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ABSTRACT OF THE DISSERTATION

Network Monitoring with SmartNICs in Data Centers and 5G Cellular Networks

by

Sourav Panda

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, March 2023
Professor K. K. Ramakrishnan, Co-Chairperson
Professor Prof. Laxmi Bhuyan, Co-Chairperson

The performance and security of modern data centers and 5G networks are critical

for meeting application’s service-level objectives and quality-of-experience. Careful schedul-

ing and resource allocation are needed to minimize power consumption, enable efficient cel-

lular handovers, and avoid performance degradation. Network telemetry can help identify

potential security breaches and protect against cyber attacks by detecting anomalies in traf-

fic patterns, suspicious activities, or unauthorized accesses. Monitoring the network helps

with both performance optimization and security. However, the resource utilization (e.g.,

CPU and memory of a monitoring host) for monitoring is a challenge. This dissertation

presents designs that use heterogeneous computing infrastructure, including SmartNICs and

network switches, to optimize the performance and security of data centers and 5G cellular

networks. First, we design SmartWatch, a monitoring platform deployed on SmartNICs

to scalably and accurately detect network traffic anomalies with little processing overhead.

We then build on the SmartWatch traffic monitoring design to optimize performance and

manage power consumption in data centers with pMACH, and capture traffic characteris-
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tics in 5G cellular networks and predict mobility patterns, in Synergy. Finally, we develop

5GDMON, a distributed monitoring system to analyze traffic from multiple vantage points

in an open radio access network (O-RAN) infrastructure of the evolving software-based 5G

network.

The first chapter addresses the challenge of detecting low and slow attacks in net-

works. Traditional traffic queries deployed on network switches are limited by hardware

constraints, leading to undetected attacks during high traffic volumes. SmartWatch pro-

poses a flow-state tracking and flow logging system that leverages SmartNICs to detect

stealthy attacks in real-time. SmartWatch’s yields 2.39 times better detection rate com-

pared to existing platforms deployed on programmable switches. SmartWatch can detect

covert timing channels and perform website fingerprinting more efficiently compared to

standalone programmable switch solutions, relieving switch memory and control-plane pro-

cessor resources. Compared to host-based approaches, SmartWatch can reduce the packet

processing latency by 72.32%. Our subsequent work, namely pMACH, Synergy, and 5DG-

Mon, builds upon the SmartNIC’s packet processing pipeline proposed in SmartWatch.

The second chapter proposes pMACH, a distributed container scheduling system

that optimizes power consumption and task completion time in data centers. pMACH lever-

ages affinity between application components for placement-decisions to minimize commu-

nication overheads and latency. pMACH extends SmartWatch’s monitoring capabilities in

the data center to capture cloud-application communication-patterns and uses it towards

making better task placement decisions. It proposes in-network monitoring using Smart-

NICs to measure communications and perform scheduling in a hierarchical, parallelized
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framework. Both testbed measurements and large-scale trace-driven simulations show that

pMACH saves at least 13.44% more power compared to previous scheduling systems. It

speeds task completion, reducing the 95th percentile by a factor of 1.76-2.11 compared to

existing container scheduling schemes. Compared to other static graph-based approaches,

our incremental partitioning technique reduces migrations per epoch by 82%.

The third chapter focuses on 5G user plane function (UPF), a critical interconnec-

tion point between the data network and cellular network infrastructure. UPFs typically

run on general-purpose CPUs but are limited in performance due to host-based forward-

ing overheads. We design Synergy, a novel 5G UPF running on SmartNICs, that provides

high throughput and low latency while supporting monitoring functionality for handover

prediction and optimization during user mobility. Synergy extends SmartWatch’s monitor-

ing capabilities to capture and predict vehicular mobility patterns. This is then used to

prepopulate state, even before the vehicle moves to the next base station, reducing han-

dover latency. Buffering in the SmartNIC, rather than the host, during paging and handover

events reduces packet loss rate by at least 2.04×. Compared to previous approaches to build-

ing programmable switch-based UPFs, Synergy speeds up control plane operations such as

handovers because of the low P4-programming latency leveraging tight coupling between

SmartNIC and host. The subsequent paper, 5GDMon proposes a distributed monitoring

system that analyzes traffic at multiple vantage points in the 5G ORAN infrastructure.

In other words, 5GDMon is the distributed implementation of Synergy designed to detect

network-wide anomalies.
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The fourth chapter proposes 5GDMon, a distributed cellular monitoring solution

that summarizes traffic characteristics monitored in the distributed radio access network

(RAN). The summaries are communicated to data analysis engines running in the core of

the network and support zooming into traffic subsets. SmartNICs are used for fast and

efficient monitoring in the RAN, with query computation distributed to multiple UPFs

using graph partitioning to balance the load. Here we leverage SmartWatch to collect the

packet matrix while pMACH is used to load balance the query processing tasks. Deploying

5GDMon results in 37.99% fewer infected devices during controlled Mirai Botnet attack

experiments and 1.35× higher resource fairness against adversarial heavy hitter attacks.

5GDMon achieves 3.92× lower error in detecting mobile proxies and up to 36% higher

accuracy in detecting Tunnel Endpoint Identifier brute-forcing attempts.

In conclusion, our four chapters utilize SmartNICs to optimize performance and

security in the data center and cellular networks. By using SmartNICs, we allow for CPU

cores to be dedicated towards mission-critical tasks while ensuring performance is not com-

promised by adversaries or poor scheduling decisions.
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Chapter 1

Introduction

Traffic monitoring provides critical insights into performance and security, enabling

network and system administrators to take targeted actions that can improve the overall

efficiency, availability, and security of the network. Monitoring use cases include:

• Performance Optimization: Monitoring provides visibility into the performance of net-

work infrastructure and applications, allowing administrators to identify and resolve

issues quickly. This can help to optimize network performance and improve the user

experience.

