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Abstract: We discuss non-Abelian discrete R symmetries which might have some con-

ceivable relevance for model building. The focus is on settings with N = 1 supersymmetry,

where the superspace coordinate transforms in a one-dimensional representation of the non-

Abelian discrete symmetry group. We derive anomaly constraints for such symmetries and

find that novel patterns of Green-Schwarz anomaly cancellation emerge. In addition we

show that perfect groups, also in the non–R case, are always anomaly-free. An important

property of models with non-Abelian discrete R symmetries is that superpartners come in

different representations of the group. We present an example model, based on a Z3 oZ
R
8

symmetry, to discuss generic features of models which unify discrete R symmetries, entail-

ing solutions to the µ and proton decay problems of the MSSM, with non-Abelian discrete

flavor symmetries.
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1 Introduction and outline

Despite the lack of experimental evidence for superpartners at the LHC, supersymmetry

is still one of the leading candidates for physics beyond the standard model. The so-called

R symmetries, under which the superspace coordinate θ transforms non-trivially, play an

important role both in the more formal aspects of supersymmetry as well as in model

building. In the context of N = 1 supersymmetry, the focus of the literature so far has

been on Abelian symmetries, i.e. either a continuous U(1)R or a discrete ZRN subgroup

thereof.

It is, however, also possible to embed the R symmetry in a non-Abelian discrete sym-

metry group D. Since there is only one superspace coordinate in the N = 1 case, θ has

to furnish a one-dimensional representation of D. This means that the action of D on θ

is Abelian, i.e. a ZRN symmetry. On the other hand, this ZRN symmetry can be part of a

larger, in general non-Abelian symmetry group D.

The purpose of this study is to explore theoretical and phenomenological properties

of such symmetries. This includes anomaly constraints and possible applications in flavor

model building.

The outline of this paper is as follows. In section 2 we discuss anomaly constraints

and anomaly cancellation by the Green-Schwarz (GS) mechanism. The proof that perfect

groups are anomaly-free can be found in section 2.4. Next, in section 3 we survey possible

symmetries and discuss specifically an extension of the minimal supersymmetric standard

model (MSSM) based on a Z3 oZR8 symmetry. Finally, section 4 contains our conclusions.
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2 Anomaly constraints

Anomaly constraints for discrete symmetries have been analyzed using various methods [1–

4]. We will base our discussion on the path integral approach [5, 6], which can also be

applied to discrete symmetries [7, 8]. A given symmetry operation is said to be anomalous

if it implies a non-trivial transformation of the path integral measure. We start by reviewing

the anomaly coefficients for Abelian discrete (R and non–R) symmetries.

2.1 Anomaly coefficients for discrete Abelian R and non-R symmetries

The anomaly conditions for discrete R symmetries depend on the charge of the superspace

coordinate, qθ; in the case of a non–R symmetry qθ = 0. Consider an operation u of order

M , which generates a ZM or a ZRM symmetry and might or might not be embedded in a

non-Abelian symmetry group.

The superpotential transforms as

W → e2π i qW /M W (2.1)

with qW = 2qθ (such that
∫

d2θW is invariant). Superfields Φ(f) = φ(f) +
√

2 θψ(f) +θθ F (f)

transform as

Φ(f) → e2π i q(f)/M Φ(f) . (2.2)

As a consequence, the (chiral) fermions acquire a phase

ψ(f) → e2π i (q(f)−qθ)/M ψ(f) , (2.3)

which induces a non-trivial transformation Dψ(f)Dψ(f) → J−2Dψ(f)Dψ(f)
of the path

integral measure with non-vanishing Jacobian. In a setting with a non-Abelian gauge

symmetry G the Jacobian is given by

J−2 = exp

{
i
2π

M
AG−G−ZRM

∫
d4x

1

32π2
F b,µνF̃ bµν

}
, (2.4)

where F and F̃ denote the field strength and its dual. For Abelian gauge factors and

gravity one obtains analogous expressions. In the case of a non-Abelian gauge symmetry,

the mixed anomaly coefficient reads [9] (see also [10, Appendix B])

AG−G−ZRM
=
∑
f

`(r(f)) · (q(f) − qθ) + qθ `(adjG) . (2.5)

Here, r(f) denotes a representation of the gauge group G, `(r(f)) is the Dynkin index of

the gauge group representation r, defined as

δab `(r) = tr [ta(r) tb(r)] , (2.6)

and the sum goes over all fermions which transform non-trivially both under G and u. We

work in conventions where `(N) = 1/2 for SU(N). In this convention the Dynkin index of

the adjoint is given as `(adj) = N for SU(N). In equation (2.5), `(adjG) = c2(G) represents

– 2 –
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the contribution from the gauginos. Here we have already allowed for R symmetries, i.e. we

include the possibility that the superspace coordinate θ transforms non-trivially under the

operation u. In what follows, we will mainly discuss the case of a setting with a non-Abelian

gauge symmetry G, but the generalization to U(1) factors and gravity is straightforward.

Irrespective of the nature of the gauge group, all the anomaly coefficients are only

defined modulo M/2. Notice that for odd M one can make all odd charges even by

shifting them by M (cf. [8]). For such charges, the anomaly coefficients are then only

defined modulo M .

If a symmetry appears anomalous, this is not necessarily a sign of inconsistency

since there is the possibility of (discrete) Green-Schwarz anomaly cancellation, which,

as we will discuss in what follows, can be employed for Abelian as well as non-Abelian

discrete symmetries.

