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ABSTRACT OF THE THESIS

Analysis of Geometry and Deep Learning-based Methods for Visual Odometry

by

You-Yi Jau

Master of Science in Electrical Engineering (Signal and Image Processing)

University of California San Diego, 2020

Professor Manmohan Krish Chandraker, Chair
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In the fields of VR, AR, and autonomous driving, it is critical to track the accurate

location of an agent using cameras. This thesis dives into the problem of using ordered image

sequences for localization, known as visual odometry. The lines of research can be categorized

into two main group, geometry-based methods and deep learning-based methods. Geometry-

based methods have been explored for over a decade, which yield robust real-time prediction in

both outdoor and indoor environments. In recent years, deep learning-based methods show the

potential to outperform geometry-based methods in localization. However, they are yet to be

proved as accurate in variety of scenes. In this thesis, we first dive into a complete geometry-
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based pipeline and point out the key factors for a robust system. Second, we design a deep

learning-based camera pose estimation pipeline with geometric constraints, which generalizes

better than the learning-based baselines under two datasets. In the end, we explore the possibility

of enhancing deep learning prediction based on geometric optimization. The thesis plots a

road for combining both methods by thorough comparison. By leveraging the advantages of

geometry-based and learning-based methods, the future of a robust visual odometry system can

be anticipated.

xvi



Chapter 1

Introduction

1.1 Overview

Visual odometry has been widely researched. The problem is defined as estimating the

camera pose from ordered images. Applications, including virtual reality (VR), augmented

reality (AR) devices, robots, and self-driving vehicles, usually require real-time localization.

Traditionally, this problem is solved by geometry-based methods, where the geometry between

multiple views of the same object is expressed into mathematical forms, and further enforced

through linear algebra or optimization. However, geometry-based methods have been challenged

by emerging deep learning-based approaches. Deep learning-based methods usually consist of

three parts, models, datasets and loss functions. The prediction from the model is regressed by

the loss functions, where the labels can come from the dataset. With carefully designed labels or

constraints, the model can learn the patterns from data.

The deep learning-based methods have several advantages. First, the model can learn

complex information from data. This has been proven from experiments, e.g. AlphaGo, where the

machines defeat humans using a large amount of data and calculation. Second, the model can be

optimized end-to-end, so as to achieve better performance. Deep learning models are versatile to

predict from high-level semantics, e.g. objects, to low-level information, e.g. keypoints. Models

can be shared or concatenated for end-to-end optimization, as long as the gradients can flow back

to update the models.
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The geometry-based methods also edge over deep learning-based methods in multiple

ways. First of all, geometry-based methods can be interpreted through mathematical formulation.

This property helps humans understand the capabilities and risks under the methods, whereas

deep networks are mostly black boxes. Secondly, the concept for geometric constraints is

incorporated into the methods, which leads to better generalization ability across different

environments. For example, the same algorithm can work indoors for VR devices and outdoors

for self-driving cars.

With the advantages of both methods, this thesis aims to analyze the pros and cons

of geometry-based and deep learning-based methods across different scenes. To evaluate the

algorithms, the predicted localization for each frame can be accumulated into a trajectory,

which is compared with the ground truth from the dataset. The thorough qualitative results and

quantitative results are shown in the comparison.

To understand the topics, we introduce the concept and applications of camera pose

estimation, visual odometry and SLAM in the following sections. The three topics look at a

problem from different perspectives.

1.2 Camera Pose Estimation

Camera pose estimation is a building block for the general Structure From Motion (SFM)

problems. With the input of ordered or unordered images, the pipeline solves for the camera

poses as well as the 3D structures [6]. In this thesis, we focus on the problem with the input of

ordered images, namely frames from videos.

1.3 Visual Odometry (VO)

Visual odometry applies the idea of camera pose estimation to a video sequence. The

typical output is a camera trajectory w.r.t. the world coordinate, which shows how the camera

moves from frame to frame. This is the key technique for VR and AR devices because the
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animation should be projected based on the position of the user. In the field of self-driving cars,

visual odometry has been utilized to track the real-time positions, and further been incorporated

with the motion planning algorithms.

In the applications, accuracy and response time are important factors. One obvious

question is the availability of other sensors, i.e. GPS or IMUs. GPS can give the position w.r.t. the

world coordinate, but the error is up to meters and is unresponsive in indoor environment [1].

IMU measures the relative rotation and translation from acceleration and angular velocity.

However, due to drifting issues, it is not suitable for long-term prediction. On the other hand,

visual cues are useful for short-term and long-term prediction, where a camera for a robot is the

analogy of an eye for a human being. The details of the visual odometry pipeline are introduced

in Ch. 2.

1.4 Simultaneous Localization and Mapping (SLAM)

SLAM systems demonstrate a complete pipeline for both localization and mapping

[20, 47]. Localization and mapping are a chicken-and-egg problem, which is usually optimized

iteratively. The differences between visual odometry and SLAM systems include mapping and

loop closure. Mapping can transform the 2D points into 3D points, and add the points into

a global map. By emphasizing the maintenance of a global map, the drifting problem can be

reduced. In loop closure, previous frames are recorded in order to detect a loop in the trajectory.

When the loop is detected, the trajectory within the loop can be optimized all together.

1.5 Thesis Outline

The chapters are organized as follows. Ch. 2 introduces the basic pipeline for visual

odometry and recent work for geometry-based and deep learning-based methods. Ch. 3 describes

the analysis of geometry-based methods across datasets, where ORB-SLAM2 [47, 48] is tested

on KITTI [26] and EuRoC [13] datasets. In Ch. 4, we introduce an end-to-end method for camera
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pose estimation with the advantages of geometric constraints, which is evaluated on KITTI [26]

and ApolloScape [34] datasets. In Ch. 5, we identify the limitation of deep learning-based

method for visual odometry and the potential to increase the robustness. Ch. 6 summarizes the

work and points out future directions.

1.6 Keywords

Computer vision, deep learning, robotics, camera pose estimation, Structure From Motion

(SFM), Simultaneous Localization and Mapping (SLAM), Visual Odometry (VO), multi-view

geometry, optimization.

1.7 Terminology

Structure from Motion (SfM), Simultaneous Localization and Mapping (SLAM), Visual

Odometry (VO), virtual reality (VR), augmented reality (AR), Global Positioning System

(GPS), Inertial Measurement Unit (IMU), 2-dimension (2D), 3-dimension (3D), singular value

decomposition (SVD), Root Mean Square Error (RMSE), Micro Aerial Vehicle (MAV), RANdom

SAmple Consensus (RANSAC), Levenberg–Marquardt algorithm (LM algorithm), Bundle

Adjustment (BA), Degrees of freedom (DoF), Structural Similarity Index (SSIM)
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Chapter 2

Background and Related Work

This chapter provides an overview on visual odometry in Ch. 2.1. The related work for

geometry-based methods and deep learning-based methods are introduced in Ch. 2.2 and Ch. 2.3.

2.1 Overview on Visual Odometry

In this section, I will discuss the history and problem formulation of visual odometry,

and the building blocks of a standard pipeline. The summary is inspired by the Visual odometry

tutorials [24, 59] , Wu’s dissertation [74] and Multiple View Geometry in Computer Vision [33].

2.1.1 History

Deriving 3-dimensional (3D) camera motion purely from images was explored in the

early 1980s. The work from Moravec [46] was about the Mars rover from NASA. The 3D

camera motion from images was estimated in order to perform remote control or navigation. It

showed the early work for feature detection in gray images. Moravec was performing odometry

under a stereo setting. A camera was slided in a 3×3 window with known baselines (distance

between cameras) at each time stamp. With sparse features on 9 images, normalized cross

correlation was performed to match keypoints. Outlier rejection was done by checking the

consistency between point locations on the 9 images. Survived points were triangulated to find

the depth. Least squares of distances between two sets of 3D points were solved to find the

relative transformation.
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With the development of the algorithms, software and hardware, Nister [51] proposed the

first monocular visual odometry with feature detection, matching and pose estimation. Features

were detected with Harris corner detector [31] and matched with normalized cross correlation.

To initialize the first set of 3D points, relative poses were estimated through the 5-point algo-

rithm [50] in a 2D-2D correspondence setting, which became popular afterwards. Then, 2D

correspondences can be triangulated into 3D points with known relative poses. When a new

frame is added, 2D-3D correspondences could be formed from known 3D points. The correspon-

dences were utilized for pose estimation using 3-point algorithm, or PnP [30]. RANSAC [22]

was applied for outlier rejection on pose estimation stages.

The method from Nister [51] has served as the basic pipeline for visual odometry. The

following sections introduce the methods in details.

2.1.2 Problem Formulation

Notation. We refer to the pair of images as I,I′ ∈ RH×W , the transformation matrix from frame

i to j as Ti, j = [R|t] ∈ SE(3), where R ∈ SO(3) in R3×3 is the rotation matrix and t ∈ R3×1 is

the translation vector.

Given a set of images I0:n = {I0, ...,In}, the camera trajectory w.r.t. the world coordinate

is solved as T0,w:n,w = {T0,w, ...,Tn,w}. Assume a homogeneous 3D point, Xi = [xi,yi,zi,1], in

the world coordinate is projected to a homogeneous 2D point, pi = [ui,vi,1]. The intrinsic matrix

K can be found by camera calibration (Ch. 2.1.4). The transformation matrix T = [R|t] can link

the world coordinate to the camera coordinate through the following equation,


h∗ui

h∗ vi

h

= K
[

R|t
]


xi

yi

zi

1


. (2.1)

pi and Xi are represented in homogeneous coordinate, and h is the arbitrary scaling factor in the
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Figure 2.1. Camera projection model. The figure is inspired by the figure in [33].

homogeneous coordinate [33], which could be normalized to find the coordinate p′ = [u′,v′]. To

be noted, we adopt left multiplying convention for the transformation matrix in the thesis. The

projection is shown in Fig. 2.1.

Absolute pose estimation

The final output of visual odometry is the camera trajectory, which represents the camera

poses w.r.t. the world coordinate, defined as T0,w:n,w. The pose, Ti,w = [Ri,w|ti,w], is the absolute

pose of the camera at time i. It describes the camera pose, i.e. the rotation and translation, from

the perspective of the world coordinate. Eq. (2.1) describes the relation between corresponding

2D points on the image Ii and 3D points in the world coordinate, and can be applied to solve for

Ti,w from the correspondences. The world coordinate is pre-defined and should be consistent

during the estimation.

Relative pose estimation

Instead of estimating the absolute pose, we can estimate the relative pose from frame i

to j as Ti, j = [Ri, j|ti, j]. The transformation from the camera to the world coordinate should be

obtained to fulfill Eq. (2.1). Given the camera pose Ti,w at time i and relative pose Ti, j, the pose

T j,w at time j can be inferred as

T̃ j,w = (T̃i, j)
−1 ∗ T̃i,w, (2.2)
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Images Detection Description Matching Estimation Camera 
poses

Figure 2.2. Basic pipeline of visual odometry. Given input images, cameras poses are esti-
mated.

where T̃i, j is the augmented transformation matrix. In the matrix form, transformation matrix

Ti, j ∈ R3×4 is augmented as a 4×4 matrix with an additional row [0,0,0,1], where

T̃ =

R t

0 1

 . (2.3)

We apply the left multiplying convention, denoted as ∗. This forms a linear system, where

composition is achieved by matrix multiplication.

