlJ
k
γi,l

+ ηiηlJ
k
δi,l

+ ϵiηlJ
k
γiδl

+ ηiϵlJ
k
δiγl

}
+

L−1∑
k=0

{M−1∑
i=1

ϵ2i Ĵ
k
γi
+ η2i Ĵ

k
δi
+

M−1∑
i,l=1
i ̸=l

ϵiϵlĴ
k
γi,l

+ ηiηlĴ
k
δi,l

+ ϵiηlĴ
k
γiδl

+ ηiϵlĴ
k
δiγl

}
,

(5.82)

where again “k” is a superscript, and if Im = I mod (2π) is defined so that Im is a subset

of [−π, π], then

Jk
γi

=
1

16πL2g2i

∫
Im

|Φi(e
jω;d)|2Sc(e

j(ω−ωb
L
− 2π

L
k))dω

Jk
δi

=
1

16πL2

∫
Im

|jωL− Tk(ejω)|2|Φi(e
jω;d)|2Sc(e

j(ω−ωb
L
− 2π

L
k))dω

Jk
γi,l

=
1

16πL2gigl

∫
Im

Bk
i,l(e

jω)Sc(e
j(ω−ωb

L
− 2π

L
k))dω

Jk
δi,l

=
1

16πL2

∫
Im

|jωL− Tk(ejω)|2Bk
i,l(e

jω)Sc(e
j(ω−ωb

L
− 2π

L
k))dω

Jk
γiδl

=
1

16πL2gi

∫
Im

(Tk(e
jω)− jωL)∗Bk

i,l(e
jω)Sc(e

j(ω−ωb
L
− 2π

L
k))dω

Jk
δiγl

=
1

16πL2gl

∫
Im

(Tk(e
jω)− jωL)Bk

i,l(e
jω)Sc(e

j(ω−ωb
L
− 2π

L
k))dω . (5.83)

Since the filter Φi(e
jω;d) for 1 ≤ i ≤M − 1 is nonzero, we have Jk

γi
> 0 and Jk

δi
> 0 as long

as the signal q[L]k (n) has some power in band Im. The quantities in (5.83) have the following
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symmetry relations

Jk
γi,l

= (Jk
γl,i

)∗, Jk
δi,l

= (Jk
δl,i

)∗, Jk
γiδl

= (Jk
δlγi

)∗ .

Similarly,

Ĵk
γi

=
1

16πL2g2i

∫
Im

|Φi(e
jω;d)|2Sc(e

−j(ω+
ωb
L
+ 2π

L
k))dω

Ĵk
δi

=
1

16πL2

∫
Im

|jωL− T ∗
k (e

−jω)|2|Φi(e
jω;d)|2Sc(e

−j(ω+
ωb
L
+ 2π

L
k))dω

Ĵk
γi,l

=
1

16πL2gigl

∫
Im

B̂k
i,l(e

jω)Sc(e
−j(ω+

ωb
L
+ 2π

L
k))dω

Ĵk
δi,l

=
1

16πL2

∫
Im

|jωL− T ∗
k (e

−jω)|2B̂k
i,l(e

jω)Sc(e
−j(ω+

ωb
L
+ 2π

L
k))dω

Ĵk
γiδl

=
1

16πL2gi

∫
Im

(T ∗
k (e

−jω)− jωL)∗B̂k
i,l(e

jω)Sc(e
−j(ω+

ωb
L
+ 2π

L
k))dω

Ĵk
δiγl

=
1

16πL2gl

∫
Im

(T ∗
k (e

−jω)− jωL)B̂k
i,l(e

jω)Sc(e
−j(ω+

ωb
L
+ 2π

L
k))dω (5.84)

with symmetry relations

Ĵk
γi,l

= (Ĵk
γl,i

)∗, Ĵk
δi,l

= (Ĵk
δl,i

)∗, Ĵk
γiδl

= (Ĵk
δlγi

)∗ ,

and Ĵk
γi
> 0, Ĵk

δi
> 0 if the signal q̂[L]k (n) has some power in band Im.

Recalling the definition of the 2(M − 1) column vector h from (5.35), we can write J(θ̂)

in (5.82) in compact matrix form as

J(θ̂) ≈ (θ̂ − θ)T
[ L−1∑

k=1

Jk +
L−1∑
k=0

Ĵk

]
(θ̂ − θ)

= hT

[ L−1∑
k=1

Jk +
L−1∑
k=0

Ĵk

]
h , (5.85)

where Jk and Ĵk are matrices of size 2(M − 1) × 2(M − 1) and can be expressed in block
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form as

Jk =

 Jk
11 Jk

12

Jk
21 Jk

22

 , Ĵk =

 Ĵk
11 Ĵk

12

Ĵk
21 Ĵk

22

 . (5.86)

The blocks are of size (M − 1)× (M − 1) and are given by

Jk
11 =



Jk
γ1

Jk
γ1,2

· · · Jk
γ1,M−1

Jk
γ2,1

Jk
γ2

· · · Jk
γ2,M−1

...
...

. . .
...

Jk
γM−1,1

Jk
γM−1,2

· · · Jk
γM−1


, Ĵk

11 =



Ĵk
γ1

Ĵk
γ1,2

· · · Ĵk
γ1,M−1

Ĵk
γ2,1

Ĵk
γ2

· · · Ĵk
γ2,M−1

...
...

. . .
...

Ĵk
γM−1,1

Ĵk
γM−1,2

· · · Ĵk
γM−1



Jk
22 =



Jk
δ1

Jk
δ1,2

· · · Jk
δ1,M−1

Jk
δ2,1

Jk
δ2

· · · Jk
δ2,M−1

...
...

. . .
...

Jk
δM−1,1

Jk
δM−1,2

· · · Jk
δM−1


, Ĵk

22 =



Ĵk
δ1

Ĵk
δ1,2

· · · Ĵk
δ1,M−1

Ĵk
δ2,1

Ĵk
δ2

· · · Ĵk
δ2,M−1

...
...

. . .
...

Ĵk
δM−1,1

Ĵk
δM−1,2

· · · Ĵk
δM−1



Jk
21 =



0 Jk
δ1γ2

· · · Jk
δ1γM−1

Jk
δ2γ1

0 · · · Jk
δ2γM−1

...
...

. . .
...

Jk
δM−1γ1

Jk
δM−1γ2

· · · 0


, Ĵk

21 =



0 Ĵk
δ1γ2

· · · Ĵk
δ1γM−1

Ĵk
δ2γ1

0 · · · Ĵk
δ2γM−1

...
...