2.2 Discrete Green-Schwarz anomaly cancellation

The Green-Schwarz mechanism also works for discrete symmetries [9, 10]. The crucial

ingredient is, as usual, the coupling of an ‘axion’ a to the field strength of the continuous

gauge symmetry

Laxion ⊃ − a

8
F bF̃ b , (2.7)

and analogous terms for gravity (see e.g. [10] for details). Under a discrete transformation

u the axion undergoes a shift

a → a+ ∆(u) , (2.8)

such that the change of Laxion compensates the phase induced by the non-trivial transfor-

mation of the path integral measure (2.4). This leads to a relation between ∆(u) and the

anomaly coefficients,

Au ≡ AG−G−ZM = 2πM ∆(u) mod
M

2
. (2.9)

In principle, one can have more than one axion, in which case

Laxion ⊃ −
∑
α

cα
8
aα F

bF̃ b (2.10)

with some (real) coefficients cα. In the case of a Z
(R)
M symmetry, however, there is always

a unique linear combination of axions that shifts, i.e. one can ‘diagonalize’ the action on

the axion fields, such that we are back at the one-axion case.

One can also have more than one gauge factor, i.e. G =
∏
iG

(i). Then (2.7) general-

izes to

Laxion ⊃ −
∑
i

ci
a

8
F

(i)
b F̃

(i)
b . (2.11)

In general, the coefficients ci can be arbitrary (cf. [11]). However, in supersymmetric

theories the axions are always accompanied by a superpartner ‘saxion’ field. In particular,

in the MSSM non-universal ci coefficients for the SM gauge factors will spoil the beautiful

– 3 –
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picture of gauge coupling unification (see the discussion in [12]). This can be avoided by

demanding ‘anomaly universality’, which amounts to requiring

AG(i)−G(i)−ZRM
= ρ mod

M

2
∀ G(i) , (2.12)

and guarantees that we can use the Green-Schwarz mechanism to cancel possible anomalies.

Let us now discuss anomaly constraints on non-Abelian discrete R symmetries.

2.3 Anomaly coefficients for non-Abelian discrete R and non-R symmetries

As pointed out in [7, 8], for non-Abelian discrete symmetries possible anomalies reside only

in the Abelian parts, i.e. they can be attributed to a specific generator. Let us now focus to

finite groups D. Then, for each group element u ∈ D there exists an integer Mu such that

uMu = 1 , (2.13)

i.e. u generates a ZMu symmetry. In order to verify anomaly-freedom one has, therefore,

only to check that the generators of the group generate anomaly-free ZM groups.

To make this explicit, let Uu(d) be a matrix representation of an abstract group element

u ∈ D in the representation d . As a consequence of (2.13), one can always find a number

Mu with Uu(d)Mu = 1. This allows us to write

Uu(d) = e2π iλu(d) /Mu , (2.14)

where λu(d) in general has integer eigenvalues. A fermion charged under D and transform-

ing in a representation d(f), thus transforms under u as

ψ(f) → Uu(d(f))ψ(f) = e2π iλu(d(f)) /Mu ψ(f) . (2.15)

Whenever the meaning is clear from the context, we will suppress the subscript u and the

representation d for brevity.

In the anomaly coefficient,

δ
(f)
u := tr[λu(d(f))] =

Mu

2π i
ln det Uu(d(f)) , (2.16)

now takes the role of the discrete ZMu charge. This includes the usual modulo M behavior,

as becomes explicit through the multi-valued logarithm in (2.16). Nevertheless, δ(f) is,

in general, not a one-to-one replacement for an Abelian charge. To see this consider,

for example, the relation between the transformation behavior of a superfield Φ and the

corresponding fermion, which, in analogy to equations (2.2) and (2.3), is given by

d(Φ) = d(θ) ⊗ d(ψ) . (2.17)

Here d(θ) denotes the representation of the superspace coordinate θ. In the case of N = 1

SUSY, θ can only transform in a one-dimensional representation, i.e. dim(d(θ)) = 1 and

dim(d(ψ)) = dim(d(Φ)). Therefore, we can express the charge of a fermion component field

in terms of the corresponding superfield charge as

δ(ψ) = δ(Φ) − dim(d(Φ)) δ(θ) . (2.18)

– 4 –
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This illustrates that δ(f) is not a one-to-one replacement for an Abelian charge: equa-

tion (2.18) only reduces to the usual addition of charges qRΦ = qRθ + qRψ for one-dimensional

representations d(Φ).

For manifestly supersymmetric theories, it is convenient to make use of equation (2.18)

to express the anomaly coefficients in terms of the charges of the superfield δ(s) instead of

the (fermion) component field charges δ(f).

Using this convention, let us now present the anomaly coefficients. Assume that we

have chiral superfields Φ(s) which transform in representations d(s) of a non-Abelian discrete

R symmetry D, with charges Q(s) under the Abelian factors of a U(1) symmetry and as

r(s) under some non-Abelian gauge symmetry G. Then, the anomaly coefficients of the

Abelian, u-generated subgroup ZM of D are given by

AG−G−ZR
M(u)

=
∑
s

`(r(s)) ·
[
δ(s) − dim(d(s)) δ(θ)

]
+ `(adjG) · δ(θ) , (2.19a)

AU(1)−U(1)−ZR
M(u)

=
∑
s

(
Q(s)

)2
dim(r(s)) ·

[
δ(s) − dim(d(s)) δ(θ)

]
, (2.19b)

Agrav−grav−ZR
M(u)

= −21 δ(θ) + δ(θ)
∑
G

dim(adjG)

+
∑
s

dim(r(s)) ·
[
δ(s) − dim(d(s)) δ(θ)

]
, (2.19c)

where the sum goes over all chiral superfields. In the R symmetry case we have contri-

butions not only from the matter fermions and higgsinos but also due to possible gauge

singlets, gauginos and the gravitino. The charges of the latter two coincide with the charge

of the superspace coordinate θ. The anomaly coefficients are in agreement with previous

results: setting δ(θ) = 0 one arrives at the coefficients for non–R, non-Abelian discrete sym-

metries [8], and setting δ(φ) = qRφ and dim(d(s)) = 1 leads to the coefficients for Abelian R

symmetries (2.5) [10, 13].