Therefore, the camera trajectory can be obtained from relative poses and a reference

absolute pose. In evaluation, the trajectory is aligned with the ground truth trajectory before

comparison. The modules in the following sections can be connected to estimate the camera

trajectory, as shown in Fig. 2.2. Given images as input, camera poses are predicted.Ch. 2.1.3 and

Ch. 2.1.4 describe the properties of poses and camera model. Feature detection, description and

matching are described in Ch. 2.1.5, and estimation is described in Ch. 2.1.6 and Ch. 2.1.7.

2.1.3 Pose Representation

Pose inversion

From Eq. (2.3), the inverse of an augmented pose could be found by simply inversion of

the matrix, where T̃i, j = T̃−1
j,i . With the known constraint for rotation matrix R∗RT = I3×3, we

can infer

T̃i, j ∗ T̃ j,i = T̃i, j ∗ T̃−1
i, j =

Ri, j ti, j

0 1

∗
RT

i, j −RT
i, jti, j

0 1

= I3×3, (2.4)

which easily leads to the inversion.
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Euler angle

The rotation matrix can be represented as the euler angle in R3, which is the the composi-

tion of rotation w.r.t. 3 axes. The rotation w.r.t. x,y,z-axis is represented as Rx(θx),Ry(θy),Rz(θz).

For example, Given the rotation angle (θx,θy,θz), the rotation matrix can be found as R =

Rx(θx)Ry(θy)Rz(θz), with the x-y-z ordering. To be noted, orders of multiplication should be

fixed to have consistent results. More details can be found in [3].

Euler angle is convenient because it is the minimum number of representation and easy

to understand. When using this representation, the total transformation can be formulated as

(θx,θy,θz, tx, ty, tz). However, there’s singularity problem known as gimbal lock.

Quaternion

Another form to represent rotation is the quaternion vector, denoted as a 4D unit vector

a+bi+cj+dk, where a,b,c,d are real numbers, and i, j,k are the axes defined in the quaternion

space. Quaternion is robust without the singularity issue in euler angles, but is hard to compre-

hend. More details can be found in [4]. When using this representation, the total transformation

is in the form of 7D vector, with quaternion and translation vectors.

Rodrigues’ rotation formula

Rogridues’ rotation formula in R3 is related to axis-angle representation. It can be

understood as rotating an angle θ w.r.t. an axis k in R3. The axis-angle representation is also

be known as the log and exponential map of the rotation matrix. More details can be found

in [2, 5, 18].

2.1.4 Camera Model and Calibration

Among the camera models, pinhole camera model is popular and used in the article.

Projection from 3D points X to the image can be described as the light rays passes the camera

center c0 =(u0,v0). A light ray appears to be a pixel p on an image at the focal length f0 =( fu, fv),
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where numerous rays form a whole image. The mapping from 3D to 2D can be expressed as

h


u

v

1

= K∗X =


fu 0 u0

0 fv v0

0 0 1




x

y

z

 . (2.5)

To be noted, Eq. (2.5) shares the same meaning as Eq. (2.1). Matrix K is called intrinsic matrix

with intrinsic parameters. Image coordinates can be normalized with intrinsic matrix. Let

p̃ = K−1 ∗p as normalized image coordinates, where p̃ = [ũ, ṽ,1].

When capturing images, distortion may occur and make straight lines curved. The effect

could not be expressed from the intrinsic matrix, but can be corrected on the image. In radial

distortion, the image grid is distorted from the radial center, which can be modeled as high order

polynomial, as described in [33], p.191.

The intrinsic and distortion parameters can be found through calibration, which is

available in Matlab and C code. In the thesis, we assume the parameters are known.

2.1.5 Feature Extraction and Matching

As we can see from the examples in Ch. 2.1.1, matching, or correspondences are the key

to camera pose estimation. The points used in correspondences are usually called keypoints or

features, in the form of pi. Given a new frame j, the matching with the previous frame i can

be found to form 2D-2D correspondences, which could be solved for relative pose Ti, j. If the

3D locations of the matched keypoints on the previous frame are known, we can form 2D-3D

correspondences. The absolute camera pose T j,w can be solved.

To form a set of matching points, there are two streams of work. The first one is to

track the keypoints by checking the matching with the neighboring pixels in the next frame. As

in [46] and [51], normalized cross-correlation of a patch is applied to find correspondences in a

search region. However, the approach is based on the assumption of small baselines between two

images, which is not true for SfM systems or large rotation motions. The second line of research
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is to perform matching on the whole image. The correspondences are found through matching

the descriptors. Feature detection, description and matching is to be discussed.

There are many feature detectors proposed since Moravec [46], which can be categorised

into corner and blob detectors. The quality of a detector can be evaluated through localization

accuracy (image coordinates), repeatability (a keypoint can be discovered across different

images), distinctiveness (a keypoint can be matched correctly), and so on. A corner detector

discovers the keypoints from the intersection of lines, e.g. Harris [31] and Fast [66] detectors. On

the other hand, a blob detector focuses on the difference between neighboring pixels, which can

be found through gradients, e.g. SIFT [42], and SURF [9]. Detectors have different properties.

For example, SIFT detector is known for scale and rotation invariance with subpixel accuracy.

SURF detector is not as rotation invariant, but more efficient than SIFT.

With a set of keypoints from each image, descriptors are the key to form matching. Early

descriptors take a patch around the keypoint and calculate similarity through normalized cross

correlation (NCC) or sum of squared differences (SSD). However, the method is not scale nor

rotation invariant and prone to errors. SIFT [42] has been proven to be robust for extracting

distinctive features. Through scale-space pyramid, SIFT takes the keypoint at the most dominant

scale. When constructing the descriptor, patches adapted by scale and orientation are sampled

into a 4× 4 grid. In each grid, histograms of gradient magnitude are formed in 8 discretized

directions, which create an overall 4×4×8, 128 dimension vector for each descriptor.

With two sets of keypoints and descriptors, correspondences can be found through nearest

neighbor matching. Two-way nearest neighbor matching ensures the descriptor is the closest to

each other. Moreover, ratio test, which rules out the matching whose second closest feature is

closer than a threshold, can increase the robustness to repetitive patterns.

2.1.6 Motion Estimation

Motion estimation can be categorized into two groups, epipolar geometry and optimiza-

tion. Here we briefly introduce the basic idea.
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Epipolar geometry

To solve for camera pose using epipolar geometry, we require correspondences as input.

Given 2D-3D correspondences, PnP [38] is applied to find absolute camera pose w.r.t. the world

coordinate. Only a minimum of 3 points are required to estimate the pose up to scale. This is

easier and faster to apply RANSAC compared to other models needing more points. Due to the

robustness of the algorithm and small number of required matching, PnP algorithm is adopted by

many visual odometry pipelines, including ORB-SLAM [47, 48].

However, 2D-3D correspondences are sometimes not feasible if 3D points are not avail-

able, such as the initialization of the system. With only 2D-2D correspondences, fundamental

matrix or essential matrix can be estimated to solve for the camera pose. Here we briefly intro-

duce the equations, which can be found in [33] for more details. The relation between a pair of

corresponding points, p = [u,v,1] and p′ = [u′,v′,1] can be related as,

p′T Fp = 0 (2.6)

where F ∈ R3×3 is the fundamental matrix. F incorporates the projection matrix and the relative

pose up to scale, which has 7 degrees of freedom with rank 2. It is useful when the camera

intrinsic matrix is unknown. The equation can be interpreted as the coordinate p′ is on the

epipolar line F∗p = 0. By normalizing the image coordinates, we can have,

p̃′T Ep̃ = (K′−1p′)T E(K−1p) = p′T ∗K−T EK−1 ∗p = 0, (2.7)

where E is called essential matrix, with 5 degrees of freedom. E incorporates the relative pose

without scale. F can be converted into E through the equation

E = K′T FK. (2.8)
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8-point algorithm [32] can be applied to solve for the fundamental matrix from correspondences.

When camera parameters are known, 5-point algorithm [50] is applied to solve for E.

An essential matrix contains the information of rotation and translation.

E = [t]×R = R[RT t]×, (2.9)

where [.]× ∈ R3×3 is the cross-product matrix.

Using singular value decomposition (SVD), we can solve for the rotation and translation

from the essential matrix. However, we get 4 solutions with the combinations of 2 rotation

matrices and 2 translation vectors. Although all solutions satisfy Eq. (2.9), the only solution can

be found by checking if all points are in front of the camera.

Optimization method

Optimization method, on the other hand, requires no detection and description steps

when solving for the camera poses, while coarse correspondences are built through initial depth

and pose. Given the parameters, and initial estimate, the solution is found by minimizing the

energy function. Newton, Gauss-Newton, gradient descent, and Levenberg–Marquardt algorithm

(LM algorithm) are common options [33, 52].

The idea to estimate the relative camera pose is to enforce the photometric consistency

across two frames. An example of energy function is shown as follows,

E(Tr,t) = ∑
i
(Ir(pi)− It(ω(pi,Dr(pi),Tr,t)))

2, (2.10)

where the subscript r is for reference frame, t is for target frame, and i is for image points [20].

The parameters are the camera pose from reference to target frame, Tr,t . The function ω(.) is the

warping function using 2D points p, depth D, and pose T. The function I(.) gets the intensity

value from the image coordinate p. The warping forms the correspondences between Ir and It .
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2.1.7 Outlier Rejection

Outliers lie in mostly every sampling-based method, and may deteriorate the prediction.

It is crucial to have outlier rejection mechanisms for robust estimation, i.e. RANdom SAmple

Consensus (RANSAC) [22, 65]. The typical steps in RANSAC are as follows, summarized from

the Algorithm 4.4 in [33].

Given a dataset S containing outliers,

1. Randomly sample a subset s to fit the model.

2. Given a metric and a threshold t, find the inlier set Si of the current estimate.

3. If the size of Si, denoted as N(Si), is larger than before, save the estimate and N(Si).

4. If N(Si) is larger than some threshold T , or N steps are reached, terminate the loop. Use

the largest inlier set Si to generate final estimate.

The accuracy is affected by the threshold t, T , and number of steps N. To guarantee the accuracy,

N could be decided by the number of samples in minimum subset s to fit the model, and the

percentage of outliers. The larger subset s is or the higher percentage of outliers, more iterations

are needed. The rule of thumb is to use the outlier rejection mechanism whenever outliers exist.

2.1.8 Triangulation and Keyframe Selection

With the relative poses and correspondences between two frames, we can do triangulation

to find the depth (or disparity) of the point, which lifts the 2D points to 3D points. The basic idea

of using triangulation is to utilize the relation p = T ∗X and p′ = T ′ ∗X, where p and p′ define

the correspondences on the images, X is the shared 3D points, and T, T′ define the projection

from the 3D points to the image planes. T and T′ are the absolute poses. We can define T̃ = I4,

so T̃′ = T̃rel ∗ T̃. The 3D point can be lifted based on the camera coordinate system in the first

image. The relation can be formulated as a linear problem, and solved by the Direct Linear

Transformation (DLT) algorithm. More details can be found in Ch. 4.1 and Ch. 12.2 in [33].
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When doing triangulation, images with large baselines could reduce the error, where

keyframes are usually introduced for the condition. When the motion between two cameras

is large, the triangle of the 3D point and the correspondences can be formed correctly. In a

keyframe-based system, we can do triangulation only on the selected keyframes. The keyframes

are the representative frames, or at least have some distance between each other. Everytime the

keyframe is selected and inserted, the 2D correspondences between the inserted keyframe and

previous keyframes can be triangulated to 3D points, and added to the global map.