. . .
...

Ĵk
δM−1γ1

Ĵk
δM−1γ2

· · · 0



Jk
12 =



0 Jk
γ1δ2

· · · Jk
γ1δM−1

Jk
γ2δ1

0 · · · Jk
γ2δM−1

...
...

. . .
...

Jk
γM−1δ1

Jk
γM−1δ2

· · · 0


, Ĵk

12 =



0 Ĵk
γ1δ2

· · · Ĵk
γ1δM−1

Ĵk
γ2δ1

0 · · · Ĵk
γ2δM−1

...
...

. . .
...

Ĵk
γM−1δ1

Ĵk
γM−1δ2

· · · 0


(5.87)
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The zeros on the diagonal of Jk
12, Ĵ

k
12, J

k
21, and Ĵk

21 come from the fact that Jk
γiδl

= Jk
δiγl

= 0 for

all i = l. From the symmetry relations, it follows that the matrices in (5.86) are Hermitian,

i.e.,

Jk = (Jk)H , Ĵk = (Ĵk)H

which implies that they have real eigenvalues with orthogonal eigenvectors. If we let

J =
L−1∑
k=1

Jk +
L−1∑
k=0

Ĵk, (5.88)

then the desired quadratic approximation for J(θ̂) can be simply expressed as

J(θ̂) ≈ (θ̂ − θ)TJ (θ̂ − θ) = hTJh . (5.89)

It is obvious that h = 0 (corresponding to θ̂ = θ ) is the stationary point of J(θ̂) since

∇θ̂J(θ̂) = ∇hJ(θ̂) ≈ 2Jh .

Thus, it simply remains to show that J(θ̂) achieves a minimum at h = 0. We can accomplish

this by showing the Hessian matrix

H(θ̂) = ∇2
θ̂
J(θ̂) ≈ 2J (5.90)

is positive definite. Computing the eigenvalues of J and proving they are all positive is

no easy task. Fortunately, we can recall from (5.74) that J(θ̂) is the scaled power of error

process e[L](n; θ̂) and is thus strictly positive unless the error signal is zero. If at least one

of the signals q[L]k (n), 1 ≤ k ≤ L − 1 and q̂[L]k (n), 0 ≤ k ≤ L − 1 has some power in band

Im, then J(θ̂) ̸= 0 according to (5.82). In this case J(θ̂) > 0, hTJh > 0 from (5.89), and

the matrix J is positive definite implying that J(θ̂) is a strictly convex function with a

with a minimum at h = 0. Therefore, J(θ̂) is minimized when ϵi = ηi = 0, i.e., when the
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estimated gain γ̂i and timing δ̂i mismatches correspond to the true mismatch values γi and

δi for 1 ≤ i ≤M − 1.

The signal q[L]k (n) = c[L](n)ej(
ωb
L
+ 2π

L
k)n for 1 ≤ k ≤ L − 1 has power in band Im if c[L](n)

has power in the band

IkT =
[
(1− α)π − 2π

L
k, (1 + α)π − 2π

L
k
]

mod (2π) . (5.91)

Similarly, q̂[L]k (n) = (c[L](n))∗e−j(
ωb
L
+ 2π

L
k)n for 0 ≤ k ≤ L − 1 has power in Im if c[L](n) has

power in the band

ÎkT =
[
(1− α)π − 2ωb

L
− 2π

L
k, (1 + α)π − 2ωb

L
− 2π

L
k
]

mod (2π) . (5.92)

We recall that due to oversampling the sampled complex envelope c[L](n) has a nonzero

spectral support only in the band Ic = [−(1− α)π, (1− α)π]. It is then easy to show that

Ic ∩ IkT ̸= Ø

for any 1 ≤ k ≤ L− 1, and therefore q[L]k (n) will always have power in band Im. With some

effort it can be shown that

Ic ∩ ÎkT = ÎkT

for all 0 ≤ k ≤ L− 1, i.e., ÎkT ⊂ Ic when ωb satisfies

max
(
− π, π(αL− sgn(ωb)k)

)
< |ωb| < min

(
π, π(L− αL− sgn(ωb)k)

)
. (5.93)

Outside this bound on ωb, Î
k
T only partially fits inside Ic which still guarantees Ic ∩ ÎkT ̸= Ø.

Extra precaution must be taken in the cases when ωb = 0,±π since

ωb = 0⇒ Ic ∩ Î0T = Ø
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ωb = −π ⇒ Ic ∩ Î1T = Ø

ωb = +π ⇒ Ic ∩ ÎL−1

T = Ø .

This is generally of no dire consequence since it simply implies that the single signal q̂[L]k (n)

for k = 0 if ωb = 0, k = 1 if ωb = −π, or k = L− 1 if ωb = +π does not have any power in

band Im and hence does not contribute to J(θ̂). The corresponding matrix Ĵk has all zero

elements and drops out of the sum in (5.88). A major issue arises in the case M = 2, 3 with

L = 1, k = 0 when ωb = 0,±π since the only signal q̂0(n) = c∗(n)e−jωbn comprising the error

has no power in band I. In this situation, the described calibration technique will not work

as described. To circumvent this issue, we can identify another frequency band other than

I where the signal r(n;θ) = c(n)ejωbn is free of energy, extract the error e(n; θ̂) in this new

band, and then perform minimization of J(θ̂).

5.3 Calibration Analysis

Proposed Iteration Justification

We wish to minimize the objective function

J(θ̂) =
1

2
E

[
1

L

L−1∑
k=0

|e[L](n+ k; θ̂)|2
]

(5.94)

over θ̂ ∈ R2(M−1). We proposed the following SGD iteration to perform this minimization

θ̂(n+ 1) = θ̂(n)− µ(n)∇θ̂

(1
2
|e[L](n; θ̂(n))|2

)
, (5.95)
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where for the purpose of analysis µ(n) = µ is assumed to be a very small constant step size.