• Security: Monitoring can help identify potential security breaches and protect against

cyber attacks by detecting anomalies in traffic patterns, suspicious activities, or unau-

thorized access attempts.
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The difficulty with network traffic monitoring is that it is resource intensive, par-

ticularly because it consumes significant CPU and memory resources. Monitoring platforms

must process packets arriving at high bandwidth links, making it CPU intensive. Further-

more, the need to process millions of packet flows, makes monitors memory intensive. Lastly,

monitoring by itself does not generate the data center or the cellular network any revenue.

In other words, operators face huge opportunity costs by dedicating general-purpose servers

towards monitoring. Therefore, this thesis envisions a monitoring solution that enhances

performance and security using heterogeneous computing capabilities.

Smart Network Interface Cards (SmartNICs) can provide a number of benefits for

data centers and cellular networks. First, SmartNICs offload some of the networking and

security processing from the server’s CPU, which can improve server performance and re-

duce CPU overhead, leading to higher application performance and lower latencies. In data

centers, SmartNICs can also help enable software-defined networking (SDN) and network

function virtualization (NFV), which can improve the flexibility and scalability of network

infrastructure. In addition, SmartNICs can also accelerate advanced networking and secu-

rity capabilities such as network telemetry, encryption and compression, which better helps

monitor the network. In cellular networks, SmartNICs can help manage the limited radio

resources more efficiently by offloading some of the resource management and monitoring

tasks from the base station and other data planes. This helps improve the quality of expe-

rience for users and enables more effective use of the radio resources. This thesis includes

four contributions that optimize performance and security.
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In this thesis, we first start with designing SmartWatch, a monitoring platform

deployed on SmartNICs to scalably and accurately detect network traffic anomalies with

little processing overhead. We then build on the SmartWatch traffic monitoring design

contributions to optimize performance and manage power consumption in data centers,

capture traffic characteristics in 5G cellular networks and predict mobility patterns. Finally,

we develop a distributed monitoring system to analyze traffic from multiple vantage points

in an open radio access network (O-RAN) infrastructure of the evolving software-based

5G network. pMACH extends SmartWatch’s monitoring capabilities in the data center to

capture cloud-application communication-patterns and uses it towards making better task

placement decisions. In doing so, pMACH optimizes performance and minimizes power

consumption. The latter two works are based on applying SmartWatch and pMACH’s

resource allocation and monitoring capabilities towards cellular networks. Synergy extends

pMACH’s monitoring capabilities to capture and predict vehicular mobility patterns. This

is then used to prepopulate state, even before the vehicle moves to the next base station,

reducing handover latency. Lastly, 5GDMon proposes a distributed monitoring system

that analyzes traffic at multiple vantage points in the ORAN infrastructure. In other

words, 5GDMon is the distributed implementation of Synergy inorder to detect network-

wide anomalies. Here we leverage SmartWatch to collect the packet matrix while pMACH

is used to load balance the query processing tasks.
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Chapter 1: SmartWatch, Distributed Data Center Monitoring:

Network-borne attacks that aim to disrupt mission-critical systems and applications are a

persistent problem for both network and data center operators. To counter threats, opera-

tors must deploy infrastructure to monitor systems and network traffic, driving analyses to

detect anomalies and specific attacks in a timely manner. The infrastructure may directly

protect against some attacks or provide alerts that trigger intervention, either automated

or human, to block or ameliorate the impact of those attacks. SmartWatch, a network

monitoring platform architecture, comprising a commodity-class host and sNIC, working

cooperatively with programmable switches. SmartWatch makes the following contributions:

• To detect or prevent stealthy attacks such as low-rate port scans, SmartWatch per-

forms lossless state-tracking and flow logging. SmartWatch yields 2.39 times better

detection rate compared to existing programmable switch based platforms. Compared

to host-based approaches, SmartWatch reduces packet processing latency by 72.32%.

• SmartWatch works cooperatively with P4 switches for network-based monitoring.

SmartWatch uses iterative-refinement between the programmable switch and sNIC

to judiciously use switch resources while operating at Terabit line rates. Switches

direct the right traffic subset to the sNIC for processing.

• SmartWatch reduces the memory requirements of programmable switches for moni-

toring, thus allowing it to be used for common data center operations. This is done

by running coarse grained queries in the switch. Fine grained processing is done by

the sNIC-host subsystem.
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Three components (sNIC, host, P4Switch) cooperatively perform monitoring. The

sNIC offloads processing, reducing load on the host, and the P4Switch directly forwards the

bulk of benign flows to their destination, preventing any unnecessary performance impact.