2.1.9 Bundle Adjustment (BA)

With the pipeline estimating the camera motion using correspondences, the estimation

can be further optimized using bundle adjustment. The key idea is to optimize the estimate across

multiple frames using the consistency between the poses and points. The bundle adjustment

in a keyframe-based system can have the benefit of optimizing across more distinctive frames.

The trajectory coverage of one optimization is also larger than the system without keyframes,

which reduces the drifts effectively. Bundle adjustment can be categorized into geometric bundle

adjustment and photometric bundle adjustment.

Assume we have N frames in a window of optimization. In geometric bundle adjustment,

we have a global map with 3D points and the corresponding 2D projected points scattered on the

N frames. To be noted, not all the points are observed by every frame. We also have the absolute

poses of the N frames. The energy function is defined as the reprojection error of the 3D points.

min
T̂i
,X̂ j

∑
i j

d(KT̂iX̂ j,pi
j)

2, (2.11)

where T̂i are the poses in N frames, X̂ j are the 3D points, and pi
j is the projected 3D point j on

frame i. Assume the intrinsic matrix K is known. d(p,p′) is the distance between the points p

and p′ on the 2D image plane. The optimization of 3D points and camera poses can be done

through the method described in Ch. 2.1.6, as shown in Fig. 2.3. More details can be referred to
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Frame k-3 Frame k-2 Frame k-1 Frame k

Figure 2.3. Geometric bundle adjustment. The clouds host 3D points and have matching with
2D points across frames. The optimization is applied on the 2D-3D correspondences across
multiple frames. Non keyframes are skipped during the optimization.

Ch. 18.1 in [33].

For photometric bundle adjustment, we have the same parameters to optimize but different

energy function. The idea is similar to Eq. (2.10), but is extended to N frames. The parameters

are optimized using the photometric consistency. It usually requires more computational cost

than geometric bundle adjustment with known 2D-3D correspondence. The method is introduced

in LSD-SLAM [20] and DSO [19].

2.2 Geometry-Based Method

Visual odometry (VO) is a well-established field [21, 23, 49], which estimates camera

motion between image frames. This line of research can be separated into two main groups,

feature-based methods and direct methods. For feature-based methods, e.g. [27, 47], sparse

keypoints for images are detected and described in order to form a set of correspondences. The

correspondences are then used for pose estimation using 8-point algorithm [32], PnP [38], or

optimized jointly with pose using bundle adjustment [67]. Due to the presence of localization

noise and outliers, RANSAC [22] is a popular choice for outlier rejection. However, the method
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struggles in case of textureless or repetitive patterns, where keypoints are noisy and difficult

to match, as it only uses sparse features across the image and and strives to find a good subset

of them. This issue motivated the direct methods [20, 49], which maximizes photometric

consistency over all pixel pairs. However, the method suffers in dynamic scenes or challenging

lighting environments. Methods combining sparse feature-based methods and direct methods are

proposed in recent years, e.g. [19, 21, 23], and in addition, loop closure and bundle adjustment

(BA) have been applied to extend VO to simultaneous localization and mapping (SLAM).

2.3 Deep Learning-Based method

Learning-based visual odometry

Deep learning for VO has developed rapidly in recent years, e.g. [8, 10, 36, 39, 40, 62,

64, 70, 84], taking advantages of convolutional neural networks (CNN) for better adaptation

to specific domains. For the monocular camera setting, CNN-SLAM [64] claims that learned

depth prediction helps in textureless regions and corrects the scale. PoseNet [36] utilizes CNN to

predict a 6 DoF global pose and claims the ability to adapt to a new sequence with fine-tuning.

To take advantages of temporal information, DeepVO [70, 71] proposes to use recurrent neural

networks (RNN) to predict poses along the sequence. The most recent work is [75] which brings

learnable memory and refinement modules into the framework. For the sparse feature-based

category, some works have been done using learning-based methods, e.g. [16, 17, 35, 82]. In [35],

feature descriptors of a two-layer shallow networks is combined with the SLAM pipeline. In

addition, SuperPoint [16, 17], which is a learned feature extractor, is combined with BA to

update the stability score for each point. However, learned feature extractor is employed in an

off-the-shelf manner, which may not be optimal from an end-to-end perspective.

Learning-based feature extraction and matching

Feature extraction, which consists of keypoint detection and description, has been utilized

in a variety of vision problems. Traditionally, detectors [42, 58, 66] and descriptors [42, 58]
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are mostly designed by heuristics. SIFT [42], which utilizes the Gaussian feature pyramid

and descriptor histograms, has achieved success over the past decade. In recent years, deep

learning has been utilized to build up feature extractors, e.g. [17, 53, 77]. To our knowledge,

LIFT [77] is the first end-to-end pipeline, which consists of a SIFT-like procedure with sliding

window detection and is trained on ground truth generated from SIFT and SfM [73]. LF-net [53]

optimizes keypoints and correspondences with gradients using ground truth camera poses and

depth. SuperPoint [17] proposes a self-supervised pipeline to train detector and descriptor at

the same time and beats SIFT in HPatches [7] evaluation, with some follow-up works [15, 63].

However, all of the feature extractors are not optimized in together with the overall VO system,

leading to suboptimal performance. Also, their evaluation metrics, i.e. matching score, does not

necessarily reflect the performance of pose estimation in a VO task.

Learning-based camera pose estimation

Learning-based methods for camera pose estimation have been gaining attention in

recent years. Following direct methods, the works [28, 39, 57, 69, 78, 79, 85] take advantages of

geometric constraints of 3D structure, and jointly estimate depth and pose in an unsupervised

manner using photometric consistency. Poursaeed et al. [54] uses Siamese networks [37]

to regress the fundamental matrix between left and right views through the sequence. For

feature-based pipeline, DSAC [11] makes a differentiable sampling-based version of RANSAC,

while others [45, 56] utilize PointNet-like architecture [55] to weigh each input correspondence

and subsequently solve for the camera pose. These methods retain the mathematical and

geometric constraints from traditional methods, and therefore can be more generalizable than

direct prediction from image appearance.

2.4 Conclusion

In this chapter, we introduce the basic pipeline of visual odometry using epipolar geome-

try or optimization. The building blocks are critical for a robust visual odometry system. We
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also introduce the related work for geometry-based and deep learning-based methods. The field

is actively explored using deep learning. This leads to the following analysis and development

for both methods.

In Ch. 2, in part, has been submitted for publication of the material as it may appear in

Conference on Intelligent Robots and Systems (IROS), 2020. You-Yi Jau, Rui Zhu, Hao Su,

Manmohan Chandraker. The thesis author was the primary investigator and author of this paper.
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Chapter 3

Geometry-Based Method for Visual Odom-
etry

We choose the sparse keypoint-based method from the geometry-based categories due to

clear success of the line of research, compared to direct or dense methods. ORB-SLAM [47, 48]

is selected as our framework for geometry-based method because it is a monocular system that

works well across different scenes. It serves as a strong baseline against later approaches.

In the following sections, we give an overview of ORB-SLAM pipeline in Ch. 3.1.

Experiments on two different datasets are presented in Ch. 3.2. The analysis and discussion is in

Ch. 3.3, and the conclusion is in Ch. 3.4.

3.1 Overview to ORB-SLAM

From Fig. 3.1, we can see the pipeline of ORB-SLAM with image frames as input.

Different modules, including tracking, mapping, and loop closing, are designed to enhance the

accuracy and robustness. Keyframes and global map are critical for long-term prediction as well

as the balance of efficiency. In our experiments, we disable loop closing module, and evaluate

the visual odometry. We call the system as ORB-SLAM-VO.
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Figure 3.1. Overview of ORB-SLAM. The figure is from the original paper [47].
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3.1.1 Tracking

The tracking module follows the general pipeline as in Ch. 2.1, from feature extraction,

matching to pose estimation. For feature detection and description, ORB-SLAM uses ORB

features [58], which consists of multi-scale FAST corners [66] and 256 bit descriptors. With the

ORB features, we can initialize the first pose from 2D-2D correspondences. Then, triangulation

and bundle adjustment (Ch. 2.1.9) are done for map initialization. To be noted, heuristic design

is made to enhance robustness.

Once the initialization is done, current pose is predicted from the previous pose and

optimized through 2D-3D correspondences. We use constant velocity model to generate initial

pose [80]. 2D-2D correspondences are found through guided search with the initial pose. The

search range is increased to be wider if few correspondences were found. The 2D-2D matching

can be extended to 2D-3D with the known 3D coordinates from the previous frame. Also, the

2D-3D correspondence set are further expanded through a local map with a set of keyframes.

The optimization is performed in the similar way in Ch. 2.1.9.

Keyframes play a role to incorporate temporal consistency and reduce drift. Instead of

performing optimization across every frame, we select keyframes as representatives. Keyframe

selection is based on the number of overlapping keypoints or matching with the reference

keyframe. Once a new keyframe is inserted, triangulation and optimization are performed

afterwards. The optimization updates the absolute poses of keyframes, where the regular frames

in between are represented as relative poses w.r.t. the nearby keyframe.

3.1.2 Mapping

Different from tracking module, which deals with every frame, mapping module only

takes care of keyframes. It also manages a global map consisted of 3D map points, keyframes,

and the covisibility graph. For every keyframe insertion, map points and keyframes are examined

for maintenance. Redundant points, which are erroneous or not trackable, are deleted during
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point culling. New points are created through triangulation. Covisibility graph shows the relation

of the keyframes, where nodes represent the keyframes and edges indicate that the two keyframes

share overlapping views. Bundle adjustment for poses and points is done for optimization

(Ch. 2.1.9). Redundant keyframes, where most points are covered by other keyframes, are

removed at this stage. The iterative insertion and culling maintain the efficiency of the system in

long term prediction.

3.1.3 Loop Closure

In ORB-SLAM, loop closure is a mechanism to detect and correct long term drifts. The

idea is to compare the current keyframe with previous keyframes to find the loop in the trajectory.

The visual cues are described and compared through bag of words. Once the loop is detected,

optimization is done to correct the pose and points within the loop. However, this module is

disabled in our visual odometry setting.

3.2 Experiments

We perform ORB-SLAM without loop closure, named ORB-SLAM-VO, on KITTI [26]

and EuRoC [13] datasets. The implementation is based on open-sourced ORB-SLAM [48] 1,

with python binding2. The evaluation is performed using the script from [82] 3 and python evo

package [29]. The quantitative results are shown in Tab. 3.1 and Tab. 3.2. The qualitative results

are shown in Fig. 3.2 and Fig. 3.3. To be noted, due to the different definition of axes in [82]

and [29], the axes in Fig. 3.2 are referred to the x,y-axis in the world coordinate, where the axes

in Fig. 3.3 are already in the world coordinate.

1https://github.com/raulmur/ORB SLAM2
2https://github.com/jskinn/ORB SLAM2-PythonBindings
3https://github.com/Huangying-Zhan/kitti-odom-eval
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3.2.1 Datasets

KITTI dataset [26] was published in 2013 and has become a standard visual odometry

benchmark. The dataset captures outdoor scenes from a vehicle. The benchmark contains 22

sequences in total, where sequences 00-10 have ground truth poses released. The ground truth

poses are obtained from GPS and IMU. We run ORB-SLAM-VO on sequences 00-10.