The estimate after L iterations can be expressed as

θ̂(n+ L) = θ̂(n)− µ

2
∇θ̂

( L−1∑
k=0

|e[L](n+ k; θ̂(n+ k))|2
)

≈ θ̂(n)− µ

2
∇θ̂

( L−1∑
k=0

|e[L](n+ k; θ̂(n))|2
)
, (5.96)

where we have used the approximation θ̂(n + k) ≈ θ̂(n) for 0 ≤ k ≤ L − 1 since µ is very

small. Letting µ̂ = µL, the expression (5.96) can be rewritten as

θ̂(n+ L) ≈ θ̂(n)− µ̂

2
∇θ̂

(
1

L

L−1∑
k=0

|e[L](n+ k; θ̂(n))|2
)
, (5.97)

from which we deduce that L iterations of our proposed SGD (5.95) collectively behave as

a single SGD iteration for minimizing J(θ̂) in (5.94). Now consider the estimate after LP

iterations which using (5.97) can be expressed as

θ̂(n+ LP ) ≈ θ̂(n)− µ̂

2
∇θ̂

(
1

L

P−1∑
m=0

L−1∑
k=0

|e[L](n+ k +mL; θ̂(n+mL))|2
)
. (5.98)

Again, if µ̂ is fairly small, then θ̂(n + mL) ≈ θ̂(n) for m = 0, . . . , P − 1, and provided

the cyclostationary process e[L](n; θ̂) satisfies a strong mixing property of the type discussed

in [122], the cycloergodicity property

P−1∑
m=0

L−1∑
k=0

|e[L](n+ k +mL; θ̂(n))|2 ≈ P · E
[ L−1∑

k=0

|e[L](n+ k; θ̂(n))|2
]

︸ ︷︷ ︸
2LJ(θ̂(n))

(5.99)

holds for a sufficiently large P . The equation (5.98) can then be approximated with the

iteration

θ̂(n+ LP ) ≈ θ̂(n)− µ̃∇θ̂J(θ̂(n)) (5.100)
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of step size µ̃ = µ̂P = µLP , which has the familiar form of steepest descent. We conclude

that blocks of LP iterations of our proposed SGD approximately act as a single iteration of

steepest descent for minimizing J(θ̂). As expected, µ << µ̃.

Convergence Analysis

We examine L consecutive steps of our proposed estimation algorithm (5.95) which from

(5.97) can be expressed as

θ̂(n+ L) ≈ θ̂(n) + µ̂ T(n; θ̂(n)) (5.101)

with

T(n; θ̂) = −∇θ̂

(
1

2L

L−1∑
k=0

|e[L](n+ k; θ̂)|2
)
. (5.102)

The convergence and steady-state behavior of this algorithm can be analyzed by using the

stochastic averaging or ODE method discussed in Section 2.6 applicable to adaptive algo-

rithms with a small step size. Note that since the gain and timing mismatches we seek to

estimate are small, and since the fluctuations of the adaptive estimates about the correct

mismatch values need to be even smaller, the small µ̂ assumption is well adapted to our

application. The ODE method interprets the trajectories of adaptive algorithm (5.101) as

random fluctuations about trajectories of the differential equation

dθ̂

dt
= t(θ̂) (5.103)

with

t(θ̂) = E[T(n; θ̂)] , (5.104)

where in evaluating the expectation (5.104), the vector θ̂ is viewed as fixed and nonrandom.

For the case at hand, by exchanging the expectation and differentiation operations and
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applying definition (5.94), we obtain

t(θ̂) = −∇θ̂J(θ̂) (5.105)

so that as expected for stochastic gradient algorithms, the ODE (5.103) is a gradient flow,

i.e., its trajectories follow steepest descent lines of J(θ̂). Accordingly, since it was shown

in previous section that under certain spectral content conditions for c[L](n), J(θ̂) can be

approximated by a positive definite quadratic form in the vicinity of θ, we can deduce that

for all initial conditions θ̂(0) located close to θ, all trajectories of differential equation (5.103)

will converge to the true parameter vector θ.

In addition, it is shown in Theorem 2 of Chap 3 of [72] that when the negative Hessian

matrix

A(θ) = −∇2
θ̂
J(θ̂)

∣∣
θ̂=θ

(5.106)

is stable in the sense of continuous-time systems, i.e., its eigenvalues have a strictly negative

real part, then for large n and vanishingly small µ̂

θ̂(n) ∼ N(θ, µ̂P) , (5.107)

where the covariance matrix P > 0 satisfies a Lyapunov equation. In other words, θ̂(n)

admits asymptotically a Gaussian distribution about the true parameter vector θ and the

fluctuations have a standard deviation proportional to µ̂1/2. For the case at hand

A(θ) ≈ −2J = −2
[ L−1∑

k=1

Jk +
L−1∑
k=0

Ĵk

]
< 0 (5.108)

and is stable since J > 0 (when c[L](n) satisfies appropriate spectral conditions). Unfortu-

nately, the Lyapunov equation statisfied by P (not described here) does not appear to admit

a closed form solution.
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5.4 Simulations

We illustrate the proposed TIADC calibration method for the two-channel case with different

types of signals. The reconstruction and calibration filters (5.12–5.13) in Fig. 5.1 whenM = 2

are specified in Appendix B.

Sum of Complex Tones Complex Envelope

We consider first the bandpass signal from Section 3.4 with carrier frequency Fc = Ωc/(2π) =

5.15 GHz, multi-tone complex envelope given in (3.102), and bandwidth B/(2π) = 800 MHz.

The chosen sub-ADC sampling frequency F ′
s = Ω′

s/(2π) = 1 GHz is above B/(2π) as per

(3.5), and the oversampling ratio (5.16) is thus α = 0.2. We have ℓ = 5, ωb = 0.3π, and

the sampled envelope c(n) expressed in (3.103) that has four tones located at ±0.8π and

±0.35π. The frequency support of c(n) lies in the interval Ic = [−0.8π, 0.8π] and given

ÎT = [0.8π, 1.2π]− 0.6π = [0.2π, 0.6π]

from (5.92), the calibration method should work satisfactorily since the set Ic∩ ÎT = 0.35π is

not empty. The passband of the bandpass filterHBP(e
jω) defined in (5.20) is I = [0.8π, 1.2π]+

0.3π mod (2π) = [−0.9π,−0.5π].