The first stage relies on obtaining coarse-grained flow information. Flow subsets with attack

indicators at a coarser granularity are forwarded for fine-grained processing, starting with

the next monitoring interval. The first detection stage is performed on the P4Switches,

where the focus is on processing high volumes of traffic. We are cognizant of the impact on

latency critical user traffic, so that our in-line monitoring application minimizes the number

of operations per packet and is lightweight. Following the broad approach of Sonata[194],

Nitro Sketch[244], and BeauCoup[158], this first stage then steers traffic subsets that satisfy

aggregate-traffic queries for finer grained analysis. The next stage is implemented on the

sNIC-host subsystem of SmartWatch where processor and memory intensive operations are

performed on the packet. The ability to add more monitoring functions as needed, ensuring

efficiency and low latency, are all important. SmartWatch is responsible for configuring

P4Switches, including specifying queries to be run by the switch. A more specific query

would direct more targeted, and thereby less, traffic to SmartWatch from the P4Switch. We

effectively create a control-loop where the sNIC-Host subsystem receives different amounts

of traffic based on the degree of specificity of the query that SmartWatch installs on the

P4Switch. The P4Switch queries are implemented using P4 tables where stateful operations

are performed using P4 registers. At the end of a P4Switch monitoring interval, processing

of the switch queries will determine some traffic subsets deemed as being suspicious (e.g.,

a threshold is crossed). Subsequent packets of these traffic subsets are forwarded to the
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sNIC-host subsystem. Over time, flows that get classified as benign by SmartWatch (e.g.,

after successful authentication) no longer have to be forwarded for fine-grained inspection

by the sNIC-host subsystem. A P4 table in the P4Switch whitelists benign flows, thus

reducing the overall traffic forwarded to the sNIC-host subsystem. This also reduces any

performance impact on those flows.

We leverage the sNIC’s memory to design a FlowCache that consist of a hash table

and ring buffers. An incoming packet/flow processed by each sNIC packet processing entity

updates the FlowCache using a hash of the 5-tuple. We use the sNIC memory (DRAM) to

support 25 million flow entries. We propose a two-level cache on the sNIC (e.g., like a CPU’s

L1-L2 cache) and empirically select an eviction policy by examining the performance with a

number of CAIDA traces[21]. The ring buffers accommodate evictions from the hash table

and are used to periodically flush snapshots of the hash table to the host. Beyond providing

a large reservoir of memory for tracking flow state and logging flow information, the host

is also responsible for processing packets that the sNIC alone cannot process. Therefore,

we need to minimize the cycles spent on the host for logging flows (e.g., handling flow

records exported from sNIC to host). We develop a reconfigurable FlowCache that trades-

off between sNIC packet processing throughput and the host’s processing requirement. We

do this adaptively by changing the eviction rate on the sNIC in response to the packet

arrival rate.

The latter three contribution build on the SmartNIC monitoring capability of

SmartWatch. pMACH optimizes the performance and reduces energy consumption in data

centers. The SmartNIC’s role is to collect the container affinity graph in pMACH. Synergy
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reduces handover delays by carrying-out mobility prediction. The SmartNIC’s role is to

collect the vehicular mobility patterns and use it for predictions. Lastly, 5GDMon extends

Synergy to a distributed context, detecting anomalies by collecting packet matrices in the

ORAN using SmartNICs.

Chapter 2: pMACH, Graph based Container Placement.

Striking the right balance between conflicting scheduling requirements such as overprovi-

sioning to satisfy an application’s service level agreements (SLA) vs. tightly packing servers

to save power in a data center (DC) is challenging. Tightly packing containers is necessary

to achieve high server utilization and power saving [316, 198, 240, 283] by turning off idle

servers. DCs operate at ∼ 20% server utilization [253, 220, 247] in order to meet application

SLAs. This results in high DC power consumption as more servers remain powered on.

While there exists some prior work to minimize both power and task completion

time [345], they are not incremental, leading to a significant number of container migrations.

They ignore the cost of container migrations when adapting to workload changes or when

the workload is consolidated to a smaller number of servers to reduce power consumption.

Container migration (e.g., CRIU[65]) also results in downtime [37], and frequent migrations

can adversely impact task completion times and are likely to result in SLA violations [314].

Thus, it is desirable to have a DC scheduler that simultaneously reduces power, task com-

pletion time, and container migrations and is also scalable to DC scales. The challenges are

several - the need to operate servers efficiently [322], support fluctuating workloads [292],

account for application container affinity [170], and account for migration overheads [37].
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A DC cluster of several thousand servers, switches and links is typically broken

up into smaller identical units. These units are called pods, comprising of several hundred

servers along with the top-of-the-rack and aggregation switches. The DC network provides

high-performance connectivity between all pods in the DC. We propose pMACH a Two-

Tier distributed scheduling framework to adaptively ‘right size’ the DC by first considering a

pod-level partitioning of containers, and then repartitioning the container sub-graph within

a pod. pMACH schedules groups of containers (pMACH is generic, and may be used for

scheduling VMs as well) of a partition on a server. It minimizes container migrations

by adopting an incremental partitioning technique. pMACH’s main focus is on achieving

scalability using a Two-Tier partitioning algorithm, and executing the algorithm in an

entirely distributed manner, unlike a centralized approach.

pMACH significantly reduces task completion time as containers that frequently

communicate with each other are placed together in the DC topology. Power saving is

achieved by having a minimal number of servers, so that unused servers can be turned off.

Container migrations are reduced by accounting for dirty vertices (vertices that are moved

from their original group to another group in the graph), thereby minimizing downtime.

We consider three mechanisms to perform hierarchical partitioning of the container graph,

namely, ParMetis Base partitioning, ParMetis Adaptive partitioning[?], and Tabu Search.
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To obtain the container graph, we use a sNIC to collect the communication graph

and provide it to the appropriate ParMetis graph partitioning worker nodes. This helps us

save crucial CPU cycles. We use an efficient data stream summarization [330] to derive the

edge weights with reasonable accuracy to allow frequently communicating container pairs

to be placed together, to minimize task completion time.