EuRoC dataset [13] contains visual-inertial data collected by a micro aerial vehicle

(MAV). It presents 11 scenes from easy to difficult in indoor environments with 6D pose ground

truth. We run ORB-SLAM-VO on 10 sequences (except MH 03 medium).

3.2.2 Evaluation Metrics

Average translational/ rotational RMSE

The metric is specific for KITTI dataset, estimating the average error per meter. The error

is averaged over the root mean square error (RMSE) of all possible sequences in the length of

100,200, ...,800 meters. The unit for average translational RMSE is percentage [%], and the unit

for average rotational RMSE is degree per meter [deg/m]. The error is represented as (terr,rerr)

in Tab. 3.1.

Absolute Trajectory Error (ATE)

ATE, also called absolute pose error (APE), is a metric used in TUM dataset [61]. It

estimates the error for absolute poses, which reflects the global accuracy. Since the estimated

trajectory is usually using a different world coordinate from the ground truth, we need to align

the two trajectories. In our case, since the real scale is unknown, we apply Sim(3) Umeyama

alignment [68] with 7 degrees of freedom to align the rotation, translation and scale. The

trajectories are visualized in Tab. 3.1 and Tab. 3.2.
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Table 3.1. Quantitative result of ORB-SLAM-VO on KITTI dataset. We show the results
for odometry sequences 00-10. The metrics are described in Ch. 3.2.2.

Method Metric 00 01 02 03 04 05 06 07 08 09 10 Avg. Err.

ORB-SLAM2 (w/o LC)

terr 21.001 109.677 10.278 1.822 1.510 17.586 25.004 12.436 26.908 18.934 6.000 22.832
rerr 0.278 1.260 0.236 0.337 0.175 0.573 0.605 0.886 0.452 0.468 0.535 0.528
ATE 75.169 483.244 48.063 0.824 1.143 53.379 74.207 20.812 119.772 70.164 20.929 87.973

RPE (m) 0.280 3.184 0.173 0.030 0.047 0.274 0.386 0.142 0.432 0.345 0.109 0.491
RPE (◦) 0.068 0.119 0.061 0.052 0.051 0.051 0.045 0.054 0.059 0.059 0.060 0.062

Table 3.2. Quantitative result of ORB-SLAM-VO on EuRoc dataset. The metrics are de-
scribed in Ch. 3.2.2.

Method Metric MH01 MH02 MH04 V101 V102 V103 MH05 V201 V202 V203 Avg. Err.

ORB-SLAM2-VO
ATE 0.037 0.030 0.101 0.088 0.085 0.431 0.093 0.066 0.066 0.535 0.153

RPE (m) 0.050 0.056 0.107 0.040 0.092 0.080 0.106 0.040 0.090 0.140 0.080

ORB-SLAM2 (w/ LC)
ATE 0.039 0.031 0.064 0.087 0.063 0.305 0.825 0.060 0.055 0.244 0.177

RPE (m) 0.050 0.055 0.107 0.039 0.094 0.120 0.129 0.040 0.090 0.139 0.086

Relative Pose Error (RPE)

The metric, proposed in TUM dataset [61], is applied to evaluate the relative poses.

Assume we have ground truth pose from frame i to j, Tgt
i, j and estimated pose, Test

i, j . The error

term can be computed through the inverse composition of augmented transformation matrix as

T̃err
i, j = (T̃gt

i, j)
−1 ∗ T̃est

i, j . (3.1)

Translation error is computed through RMSE of the translation vector, in the unit of meters (m).

Rotation error is the magnitude of angle in the axis-angle representation, in the unit of degrees

(deg). The quantitative results of ATE and RPE are shown in Tab. 3.1 and Tab. 3.2 for each

dataset.
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Figure 3.2. Qualitative VO results on KITTI dataset using ORB-SLAM2-VO. Ground truth
trajectories are plotted in blue, while estimated ones are in orange. The trajectories are aligned
in 7 DoF.
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3.3 Discussion

Observing the success of ORB-SLAM in KITTI and EuRoC datasets, we analyze the

pipeline and identify several key factors that lead to the success in the system.

3.3.1 Initialization and Relocalization

When 3D-2D correspondences can not be found, 2D-2D matching should be performed

to estimated relative pose. It happens in the phase of initialization and relocalization. In

initialization, global map and 3D points have not yet created. Instead, 2D-2D correspondences

should be found. Initial relative poses are important because they affect the creation of map and

3D points. In ORB-SLAM, we consider the cases of planar or structured scenes in the image. If

the correspondences lie on a planar surface, homography matrix is estimated. For a non-planar

or structured scene, essential matrix is found using the method in Ch. 2.1.6. We heuristically

pick the estimation with better model fitting.

When the tracking is lost, relocalization is performed. The same technique is applied

to find the relative pose w.r.t. nearby keyframes using 2D-2D correspondences. This phase is

critical to recover the estimation when challenging scenes make the system fail.

3.3.2 Outlier Rejection

Outliers appear in the set of 2D-2D, or 2D-3D correspondences, where mechanism is

needed to enhance robustness. During the estimation, RANSAC is applied for outlier rejection,

as described in Ch. 2.1.7.

3.3.3 Keyframe-Based System

ORB-SLAM is a keyframe-based system, which makes the estimation and optimization

efficient. As described in Ch. 2.1.8, the decision of keyframe insertion is made for every input

frame. To be more specific, the conditions for keyframe insertion are as follow.
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• When more than 20 frames are observed since last keyframe, the keyframe is inserted to

ensures good localization.

• When more than 50 points are tracked by this frame, the keyframe is inserted to ensures

good tracking.

• When less than 90% of the points are overlapped as the reference keyframe, the frame is

inserted without redundancy.

When one of the above conditions is satisfied, the current frame is identified as a keyframe. To

reduce redundancy, the system deletes a keyframe when the 3D map points on the keyframe are

overlapped more than 90% by 3 other keyframes. The maintenance of keyframes not only makes

the system efficient, but also leads to robust estimation by taking the advantages of 3D geometry.

3.3.4 Long Feature Tracking

2D-2D correspondences, sometimes across multiple frames, are the key for the estimation

and optimization in ORB-SLAM. Therefore, the feature extractor should be robust to reduce the

outlier rate. ORB-SLAM adopts the ORB features [58], which is faster than SIFT [42] for up

to 2 orders of magnitude. The feature extractor is rotation invariant and robust to noise using

a binary descriptor. The feature detector adopts the design of FAST corner detector [66] with

additional orientation. In general, the sparse keypoints can better survive the change of lightning,

which happens during tracking. The discussion for feature extractor can be found in Ch. 2.1.5.

3.3.5 Robust Bundle Adjustment

The bundle adjustment is performed in two ways, local bundle adjustment and pose graph

optimization. Local bundle adjustment is triggered everytime a new keyframe is inserted. The

poses and 3D points on nearby keyframes are optimized to minimize the reprojection error, as

shown in Ch. 2.1.9.
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However, the complexity grows linearly when the number of frames increase. It is not

feasible to do bundle adjustment for all the keyframes. Instead, pose graph optimization can

perform efficiently to correct the estimated poses [60]. Given the covisibility graph representing

the connectivity between keyframes and the poses between keyframes, the similarity constraint

is put for optimization over 7 DoF. The 6 DoF poses and scales are corrected to reduce drift

issues. The final results can be observed in Fig. 3.2 and Fig. 3.3.

3.4 Conclusion

In this chapter, we pick a monocular SLAM system, ORB-SLAM [47,48] for our analysis

of a robust visual odometry system. We test ORB-SLAM-VO in outdoor and indoor environments

and show the results in Ch. 3.2. Based on the experiments, key factors of the system are analyzed

in Ch. 3.3. This system inspires us of designing a system leveraging geometry-based and deep

learning-based methods. In Ch. 4, we propose a deep learning-based pipeline with geometric

constraints.
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Figure 3.3. Qualitative VO results on EuRoC dataset using ORB-SLAM2-VO. The ground
truth trajectories are plotted in dotted lines, whereas the estimated ones are mapped in colors
with error. The trajectories are aligned in 7 DoF.
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Chapter 4

Deep Keypoint-Based Camera Pose Esti-
mation with Geometric Constraints

4.1 Introduction

Camera pose estimation has been the key to simultaneous localization and mapping

(SLAM) systems. To this end, multiple methods have been designed to estimate camera poses

from input image sequences, or in a simplified setting, to get the relative camera pose from two

consecutive frames. Traditionally a robust keypoint detector and feature extractor, e.g. SIFT [42],

coupled with an outlier rejection framework, e.g. RANSAC [22], has dominated the design of

camera pose estimation pipeline for decades.

Recently there have been efforts to bring deep networks to each step of the pipeline,

specifically keypoint detection [17, 53, 77], feature extraction [17, 53] and matching [11, 17, 53],

as well as outlier rejection [11, 12, 56]. The potential benefit is being able to handle challenges

such as textureless regions by incorporating data-driven priors. However, when combining such

components to replace the classic counterparts, conventional SIFT-based camera pose estimation

still significantly outperforms them by a considerable margin. This could be attributed to three

basic challenges for learning-based systems. First, these learning-based methods have been

individually developed for their own purposes, but never been trained and optimized end-to-end

for the ultimate purpose of getting better camera poses. Geometric constraints and the final pose

estimation objective are not sufficiently incorporated in the pipeline. Second, learning-based
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Figure 4.1. Overview of the system. A pair of images is fed into the pipeline to predict the
relative camera pose. Feature extraction predicts detection heatmaps and descriptors for finding
sparse correspondences. Local 2D Softargmax is used as a bridge to get subpixel prediction
with gradients. Matrix C of size N× 4 is formed from correspondences. C is the input for
pose estimation, where the PointNet-like network predicts weights for all correspondences.
Weighted correspondences are passed through SVD to find fundamental matrix F , which is
further decomposed into poses. Ground truth poses (GT poses) are used to compute L2 loss
between rotation and translation (pose-loss). Correspondences generated from GT poses are
used to compute fundamental matrix loss (F-loss). See more details in Sec. 4.2.

methods have over-fitting nature to the domains they are trained on. When the model is applied

to a different dataset, the performance is often inconsistent across various datasets compared to

SIFT and RANSAC methods. Third, our evaluation shows that existing learning-based feature

detectors, which serve at the very beginning of the entire pipeline, are significantly weaker

than the hand-crafted feature detectors (e.g. SIFT detector). This is because obtaining training

samples with accurate keypoints and correspondences, at the level to surpass or just match the

subpixel accuracy of SIFT, is tremendously difficult.

In face of these issues when naively putting existing learning-based methods together,

we propose the end-to-end trained framework for relative camera pose estimation between

two consecutive frames (Fig. 4.1). Our framework integrates learnable modules for keypoint

detection, description and outlier rejection inspired by the geometry-based classic pipeline. The

whole framework is trained in an end-to-end fashion with supervision from ground truth camera

pose, which is the ultimate goal for pose estimation. Particularly, in facing the third challenge of

requiring accurate keypoints for feature detector training, we introduce a Softargmax detector

head in the pipeline, so that the final pose estimation error could be back-propagated to provide
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subpixel level supervision.

Experiments show that the end-to-end learning can drastically improve the performance

of existing learning-based feature detectors, as well as the entire pose estimation system. We

show that our method outperforms existing learning-based pipelines by a large margin, and

performs on par with the state-of-the-art SIFT-based methods on various datasets. We also

demonstrate the significant benefit of generalizability to unseen datasets compared to learning-

based baseline methods. We evaluate our model on KITTI [26] and ApolloScape [34] datasets

and demonstrate not only quantitatively but also qualitatively. That is, by training end-to-end,

we are able to obtain relatively balanced keypoint distribution corresponding to appearance and

motion patterns in the image pair.