Let d0 = 0.425 be the nominal timing skew of the two-channel TIADC which has gain

and timing mismatches in the amounts γ = g − 1 = 0.01 and δ = d − d0 = −0.0025. The

two sub-ADC sequences according to (5.2–5.3) are given by

x0(n) = ℜ{c(n)ejωbn}+ v0(n)

x1(n) = g ×ℜ{c(n− d)ejωb(n−d)e−j2πℓd}+ v1(n) , (5.109)

where the zero mean white noises v0(n) and v1(n) model the effect of thermal and quantiza-

tion noises. The sub-ADC SNR is 61.8dB.
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The FIR versions of reconstruction filters Hi,l(e
jω) with i, l = 0, 1 appearing in Fig. 5.1

are obtained by windowing their impulse responses calculated in Appendix B with a Kaiser

window of order N = 60 and parameter β = 6. The magnitudes of the frequency responses

of the resulting FIR filters are shown in Fig. 5.3. The small notches of these filters (except

for H0,1) at the frequency ±(π − |ωb|) = ±0.7π are due to phase discontinuities of the

reconstruction filters (except for H0,1) at this frequency. Note that the gradient filters H0,1

and H1,1 have large magnitudes. To ensure that the transition region of the bandpass filter

HBP(e
jω) does not extend outside [−0.9π,−0.5π], we select a value α = 0.15 (corresponding

to a narrower passband of [−0.85π,−0.55π]) in the impulse response hBP(n) and employ a

Kaiser window of length 81 and parameter β = 8. The magnitude of the resulting FIR filter

is shown in Fig. 5.4.
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Figure 5.3: Magnitudes of FIR approximation of reconstruction filtersHi,l(e
jω) with i, l = 0, 1

for a Kaiser window of length N + 1 = 61 and parameter β = 6.

To quantify the loss of performance associated with the use of first-order approxima-

tions (5.12) and (5.13) instead of the exact reconstruction filters H0(e
jω; d) and H1(e

jω; g, d),
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Figure 5.4: Magnitude of bandpass FIR filter HBP obtained by using a window of length 81
and parameter β = 8.

the Fig. 5.5 and Fig. 5.6 show the PSDs of the estimated sampled complex envelope ĉ(n)

obtained respectively with the filters H0(e
jω; d) and H1(e

jω; g, d) corresponding to the true

ADC parameters, and the first order approximations (5.12) and (5.13) used in Fig. 5.1 with

true mismatches γ, δ. The PSDs are computed with the complex periodogram method for

a data block of length 104, and filters of order N = 60 are used in both figures. The MSE

between the theoretical and estimated envelope when reconstruction filters with the true

TIADC parameters are used in computation is −53.03dB which as expected is very similar

to the MSE obtained in Table 3.2, whereas the first-order approximation used in Fig. 5.1

yields a MSE of −39.93dB only. A closer look at Fig. 5.5 and Fig. 5.6 reveals a SFDR of

about 68dB with exact reconstruction filters and only 45dB for a first-order approximation

of these filters in the vicinity of (g0, d0).

Next, for the four-tone complex envelope considered, the blind estimation algorithm

(5.26) is applied to a sequence of length Ls = 5 × 104 samples. The initial mismatches are

selected as γ̂ = 0 and δ̂ = 0, which corresponds to selecting the nominal TIADC parameters

(g0, d0) as the starting point. Instead of using the same step size for both the gain and timing

skew iterations, we select two different constant step sizes µγ = 10−3 for gain and µδ = 10−5
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Figure 5.5: PSD of the estimated envelope ĉ(n) computed with FIR approximations of order
N = 60 of reconstruction filters H0 and H1 for the true TIADC parameters g and d.
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Figure 5.6: PSD of the estimated envelope ĉ(n) computed with first order structure of Fig.
5.1 for nominal TIADC parameters g0 = 1, d0 = 0.425 and actual mismatches γ = 0.01,
δ = −0.0025 using filters of order N = 60.

for timing skew iterations to improve speed of convergence and estimation accuracy. This

choice can be interpreted as replacing the steepest descent algorithm by a quasi-Newton

algorithm. The resulting gain and time skew mismatches are shown in Fig. 5.7 and Fig.

5.8, respectively. Note that the final estimated gain mismatch value γ̂(Ls) = 0.77 × 10−2
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underestimates the gain mismatch γ by more than 20%, but the estimated timing skew

mismatch δ̂(Ls) = −0.27× 10−2 is very close to the exact mismatch value δ.
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Figure 5.7: Gain mismatch estimates for a four-tone complex input sequence of length Ls =
5× 104 samples, and constant adaptation step sizes µγ = 10−3 amd µδ = 10−5.
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Figure 5.8: Timing skew mismatch estimates for a four-tone complex input sequence of
length Ls = 5× 104 samples, and constant adaptation step sizes µγ = 10−3 amd µδ = 10−5.

To demonstrate the performance improvement of the proposed calibration algorithm,

Fig. 5.9 and Fig. 5.10 show the PSDs of the reconstructed envelope ĉ(n) obtained before

and after calibration. Before calibration, the sampled envelope is computed by using the
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initial estimates γ̂(0) = δ̂(0) = 0 corresponding to the nominal TIADC values, whereas

the calibrated sequence ĉ(n) uses the last 104 estimates γ̂(n) and δ̂(n) produced by the

blind estimation algorithm. Note that as indicated by Fig. 5.7 and Fig. 5.8, the blind

estimation algorithm converges quickly, so that the mismatch estimates obtained during the

final 104 simulation samples fluctuate around the final values. The MSE and SFDR before

calibration are −17.80dB and 22dB, and −35.97dB and 40dB after calibration, respectively.

Thus calibration yields about 18dB in MSE and SFDR improvement. Note that the MSE

performance of the calibration algorithm is within 4dB of the MSE for the simulation of Fig.

5.6 for the first-order reconstruction approximation with the correct TIADC parameters.
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Figure 5.9: PSD of the estimated envelope ĉ(n) before calibration.

Consider the same exact calibration setup but the SGD iterations now have time-decaying

step sizes µγ(n) = 5/n and µδ(n) = (2× 10−3)/n. Calibration is run again for Ls = 5× 104

samples, but the gain and timing skew mismatch estimates are shown in Fig. 5.11 and Fig.

5.12 only for the first 5×103 and 3×104 samples, respectively, after which they do not change

considerably. The gain mismatch estimate converges to its final value γ̂(Ls) = 0.82 × 10−2

very quickly in comparison to the constant step size case in Fig. 5.7. It is also slightly

more accurate. The timing skew mismatch takes longer to settle, but converges to the
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Figure 5.10: PSD of the estimated envelope ĉ(n) after calibration with constant adaptation
step sizes.

true mismatch parameter δ̂(Ls) = δ = −.25 × 10−2. It is then not suprising that the

MSE after calibration is −39.45dB which is within half dB of the MSE obtained for first-

order approximation with true mismatch values. The PSD after calibration is shown in

Fig. 5.13. The SFDR is 45dB. Since the overall reconstruction performance is limited by

first-order filter approximations, between calibration phases it may be preferable to use the

exact nonlinearized reconstruction filters at the current estimates ĝ and δ̂, i.e., H0(e
jω; d̂)

and H1(e
jω; ĝ, d̂) instead of their linearized versions around the nominal point (g0, d0).