In principle, one now would have to calculate the anomaly coefficients (2.19a)–(2.19c)

for every single group element u ∈ D and check if they fulfill (2.12). As it has been argued,

in [8], in the case ρ = 0 it is enough to check (2.12) only for the generators of D, since if

ρ = 0 holds for two elements u, v ∈ D it also holds for w = u · v. This is due to the nice

properties of the determinant and the logarithm in (2.16). One has to be more careful in

the general case ρ 6= 0 however, as shown in the following.

Let us assume that we have calculated the anomaly coefficients for any two group

elements u of order M and v of order N as

Au = ρ mod
M

2
, (2.20a)

Av = σ mod
N

2
. (2.20b)

The anomaly coefficient of a third group element w = u · v of order L then is given by1

Aw =
∑
f

`(r(f)) δ
(f)
w + `(adjG) δ

(θ)
w

1In the most general case (where we do not assume anything about the permuting properties or relative

orders of u and v) we cannot say much about the relation of L, M and N .

– 5 –
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=
∑
f

`(r(f))

(
L

M
δ

(f)
u +

L

N
δ

(f)
v

)
+ `(adjG)

(
L

M
δ

(θ)
u +

L

N
δ

(θ)
v

)

=
L

M

(
ρ mod

M

2

)
+
L

N

(
σ mod

N

2

)
. (2.21)

We can now distinguish three possible cases:

1. Neither u nor v generates an anomalous symmetry, i.e. ρ = σ = 0. We recover the

trivial case as treated in [8]. The symmetry generated by {u, v} is anomaly-free.

2. Without loss of generality, only u generates an anomalous symmetry, i.e. ρ 6= 0 = σ.

It follows that also w = u · v is anomalous, with an anomaly coefficient

Aw = L

(
ρ

M
mod

1

2

)
. (2.22)

3. Both u and v generate anomalous symmetries. The anomaly coefficient for w is

Aw = L

[(
ρ

M
+
σ

N

)
mod

1

2

]
. (2.23)

In this case, even though u and v appear anomalous, w might not. Note also the

special case u = v where w = u2 appears anomalous if and only if 4ρ/M /∈ Z.

A generalization of this discussion to three or more generators is possible in a straightfor-

ward way.

2.4 Green-Schwarz mechanism for non-Abelian discrete symmetries

In principle, the cancellation mechanism for Abelian discrete symmetries also works for

the Abelian subgroups of non-Abelian symmetries. There are, however, some additional

relations constraining possible axion transformations under the symmetry group. Consider

two operations, u and v, in D. In general, those will induce shifts

u : a → a+ ∆(u) , (2.24a)

v : a → a+ ∆(v) . (2.24b)

In particular, the action of these shifts on the axion is Abelian — in other words: the chiral

superfield containing the axion as a complex phase can only transform in a one-dimensional

representation of our symmetry. As a consequence, axions are not allowed to shift under

so-called commutator elements of the symmetry group2 x := [u, v], since for such elements

all fermion charges

δx =
M

2π i
ln detUx , (2.25)

and therefore the anomaly coefficients (2.19a)–(2.19c) trivially vanish. This immediately

follows from the definition of a commutator element, whose representations always can be

written as

Ux = Uu v u−1 v−1 = Uu Uv Uu−1 Uv−1 = Uu Uv Uu
−1 Uv

−1 , (2.26)

2Here the group-theoretical definition of the commutator (cf. [14]) [u, v] := u v u−1 v−1 is used.

– 6 –



J
H
E
P
0
9
(
2
0
1
3
)
0
9
6

which leads to a vanishing charge (2.25) and thus to vanishing anomaly coefficients. By

noting that only the one-dimensional representations transform trivially under commutator

elements, it is clear that axions can only transform as one-dimensional representations.

We would like to remark that, for the same reason, perfect groups, which are gener-

ated by commutator elements only, always are anomaly-free. Nevertheless, since they do

not possess non-trivial one-dimensional representations, perfect groups are not relevant to

this work.

Let us now discuss the cancellation of anomalies for the whole non-Abelian group.

Consider two generating elements u and v of order M and N with their respective anomaly

coefficients (cf. (2.20)). The combined operation u · v is assumed to have order L, and the

anomaly coefficient of the combined operation is given by

Au·v = ω mod
L

2
. (2.27)

As shown in equation (2.21), the combined anomaly coefficient can be rewritten as a non-

trivial sum of the single anomaly coefficients. Let us now check whether it is always possible

to cancel the combined anomaly. To do so, we impose an axion shift

u · v : a → a+ ∆(u·v) , (2.28)

which, due the Abelian nature of the axion transformation, must be given as

∆(u·v) = ∆(u) + ∆(v) . (2.29)

The condition for the cancellation of the combined anomaly, in analogy to (2.9), is

Au·v = 2π L∆(u·v) mod
L

2
, (2.30)

which can be rewritten as

Au·v
(2.29)

= 2π L
(

∆(u) + ∆(v)
)

mod
L

2
(2.9)
=

L

M

(
ρ mod

M

2

)
+
L

N

(
σ mod

N

2

)
. (2.31)

But this is exactly the same as (2.21). This means we do not have any constraints on

the anomalies of combined elements, or in other words, if the single (Abelian) anomalies

of the generator elements are vanishing (with or without employing the Green-Schwarz

mechanism), the whole group is anomaly-free.

3 Non-Abelian discrete R symmetries in the MSSM

3.1 Symmetry search

In what follows, we will discuss specific examples of non-Abelian discrete R symmetries

in the context of the MSSM. The non-Abelian discrete R symmetry will, in general, act

non-trivially on flavor space. We will assume it to be partly broken by flavon VEVs at

– 7 –
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a high scale, thus giving rise to a specific flavor structure. On the other hand, since we

wish not to break supersymmetry at a high scale Λ, we require the R symmetry subgroup

to be unbroken. Specifically, we will focus on settings in which there is a residual ZR4
symmetry [15], which has recently been shown to be the unique Abelian discrete R sym-

metry which allows us to solve the µ problem and commutes with SO(10) in the matter

sector [9, 10, 13]. An unbroken Z2 subgroup of this symmetry coincides with R parity.