Both testbed measurements and large-scale trace-driven simulations show that

pMACH saves 13.44% more power compared to other scheduling systems. It speeds task

completion, reducing the 95th percentile by a factor of 1.76-2.11 compared to existing

container scheduling schemes. Compared to the static graph-based approach[345], our in-

cremental partitioning technique reduces the migrations per epoch by 82%.

pMACH acts as the basis for 5GDMon, our forth contribution, to load balance

the query computation over several traffic analyzers. In the second half of the thesis, we

shall apply the SmartNIC’s monitoring capabilities to the cellular environment. Our next

contribution, Synergy, offloads a critical 5G userplane component to the SmartNIC.

Chapter 3: Synergy, Faster Handovers using Mobility Prediction.

The emergence of 5G promises high speed and low latency, enabling a wide range of inno-

vative applications like Internet of Things (IoT), augmented/virtual reality, At the crux of

the 5G data plane in the packet processing core of the cellular network is the User-Plane

Function (UPF) which serves as the interconnect point between the mobile infrastructure

and the data network[92]. At the UPF, complex rules have to be followed for forwarding

and tunneling. It processes packets belonging to different sessions with different priorities,

including the need for shaping and policing the traffic. Additionally, the UPF must perform
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flow-state dependent processing, such as when a mobile device goes idle (to save battery

energy) and the UPF has to be aware of the idle/active transitions of individual mobile

devices (also called User Equipment, or UE). Similarly, when a UE is mobile, a handover is

performed for the UE to have its radio network association change from one (source) base

station to another (target) base station. For these situations, the UPF has to be aware of

the state of the UE (hence the flow’s state).

Implementing 5G core (5GC) NFs [36] on general-purpose CPU cores (we refer to

as ‘host’), including the UPF, can limit throughput and increase latency, especially when

the number of CPU cores for the UPF is limited. Overheads, such as context switches,

interrupts, PCIe transactions, data serialization and de-serialization, packet copy, contribute

to constraining the performance[274]. Since the 5GC supports a large number of UEs

connected to multiple base stations, facilitating a wide range of critical applications and

services[259], achieving high performance for the 5GC is key. Utilizing network acceleration

to implement 5GC NFs can substantially improve throughput.

In this work, we implement Synergy, a 5G UPF on a SmartNIC (sNIC). Not only

does it provide network acceleration to outperform host-based UPFs, but it can effectively

carry out state tracking and buffering unlike programmable switches[274]. With the sNIC

having memory of the order of GBs, packets can be buffered and flow state can be effectively

retained on the sNIC. The P4 programmability [94] on the sNIC also enables handling

various packet processing tasks. Furthermore, the CPU cores being just a PCIe transaction

away provides for a tight coupling between the UPF on the sNIC and the other NFs of the

5G ecosystem running on host CPUs. Synergy is publicly available at [108].
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Beyond implementing the core functions for a UPF on the sNIC to be compliant

with the 3GPP specification [2, 3], we focus on two significant additional capabilities. The

first is to support a responsive buffering capability in the UPF, since it impacts the idle-

active and handover latency. Instead of buffering packets in the source 5G base station

(gNB) during handover (as in Sec. 9.2.3.2.2 in [6]), ‘Smart buffering’ of packets within the

UPF has been proposed as a way of reducing the latency in L25GC [210] and CleanG [260].

This avoids the hairpin routing from source gNB to target gNB through the 5GC, and the

associated latency. Synergy implements packet buffering in the sNIC UPF while ensuring

packets are delivered in order. However, no change to the 3GPP control protocol messages

are needed. Buffering at the source gNB (especially for small cells) may also be unattractive

from a cost standpoint. Synergy is built on top of 3GPP compliant 5GC implementations

L25GC[210] and Free5GC[36].

The sNIC can buffer most of the packets locally as opposed to the host so that

it can rapidly respond to UE state changes and retain high packet throughput. We show

that the packet loss rate during handovers reduces by 2.04× when buffering within the

sNIC instead of the buffering within the host. Compared to other sNIC-based flow state

management approaches such as DeepMatch[208] and SmartWatch[274] that can also be

used in UPF processing, Synergy achieves at least 1.40× lower packet loss rate because it

reduces the flow state access latency . Our solution Synergy improves packet processing

rate and latency during control-plane events such as handover and paging. We introduce

a two-level flow caching mechanism that reduces flow state access times by at least 15%

compared to UPF built over the flow management technique of SmartWatch[274] (§5.3.1).
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Synergy increases its capacity by 44×, to support up to 12 million flows (§5.2) compared

to UPF built with the flow management technique of DeepMatch.

Mobility prediction helps in pre-populating and updating state on the 5GC NFs,

thereby reducing the handover latency. In order to accommodate mobility predictions, we

modify the sNIC packet processing pipeline to parse and monitor the control plane traffic in

the sNIC. Control plane messages contain location[81] that can be monitored for mobility

prediction. In this work, we propose running the control plane NFs on the host and the

userplane on the sNIC. Since the sNIC and host are just separated by a PCIe transaction,

it leads to very low programming latency. This allows us to push table modification more

quickly as required for handovers and paging. Feeding the monitored data to a mobility

predictor helps achieve 2.32× lower average handover latency compared to not performing

mobility prediction.

The following contribution mitigates the challenges of making Synergy a dis-

tributed solution for the purposes of detecting network wide anomalies. It leverages the

contributions made in pMACH and SmartWatch to analyze and collect traffic matrices

respectively.

Chapter 4: 5DGMon, Monitoring Distributed Cellular Networks.