To summarize, our contributions include:

• We propose the keypoint-based camera pose estimation pipeline, which is end-to-end

trainable with better robustness and generalizability than the learning-based baselines.

• The pipeline is connected with the novel Softargmax bridge, and optimized with

geometry-based objective obtained from correspondences.

• The thorough study on cross-dataset setting is done to evaluate generalization ability,

which is critical but not much discussed in the existing works.

We describe our pipeline in detail in Sec. 4.2 with the design of the loss functions and

training process. We show the quantitative results and qualitative results of pose estimation in

Sec. 4.3.

4.2 Method

4.2.1 Overview

We propose a deep feature-based camera pose estimation pipeline called DeepFEPE

(Deep learning-based Feature Extraction and Pose Estimation), which takes two frames as input
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Figure 4.2. Network structure of our feature extraction (FE) and pose estimation(PE)
modules. FE module [17] has VGG-like structure, with gray images as input, and detection and
description heatmaps as output. PE module has N correspondences (C) as input, with several
layers of 1D convolution to initialize weights and compute residuals. The weights, residuals and
correspondences are fed into the RNN with the same structure for D iterations (D=5). From the
final correspondences with weights, the fundamental matrix is estimated.

and estimates the relative camera pose. The pipeline mainly consists of two learning-based

modules, for feature extraction and pose estimation respectively, as shown in Fig. 4.1.

Instead of naive concatenation of the modules, careful designs are made for train-

ing DeepFEPE end-to-end, which includes Softargmax [14] detector head and geometry-

embedded loss function. The Softargmax detector head equips the feature detection with

sub-pixel accuracy, and enables gradients from pose estimation to flow back through the point

coordinates. For loss function, we not only regress a fundamental matrix, but also directly

constrain the decomposed poses. We enforce a geometry inspired L2 loss on the estimated

rotation and translation, which leads to better prediction and generalization ability, as shown in

Sec. 4.3. We include more details for DeepFEPE and the network structures in Fig. 4.2.

Notation We refer to the pair of images as I, I′ ∈ RH×W , the transformation matrix from frame i

to j as Ti j = [R|t], where R ∈ R3×3 is the rotation matrix and t ∈ R3×1 is the translation vector.

We refer to a point in 2D image coordinates as p ∈ R2, where p = [u,v].

4.2.2 Feature Extraction (FE)

We use learning-based feature extraction (FE), namely SuperPoint [17], in our pipeline.

SuperPoint is chosen as our base component because it is trained with self-supervision and

34



demonstrated top performance for homography estimation in HPatches dataset [7]. Similar to

traditional feature extractors, e.g. SIFT, SuperPoint serves as both the detector and descriptor,

with the input gray image I ∈ RH×W×1, and output keypoint heatmap Hdet ∈ RH×W×1 and

descriptor Hdesc ∈ RH×W×D. SuperPoint consists of a fully-convolutional neural network with a

shared encoder and two decoder heads as the detector and descriptor respectively, as shown in

Fig. 4.2.

Softargmax Detector Head

To overcome the challenge of training end-to-end, we propose detector head with 2D

Softargmax. In the original Superpoint, non-maximum suppression (NMS) is applied to the

output of keypoint decoder Hdet to get sparse keypoints. However, the output from NMS only has

pixel-wise accuracy and is non-differentiable. Inspired by LF-Net [53], we apply Softargmax

on the 5×5 patches extracted from the neighbors of each keypoint. The final coordinate of each

keypoint can be expressed as

(u′,v′) = (u0,v0)+(δu,δv), (4.1)

where in a given 2D patch,

δu =
∑ j ∑i e f (ui,v j)i

∑ j ∑i e f (ui,v j)
,δv =

∑ j ∑i e f (ui,v j) j

∑ j ∑i e f (ui,v j)
. (4.2)

f (u,v) denotes the pixel value of the heatmap at position (u,v), and i, j denotes the relative

directions in x, y-axis with respect to the center pixel (u0,v0). The integer-level keypoint (u0,v0)

is therefore updated to (u′,v′) with subpixel accuracy.

The output of the Softargmax enables flow of gradients from the latter module to the

front, in order to refine the coordinates for subpixel accuracy. To pre-train the FE module with

Softargmax, we convolve the ground truth 2D detection heatmap with a Gaussian kernel σ f e.

The label of each keypoint is represented as a discrete Gaussian distribution on a 2D image.
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Table 4.1. The reference table for modules and losses trained for experiments. The table
lists all the baselines used in Sec. 4.3.2. Baselines and our models are referred by symbols, as
they consist of different FE and PE modules trained using different losses.

Model References
Feature extraction Pose estimation Loss Training

Catogories Symbols Sift (Si) Superpoint (Sp) RANSAC (Ran) DeepF (Df) F-loss (f) Pose-loss (p) End-to-end (end)

SIFT + RANSAC (Si-base) Si-Ran 3 3

Superpoint + RANSAC (Sp-base) Sp-Ran 3 3

Baseline with Sift + DeepF Si-Df-f 3 3 3

(Si-models) Si-Df-p 3 3 3

Si-Df-fp 3 3 3 3

Ours - no end-to-end training Sp-Df-f 3 3 3

(Sp-models) Sp-Df-p 3 3 3

Ours - with end-to-end training Sp-Df-f-end 3 3 3 3

(DeepFEPE) Sp-Df-p-end 3 3 3 3

Sp-Df-fp-end 3 3 3 3 3

Descriptor Sparse Loss

To pre-train an efficient FE, we adopt sparse descriptor loss instead of dense loss. Original

dense loss [17] collects loss from all possible correspondences between two sets of descriptors in

low resolution output, which creates a total of (Hc×Wc)
2 of positive and negative pairs. Instead,

we sparsely sample N positive pairs, and M negative pairs collected from each positive pair,

forming M×N pairs of sampled correspondences. The loss function is the mean contrastive loss

as described in [17].

Output of Feature Extractor

We obtain correspondences for pose estimation from the sparse keypoints and their

descriptors. To get the keypoints, we apply non-maximum suppression (NMS) and a threshold

on the heatmap to filter out redundant candidates. The descriptors are sampled from Hdesc using

bi-linear interpolation. With two sets of keypoints and descriptors, 2-way nearest neighbor

matching is applied to form N correspondences, an N×4 matrix, as input for pose estimation.

4.2.3 Pose Estimation (PE)

Pose estimation takes correspondences as input to solve for the fundamental matrix.

Instead of using a fully connected layer to regress fundamental matrix or pose directly as
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in [8, 54, 85], we embed geometric constraints, i.e. sparse correspondences, into camera pose

estimation. To create a differentiable pipeline in replacement of RANSAC for pose estimation

from noisy correspondences, we build upon the Deep Fundamental Matrix Estimation (DeepF)

[56], and propose a geometry-based loss to train DeepFEPE.

Existing Objective for Learning Fundamental Matrix

DeepF [56] formulates fundamental matrix estimation as a weighted least squares prob-

lem. The weights on the correspondences indicate the confidence of matching pairs, and are

predicted using a neural network model with the PointNet-like structure. Then, weights and

points are applied to solve for the fundamental matrix. Residuals of the prediction, as defined

in [56], are obtained from the mean Sampson distance [43] of the input correspondences. The

correspondences, weights, and residuals are fed into the model recurrently to refine the weights.

To be more specific, the residuals r(pi,F) are calculated as following:

r(pi,F) = |pi
T Fpi

′|( 1
‖FT pi‖2

+
1

‖Fpi′‖2
), (4.3)

where pi = (u,v,1) and pi
′ = (u′,v′,1) denote a pair of correspondences in the homogeneous

coordinates.

Following [56], the loss is defined as epipolar distances from virtual point on a grid, to

their corresponding epipolar lines, which are generated from ground truth fundamental matrix. It

is abbreviated as F-loss in the following sections.

Geometry-based Pose Loss

Due to the fact that a good estimation in epipolar space does not guarantee better pose

estimation, we propose a geometry-based loss function by enforcing a loss between estimated

poses and ground truth poses. The estimated fundamental matrix is converted into the essential

matrix using calibration matrix and further decomposed into 2 sets of rotation and 2 translation

matrices. By picking the one camera pose where all points are in front of both cameras (which
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gives lowest error among all 4 possible combinations of poses), we obtain the rotation in

quaternions [83] and translation vectors, and compute L2 loss as our geometry-based objective.

Then, loss terms Lrot and Ltrans are collected from the pose with minimum L2 loss.

Lrot = min(‖q(Rest i)−q(Rgt)‖2), i = [1,2], (4.4)

Ltrans = min(‖test i− tgt‖2), i = [1,2], (4.5)

where R, t are decomposed from the essential matrix, and q(.) converts the rotation matrix into

quaternion vector.

The final loss is followed,

L =min(Lrot(Rest ,Rgt),cr)+

λrt ∗min(Ltrans(test , tgt),ct),

(4.6)

where cr and ct are clamping constants for losses to prevent gradient explosion. The geometry-

based loss is abbreviated as pose-loss in the following sections.

4.2.4 Training Process

After initializing both FE and PE modules respectively, we train the pipeline end-to-end.

Our FE module is trained using self-supervised method [17]. The keypoint detector is initialized

by synthetic data, which can be used to generate pseudo ground truth for detectors on any dataset

with single image homography adaptation (HA). Homography warping pairs are generated

on-the-fly for descriptor training [17]. We put a Gaussian filter on the ground truth heatmap

to enable prediction with Softargmax, where σ f e = 0.2. For descriptor sparse loss, we have

Hc = H/8, Wc =W/8, N = 600, and M = 100. NMS window size is set to be w = 4. The model

is trained with 200k iterations on synthetic datasets, and 50k iterations on real images.

With the correspondences from the pre-trained FE, we initialize the PE module using

F-loss. The training converges at around 20k iterations. For training with the pose-loss, We set
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initial cr = 0.1, ct = 0.5 and λrt = 0.1.

When connecting the entire pipeline, the gradients from pose-loss flow back through

the Pose Estimation(PE) module to update the prediction of weights, as well as the Feature

Extraction(FE) module to update the locations of keypoints. The pipeline and supervision is

shown in Fig. 4.1.

4.2.5 Network Structure

Feature extraction

The architecture of feature extraction module follows SuperPoint model [17], which is

a VGG-like structure. Fig. 4.2 depicts the structure of networks, which consists of a shared

encoder with two decoder heads. The encoder has eight 3× 3 CNN layers with size 64-64-

64-64-128-128-128-128. Max-pooling is applied every two layers except the last layer. For

decoders, 1 layer of 3×3 CNN and 1 layer of 1×1 CNN is applied, with size 256-65 for the

detector and size 256-256 for the descriptor. The output for the detector is further processed

by So f tmax, dustbin cleaning, and reshape to the output Hdet ∈ RH×W×1. For the descriptor

output, bi-linear interpolation and L2 Norm along the depth channel is applied to get the heatmap

Hdesc ∈ RH×W×D. BatchNorm nomalization and ReLu activation function are applied to the

output of every layer except the final layer, where there’s only BatchNorm applied.