We further demand that, after breaking the flavor symmetry D down to the residual

Z
R
4 symmetry, matter fields have R charge 1 and Higgs fields charge 0. This is because we

assume a hierarchy between Λ and the scale of ZR4 breaking, which is given by the gravitino

mass m3/2. In this case, a family-dependent ZR4 charge assignment implies unrealistic

mixing angles. Hence, in order to be consistent with this charge assignment while allowing

for correlations in family space, the non-Abelian discrete R symmetry is required to have a

multiplet representation whose components transform equally under the ZR4 subgroup. In

particular, this requires that the center of the group contains the ZR4 . One can see this with

the help of an explicit representation: consider the representation matrix of the generating

element of the ZR4 subgroup in a basis in which it is diagonal. Since each component is

required to transform equally under the subgroup, this matrix must be proportional to the

unit matrix, therefore commuting with all other matrices of the representation, and thus

a representation of an element of the center.

To summarize, we survey non-Abelian discrete R symmetries which satisfy the follow-

ing criteria:

1. the symmetry contains, and can be spontaneously broken down to a Z4 symmetry

by a multiplet VEV;

2. the symmetry contains a one-dimensional representation (for θ), which transforms

non-trivially also under the unbroken subgroup;

3. the residual Z4 subgroup is part of the center of the symmetry group.

We have conducted a symmetry search in the SMALLGROUPS library of the GAP system for

computational discrete algebra [16]. The results for the groups up to order 48 are shown

in table 1. The smallest groups which fulfill all requirements are Z3 oZ8 and S3×Z4. The

latter group contains the well known S3, on which several working GUT flavor models are

based [17–26]. Nevertheless, regarding an R symmetric extension of the MSSM, it would

just be the trivial extension of any of the known S3 models by a ZR4 . Such models should

not concern us here. We will focus our considerations on the other possible lowest order

group, namely Z3 o Z8. In contrast to S3, we are not aware of any existing flavor model

based on this group. For this reason, we have stated the necessary group theoretical details

in appendix A.

3.2 Z3 o ZR
8 extension of the MSSM

Let us now discuss an example model for non-Abelian discrete R symmetries, which also act

in flavor space, based on the particle spectrum of the the MSSM. Taking grand unification

– 8 –
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O(D) Structure description ID

24 Z3 o Z8 SG(24,1)

24 S3 × Z4 SG(24,5)

32 (Z8 × Z2) o Z2 SG(32,5)

32 (Z4 × Z4) o Z2 SG(32,11)

32 Z8 o Z4 SG(32,12)

32 D/Z4 = D8 SG(32,15)

32 (Z4 × Z4) o Z2 SG(32,24)

40 Z5 o Z8 SG(40,1)

40 Z4 ×D10 SG(40,3)

48 Z24 o Z2 SG(48,5)

48 (Z3 o Z8)× Z2 SG(48,6)

48 (Z3 o Z8) o Z2 SG(48,7)

48 (Z3 o Z4)× Z4 SG(48,8)
...

...
...

Table 1. Result of the GAP scan, showing groups consistent with the requirements stated in the

text up to order 48. We give order, name and/or structure description of the group as well as the

SMALLGROUPS library ID of GAP.

seriously, we will arrange the matter fields in SU(5) multiplets. We further impose the

condition of ‘anomaly universality’ (cf. the discussion in [12]) such that discrete anomalies

can be cancelled by the GS mechanism without spoiling gauge coupling unification.

We will focus our discussion on the generic features of non-Abelian discreteR symmetry

extensions rather than trying to enforce an entirely correct phenomenology. Thus, in the

spirit of minimalism, we spare additional Abelian discrete ‘shaping’ symmetries and flavons

other than the ones which are essential to symmetry breaking. The explicit construction

of a possibly fully realistic model is left for future work. In the present work, we will

employ a minimal example model to discuss the consistent assignment of representations,

generalities of the symmetry breaking and VEV alignment, the construction of Yukawa

coupling and mass matrices, and the explicit calculation of anomaly coefficients.

Z3 o Z8 and the Z4 subgroup. The group Z3 o Z8 is generated by the two elements

u and v, which fulfill

Z3 o Z8 =
〈
u, v ; u3 = v8 = 1 , v u v−1 = u−1

〉
. (3.1)

The group is of order 24, it has 8 one-dimensional representations that we label as 1i (i =

1 . . . 8) and 4 doublets, denoted by 2j (j = 1 . . . 4). A more detailed discussion of the group

is deferred to appendix A. As, by assumption, a Z4 subgroup of Z3 oZ8 will survive down

to the SUSY breaking scale, we list the behavior of irreducible representations under this

Z4 subgroup (which is the one generated by v2) in table 2. Here 1′,1′′ and 1′′′ label the

representations of Z4, with the number of primes specifying the corresponding charge. For

example, matter fields and the superspace coordinate θ will transform in the 1′ representa-

tion. As θ transforms non-trivially, the residual symmetry is an (order four) R symmetry,

– 9 –
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Z3 o Z8 12 13 14 15 16 17 18 21 22 23 24

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
Z4 1 1′′ 1′′ 1′ 1′′′ 1′′′ 1′ 1′′ ⊕ 1′′ 1⊕ 1 1′′′ ⊕ 1′′′ 1′ ⊕ 1′

Table 2. Branching rules for Z3 o Z8 → Z4.(
Q,U,E

)
1,2

(
Q,U,E

)
3

(
D,L

)
1,2

(
D,L

)
3

Hu Hd χ φ θ

15 18 24 15 11 12 22 12 15

Table 3. Transformation of MSSM fields under Z3 o Z
R
8 . The notation for the MSSM fields is

standard, θ is the superspace coordinate, χ and φ are (MS)SM singlet flavons.

denoted as ZR4 in what follows. We observe that the 22 contains twice the trivial singlet

of ZR4 . Thus a 22 VEV in any direction can break Z3 o Z
R
8 → Z

R
4 , as desired. Note also

that a 22 VEV aligned in the (1, 0) direction (in the basis specified in (A.1)) would break

Z3 o Z
R
8 → Z

R
8 .