Cellular Networks have become predominantly IP-based data communication infrastruc-

tures. As such, cellular networks are also increasingly vulnerable to attacks, just as any

other data communication network. Cellular networks have limited resources, especially ra-

dio resources, that must be managed carefully to provide the best quality of experience for

as many active users as possible. Resource management and ensuring the cellular network’s
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infrastructure and users are protected against attacks requires monitoring network traffic

as in traditional IP networks.

The O-RAN software framework splits the RAN processing into several sub-components,

with a Central Unit (CU), a Distributed Unit (DU), and a Radio Unit (RU)[201] together

performing the processing that a traditional monolithic 5G base station (gNB) would per-

form. The RAN intelligent controllers (RICs) are tasked with streaming telemetry from the

RAN so that they can provide intelligence to a Service Management Orchestrator (SMO) to

deploy control actions and policies for resource allocation and management of the traffic by

the CU, DU, and RU of the O-RAN environment. Network control functions manage the

RAN by utilizing applications (called xApps) along with the RICs. A number of O-RAN

RU and DU units may be managed by an SMO and RIC complex. A number of O-RAN

complexes may be backhauled to a 5G cellular core network which is the main interface

to the rest of the data network (including the Internet). Thus, by its nature, the overall

O-RAN-based cellular infrastructure is widely distributed, with a number of vantage points

for monitoring traffic and exercising control for varying subsets of the traffic carried by

the overall cellular network. The traffic observed at the cellular core is the aggregation of

all the traffic at the different O-RAN subnetworks. Traffic monitoring, closely coupled to

the cellular network architecture can help in resource management, identifying anomalies,

and combating attacks. Given the network’s distributed nature, monitoring needs to be

performed at multiple vantage points (e.g., close to each of gNB and the cellular core (see

Fig. 6.2).
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In this chapter, we argue that cellular attack detection requires: aggregation,

refinement, and filtering. This is because of the limited radio resources and the heterogeneity

of cellular cells. The purpose of traffic aggregation is to group monitored data that have

a shared characteristic[231], thus minimizing the memory overhead to maintain statistics

for the group. Refinement lets us zoom into traffic subsets, thereby adaptively allocating

more memory resources only to those traffic subsets that would return higher detection

accuracy[263, 195]. Lastly, filtering ensures that we only transmit to a monitor only those

traffic subsets that help to evaluate a query result[197].

Monitoring in a heterogeneous cellular network: The cellular network includes a

range of gNB sizes, such as Macro Cells, Micro Cells, etc. The traffic handled by different

gNBs can also greatly vary, meaning that any monitor must be able to analyze the traffic

adaptively. Jaal’s traffic summaries consume considerable memory. However, accuracy

drops significantly if we configure Jaal’s parameters to reduce memory consumption. This

is because of a lack of traffic refinement. As Dream[263], we must allocate more memory

resources to those selected traffic subsets that improve overall detection accuracy. Jaal does

not adapt to the heterogeneous traffic intensities as seen in the different cell sizes.

Detection at Periphery: Cellular resources are scarce, and therefore we want to be able

to detect attacks as rapidly as possible at the periphery. In Dream, if one of the monitored

prefixes is “interesting” from the perspective of a specific task, it divides that prefix to

monitor into traffic subsets and uses more memory to monitor it. However, the refinement

proposed in Dream is slow in the cellular context, mainly because it only considers IP

prefixes and ignores other fields, such as flags, necessary to isolate benign vs. malicious
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traffic. For example, during a SYN Flood attack[195], using the SYN flag will better help

discriminate benign and malicious traffic subsets rather than simply using IP prefixes.

Low Communication Overhead: Cellular monitoring overhead must be low while main-

taining reasonable accuracy. CMY mainly configures thresholds and does not aggregate

traffic based on subsets having similar traits. Therefore, the number of messages sent us-

ing CMY can be very high (400k messages for just 20 sites per epoch)[197]. To overcome

this problem, we first used sampling, as is done in NitroSketch[245]. However, this only

increased the convergence time with perceptible accuracy degradation. Elastic Sketch and

Defeat suffer from the inherent problem of sketches, which involves trading off memory

vs. accuracy and causes overestimation due to hash collisions. Furthermore, despite being

invertible for five-tuple (e.g., can recover flows from sketch data structure itself [312]), ded-

icated sketches will have to be deployed as several detectors require data beyond just the

five-tuple (e.g., SYN Flag). This results in higher memory requirement.
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Chapter 2

Related Work

2.1 Resource Provisioning in Data Centers

A data center scheduler runs hundreds of thousands of jobs, from many thousands

of different applications, across a number of clusters each with up to tens of thousands of

machines [317]. This work focuses on scheduling for light-weight container instances. The

broad goals for a power and migration aware DC scheduling approach are:

• Task Completion Time: There is a need to honor container resource requirements

and place frequently communicating container pairs together so that the task comple-

tion time (latency) is reduced.

• Power Consumption: It is desirable to consolidate containers to fewer servers and

operate them at peak energy efficiency.

• Downtime: It is important to minimize the downtime impact of container migrations.
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E-PVM and RC-Informed are instances of the vector bin packing that model static

resource allocation problems, where there is a set of servers with known capacities and a

set of services with known demands [278]. Firstly, E-PVM distributes containers to the

least occupied servers, leaving sufficient head room for spikes, but resulting in undesirably

higher power consumption [135]. Alternatively, RC-Informed [165] predicts the workload

for the scheduler to safely oversubscribe resources and tightly pack containers, thereby

consuming less energy compared to E-PVM [345]. The problem with E-PVM and RC-

Informed is that they do not consider container pair affinities and nor do they take advantage

of peak energy efficiency. Compared to E-PVM, 6.6% to 18.8% power can be saved by

alternatives that pack containers more tightly [345]. Furthermore, workload prediction

can be imperfect and RC-Informed is shown to predict a new VM’s CPU utilization with

only 81% accuracy [165]. Under-prediction will cause the target peak utilization to be

exceeded, and with oversubscribing of resources at 125%, it can result in violating latency

requirements. Thus, it is desirable to have a lower utilization level for each processor and

still save energy.