Finally, to assess the effect of the image band index ℓ on the performance of the proposed

calibration algorithm, we perform simulations for values of the carrier frequency Fc equal

to 2.15, 3.15, 4.15, . . . , 10.15, 15.15, 20.15 GHz. The sub-ADC sampling frequency is held

constant at F ′
s = 1 GHz, so that the values of the carrier frequency correspond to signals in

image bands ℓ = 2, 3, 4, . . . , 10, 15, 20, and ωb = 0.3π in all cases. For these signals, we select

a nominal timing skew value equal to

d0 = 1/2− 3/(8ℓ)
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Figure 5.11: Gain mismatch estimates for a four-tone complex input sequence of length
Ls = 5 × 104 samples, and time-varying adaptation step sizes µγ(n) = 5/n and µδ(n) =
(2× 10−3)/n.
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Figure 5.12: Timing skew mismatch estimates for a four-tone complex input sequence of
length Ls = 5 × 104 samples, and time-varying adaptation step sizes µγ(n) = 5/n and
µδ(n) = (2× 10−3)/n.

which ensures d0 does not correspond to a forbidden value. The gain and timing mismatches

are still selected as γ = 10−2 and δ = −0.25 × 10−2, and calibration is performed with

constant step sizes µγ = 10−3, µδ = 10−5. Table 5.1 shows the reconstruction MSE before

calibration and MSE along with final estimated mismatches after calibration for all image

band indices ℓ. The table indicates that the performance of the calibration algorithm de-
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Figure 5.13: PSD of the estimated envelope ĉ(n) after calibration with time-varying adap-
tation step sizes.

grades progressively as ℓ increases. The main reason for this loss in performance is that the

first order approximations of reconstruction filters become progressively less accurate as ℓ

increases. Thus, for large ℓ it may be desirable to include second-order terms in expansions

(5.12–5.13). An alternative approach is to employ iterative calibration where reconstruction

filters are relinearized around an estimate obtained in the calibration, and a new calibration

is started with this estimate as an improved initial starting point. For example, the second

calibration shown in Table 5.1 is performed by linearizing reconstruction filters H0(e
jω; d̂)

and H1(e
jω; ĝ, d̂) around a new point (gp, dp) obtained in the first calibration, as shown in

Appendix C such that

|g − gp| < |g − g0|

|d− dp| < |d− d0| ,

i.e., (gp, dp) is an improvement over the first linearization point (g0, d0). As further elaborated

in Appendix C, the adaptive equations for ĝ and d̂ need to be rederived taking into account

the new initial vector (gp, dp). For the values of ℓ in Table 5.1, one or two calibrations are

sufficient to achieve comparable performance in all image bands. For higher ℓ, more than
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two calibrations may be needed to attain a satisfactory result. If either γ̂(n) or δ̂(n), but

not both, do not converge to any value in one calibration, their final value can be ignored,

and a new calibration can begin with improvement in only one of these estimates. This is

observed in Table 5.1 where the gain mismatch estimate γ̂(n) does not converge (denoted as

“NA” in the table) for ℓ = 9, 10, 15, 20 in the first calibration, but improvement in δ̂(n) can

be used to start a new calibration resulting in a final estimate γ̂(Ls) very close to the true

gain mismatch γ.

Carrier
Freq. (GHz)

2.15 3.15 4.15 5.15 6.15 7.15 8.15 9.15 10.15 15.15 20.15

ℓ 2 3 4 5 6 7 8 9 10 15 20
No

Calibration
MSE (dB) -25.49 -22.23 -19.75 -17.80 -16.17 -14.80 -13.61 -12.56 -11.63 -8.04 -5.48

First
Calibration

γ̂(Ls)(×10−3) 10.5 10.1 9.4 8.3 6.9 5.1 3 NA NA NA NA

δ̂(Ls)(×10−3) -2.5 -2.58 -2.63 -2.70 -2.73 -2.8 -2.85 -2.9 -2.97 -3.27 -3.8
MSE (dB) -45.54 -42.73 -39.36 -35.85 -32.57 -29.5 -26.87 -24.5 -22.42 -14 -7.63

Second
Calibration

γ̂(Ls)(×10−3) - - 10.5 10.6 10.1 9.9 10.4 10.5 10.5 10 10.3

δ̂(Ls)(×10−3) - - -2.5 -2.51 -2.53 -2.53 -2.5 -2.5 -2.5 -2.5 -2.5
MSE (dB) - - -44 -43.64 -42.1 -41.75 -42.3 -42.28 -42.45 -40.16 -40.2

Table 5.1: The MSE and final estimated mismatches after one and two calibrations (with
constant adaptation step sizes) as the image band index ℓ increases.

Bandlimited White Noise Compex Envelope

For a signal with a carrier frequency Fc = 5.15 GHz, we consider the case where the complex

envelope cc(t) is a bandlimited white noise signal with bandwidth B/(4π) = 400 MHz. The

sub-ADC sampling frequency remains F ′
s = 1 GHz, so that the oversampling ratio is again

α = 0.2. The PSD of the sampled complex envelope is shown in Fig. 5.14. The nominal

TIADC parameters g0 = 1, d0 = 0.425, and mismatches γ and δ are the same as before.

Since ωb = 0.3π and ℓ = 5, the reconstruction filters Hi,l(e
jω) with i, l = 0, 1 and bandpass

filter HBP(e
jω) are the same as for the multi-tone signal example, and we use FIR filters with

the same orders. Finally, Fig. 5.14 indicates that c(n) has power in the band ÎT = [0.2π, 0.6π]

which is necessary for calibration to work.

The blind estimation algorithm is applied to a data block of length Ls = 105 samples with

constant adaptation step sizes µγ = 5 × 10−4 and µδ = 5 × 10−6 and zero initial mismatch

values corresponding to nominal TIADC parameters. The resulting estimated mismatches
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Figure 5.14: PSD of the actual sampled bandlimited white noise complex envelope.

are shown as a function of time in Fig. 5.15 and Fig. 5.16. The final estimated gain and

timing skew mismatches estimates are γ̂(Ls) = 0.83 × 10−2 and δ̂(Ls) = −0.24 × 10−2. As

in the case of a sum of complex tones envelope, the gain mismatch is underestimated, but

slightly less so than in the complex tones case, and the timing skew mismatch is estimated

quite accurately. The MSE of the complex envelope error is −37.56dB.
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Figure 5.15: Gain mismatch estimates for a bandlimited white noise complex envelope, with
Ls = 105 samples, and constant adaptation step sizes µγ = 5× 10−4 and µδ = 5× 10−6.
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Figure 5.16: Timing skew mismatch estimates for a bandlimited white noise complex en-
velope, with Ls = 105 samples, and constant adaptation step sizes µγ = 5 × 10−4 and
µδ = 5× 10−6.