Pose estimation

The architecture of pose estimation module follows DeepF model [56], which is a

PointNet [55]-like structure. As shown in Fig. 4.2, the module is first used to predict initial

weights, and then being used recurrently for D iterations to refine weights based on previous

prediction and residuals. The module consists of 5 layers of 1D CNN with size 64-128-1024-

512-256, where the kernel size and stride size are equal to 1. For each layer except the last

one, InstanceNorm1d normalization and Leaky−ReLu activation are applied. For the recurrent

network, we keep the design D = 5, which is the final choice made by DeepF [56]. For all pose
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estimation models, we use 1000 correspondences as input.

4.2.6 Parameter Setting

For feature extraction (FE), we mainly follow the choice of parameters of the original

SuperPoint implementation [17]. We set the non-maximum suppression (NMS) distance as 4

pixels, and set the threshold to filter out Hdet after NMS to be 0.015 (≈ 1/65), which corresponds

to the depth of detection map. For feature matching, we calculate the cosine distance dm between

two descriptors, which ranges from -1 to 1. We compute d = 2−2∗dm and set the threshold to

be 1.0.

For pose estimation, we set the clamping of f-loss at 0.02. For pose-loss, we set clamping

to the L2 loss of rotation and translation separately, and decrease the thresholds at 3k and 6k

iterations. The clamping parameters are shown in Tab. 4.2.

Table 4.2. Parameters for clamping pose-loss.

Iterations Rotation Translation clamping

0-3k 0.1 0.5
3k-6k 0.01 0.3
6k- 0.001 0.1

For SIFT matching, we use FlannBasedMatcher and knnMatch with k = 2 in OpenCV .

Then, we use ratio test with threshold 0.8 to extract matching with high quality. For RANSAC,

we use threshold 0.1 to find inliers. For training DeepFEPE, we train with batch size 4 and

learning rate 10-4.

4.3 Experiments

We evaluate DeepFEPE using pose estimation error, and compare with previous ap-

proaches. Acronyms and symbols for the approaches are defined in Tab. 4.1. Different methods

are evaluated on KITTI dataset [25], and further on ApolloScape dataset [34] to show the gen-

eralization ability to unseen data. To be noted, we evaluate for relative pose estimation with
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Image t Image t +1 Si-base Si-model Ours – DeepFEPE

Rot

Trans

Trans

Rot

Figure 4.3. Pose estimation comparison. The first two columns show the image pairs. The last
three columns compare Si-base, Si-model and DeepFEPE. We show 2 examples for rotation and
2 for translation dominated pairs. The blue lines are plotted from ground truth fundamental matrix
Fgt , as the green lines are from estimated Fest . Red dots are the keypoints from correspondences
with high weights. For Si-base, the correspondences are selected by RANSAC, where keypoints
around vanishing points are usually rejected. However, Si-model utilizes all correspondences
to solve for fundamental matrix, which leads to better quantitative results after training. The
distribution of points in DeepFEPE is more balanced than for others, leading to more accurate
pose estimation.

existing baselines in Sec. 4.3.2, but not for visual odometry before extending to multi-frame

setting. We demonstrate significant improvement quantitatively for learning-based methods with

end-to-end training against baselines, as shown in Tab. 4.3 and Tab. 4.5. To give an insight

into the improvement of optimizing SuperPoint from pose-loss, we evaluate the epipolar error

of correspondences quantitatively in Tab. 4.7 and visualize the change of keypoint distribution

during training in Fig. 4.5.

4.3.1 Datasets

We extract all pairs of consecutive frames, i.e. with time difference 1, for training and

testing.

KITTI dataset We train and evaluate our pipeline using KITTI odometry sequences, with ground

truth 6 DoF poses obtained from IMU/GPS. There are 11 sequences in total, where sequences

00-08 are used for training (16k samples) and 09-10 are used for testing (2,710 samples).

ApolloScape dataset The dataset is collected in driving scenarios, with ground truth 6 DoF

poses collected from GPS/IMU. It includes different view angles of the camera and lighting
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variations from KITTI dataset, and is used for generalization testing. We use the training split

from Road 12, 14, 15, 16, 17 for training (22k samples), and testing split in Road 11 for testing

(5.8k samples).

4.3.2 Relative Pose Estimation

We evaluate the performance of DeepFEPE from the estimated rotation and translation,

as in [56]. With the transformation matrix, we calculate the error by composing the inverse of

ground truth matrix with our estimation. Then, we extract the angle from the composed rotation

matrix as the error term.

Rrel = Rest ∗RT
gt , (4.7)

δθ = ‖Rog(Rrel)‖2, (4.8)

where Rog(.) ∈ R3×3→ R3×1 converts a rotation matrix to a Rodrigues’ rotation vector. The

length of the resulting vector represents the error in angle. We measure translation error by

angular error due to scale ambiguity between the estimated translation and the ground truth

vector.

δ t = cos−1(
test · tgt

‖test‖‖tgt‖
) (4.9)

The equation computes the angle between the estimated translation vector and ground truth

vector. With the rotation and translation error for each pair of images throughout the sequence,

we compute the inlier ratio, from 0% to 100%, under different thresholds. Mean and median of

the error are also computed in degrees.

We compare different models as follows. (1) Si-base (classic baseline models): Corre-

spondences from SIFT are fed into RANSAC for pose estimation. (2) Si-models (SIFT and

DeepF models): SIFT correspondences are used to estimate pose using deep fundamental ma-

trix [56], which is the current state-of-the-art relative pose estimation pipeline. (3) Sp-base

(SuperPoint with RANSAC): SuperPoint is pre-trained and then connected to RANSAC for
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pose estimation. (4) Sp-models (SuperPoint and DeepF models): SuperPoint is pre-trained on

the given dataset and then frozen to train DeepF models. (5) DeepFEPE (Our method with

end-to-end training): feature extraction (FE) and pose estimation (PE) are trained jointly using

F-loss or pose-loss. The reference table of the models above are shown in Tab. 4.1, with symbols

representing different training combinations. The models are trained on KITTI and evaluated on

both KITTI and ApolloScape datasets.

Tab. 4.3 compares the learning-based baseline (Sp-base) with our DeepFEPE model,

which shows significant improvement w.r.t. rotation and translation error. Looking into the

rotation error, the pre-trained SuperPoint [17] performs poorly with RANSAC pose estimation

(0.217 degrees median error), whereas the DeepF [56] module improves that to 0.078 degrees.

Our DeepFEPE further improves the rotation median error to 0.041 degrees, with translation

median error from 2.1 (Sp-base) to 0.5 degrees.

Table 4.3. Comparison of pose estimation for learning-based KITTI models on KITTI
dataset. The set of models are trained on KITTI with learning-based feature extraction (FE). It
shows significant improvement from RANSAC to DeepF pose estimation, and from separate
models to end-to-end trained models. (Refer to Tab. 4.1 for acronyms.)

KITTI Models KITTI dataset - error(deg.) inlier ratio↑, mean↓, median↓

Rotation (deg.) Translation (deg.)
0.1↑ Mean.↓ Med.↓ 2.0↑ Mean.↓ Med.↓

Base(Sp-Ran) 0.189 0.641 0.217 0.481 5.798 2.103
Sp-Df-f 0.633 0.100 0.078 0.830 1.476 0.846
Sp-Df-p 0.875 0.130 0.047 0.887 1.719 0.539
Ours(Sp-Df-f-end) 0.915 0.053 0.042 0.905 1.662 0.489
Ours(Sp-Df-p-end) 0.932 0.050 0.041 0.905 1.600 0.503
Ours(Sp-Df-fp-end) 0.910 0.054 0.048 0.917 1.062 0.504

In terms of other baselines, we compare DeepFEPE with Si-models and Si-base in

Tab. 4.4. DeepFEPE achieves better mean translation and rotation error compared to Si-base,

and comparable performance with Si-models. The table demonstrates that the DeepFEPE

model sets up the new state-of-the-art for learning-based relative pose estimation against DeepF.

The qualitative results are shown in Fig. 4.3 and Fig. 4.4, comparing Si-base, Si-model and

DeepFEPE. Pose estimation is visualized by comparing the epipolar lines projected from ground
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Table 4.4. Comparison of pose estimation for SIFT-based KITTI models on KITTI dataset.
The table compares our DeepFEPE model with Si-base and Si-models for pose estimation. Our
model works better than Si-base, and comparable with the state-of-the-art Si-models. (Refer to
Tab. 4.1 for acronyms.)

KITTI Models KITTI dataset - error(deg.) inlier ratio↑, mean↓, median↓

Rotation (deg.) Translation (deg.)
0.1↑ Mean.↓ Med.↓ 2.0↑ Mean.↓ Med.↓

Base(Si-Ran) 0.818 0.391 0.056 0.899 1.895 0.639
Si-Df-f 0.938 0.051 0.041 0.914 1.699 0.484
Si-Df-p 0.901 0.059 0.044 0.903 1.472 0.513
Si-Df-fp 0.947 0.111 0.038 0.916 1.741 0.484
Ours(Sp-Df-fp-end) 0.910 0.054 0.048 0.917 1.062 0.504

Table 4.5. Comparison of pose estimation for learning-based KITTI models on Apollo
dataset. The table compares the learning-based approaches in a cross-dataset setting. The table
shows that our end-to-end DeepFEPE performs the best.

KITTI Models Apollo dataset - error(deg.) inlier ratio↑, mean↓, median↓

Rotation (deg.) Translation (deg.)
0.1↑ Mean.↓ Med.↓ 2.0↑ Mean.↓ Med.↓

Base(Sp-Ran) 0.407 0.205 0.118 0.583 5.645 1.670
Sp-Df-f 0.725 0.126 0.068 0.754 2.074 1.155
Sp-Df-p 0.730 0.124 0.067 0.827 1.905 0.974
Ours(Sp-Df-f-end) 0.841 0.100 0.051 0.910 1.122 0.589
Ours(Sp-Df-p-end) 0.686 0.152 0.071 0.747 2.652 1.068
Ours(Sp-Df-fp-end) 0.864 0.092 0.051 0.924 1.275 0.659

truth and estimated fundamental matrices. If the estimated one is close to ground truth, the

vanishing point should match that of ground truth. Keypoints with high weights predicted by

Pose Estimation (PE) are also plotted for reasoning the relation of point distribution and pose

estimation.

Due to the fact that learning-based methods are biased towards the training data, we

evaluate the models trained from KITTI on ApolloScape dataset. The results demonstrate that our

model retains generalization ability and is less prone to overfitting. From Tab. 4.5, we compare

DeepFEPE model with Sp-base models and observe the benefit from end-to-end training with

lower rotation and translation error. Without end-to-end training, the Sp-base models degrade

significantly (in Tab. 4.3) and are won over by end-to-end models by a large margin. Comparing

to other baselines in Tab. 4.6, we observe that the Si-base demonstrates the highest accuracy, and

DeepFEPE achieves better mean rotation and translation error over Si-models.
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Table 4.6. Comparison of pose estimation for SIFT-based KITTI models on Apollo dataset.
The table compares our DeepFEPE with other baseline methods in a cross-dataset setting. The
results show that Si-base maintains the best overall results, and DeepFEPE performs better than
Si-models.