Another approach is to represent containers and the communication between them

as a graph and use partitioning to allocate containers to different nodes[345]. The approach

considers a container graph with resource demands as vertex weights and inter-container

communication as edge weights. By running the graph partitioning algorithm accounting

for edge cut and partition aggregate utilization, containers with high communications are

grouped together and the load of the container group gets balanced. Goldilocks[345] is

based on periodic partitioning of the container graph by Metis [219] and mapping it to
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DC resources. According to the formulation in [345], Metis K-Way partitioning places

frequently communicating containers together by minimizing edge cut (e.g., communication

between servers). It respects server capacities by balancing container resource demands

across servers.

Tabu Search is a widely used meta-heuristic for graph partitioning as shown in

[239, 290, 209] and allows us to provide a custom cost formulation that can account for

the cost of migrations. Local search methods have the tendency to be stuck in suboptimal

regions. Tabu Search enhances the performance of these techniques by prohibiting already

visited solutions or others through user-provided rules[344]. As shown in the next section,

Tabu search reduces the number of migrations considerably, which is an important criterion.

The shortfall of Goldilocks is that the partitioning at every epoch is not incre-

mental, causing a lot of container migrations, and it is not parallelizable, making it slow.

In reality, there are only small changes in the workload between epochs. Incremental par-

titioning [297] reduces vertex migrations while reducing the edge cut and load imbalance.

ParMetis is a Message Passing Interface (MPI [189]) based graph partitioning technique that

distributes the graph’s vertices across processing cores, to reduce the partitioning time. In-

stead of the centralized partitioning and scheduling in Goldilocks, we envision a distributed

architecture to do both functions. Thanks to advances made in the graph partitioning al-

gorithms, edge-cut minimization and load balance can also be carried out in parallel (e.g.,

multi-core or multi-server) by using ParMetis [297]. Alternatively, we could use Tabu Search

also, but it is not scalable.
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2.2 Monitoring Data Centers

Terabit-Scale Traffic Programmable switches (P4Switch) can run telemetry queries writ-

ten in P4. Examples include Intel/Barefoot Tofino switches[54]. The P4Switch enables

examining traffic at intensities much higher than would be possible with SmartNIC (sNIC)

or Host alone [304]. A P4Switch’s forwarding ASICs are able to quickly forward and perform

simple computations on packets at line-rate, thus enabling the analysis of billions of packets

at the Tbps rates[142]. But, they have accompanying memory and processing constraints,

that limit the ability to do all the monitoring on the P4switch alone.

Table 2.1: Slow Attacks requiring flow-state tracking

Attack Challenges

SSH Brute Forcing SSH connections are encrypted
Detector requires conn-attempt outcome[211],
which is determined heuristically using
protocol state transitions and traffic volume[50].

Stealthy Port Scan Detector probes whether conn-attempt
from a remote node elicits suitable response
from local nodes[215].

Forged TCP RST Detector identifies race conditions between RST
(In-sequence) packets and in-flight data packets[320].

Network traffic monitoring has been widely explored [268, 235, 160, 174, 244, 331,

312, 246, 227, 332, 180, 301, 287]. Based on these, we first summarize the key requirements

for network monitoring and then explain how fine-grained analysis is critical for monitoring:
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Stateful Packet Processing: Low and slow attacks such as in-sequence forged TCP RSTs

require state to be maintained to detect them. The relative timing between a potentially

forged TCP RST packet and in-flight data packets must be measured [320]. Neither switch

queries [194, 158] nor Sketches[227] can effectively detect such attacks due to hardware

constraints and the need for non-volumetric, stateful detection.

Flow Logging: Flow logging maintains an accurate count of every packet of the flow

received and stores the connection’s 5-tuple, packet count, timestamp, and required-state

depending on the specific attack being monitored. Volume based attacks such as DDOS

[173] can be detected using Sketches[312, 244, 331] and using switch-based detection with

the appropriate queries[158, 194]. They have been shown to identify attack indicators and

can trigger alerts quite well for heavy hitters and other volumetric attacks. However, it

can be challenging with monitoring applications that require high fidelity traffic matrices

to carry out statistical analysis on network traffic [287, 300].

As an example, we motivate the need of a combination of fine-grained and coarse-

grained traffic analysis by studying monitoring for the Slowloris Attack [105]. This attack

keeps a very large number of connections to a target web server open, rendering it difficult

for legitimate web requests to be served. We study the difference between a coarse and fine

grained detector as outlined below.
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Coarsed Grained Detector: This detector identifies end-points that use many TCP

connections, each with low traffic volume (e.g., # Conns Est.
# Bytes Sent > Threshold) [194]. Also,

instead of tracking this traffic volume for each and every host IP, it tracks it at a coarser-

grained IP prefix level, such as the first 16 bits of the host IP address. Tracking aggregate

activity consumes less memory, making it suitable to run on a P4Switch.