The PSD of the complex envelope after calibration is shown in Fig. 5.17. It is computed

by selecting the final block of length 104 samples of the blind calibration simulation, after

the estimation algorithm has converged.
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Figure 5.17: PSD of the sampled bandlimited white noise complex envelope after calibration
with constant adaptation step sizes.
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MSK Envelope

Consider a MSK signal with carrier frequency Fc = 5.15 GHz, complex envelope cc(t) spec-

ified in (3.107), and bandwidth B/(2π) = 800 MHz. As in the last two examples, setting

sub-ADC sampling frequency to F ′
s = 1 GHz results in oversampling ratio α = 0.2. The

sampled complex envelope has a continuous PSD as shown in Fig. 5.18. Due to oversam-

pling, energy levels are lower in the band [0.8π, 1.2π] mod (2π) than outside this band but

not entirely zero. The TIADC has the same nominal parameters g0 = 1 and d0 = 0.425 as in

the previous examples, but this time contains γ = 0.03 and δ = −0.30 × 10−2 mismatches.

We use the same reconstruction/calibration filters with same orders as before since ℓ = 5

and ωb = 0.3π, but the bandpass filter has a smaller passband set by selecting α = 0.1 < 0.2

to allow for the transition region and avoid picking up higher energy levels of C(ej(ω−ωb)).

A passband too small, however, should be avoided since in that case hBP(n) extracts too

little power from the error signal C∗(e−j(ω+ωb)) needed for calibration to work properly. The

continuous PSD of c(n) assures it contains power across all ÎT = [0.2π, 0.6π].
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Figure 5.18: PSD of the sampled MSK envelope.

The results of the blind calibration algorithm for estimated mismatches with Ls = 105

samples, constant adaptation step sizes µγ = 1.2 × 10−3 and µδ = 0.15 × 10−5, and zero

initial mismatches are shown in Fig. 5.19 and Fig. 5.20. The final estimated gain mismatch

139



γ̂(Ls) = 0.0361 slightly overestimates γ, while the final estimate timing mismatch δ̂(Ls) =

−0.30 × 10−2 is extremely accurate. The PSD of the complex envelope after calibration is

shown in Fig. 5.21 which is computed using the last 104 samples of the blind calibration

simulation after the algorithm has converged. The MSE of reconstruction after calibration

is −38.2dB which is very close to −39.95dB obtained in the simulation (not shown here) for

first-order approximation with true mismatch values.
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Figure 5.19: Gain mismatch estimates for MSK complex envelope, with Ls = 105 samples,
and constant adaptation step sizes µγ = 1.2× 10−3 and µδ = 0.15× 10−5.

As highlighted in Chapter 3, timing skew mismatches play a larger role in degrading

reconstruction performance than gain mismatches do. For this reason, we analyze calibration

performance for various timing mismatches. The results before and after calibration are

shown in Table 5.2. Ls = 105 samples and constant adaptation step size µδ = 0.15×10−5 are

used to perform estimation. Except for the case of 0.10% timing skew mismatch, calibration

is all other cases roughly doubles the MSE performance. In all cases, the estimate δ̂(n)

converges to the true parameter δ.
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Figure 5.20: Timing skew mismatch estimates for MSK complex envelope, with Ls = 105

samples, and constant adaptation step sizes µγ = 1.2× 10−3 and µδ = 0.15× 10−5.
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Figure 5.21: PSD of the sampled MSK complex envelope after calibration with constant
adaptation step sizes.

Timing Skew
Mismatch δ

MSE(dB)
before calibration

MSE(dB)
after calibration

0.10% -29.99 -47.63
0.25% -22.07 -43.11
0.50% -16.09 -31.91
0.75% -12.56 -24.89
1% -10.08 -19.41

Table 5.2: MSK complex envelope reconstruction performance (MSE) before and after cali-
bration (with constant adaptation step size) for various timing skew mismatches.
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Chapter 6

Conclusions and Future Work

In this dissertation we have described a flexible technique for computing the sampled complex

envelope of a bandpass signal from nonuniform samples of the signal taken on the order of

Nyquist rate by a M -channel TIADC. A discrete-time model establishing the relationship

between the sampled complex envelope and data sequences generated by the sub-ADCs was

presented. It was shown that reconstruction of the envelope generally requires M complex-

valued FIR filters and a discrete-time modulator. Some TIADC timing skews are forbidden

as they cause the reconstruction process to collapse. Higher number of channels allow for

lower sub-ADC sampling rates but at the cost of increasing reconstruction filter complexity.

A careful analysis was provided for the practical cases M = 2, 3, 4. Extensive simulations

with multi-tone and MSK signals demonstrated robust method performance. Degradation

in performance was observed near forbidden timing skews and in the presence of TIADC

gain and timing skew mismatches. It was also shown that reconstruction is more sensitive

to timing than gain mismatches highlighting the need for timing skew calibration.

A special case of M = 2 known as quadrature sampling assumes certain relations be-

tween the signal carrier frequency and sub-ADC sampling rate and moreover between the

carrier period and TIADC timing offset. It requires the implementation of only one recon-

struction filter which can be used to estimate the complex envelope even when the carrier
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frequency is not exactly an integer multiple of the sub-ADC sampling frequency as required

for quadrature sampling. Simulations demonstrated this approach to be an effective and

robust approximation dependent on the order of reconstruction filter. The approximation

suffered when due to sub-ADC mismatches the timing skew deviated from its ideal value set

by quadrature sampling.

To address performance loss due to TIADC gain and timing skew mismatches, we pro-

posed a blind calibration method that requires the bandpass signal to be slightly oversampled

so that there exists a frequency band in which the sampled complex envelope has no power.

By extracting the component of the reconstructed envelope corresponding to this frequency

band, an error signal was obtained with cyclostationary second-order statistics (assuming a

WSS envelope random process). We proved rigorously that the scaled power of the error

process admits a positive definite quadratic approximation and can be minimized adaptively

by using the stochastic gradient approach in order obtain estimates of the TIADC gain

and timing skew mismatches. The overall joint reconstruction and calibration architecture

requires a total of 2M2 fixed FIR filters and M2 − 1 adaptive taps. Reconstruction perfor-

mance substantially improves after calibration as was demonstrated with simulations using

multi-tone, MSK, and bandlimited white noise signals.