Charge assignment. From the requirement that θ carries ZR4 charge3 1 and the breaking

pattern of Z3 o Z
R
8 → Z

R
4 in table 2, we infer that θ has to transform as a 15 (or as a 18,

which would make no difference), the Higgs fields as 11 or 12, and matter can be assigned

to 15, 18 or 24 under Z3 o Z
R
8 . For a general ZRM symmetry, in order to be anomaly

universal, equation (2.5) applied to the non-Abelian gauge groups immediately leads to

the requirement

qHu + qHd = 4 qθ mod M , (3.2)

for the Higgs charges (cf. e.g. [13]). Applying this to the ZR8 subgroup, we conclude that

the Higgs fields have to transform in different representations. This will be important also

in the explicit computation of anomaly coefficients in section 3.2.

To accomplish the breaking of the family symmetry Z3 o Z
R
8 → Z

R
4 , we need at least

one additional, SM singlet degree of freedom which transforms as a 12 or 22 and acquires

a VEV. We therefore introduce two of such ‘flavons’, φ and χ, transforming as 12 and

22, respectively.

Different assignments either lead to a different breaking of Z3oZR8 or to unfeasible ZR4
charge assignments. The assignment we choose in accordance with all imposed requirements

is listed in table 3. Of course, variations of the assignment of the matter and Higgs fields

are possible. We have chosen our example such that one gets a glimpse on the variety of

possible (leading order) mass matrix structures. There is one peculiar difference here with

respect to traditional flavor models: since we are dealing with an R symmetry, the allowed

superpotential terms may not be neutral but have to be charged instead. Since θ resides

in a 15, the charge of the superspace integral measure is 1∗5 ⊗ 1∗5 = 1∗4 = 13. Therefore,

superpotential terms have to transform as 14. We wish to point out that, given the non-

trivial transformation of θ, fermions and bosons furnish different representations under the

3As discussed for instance in [9], any ZRM symmetry solution to the µ problem requires M = 4 ×N and

qθ = M/4.
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flavor group. For instance, if a superfield transforms as 24, then the scalar components also

furnishes this representations, but the fermions have to transform as 22 if θ transforms as

15 or 18.

Spontaneous breaking Z3 o ZR
8 → Z

R
4 . From the branching rules (cf. table 2) and

the charges of the flavons, it is clear that a non-trivial VEV of either φ or χ will break

Z3 o Z
R
8 → Z

R
4 . In the general case, for the generation of potentially realistic fermion

masses, we need to switch on both, 〈φ〉 and 〈χ〉. Note that, in order to achieve the breaking

to the ZR4 , the doublet χ does not have to be aligned in any way since both components of

the doublet transform trivially under this subgroup. The fact that multiplet VEVs do not

have to be aligned for a desirable breaking pattern is a generic feature of the non-Abelian

discrete R symmetries under discussion as can be inferred from the fact that the unbroken

Z
R
4 is required to be in the center of the non-Abelian group.

In the case of Z3oZR8 , however, an alignment of 〈χ〉 along the (1, 0) direction can arise

due to the presence of a single additional field ξ transforming as 14 under the R symmetry

and trivially under all other symmetries. At the renormalizable level, ξ couples only linearly

to the flavon fields and does not possess couplings to the MSSM fields in the superpotential

W . Therefore, ξ automatically possesses the typical characteristics of a ‘driving’ field. In

order to study the alignment, let us parameterize the VEVs as 〈χ〉 = v (cos θχ, sin θχ)T

and 〈φ〉 = v rφ. Requiring SUSY to be unbroken at the flavor scale, one obtains the

F -term condition

0
!

=
∂W

∂ξ

∣∣∣∣φ→〈φ〉
χ→〈χ〉

= −M2 + g1 v
2
(
2 cos2 θχ − 1

)
+ g2 v

2 rφ
2 , (3.3)

where we take M2, g1, g2 > 0. What is crucial for the alignment is a choice of parameters

such that there is a relative sign difference between the first and second terms. As one can

check from (3.3), v and rφ are minimized for θχ = 0, i.e. 〈χ〉 ∝ (1, 0). This corresponds to

a breaking Z3oZR8 → Z
R
8 which would lead to the vanishing of two mixing angles since the

residual ZR8 symmetry is family dependent. We see that this alignment has to be avoided in

order to obtain a correct phenomenology. However, a mild suppression of the leading-order

contribution is enough to generate a small misalignment from the next-to-leading order

terms of the superpotential, resulting in θχ ≈ δ, hence, modifying the VEV to 〈χ〉 ∝ (1, δ).

This then leads to a breaking Z3oZR8 → Z
R
4 with a slightly broken and hence approximate

Z
R
8 . The small misalignment could, for instance, help to explain the small mixing to the

third generation. In what follows, we will work with the VEVs

〈χ〉 = v

(
1

δ

)
and 〈φ〉 = v rφ . (3.4)

Effective fermion mass matrices. We now use the direct product rules and the tensor

structure of the decomposition (A.2) to identify terms consistent with all symmetries. The

– 11 –
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effective neutrino mass operator is given by

W eff
ν = (Hu L

g)κgf (Hu L
f )

=
v2
u

Λν

{
x1 (L1 L1 − L2 L2) + x3 L3 L3 + 2x4

L3

Λ
(χ1 L2 − χ2 L1)

+ x2

[
χ1

Λ
(L1 L1 + L2 L2) +

χ2

Λ
(L1 L2 + L2 L1)

]}
, (3.5)

where we have introduced dimensionless coupling coefficients xi (in the following also yi, zi),

the see-saw scale Λν , as well as the flavor scale Λ, and set the Higgs fields to their VEVs.