Fine Grain Detector: A widely used IDS, such as Zeek[116], measure HTTP request

duration and identifies ”stalling” flows (e.g., duration > 10 seconds). This is a memory

and compute intensive activity, and such a fine-grained indicator is necessary to accurately

detect the existence of the attack, the victims, and the attacker [118]. A host or sNIC is

suitable to deploy such a detector.

Since most connections are benign, a compute and memory intensive monitoring

capability in the data path will unduly penalize user traffic. For this, it is desirable to

minimize the number of packets that are forwarded to a sNIC-Host system for monitoring

beyond the processing performed on the packet already in the switch. Between the host

and sNIC, processing packets in the sNIC avoids expensive host processing, data copies and

PCIe transactions that impact end-to-end latency[241]. We desire a monitoring platform

that can detect low and slow attacks that hide in the presence of large volumes of traffic.

Here, we explain the challenges faced by other platforms.

P4Switch Switches have been widely explored for monitoring [194, 158, 329, 142]. Here,

we study hardware constraints that limits its ability to conduct fine-grained analysis.

Memory Constraints: The SRAM memory enables P4 programs to retain state across

packets and to hold the exact-match tables [142]. Tracking traffic flows at fine granularity
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on P4Switches requires sufficient memory. As noted in [224], given the limited on-chip

SRAM on a typical P4Switch ASIC (of the order of 100MB SRAM[257], even though it

can forward traffic at very high rates), it may require multiple such switches, which adds

to cost. To accommodate such P4Switch memory constraints, Sonata[194] carries out dy-

namic query refinement, so that it only focuses on the subsets of traffic that actually satisfy

a query, while ignoring the rest of the traffic, just like the coarse-grained detector above.

Flexibility accessing state: Accessing all available registers on a P4Switch can be a

complex task since registers in one stage cannot be accessed at a different stage [142]. Next,

the number of match-action pipeline stages limits the number of sequential processing steps

(10 − 20). Thus, the amount of P4Switch computation is bounded[338]. To maintain line

rate, programmable switches allow only a small constant number of memory accesses per

packet. This makes it infeasible to update multiple data structures for each packet[158].

Therefore, it is preferable for switches to perform coarse-grained analysis like in [158, 244]

as they minimize per-packet memory operations.

sNIC Programmable NICs have also been used for monitoring in [304, 342, 182]. sNICs

do not have explicit stages and have more memory compared to a P4Switch, meaning they

have fewer constraints. However, a pure sNIC solution can only scale to Gigabit traffic[342].

But, they outperform host-based solutions[304, 342]. Unlike , other sNIC solutions gener-

ally do not focus on stealthy and slow attacks. Except for Pigasus [342], but they focus on

a different approach, pattern matching, for intrusion detection.
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2.3 Resource Provisioning in Cellular Networks

Several cellular dataplanes have been implemented that perform Packet Detec-

tion Rule (PDR) matching. A P4Switch based UPF was introduced in [249] to improve

data plane throughput. Free5GC[36] is an open-source 3GPP compliant kernel-based im-

plementation, which consists of a UPF running on the host. Furthermore, DPDK-based

software-UPF solutions[148] have also been introduced to get rid of kernel overheads.

Monitoring of cellular networks has been explored before. NG-Scope[328] facil-

itates accurate and millisecond-granular capacity estimation updates for the cellular net-

work. This allows the congestion controller and the upper layer applications to adjust their

system parameters, such as send rate or video resolution, with the underlying network con-

dition. NG-Scope performs network telemetry at UEs, but could potentially be supported

at gNBs[328]. Lastly, prior work for buffering packets in the 5GC [148, 36], often leads to

high packet loss compared to a sNIC-based UPF solution, primarily due to the slower pro-

cessing at the host. Even P4Switch-based solutions resort to buffering on the host because

of the lack of support for it in the P4Switch [249].
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2.4 Monitoring Cellular Networks

Analyzing the presence of attacks across the entire network with a monitor per

gNB will require significant communication between monitors. Therefore, we seek to utilize

packet summaries (like Jaal)[138] to concisely transmit traffic matrices to traffic analyzers

(i.e., query processors) in the 5GC. Furthermore, we assume that the queries of interest (e.g.,

to detect Mirai Botnet, heavy hitters, superspreaders, etc.) are known apriori, allowing us

to filter traffic flows and zoom into traffic subsets of interest that have a higher chance

of satisfying the query. Zooming into traffic subsets has been explored in Dream[263] and

Sonata[195].

To achieve greater accuracy and faster detection times, we must use packet header

fields beyond the IP prefix, contrary to Dream[263]. We envision a distributed monitoring

system that can zoom into traffic subsets as easily as Dream, while considering substantially

more packet header fields than just IP addresses.

The purpose of traffic aggregation is to group monitored data that have common

characteristics [231]. It helps the operator detect network-wide anomalies while more con-

cisely transmitting information among network monitors. First, we explore existing aggre-

gation techniques and then select the suitable method for the large scale required for mon-

itoring a cellular network spanning a large number of gNBs. Dream [263] and Sonata [195]

introduce IP-prefix-based traffic aggregation at varying granularities (e.g., subnet /8, /16,

etc). Defeat [236] utilizes random aggregation using sketches to summarize traffic. Lastly,