KITTI Models Apollo dataset - error(deg.) inlier ratio↑, mean↓, median↓

Rotation (deg.) Translation (deg.)
0.1↑ Mean.↓ Med.↓ 2.0↑ Mean.↓ Med.↓

Base(Si-Ran) 0.922 0.157 0.037 0.979 0.788 0.388
Si-Df-f 0.845 0.172 0.043 0.895 2.452 0.389
Si-Df-p 0.727 0.333 0.056 0.760 4.918 0.658
Si-Df-fp 0.840 0.148 0.044 0.911 2.103 0.369
Ours(Sp-Df-fp-end) 0.864 0.092 0.051 0.924 1.275 0.659

To further examine the benefit of geometry-based loss, we can look into Tab. 4.3, with

3 models trained on either F-loss, pose-loss or both. We can observe the model trained using

both losses achieves significantly better mean translation error. We believe this is because the

geometric information incorporated in pose-loss encourages the keypoint distribution in FE to

be pose-aware. The keypoints are updated to balance between good localization accuracy and

matching w.r.t. the pose estimation. The change of keypoint distribution is observed from Fig. 4.5.

This shows the potential of having a robust and optimized feature extractor with end-to-end

training. As observed from the figure, keypoints close to the vanishing point are reduced after

the end-to-end training. It is because these points are good for matching but may incur high

triangulation errors when solving for camera pose, due to their little motion from frame to frame.

On the other hand, points near the border of the image see a noticeable increase. These points

may not be robustly matched with conventional descriptors because of large motion and in some

case motion blur. On the contrary, our method is able to reveal these points which provide wider

baseline for more accurate camera pose estimation.

4.3.3 SuperPoint Correspondence Estimation

To understand how Feature Extraction (FE) module is updated after training, we collect

quantitative results using Sampson distance and demonstrate keypoint distribution qualitatively.

For each pair of correspondences, we calculate the Sampson distance from Eq. (4.3), which
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Si-model Ours – DeepFEPE

Figure 4.4. Failure cases of pose estimation. Compare Si-model with our DeepFEPE. The
failure cases include over-exposed and textureless scenes. The challenging views result in noisy
correspondences and wrong prediction. (Lines and dots are plotted as in Fig. 4.3.)

Before end-to-end After end-to-end training

Figure 4.5. Change of keypoint distribution after end-to-end training. In our pipeline, we
train feature extractor and pose estimation end-to-end. To show the qualitative results of feature
extractor, we freeze pose estimation module and update only feature extractor. The results show
that the change of distribution helps the pose estimation predict better pose. (Lines and dots are
plotted as in Fig. 4.3.)
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Table 4.7. Superpoint evaluation. When training end-to-end, we can see the increase of inlier
ratio w.r.t. Sampson distance and number of correspondences.

KITTI - epiploar dists (n pixels), num of matches: mean/ med.

KITTI Models 0.2 0.5 1.0 2.0 Mean Med.

Sp-Ran 0.080 0.195 0.361 0.581 541.546 533.000
Sp-Df-f-end 0.107 0.258 0.460 0.685 719.986 703.000
Sp-Df-p-end 0.096 0.232 0.421 0.643 626.343 611.000
Sp-Df-fp-end 0.105 0.254 0.453 0.677 669.170 654.000

indicates whether the pair of points lies close to each other’s epipolar line. We show the

inlier ratio w.r.t. different distance value (unit: pixel) from 0.2 to 2, as well as the number of

correspondences in Tab. 4.7. The results show an increase of inlier ratio up to 10% with Sampson

distance below 1px on KITTI dataset. The number of correspondences also increases by around

20%. The result shows that the end-to-end training improves the individual module as well. The

model trained on F-loss has the best result under this metric, as the F-loss minimizes the energy

in epipolar space.

4.4 Conclusion

In this chapter we propose an end-to-end trainable pipeline for estimating camera poses

from input image pairs. We demonstrate that our performance is on par with classic methods,

and superior generalization ability to unseen data compared with other existing baselines. Both

qualitative and quantitative results are included in the chapter to support the claim. We provide

further insights into the benefits that end-to-end training brings into keypoint detection, feature

extraction and pose estimation. Future work of this may include sequential input or keyframes

with long-term temporal cues. Experiments on other datasets with different motion patterns than

the driving datasets in the chapter can also be explored.

In Ch. 4, in full, has been submitted for publication of the material as it may appear

in Conference on Intelligent Robots and Systems (IROS), 2020. You-Yi Jau, Rui Zhu, Hao

Su, Manmohan Chandraker. The thesis author was the primary investigator and author of this
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paper.
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Chapter 5

Deep Learning-based Method for Visual
Odometry

In this chapter, we examine an existing deep learning-based method on outdoor and

indoor dataset. The development of deep learning-based method starts from SfMLearner [85],

which claims better performance than short version of ORB-SLAM. Among papers after that

[10, 28, 39, 44, 78, 81], we pick SC-SfMLearner [10] as our basic framework. The paper uses

similar network architectures and loss functions as SfMLearner, but with an additional loss to

achieve scale consistency. We use the released code from [10] 1 as our starting point. Ch. 5.1

gives an overview to the pipeline for SC-SfMLearner. The experiments are performed on different

environments in Ch. 5.2, including KITTI [26] and EuRoC [13] datasets. With quantitative and

qualitative results shown in Ch. 5.2, the future work is listed in Ch. 5.3.

5.1 Overview to SC-SfMLearner

5.1.1 Pipeline

The overview to SC-SfMLearner is shown in Ch. 5.1. A pair of images, Ia and Ib, are

fed into PoseNet to predict the relative pose Pab. The image can be fed into DepthNet for single

image depth prediction. The supervision signals come from the projection flow from Ia to Ib

using the predicted depth and pose. The novelty of this work is the geometric consistency loss,

1https://github.com/JiawangBian/SC-SfMLearner-Release
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Figure 5.1. SC-SfMLearner pipeline. This figure is from the original paper [10].

LGC, calculated from the predicted depth images.

The prediction from the paper [10] in Fig. 5.2 shows competitive results against ORB-

SLAM on KITTI dataset. It demonstrates low drifting in the global trajectory.

5.1.2 Network design

PoseNet

The architecture for PoseNet follows the design from SfMLearner, but without the

decoder structure. The architecture is shown in Tab. 5.1. The output from pose pred layer

Table 5.1. PoseNet architecture. (Refer to Ch. 5.1 for description.)

Layer name Output size Architecture (kernel, depth, stride)

Input H×W
conv1 H/2×W/2 (7×7,16,2)
conv2 H/4×W/4 (5×5,32,2)
conv3 H/8×W/8 (3×3,64,2)
conv4 H/16×W/16 (3×3,128,2)
conv5 H/32×W/32 (3×3,256,2)
conv6 H/64×W/64 (3×3,256,2)
conv7 H/128×W/128 (3×3,256,2)
pose pred H/128×W/128 (1×1,6,1)

is pooled into pose vector of size 1× 1× 6 through H,W channels, which is the euler angle

representation of the relative pose. The vector is then multiplied by a scale factor α , which is set

to 0.01.
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Figure 5.2. SC-SfMLearner prediction on KITTI sequence 09. This figure is from the
original paper [10].
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DepthNet

Among the depth or disparity networks, DispNet used in SfMLearner [10] and DispRes-

Net in [57], we follow the choice of DispResNet as in [10]. The architecture is shown in Tab. 5.2.

The convolutional layers are mostly consisted of residual blocks with internal skip connections.

Upsampling is done through transpose convolution (U pConv). The layers with same depth are

connected through iConv, where conv and U pConv are concatenated and fed into iConv. The

output layer is passed through convolutional layer with depth 1 and sigmoid activation function,

and is linearly transformed by α ∗ x+β , with α = 10 and β = 0.01 in our setting.

Table 5.2. DepthNet architecture. The network is proposed by [57]. (Refer to Ch. 5.1 for
description.)

Layer name Output size Architecture (kernel, depth, stride)

Input H×W
conv1 H/2×W/2 (7×7,32,2),(7×7,32,1)
conv2 H/4×W/4 Residual: [(3×3,64,2)]×2
conv3 H/8×W/8 Residual: [(3×3,128,2)]×2
conv4 H/16×W/16 Residual: [(3×3,256,2)]×3
conv5 H/32×W/32 Residual: [(3×3,512,2)]×3
conv6 H/64×W/64 Residual: [(3×3,512,2)]×3
conv7 H/128×W/128 Residual: [(3×3,512,2)]×3
Upconv7 H/64×W/64 (3×3,512,2)
iConv7 H/64×W/64 Residual: [(3×3,512,1)]×2
Upconv6 H/32×W/32 (3×3,512,2)
iConv6 H/32×W/32 Residual: [(3×3,512,1)]×2
Upconv5 H/16×W/16 (3×3,256,2)
iConv5 H/16×W/16 Residual: [(3×3,256,1)]×2
Upconv4 H/8×W/8 (3×3,128,2)
iConv4 H/8×W/8 Residual: [(3×3,128,1)]×2
Upconv3 H/4×W/4 (3×3,64,2)
iConv3 H/4×W/4 Residual: [(3×3,64,1)]×1
Upconv2 H/2×W/2 (3×3,32,2)
iConv2 H/2×W/2 Residual: [(3×3,32,1)]×1
Upconv1 H×W (3×3,16,2)
iConv1 H×W Residual: [(3×3,16,1)]×1
predict disp H×W (3×3,1,1),Sigmoid

5.1.3 Loss functions

We follow the original design in SC-SfMLearner [10]. Here is the description of the loss

functions. Details can be found in [10].
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Photometric loss

Photometric loss is the key to train the DepthNet and PoseNet without ground truth

supervision. It is based on the assumption that the corresponding points have the same intensity

on the two frames. It can be formulated as follows.

Lp =
1
|V | ∑p∈V

||Ia(p)− I′a(p)||1, (5.1)

where Ia is the target image and I′a is the image warped to the target image using predicted pose

and depth. V is the set for valid points p. L1 loss enforces the consistency. The photometric loss

is added by a dissimilarity of Structural Similarity (SSIM) term [72]. The term normalizes the

pixel intensities, which leads to robustness of change of illumination.

Smoothness loss

The edge-aware smoothness loss is utilized to regularize the depth prediction. It can help

handle regions with low texture.

Geometry consistency loss

The geometry consistency loss proposed by SC-SfMLearner can be formulated as

LGC =
1
|V | ∑p∈V

Ddi f f (p), (5.2)

where Ddi f f (p) records the relative differences between warped and interpolated depth prediction

at point p. It is a pixel-wise alignment between two depth images.

5.2 Experiments of SC-SfMLearner on Various Datasets

To identify the limitation of SC-SfMLearner, we have the models trained on KITTI [26]

and EuRoC [13] dataset individually and perform cross dataset evaluation. The quantitaive and
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qualitative results are shown in Tab. 5.3, Tab. 5.4, Fig. 5.4, Fig. 5.5, Fig. 5.6, and Fig. 5.7. As the

experiments shown in the SC-SfMLearner paper [10], the prediction for KITTI dataset is accurate

visually (Fig. 5.4) with high accuracy in ATE (Tab. 5.3) comparing with that in ORB-SLAM-VO

(Tab. 3.1). However, when evaluating the model on EuRoC [13] dataset, which is in indoors, the

error jumps high (Tab. 5.4) compared to ORB-SLAM-VO prediction (Tab. 3.2). The trajectories

are also far from the ground truth, as shown in Fig. 5.5.

5.2.1 Implementation Details

Following the setting in SC-SfMLearner, we train the model on KITTI dataset using

batch size 4 for 200 epochs. However, the same setting didn’t work for EuRoC dataset. When

using the same batch size, the depth model tends to predict zeros, which makes the smoothness

loss goes to zero. Since the camera baselines for image pairs in EuRoC dataset are small, we

increase the skipped interval in a pair of images. We increase the interval from 1 (consecutive)

to 8 timestamps, and set the batch size to 8. The setting trains the depth and pose model well.