In conjunction with recent advances in the design of wide bandwidth sample-and-hold

circuits of the type reported in [5], the proposed sampling technique has the potential to

simplify greatly RF communications and radar receiver front-ends by removing all mixing

and filtering hardware typically used to extract the I and Q components of the received

signal prior to sampling. As was noted in [74], the use of a nonuniform TIADC has also the

advantage that sampling a bandpass signal of bandwidth B becomes possible at all rates

greater than or equal to 2B, independently of the frequency band [ΩL,ΩH ] where the signal

is located. Thus the proposed TIADC and reconstruction/calibration architecture could be

implemented as a software radio front end capable of digitizing signals in different bands.
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6.1 Suggestions for Further Research

There are several research directions we can take to broaden the presented reconstruc-

tion/calibration technique. We highlight three possibilities.

• Extend the sampling technique to multi-band signals of the type considered in [75,80]

where the spectrum consists of several disjoint components in an interval of length B.

The goal then would be to achieve sampling rates below the Nyquist rate 2B since

the presence of “holes” in the spectrum indicates the effective signal bandwidth is less

than B. This problem can be considered as sampling directly multiple RF signals with

nonoverlapping spectra. The work in [123] proposes a minimum sampling frequency

bound for such a case but only when a single ADC is used in sampling. It would

be of interest to see what lower bound on the sampling frequency can be derived in

the general M -channel case with no assumptions (unlike multicoset sampling) on the

TIADC timing skews.

• Extend the calibration method to include correction of bandwidth mismatches. As

stated in Chapter 1, bandwidth mismatches arise due to mismatches in channel S/H

circuits. Given our sampling method is direct and requires wide bandwidth S/H circuits

[5] operating at high frequencies, it is very likely that bandwidth mismatches contribute

significantly to overall TIADC performance loss. It remains to be seen if the filter-

bank bandwidth calibration approach developed in [20, Chap. 4], which similar to our

gain and timing mismatch correction also relies on power minimization in a certain

frequency band, can be extended to the bandpass case.

• Consider calibration in the case when the channel gains are complex-valued, i.e., when

gain mismatches introduce a phase in addition to amplitude mismatch in each chan-

nel. Linearization of reconstruction filters would then involve some form of complex

gradients. In this context, it would be of interest to determine if timing skew mis-

matches still dominate TIADC performance loss when the gain mismatches have two
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parameters (magnitude and phase) that need to be estimated.
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Appendix A

Reconstruction Filters for the

Four-Channel TIADC

Reconstruction filters and their impulse responses when ℓ = 5, ωb = π/2, d1 = 0.375,

d2 = 0.625, and d3 = 0.875.

Φ0(e
jω) =



2 −π ≤ ω < −3π
4

1.4142 + j0.5858 −3π
4
≤ ω < −π

4

0 −π
4
≤ ω < π

4

0.5858 + j1.4142 π
4
≤ ω < 3π

4

2 3π
4
≤ ω < π

(A.1)

ϕ0(n) =
2

πn

[
(1 + j) sin (

πn

4
)
(
cos (

πn

2
)− 0.4142 sin (

πn

2
)
)
− sin (

3πn

4
)
]

(A.2)

for n ̸= 0 and ϕ0(0) = 1 + j0.5,

h0(n) = ϕ0(n). (A.3)
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Φ1(e
jω) =



0.2929− j1.7071 −π ≤ ω < −3π
4

0.7071− j1.1213 −3π
4
≤ ω < −π

4

1.4142 −π
4
≤ ω < π

4

0.2929− j0.7071 π
4
≤ ω < 3π

4

1.7071 + j0.2929 3π
4
≤ ω < π

(A.4)

ϕ1(n) =
1

2πn

[
(−1 + ej

π
4
n)
(
(0.2929− j1.7071)ej

3π
4
n

−(1.7071 + j0.2929)(−1)n
)
− (−1 + ej

π
2
n)
(
(.7071 + j0.2929)ej

π
4
n

+(1.1213 + j0.7071)e−j 3π
4
n + j1.4142e−j π

4
n
)]

(A.5)

for n ̸= 0 and ϕ1(0) = 0.8535− j0.6339,

h1(n) = ϕ1(n+ 2d1). (A.6)

Φ2(e
jω) =



1 + j −π ≤ ω < −3π
4

0.4142 + j −3π
4
≤ ω < −π

4

1.4142 + j1.4142 −π
4
≤ ω < π

4

1 + j0.4142 π
4
≤ ω < 3π

4

1− j 3π
4
≤ ω < π

(A.7)

ϕ2(n) =
1

2πn

[
2
(
cos (

3π

4
n)− sin (

3π

4
n)− (−1)n

)
+ (−1 + ej

π
2
n)×(

(0.4142− j)ej
π
4
n + (1− j0.4142)e−j 3π

4
n + (1.4142− j1.4142)e−j π

4
n
)]

(A.8)

for n ̸= 0 and ϕ2(0) = 0.9571 + j0.7071,
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h2(n) = ϕ2(n+ 2d2). (A.9)

Φ3(e
jω) =



0.7071 + j0.7071 −π ≤ ω < −3π
4

0.2929 + j0.7071 −3π
4
≤ ω < −π

4

j1.4142 −π
4
≤ ω < π

4

−0.7071 + j1.7071 π
4
≤ ω < 3π

4

−0.7071 + j0.7071 3π
4
≤ ω < π

(A.10)

ϕ3(n) =
1

2πn

[
(−1 + ej

π
4
n)
(
(0.7071 + j0.7071)ej

3π
4
n

+(0.7071− j0.7071)(−1)n
)
+ (−1 + ej

π
2
n)
(
(1.7071 + j0.7071)ej

π
4
n

+(0.7071− j0.2929)e−j 3π
4
n + 1.4142e−j π

4
n
)]

(A.11)

for n ̸= 0 and ϕ3(0) = −0.1036 + j1.1339,

h3(n) = ϕ3(n+ 2d3). (A.12)
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Appendix B

Impulse Responses of the Gradient

Filters for the Two-Channel TIADC

For the two-channel TIADC, first-order filter expansions (5.12 – 5.13) involve filters

H0,0(e
jω) = H0(e

jω; d0)

H0,1(e
jω) =

∂

∂d
H0(e

jω; d0)

H1,0(e
jω) = H1(e

jω; g0, d0)

H1,1(e
jω) =

∂

∂d
H1(e

jω; g0, d0) .