Terms involving more flavons are of higher order in ε := v/Λ and are not discussed here.

Setting the flavons to their VEVs, the emerging structure of the effective neutrino mass

matrix is

κ =
v2
u

Λν

x1 + x2 ε x2 ε δ −x4 ε δ

x2 ε δ −x1 + x2 ε x4 ε

−x4 ε δ x4 ε x3

 . (3.6)

The effective charged lepton mass is constrained to the form

We = E
f
Y

(e)
fg (Hd L

g)

= vd

{
y1
E1

Λ
(χ1 L1 − χ2 L2) + y2

E2

Λ
(χ1 L1 − χ2 L2)

+ y3
E3

Λ
(χ1 L2 − χ2 L1) + y4

φ

Λ
E1 L3 + y5

φ

Λ
E2 L3 + y6E3 L3

}
, (3.7)

resulting in the structure

Y (e) = vd

 y1 ε −y1 ε δ y4 ε rφ
y2 ε −y2 ε δ y5 ε rφ
−y3 ε δ y3 ε y6

 . (3.8)

As usual for settings with SU(5) relations, we have Y (e) ∼ Y (d)T , which immediately fixes

the structure of the down-quark Yukawa coupling. The up-quark Yukawa coupling has less

structure since only one-dimensional representations are contracted. We find

Y (u) = vu

 z1 z2 z5 ε rφ
z3 z4 z6 ε rφ

z7 ε rφ z8 ε rφ z9

 . (3.9)

As already mentioned, it is possible to have variations of the charge assignment in

table 3 which are consistent with all imposed requirements. Besides permutation in the

family indices, such variations can only lead to mass matrices that are similar in structure

to the ones of the example shown above. More precisely, one could, instead of the 5–

plets, combine two generations of the SU(5) 10–plets to a doublet, leading to a similar

but transposed structure for Y (e) and Y (d), and to a swap in the structure of Y (u) and

κ. Alternatively, also a setup in which two generations each of the 5 and 10–plets get

combined to doublets is possible, which is the only possibility in case of an SO(10) GUT.

In this case, all mass matrices will take a form similar to (3.6).
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d(Φ) 11 12 15 18 22 24

δ
(Φ)
v 0 4 5 1 4 6

δ
(Φ)
v2

0 0 1 1 0 2

Table 4. Charges of fields under the v and v2 generated subgroups of Z3 o Z
R
8 , computed with

equation (2.16). The charges are only defined modulo Mv = 8 and Mv2 = 4, respectively.

Model phenomenology. Even though we did not arrange our model to fit the exper-

imental data, let us comment on the resulting phenomenology as it would be a starting

point for the construction of possibly realistic models. Without imposing any additional

symmetries, there are unsuppressed tree-level contributions to the mass matrices next to

suppressed effective terms. As in other flavor models with non-Abelian discrete symme-

tries, it is clear that also in this case one needs to introduce further symmetries, such as,

the so-called shaping symmetries or a U(1) of the Froggatt-Nielsen type, in order to obtain

a completely natural and realistic model with hierarchical masses. For the particular model

considered here, a Froggatt-Nielsen symmetry with λ ∼ θc ∼ 0.2 may be used to explain

the hierarchy among the parameters

y1 : y2 : y3 : y6 = λ4 : λ2 : λ0 : λ1 , (3.10a)

z1 : z4 : z9 = λ8 : λ4 : λ0 , (3.10b)

which can lead to a good agreement with the data as has been checked numerically using

the MPT package [27]. However, as this is just a toy model with more parameters than

observables, we refrain from fitting the model predictions to data. Yet our discussion shows

that viable flavor models can, in principle, arise from non-Abelian discrete R symmetries,

analogous to case of non–R, non-Abelian discrete symmetries (see e.g. [28–30] for reviews).

This in turn affords the possibility of having a simultaneous solution to the µ problem and

the flavor problem. In what follows we will use the toy model as a basis for an explicit

calculation of the anomaly coefficients.

Anomalies of the Z3 o ZR
8 model. Finally, we can use formulae (2.19) to calculate

the R-gauge-gauge anomaly coefficients of the Z3 o Z
R
8 model. For this, we first have to

calculate the charges of every representation. For the symmetry treated here, there are

only two generators u and v. The representation matrix U equals the respective character

for the one dimensional representations, and can be read off from equations (A.1a)–(A.1b)

for the two dimensional representations. Since det Uu = 1 for all representations, the

symmetry generated by u is trivially anomaly-free and we only have to care about v. The

δ charges (2.16) for all relevant conjugacy classes are given in table 4. Here it pays off that

we have expressed the anomaly coefficients in terms of the superfield charges via (2.18),

such that in order to find the charges relevant for the anomaly coefficient we do not have to

work out the representations of the fermion component fields and their respective charges,

but instead take the superfield charge from table 4 and subtract the charge of θ times the

dimensionality of the respective superfield’s representation. We use the modulo M freedom
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to shift all charges to positive values as a convention. Putting everything together, we find

for the anomaly coefficients of the discussed model under the v generated subgroup of the

discrete non-Abelian family symmetry Z3 o Z
R
8 the expressions

ASU(3)−SU(3)−ZR
8(v)

=
1

2
{[2 + 1] · 4 + [1] · 4}+ 3 · 5 = 3 mod 4 , (3.11a)

ASU(2)−SU(2)−ZR
8(v)

=
1

2
{[3] · 4 + [1] · 4 + 3 + 7}+ 2 · 5 = 3 mod 4 , (3.11b)

AU(1)−U(1)−ZR
8(v)

=
3

5

{[
3 · 2 ·

(
1

6

)2

+ 3 ·
(

2

3

)2

+ (1)2

]
· 4

+

[
3 ·
(

1

3

)2

+ 2 ·
(

1

2

)2 ]
· 4 + 2 ·

(
1

2

)2

· 3

+ 2 ·
(

1

2

)2

· 7
}

= 3 mod 4 .