After training for 100 epochs, we train 200 more epochs on the setting with consecutive frames

for fine-tuning.

5.2.2 Domain Gap

The domain gap between KITTI and EuRoC datasets is large. First, the KITTI dataset

is collected by a vehicle outdoors, whereas EuRoC dataset is collected by an MAV indoors.

The scale of KITTI scenes is around hundred meters, compared to several meters in EuRoC

sequences. The trajectory in KITTI contains most variations in x,y-axis (in world coordinate),

but MAV can fly around in 3 dimensions. Second, the camera in KITTI dataset has wide view

angles with RGB channels, whereas EuRoC has narrow view angles with gray images.

The EuRoC dataset originally has radial distortion, which makes straight lines to be

curved in an image. We undistorted the images using given parameters and visualized in a video
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2. In experiments, we didn’t see much difference using undistorted images.

5.2.3 Overfitting Issues

The overfitting problems are particularly obvious in our cross-dataset experiments, where

we have poses predicted from the PoseNet. When the model trained on KITTI dataset is tested

on EuRoC, it tends to predict forward motion, as shown in Fig. 5.5. On the other hand, when the

model trained on EuRoC dataset is tested on KITTI sequences, it predicts rotation motion even

on straight roads, i.e. sequence (01) and (04) in Fig. 5.6. It is because of the extensive rotations

and loops in EuRoC dataset that makes the model over-react on a pure forward motion.

5.2.4 Relative Pose Prediction

If we only look at the relative pose error (RPE) on EuRoC dataset, the error is actually

lower in SC-SfMLearner than that in ORB-SLAM-VO(Tab. 3.2 vs. Tab. 5.4). When we look

closer to the error map of RPE in Fig. 5.3, the prediction in ORB-SLAM-VO sometimes jumps

off in the trajectory. We infer that the error is due to motion blur or textureless regions. In the

long run, the trajectory can be optimized through bundle adjustment (Ch. 2.1.9) on keyframes.

On the contrary, the error map for SC-SfMLearner mostly lies in the blue (low error) end. It is

possible that the model predicts conservative motions, which led to the low local error.

We also observe the generalization ability of the DepthNet. We visualize the prediction

of the KITTI model on KITTI and EuRoC datasets, by plotting out the depth prediction and

the warped images using predicted poses and depth. The models can have reasonable depth

prediction. The videos are presented for KITTI dataset3 and EuRoC dataset4.

2https://youtu.be/8VD6Ud7IcRk
3https://youtu.be/8tFE6itHaeM
4https://youtu.be/0xP6R6Yha2c
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Table 5.3. Quantitative result of SC-SfMLearner on KITTI dataset. The models are trained
either on KITTI or EuRoC dataset, and tested on KITTI dataset. The metrics are described in
Ch. 3.2.2.

Method Metric 00 01 02 03 04 05 06 07 08 09 10 Avg. Err.

Trained on KITTI

terr 9.490 49.059 11.127 7.669 3.336 5.445 9.293 5.092 4.774 8.304 10.178 11.252
rerr 2.676 1.196 2.356 3.445 1.643 1.661 3.205 2.603 1.446 2.295 3.064 2.326
ATE 49.123 171.636 113.621 8.018 2.393 20.333 37.556 7.035 24.953 19.850 14.486 42.637

RPE (m) 0.133 2.276 0.171 0.097 0.148 0.087 0.110 0.052 0.085 0.130 0.106 0.309
RPE (◦) 0.121 0.095 0.111 0.089 0.074 0.078 0.079 0.083 0.083 0.115 0.127 0.096

Train on EuRoC

terr 50.472 64.791 61.388 68.217 29.073 53.695 49.508 61.520 50.048 56.244 34.813 52.706
rerr 25.077 13.666 28.538 42.617 24.473 32.811 26.102 51.984 25.156 27.183 24.219 29.257
ATE 172.808 508.970 262.845 49.435 28.651 141.453 104.893 79.424 189.406 163.817 50.771 159.316

RPE (m) 0.519 2.492 0.637 0.526 0.707 0.429 0.673 0.364 0.540 0.582 0.466 0.721
RPE (◦) 0.900 0.551 0.826 0.646 0.568 0.716 0.725 0.846 0.798 0.824 0.693 0.736

Table 5.4. Quantitative result of SC-SfMLearner on EuRoC dataset. The models are trained
either on KITTI or EuRoC dataset, and tested on undistorted EuRoC sequences. The metrics are
described in Ch. 3.2.2.

Method Metric MH01 MH02 MH04 V101 V102 V103 MH05 V201 V202 V203 MH03 Avg. Err.

Trained on KITTI
ATE 3.353 3.158 6.423 1.773 1.760 1.475 6.344 1.964 1.923 1.841 3.548 3.051

RPE (m) 0.033 0.043 0.079 0.029 0.066 0.057 0.076 0.026 0.064 0.087 0.097 0.060

Trained on EuRoC
ATE 3.639 3.631 6.291 1.749 1.760 1.498 6.190 1.425 2.060 1.877 3.368 3.044

RPE (m) 0.039 0.052 0.092 0.030 0.068 0.057 0.092 0.047 0.066 0.089 0.100 0.066
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Figure 5.3. Comparison of qualitative RPE results on the EuRoC sequence using geometry-based
or deep learning-based methods.

5.3 Future work

By observing ORB-SLAM-VO and SC-SfMLearner, we identify several directions for

future work in deep learning-based systems. Among the key factors for ORB-SLAM in Ch. 3.3,

optimization, keyframe-based system, and long feature tracking are discussed as follows.
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Figure 5.4. Qualitative VO results for KITTI model on KITTI dataset for SC-SfMLearner.
Ground truth trajectories are plotted in blue, while estimated ones are in orange. The trajectories
are aligned in 7 DoF.
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5.3.1 Optimization

Given the reasonable relative pose estimation but poor global trajectory, we identify

that optimization across frames can correct the drifting. In contrast of the geometric bundle

adjustment in ORB-SLAM [47], the setting can be similar to DSO [19] using photometric

optimization.

There are some works [41, 76] plugging in the deep learning modules in geometry-based

method like DSO [19], and achieve high accuracy. However, the optimization is mainly based

on the original geometry-based designs [19, 23], where the deep networks only provide a good

initial pose, depth, or uncertainty. BA-Net [62] makes the bundle adjustment differentialable in

the pipeline. However, BA-Net is still far from applicable for a robust visual odometry system.

It can be an interesting path to explore how to incorporate the optimization tightly in the deep

learning-based pipeline.

The robust bundle adjustment designed in ORB-SLAM [47] includes local BA and pose

graph optimization. The combination of local and global optimization can correct the drifting

accumulated during the estimation.

5.3.2 Keyframe-Based System

As keyframes are essential for robust estimation in ORB-SLAM, benefits are also ob-

served in training SC-SfMLearner. In our experiments (Ch. 5.2), the DepthNet can be properly

trained with an interval between a pair of frames with larger baselines. The setting of intervals

between pairs can be decided on-the-fly instead of being fixed. It is related to the topics of

curriculum learning.

5.3.3 Long Feature Tracking

As mentioned in Ch. 3.3, geometric bundle adjustment takes effect when the long

feature tracking is available. The correspondences across frames are strong cues to optimize the

estimated poses. In keypoint-based methods, the features are robust to illumination. However, the
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illumination change can fail the basic assumption of constant intensity across frames for direct

methods. In D3VO [76], the change of illumination is formulated as an affine transformation

predicted by the network. In BA-Net [62], the features from the intermediate layer are used to

replace the raw image, which leads to better optimization. The path is yet to explore how to

enable the long feature tracking in the setting without sparse feature extraction and matching.

5.4 Conclusion

In this chapter, we pick SC-SfMLearner as the template for deep learning-based visual

odometry method and analyze the strengths and weaknesses. In the experiments in outdoor

and indoor environments, the deep learning models suffer from various issues. We identify the

domain gap between KITTI and EuRoC datasets and the overfitting issues observed from the

plots. However, from the quantitative results of relative poses, we point out the possibility of

increasing accuracy with cross frame optimization. The benefits of keyframe-based system and

long feature tracking in ORB-SLAM are also paths to explore.

In Ch. 5, in part is currently being prepared for submission for publication of the material.

You-Yi Jau, Manmohan Chandraker. The thesis author was the primary investigator and author

of this paper.
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Figure 5.5. Qualitative VO results for KITTI model on EuRoC dataset for SC-SfMLearner.
The ground truth trajectories are plotted in dotted lines, whereas the estimated ones are mapped
in colors with error. The trajectories are aligned in 7 DoF.
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Figure 5.6. Qualitative VO results for EuRoC model on KITTI dataset for SC-SfM
Learner.
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Figure 5.7. Qualitative VO results for EuRoC model on EuRoC dataset for SC-SfM
Learner.
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Chapter 6

Conclusion

In this thesis, we look into camera pose estimation, visual odometry and SLAM, which

are the key techniques in the applications of VR, AR, and autonomous driving. In Ch. 2, we state

the problem formulation and have comprehensive introduction of visual odometry pipeline, as

well as the recent development in the field. In Ch. 3, we look into a realistic SLAM system and

identify the key designs. Inspired by the work, we propose a deep learning-based camera pose

estimation in Ch. 4. To extend the work to deep learning-based VO or SLAM, we look into an

existing work in Ch. 5 and identify the strengths and weaknesses. The main achievements are:

• An analysis for geometry-based system, ORB-SLAM, with thorough quantitative and

qualitative results in indoor and outdoor datasets. The key factors are identified for the

design of a robust SLAM system. (Ch. 3)

• A deep learning-based camera pose estimation incorporating geometric constraints. The

pipeline is optimized for feature extraction, matching, outlier rejection and pose estimation

in an end-to-end fashion. (Ch. 4)

• A deep learning-based pipeline adopting the advantages of correspondences and epipolar

geometry. The pipeline has the benefits of keypoint-based method, and is optimized for

the geometry-based objective. (Ch. 4)

• A thorough study of our deep learning-based method in a cross-dataset setting. Our
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approach has better generalization ability than the learning-based baselines. (Ch. 4)

• An exploration of a learning-based system, SC-SfMLearner, with cross-dataset setting.

The limitations are demonstrated, while future directions are pointed out. (Ch. 5)

6.1 Future Direction

In the field of visual odometry, deep learning-based methods show the potential, whereas

the geometry-based methods still achieve better robustness. Recent work shows better perfor-

mance by leveraging the advantages of both methods. However, the power of deep learning-based

methods has yet to be discovered. We look into the geometry-based pipeline and identify the

successful factors in Ch. 3.3. These factors bring robustness to the geometry-based methods.

They also give ways for deep learning-based methods to improve for. In Ch. 4, we propose a

deep learning-based pipeline for camera pose estimation. This pipeline can be further enhanced

by replacing the modules with strong feature extraction or pose estimation modules. The pipeline

can also be extended into visual odometry system. In Ch. 5, we point out the weaknesses of

existing deep learning-based visual odometry. We refer to the key factors in geometry-based

methods, and outline the future works in Ch. 5.3.

Standing on the wave of deep learning, I believe the benefits of geometry can not be

forgotten. Instead, they point out the paths to a robust visual odometry system. By looking into

the past and presence, we imagine and commit to the prospective future of visual odometry.
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