Lawrence Berkeley National Laboratory

Recent Work

Title

Magnetization Rotation in Exchange Biased Ni/FeF2

Permalink

https://escholarship.org/uc/item/6vj943dv

Authors

Olamit, Justin Arenholz, Elke Li, Zhi-Pan <u>et al.</u>

Publication Date

2004-09-14

Magnetization Rotation in Exchange Biased Ni/FeF₂

Justin Olamit¹, Elke Arenholz², Zhi-Pan Li³, Oleg Petracic³, Igor V. Roshchin³,

Ivan K. Schuller³, and Kai Liu^{1,*}

¹Physics Department, University of California, Davis, CA 95616

²Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

³*Physics Department, University of California- San Diego, La Jolla, CA 92093*

(Sep 14th, 2004)

Abstract

Exchange biased Ni/epitaxial-FeF₂ films have been investigated using vector magnetometry. Films of Ni-wedge/Co/Ni-wedge/epitaxial-FeF₂ are being studied with the Octupole Magnetometer on Beamline 4.0.2 using MOKE and XMCD. The double wedge profile of Ni enables the embedded Co layer to serve as a magnetic probe inside the Ni layers while keeping the total FM layer thickness constant. The Co layer may reveal the existence of domain structures in the Ni layers as a function of layer thickness. Hysteresis loops of films with a thicker layer of Ni have been studied using a vibrating sample magnetometer with a vector coil attachment by varying the cooling field H_{FC} applied along the FeF₂ easy axis. At low H_{FC} a single longitudinal hysteresis loop is observed, negatively shifted with a large exchange field. With increasing H_{FC} , the loop divides into two sub-loops shifted oppositely from zero field by the same amount. The positively shifted sub-loop grows in size with H_{FC} until only a single positively shifted loop is found. Throughout this process, the negative/positive (sub)loop shift has maintained the same *discrete* value. This is in sharp contrast to films with twinned FeF₂ where the exchange field gradually changes from negative to positive values with increasing H_{FC} . The transverse magnetization shows clear correlations with the longitudinal sub-loops. Interestingly, over 90% of the Ni reverses its magnetization by rotation, either in one step or through two successive rotations. These results are attributed to the single crystal nature of the antiferromagnetic FeF₂, which allows two opposite regions of large domains to couple to the Ni with a larger average effect than the small domains in the twinned FeF₂.