(3.11c)

Here, we use square brackets to highlight the contributions arising from the 10 and 5-plets,

and GUT normalization for the U(1) charges. There is no contribution from the first and

second family of the 10 as well as from the third family of the 5-plets since their charge coin-

cides with the superspace charge, i.e. the respective fermions are uncharged. Note that it is

of fundamental importance that the Higgs fields are in different representations, otherwise

the ZR8 subgroup could never be anomaly universal in this setup (cf. the discussion around

equation (3.2)). From the form of the anomaly and equation (2.23) we can immediately

conclude that also the v2, i.e. the unbroken ZR4 subgroup appears anomalous with

AG−G−ZR
4(v2)

= 1 mod 2 . (3.12)

Indeed, this anomaly is consistent with the findings of [10] as it should be, and the anomalies

can be canceled by the Green-Schwarz mechanism.

Let us finally briefly comment on the ZR4 phenomenology [10, 13]. The ZR4 forbids

the µ term in the MSSM but appears to be broken by non-perturbative effects. Since the

order parameter of R symmetry breaking is the gravitino mass, a realistic effective µ term

appears. Further, ZR4 contains R or matter parity, such that dimension four proton decay

operators are forbidden and dimension five operators are sufficiently suppressed.

As it is known that Abelian discrete R symmetries [31, 32] and non-Abelian discrete

symmetries [33] can originate from orbifold compactifications it is tempting to speculate

that non-Abelian discrete R symmetries may arise in non-Abelian orbifold compactifica-

tions, which have been studied recently in [34, 35].

3.3 Comments on R symmetries and the structure of soft terms

As is well known, the soft supersymmetry breaking terms are generated by appropriate

effective operators involving a supersymmetry breaking spurion X. Specifically, for the

scalar squared masses, the so-called A terms and the gaugino masses, these operators read
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schematically (cf. e.g. [36]) ∫
d4θ

X†X

Λ2
Q†Q

X→FX θ2−−−−−−→ m̃2 |q|2 , (3.13a)∫
d2θ

X

Λ
y Q3 X→FX θ2−−−−−−→ Ay q3 , (3.13b)∫

d2θ
X

Λ
WαW

α X→FX θ2−−−−−−→ Mλ λλ . (3.13c)

Here Λ is the cut-off scale, Q denotes a generic matter field and Wα is the multiplet

containing the gaugino λ. If the matter fields furnish non-trivial representations under a

non-Abelian (discrete) symmetry, one obtains from (3.13a) soft terms that are, at leading

order, diagonal and get corrected by the flavor symmetry breaking terms. This leads to a

structure that is somewhat similar to the one of ‘minimal flavor violation’ [37, 38] and can

help to ameliorate or solve the supersymmetric flavor problems.

Let us now entertain the possibility thatX has non-zeroR charge under an appropriate,

i.e. discrete or approximate, R symmetry. In fact, in the simplest scheme of supersymme-

try breaking, such as the Polonyi model and the scenarios of meta-stable supersymmetry

breaking [39], this situation is realized. Then the operator (3.13a) is still allowed while

the A terms (3.13b) and gaugino masses (3.13c) are forbidden. Since the latter is phe-

nomenologically excluded, one may introduce a second spurion X ′ with zero R charge. For

|FX | � |FX′ | one then obtains heavy scalars and suppressed A terms and gaugino masses.

This pattern is also obtained from KKLT-type moduli stabilization [40] with uplift by a

matter field [41]. Here we see that this pattern can be enforced in a bottom-up approach

by imposing R symmetries (but we have no explanation for the hierarchy |FX | � |FX′ |).
This discussion shows that R symmetries can be instrumental for engineering a certain

pattern of soft terms.

Assume now that there is a non-Abelian discrete non–R symmetry H. If X is to furnish

a higher-dimensional representation under H, there might be H-invariant contractions

between X and the ingredients of the Yukawa couplings. In this case, provided the F -term

VEVs of X and the flavon VEVs are not ‘aligned’, this will generically give rise to very

dangerous flavor-violating operators via (3.13b). On the other hand, if the non-Abelian

symmetry is also an R symmetry, these operators can be forbidden by assigning a non-

zero R charge to the X field. One could then entertain the possibility that flavor and

supersymmetry breaking is due to a single ‘hidden sector’. Explicit model building in this

direction is, however, beyond the scope of the present study.

4 Summary

In this paper we have discussed non-Abelian discrete R symmetries D. For phenomeno-

logical reasons we restricted ourselves to settings with N = 1 supersymmetry in which the

superspace coordinate θ furnishes a non-trivial one-dimensional representation of D. We

have explored anomalies for such kinds of symmetries. In the course of this, we also have

shown that perfect groups are always anomaly-free, which is of importance especially for

the non–R case. It is instructive to compare GS anomaly cancellation for different kinds of
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symmetries. In the case of an Abelian (continuous or discrete) symmetry, one can always

cancel anomalies by the GS mechanism. In the case of a non-Abelian continuous (gauged)

symmetries, an anomaly simply signals an inconsistency. Finally, for discrete non-Abelian

symmetries, there is the possibility of multiple GS cancellation within one symmetry group.

Here one can have different group operations associated with the shift of different (linear

combinations of) axions. We have worked out the anomaly coefficients (equation (2.19)),

and discussed GS anomaly cancellation in detail.