The impulse responses of H0,0(e
jω) and H1,0(e

jω) are given in (3.62–3.66) with the simple

substitution d0 for d. Taking the partial derivatives with respect to d of correction fil-

ters (3.62–3.66) and then evaluating at d0 provides the impulse responses of H0,1(e
jω) and

H1,1(e
jω). This gives

ℜ{h0,1(n)} = ℜ{h1,1(n)} = 0 ,

ℑ{h0,1(n)} = π(2ℓ+ sgn(ωb)) csc
2(π(2ℓ+ sgn(ωb))d

0)δ(n)

+π[2ℓ csc2(2πℓd0)− (2ℓ+ sgn(ωb)) csc
2(π(2ℓ+ sgn(ωb))d

0)]× sin((π − |ωb|)n)
πn

, (B.1)
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and

ℑ{h1,1(n)} =
1

π(n+ d0)
×

[
(π − |ωb|)

cos((π − |ωb|)(n+ d0))

sin(2πℓd0)

− 2πℓ
sin((π − |ωb|)(n+ d0)) cos(2πℓd0)

sin2(2πℓd0)
+ |ωb|

cos((π − |ωb|)(n+ d0)− πd0)
sin(π(2ℓ+ sgn(ωb))d0)

+ π(2ℓ+ sgn(ωb)) sin((π − |ωb|)(n+ d0)− πd0)× cos(π(2ℓ+ sgn(ωb))d
0)

sin2(π(2ℓ+ sgn(ωb))d0)

]
− 1

(n+ d0)2

[sin((π − |ωb|)(n+ d0))

π sin(2πℓd0)
− sin((π − |ωb|)(n+ d0)− πd0)

π sin(π(2ℓ+ sgn(ωb))d0)

]
.

(B.2)
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Appendix C

Linearization of Reconstruction

Filters around a General Point (gp, dp)

Close to the True Parameter (g, d) for

the Two-Channel TIADC

The mismatches are given by

γ = g − gp

δ = d− dp ,

and estimated mismatches can be expressed as

γ̂ = ĝ − gp

δ̂ = d̂− dp ,

where (ĝ, d̂) are estimates of true parameters (g, d). Linearzing the filters H0(e
jω; d̂) and

H1(e
jω; ĝ, d̂) around the point (gp, dp) that is close to (g, d), we obtain first-order expansions
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H0(e
jω; d̂) = H0(e

jω; dp + δ̂)

= H0(e
jω; dp)︸ ︷︷ ︸

Hp
0,0(e

jω)

+δ̂
∂H0

∂d̂
(ejω; dp)︸ ︷︷ ︸

Hp
0,1(e

jω)

, (C.1)

and

H1(e
jω; ĝ, d̂) = H1(e

jω; gp + γ̂, dp + δ̂)

= H1(e
jω; gp, dp) + γ̂

∂H1

∂ĝ
(ejω; gp, dp) + δ̂

∂H1

∂d̂
(ejω; gp, dp)

= (1− γ̂

gp
)H1(e

jω; gp, dp)︸ ︷︷ ︸
Hp

1,0(e
jω)

+δ̂
∂H1

∂d̂
(ejω; gp, dp)︸ ︷︷ ︸
Hp

1,1(e
jω)

, (C.2)

where the last equality follows from the fact that

∂H1

∂ĝ
(ejω; ĝ, d̂) = −1

ĝ
H1(e

jω; ĝ, d̂) .

The impulse responses of the filters are given by

ℜ{hp0,0(n)} = δ(n)

ℑ{hp0,0(n)} = − cot(π(2ℓ+ sgn(ωb))d
p)δ(n)

+(cot(π(2ℓ+ sgn(ωb))d
p)− cot(2πℓdp))× sin((π − |ωb|)n)

πn
. (C.3)

ℜ{hp1,0(n)} = 0

ℑ{hp1,0(n)} =
sin((π − |ωb|)(n+ dp))

gpπ sin(2πℓdp)(n+ dp)
− sin((π − |ωb|)(n+ dp)− πdp)
gpπ sin(π(2ℓ+ sgn(ωb))dp)(n+ dp)

. (C.4)

152



ℜ{hp0,1(n)} = 0

ℑ{hp0,1(n)} = π(2ℓ+ sgn(ωb)) csc
2(π(2ℓ+ sgn(ωb))d

p)δ(n)

+π[2ℓ csc2(2πℓdp)− (2ℓ+ sgn(ωb)) csc
2(π(2ℓ+ sgn(ωb))d

p)]

×sin((π − |ωb|)n)
πn

. (C.5)

ℜ{hp1,1(n)} = 0

ℑ{hp1,1(n)} =
1

gpπ(n+ dp)
×

[
(π − |ωb|)

cos((π − |ωb|)(n+ dp))

sin(2πℓdp)

− 2πℓ
sin((π − |ωb|)(n+ dp)) cos(2πℓdp)

sin2(2πℓdp)
+ |ωb|

cos((π − |ωb|)(n+ dp)− πdp)
sin(π(2ℓ+ sgn(ωb))dp)

+ π(2ℓ+ sgn(ωb)) sin((π − |ωb|)(n+ dp)− πdp)× cos(π(2ℓ+ sgn(ωb))d
p)

sin2(π(2ℓ+ sgn(ωb))dp)

]
− 1

gp(n+ dp)2

[sin((π − |ωb|)(n+ dp))

π sin(2πℓdp)
− sin((π − |ωb|)(n+ dp)− πdp)

π sin(π(2ℓ+ sgn(ωb))dp)

]
.

(C.6)

With these filters, the error signal defined in (5.22) can be expressed as

e(n; ĝ, d̂) = e0(n; d̂) + e1(n; ĝ, d̂) , (C.7)

where

e0(n; d̂) = ep0,0(n) + δ̂ep0,1(n) (C.8)

with

ep0,0(n) = x0(n) ∗ hp0,0(n) ∗ hBP(n)

ep0,1(n) = x0(n) ∗ hp0,1(n) ∗ hBP(n) ,
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and

e1(n; ĝ, d̂) =
(
1− γ̂

gp
)
ep1,0(n) + δ̂ep1,1(n) (C.9)

with

ep1,0(n) = x1(n) ∗ hp1,0(n) ∗ hBP(n)

ep1,1(n) = x1(n) ∗ hp1,1(n) ∗ hBP(n) .

The partial derivatives needed in the iteration (5.26) are calculated to be

∂

∂ĝ
e(n; ĝ, d̂) = − 1

gp
ep1,0(n)

∂

∂d̂
e(n; ĝ, d̂) = ep0,1(n) + ep1,1(n) . (C.10)
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