To illustrate our results, we discussed a toy model in which the MSSM gets amended

by the discrete non-Abelian R symmetry Z3oZR8 . The model combines a flavor symmetry,

which dictates certain relations between the Yukawa couplings, with an R symmetry that

suppresses the µ term and dangerous proton decay operators. Moreover, due to the fact

that it is an R symmetry, representations for so-called driving fields are automatically

present in the spectrum, hence the question of ‘VEV alignment’ can be addressed without

enlarging the symmetry group. Although the toy model is certainly not fully realistic, it

illustrates the novel possibilities that arise once one promotes ordinary non-Abelian flavor

symmetries to R symmetries: one can address the question of flavor and simultaneously

solve the proton decay and µ problems with a single symmetry.
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A The group Z3 o Z8

Let us briefly describe the relevant features of the group Z3 o Z8. A presentation of the

group has already been given in (3.1). The character table is given in 5. The product

rules for the irreducible representations are stated in tables 6 and 7. For the doublet

representations 2j , a possible form of the Z3 and Z8 generators u and v is given by

Ũj = Ũ =
1

2

(
−1 i

√
3

i
√

3 −1

)
, (A.1a)

Ṽ1 =

(
i 0

0 −i

)
, Ṽ2 =

(
1 0

0 −1

)
,

Ṽ3 =

(
τ∗ 0

0 −τ∗

)
and Ṽ4 =

(
τ 0

0 −τ

)
. (A.1b)
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1 v v2 v4 u v3 v5 v6 uv2 uv4 v7 uv6

1 3 1 1 2 3 3 1 2 2 3 2

Z3 o Z8 1a 8a 4a 2a 3a 8b 8c 4b 12a 6a 8d 12b

11 1 1 1 1 1 1 1 1 1 1 1 1

12 1 −1 1 1 1 −1 −1 1 1 1 −1 1

13 1 −i −1 1 1 i −i −1 −1 1 i −1

14 1 i −1 1 1 −i i −1 −1 1 −i −1

15 1 −τ i −1 1 τ∗ τ −i i −1 −τ∗ −i

16 1 τ∗ −i −1 1 −τ −τ∗ i −i −1 τ i

17 1 −τ∗ −i −1 1 τ τ∗ i −i −1 −τ i

18 1 τ i −1 1 −τ∗ −τ −i i −1 τ∗ −i

21 2 0 −2 2 −1 0 0 −2 1 −1 0 1

22 2 0 2 2 −1 0 0 2 −1 −1 0 −1

23 2 0 −2i −2 −1 0 0 2i i 1 0 −i

24 2 0 2i −2 −1 0 0 −2i −i 1 0 i

Table 5. Character table of Z3oZ8. We define τ := e2πi/8. The conjugacy classes (c.c.) are labeled

by the order of their elements and a letter. The first line gives a representative of the c.c. in the

presentation specified in the text. The second line gives the cardinality of the corresponding c.c.

⊗ 12 13 14 15 16 17 18 21 22 23 24

12 11 14 13 18 17 16 15 21 22 23 24

13 14 12 11 17 15 18 16 22 21 24 23

14 13 11 12 16 18 15 17 22 21 24 23

15 18 17 16 14 12 11 13 23 24 22 21

16 17 15 18 12 13 14 11 24 23 21 22

17 16 18 15 11 14 13 12 24 23 21 22

18 15 16 17 13 11 12 14 23 24 22 21

21 21 22 22 23 24 24 23

22 22 21 21 24 23 23 24

23 23 24 24 22 21 21 22

24 24 23 23 21 22 22 21

Table 6. Decomposition of the tensor products of irreducible representations of one-dimensional

representations and doublets with one-dimensional representations.

⊗ 21 22 23 24

21 11 ⊕ 12 ⊕ 22 13 ⊕ 14 ⊕ 21 15 ⊕ 18 ⊕ 24 16 ⊕ 17 ⊕ 23

22 13 ⊕ 14 ⊕ 21 11 ⊕ 12 ⊕ 22 16 ⊕ 17 ⊕ 23 15 ⊕ 18 ⊕ 24

23 15 ⊕ 18 ⊕ 24 16 ⊕ 17 ⊕ 23 13 ⊕ 14 ⊕ 21 11 ⊕ 12 ⊕ 22

24 16 ⊕ 17 ⊕ 23 15 ⊕ 18 ⊕ 24 11 ⊕ 12 ⊕ 22 13 ⊕ 14 ⊕ 21

Table 7. Decomposition of the tensor products of two doublet representations.
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Here we have used τ := e2πi/8 to denote the eight root of unity. We also state the explicit

form of all the tensor products which one may need for the construction of the mass

matrices of possible models. Let (a1, a2)T and (b1, b2)T each transform as a doublet and c

be a one-dimensional representation. Then

(a24 ⊗ c15) =

(
a2 c

a1 c

)
21

, (A.2a)

(a24 ⊗ c18) =

(
a1 c

a2 c

)
21

, (A.2b)

(a22 ⊗ b21) = (a1 b2 − a2 b1)13
⊕ (a1 b1 − a2 b2)14

⊕
(

a1 b1 + a2 b2
−(a1 b2 + a2 b1)

)
21

, (A.2c)

(a22 ⊗ b24) = (a1 b2 − a2 b1)15
⊕ (a1 b1 − a2 b2)18

⊕
(

a1 b1 + a2 b2
−(a1 b2 + a2 b1)

)
24

, (A.2d)

(a24 ⊗ b24) = (a1 b2 − a2 b1)13
⊕ (a1 b1 − a2 b2)14

⊕
(

a1 b1 + a2 b2
−(a1 b2 + a2 b1)

)
21

, (A.2e)

(a22 ⊗ b22) = (a1 b1 − a2 b2)11
⊕ (a1 b2 − a2 b1)12 ⊕

(
a1 b1 + a2 b2
−(a1 b2 + a2 b1)

)
22

. (A.2f)
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