Jaal [138] and CloudCluster[277] use clustering-based mechanisms such as K-Means and

hierarchical clustering to summarize traffic.
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First, we depict an example of prefix-based traffic aggregation and how it reduces

communication overhead. The radio resource management in cellular networks typically

allocates more radio resources to source UEs generating more traffic [155]. This makes it

prone to misuse as an attacker can acquire an unfair share of the resources that otherwise

should be allocated to legitimate users. A prefix-based detector will first identify source

traffic aggregates at the gNB that exceed a threshold at a /16 prefix granularity. By

analyzing traffic at the /16 granularity, fewer monitoring classes have to be tracked, leading

to less overhead on the monitoring devices[195]. The monitoring class in this example

is the first 16 bits of the source IP address, meaning 192.168.120.23 and 192.168.345.23

would belong to the same class and be aggregated together [274]. This reduces memory

and communication overhead between the monitoring peers [195]. Of these, some source

traffic aggregates that crossed the threshold will be further analyzed at a /24 granularity

in the subsequent time interval. The remaining traffic that did not satisfy the query at

the /16 analysis is thus filtered away. This is referred to as refinement, allowing us to dive

deeper (analyze a larger number of monitoring classes) while removing the traffic from the

analysis that does not satisfy the query. This is repeated until the exact UE is pin-pointed

(e.g., /32). Prefix-based mechanisms allow the operator to change the granularity of analysis

which is not possible with existing random or clustering-based traffic aggregation approaches

commonly used for monitoring. This allows queries to zoom into traffic subsets of interest.

The major problem with prefix-based approaches is that it does not consider fields other

than IP addresses, such as SYN (or RST) flags, which is necessary to discriminate benign

vs. malicious traffic during SYN (or RST) floods [195]. In the cellular context, this means

25



that as we carry out refinement across epochs, the number of epochs required to correctly

isolate attack traffic will increase, causing the attack to infiltrate inside the cellular network

as opposed to remaining at the periphery. The goal of this paper is to detect attacks earlier

at the periphery and to preserve scarce resources. Therefore we must be able to zoom

into malicious traffic subsets as quickly as possible by also considering fields other than IP

prefixes.

Clustering-based techniques bin traffic flows with similar characteristics together.

In order to scale to cellular network-wide monitoring and utilize more fields (possibly in

excess of 10 packet header fields, e.g., IP address, Ports, Flags, etc.), we must rely on

cluster labels that aggregate traffic having similar header field values. Here, the subset

of the packet’s header fields becomes the feature vector for clustering. Then a clustering

mechanism like K-Means assigns each packet a cluster label. Next, the cluster’s centroid

is computed and deemed representative of all the packets within a cluster [138]. Since the

number of clusters is configurable, the number of ‘representative packets’ that have to be

communicated become configurable (e.g., one per cluster). This is also referred to as traf-

fic summaries [138]. Thus, the operator can configure the amount of monitor-to-monitor

communication and trade that off against accuracy. This is because more aggressive sum-

marization will lead to a lower detection rate. As traffic characteristics vary depending on

the gNB the data is collected from (e.g., macro cell, small cell, etc.[66]), it is difficult to

ascertain how many monitoring classes (e.g., bins) to use to summarize the traffic. There-

fore, the problem with Jaal[138], which uses K-Means++[58], is that the number of clusters

is unknown. Furthermore, due to the statically configured monitor-to-monitor communi-
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cation vs. accuracy trade-off, the entire traffic is analyzed at the same granularity (e.g.,

no refinement, unlike prefix-based traffic aggregation). This prevents us from zooming-into

traffic subsets without increasing the memory overhead significantly.

Thus, we need to utilize a clustering mechanism that considers packet header

fields and still allows zooming into traffic subsets. This makes hierarchical clustering a nat-

ural choice to detect network-wide anomalies. We use hierarchical clustering to summarize

traffic and transmit representative packets between monitors. For this, a dendrogram is

constructed to derive the hierarchical relationship between packets. Next, the dendrogram

is sliced horizontally, resulting in child branches below that become clusters. The represen-

tative packets are computed using the Ward method [115], which reduces the growth in the

total intra-cluster sum of squared error among packet features[267].

As we zoom into the traffic subset of interest, we can also filter away traffic-subset

reports to the traffic analyzers that do not serve to satisfy any query to further reduce the

amount of data transmitted between monitoring peers. This differs from traffic aggregation

(i.e., summarization), which groups traffic with similar traits. Queries typically have a

threshold associated with them (e.g., #conns > Tg) and are selected based on the likely use

cases of the particular queries[158]. As introduced in CMY [197], in a distributed setting, if

there are n monitors and the network operator is to compute the answer to a query whose

(global) threshold is Tg (e.g., #SSH conns > Tg), then messages can be filtered in the

following manner, assuming traffic does not flow from one monitor to another. The local

threshold at monitors is set to Tl =
Tg

n . When Tl is crossed (e.g., #SSH conns > Tl

at the local monitor M), a report (RM) is submitted from the monitor M to the traffic
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analyzer with the actual counts observed for the query, otherwise no report is transmitted.

This reduces the amount of communication between the monitor and analyzer. If threshold

Tl is not crossed locally, the analyzer assumes the observed value (AM) for the query

at the monitor M was Tl − 1. Let the estimate for the query computed at the traffic

analyzer (across all monitors) be E , where E is the sum of assumed and reported values,

(E =
∑

M∈monitors(AM +RM)). When E > Tg (would be rare if a majority of the traffic is

benign), the traffic analyzer explicitly requests RM from all monitors regardless of whether

the local threshold Tl was crossed or not, to compute the query result.

There are several queries we seek to deploy in a cellular environment, especially

with similar monitoring classes. This means that the fields inspected between two queries

are not disjoint. In our distributed design, we cannot use a centralized monitor as in [330,

197, 263, 236, 138]. A centralized monitor would tremendously increase the overhead for

processing the traffic summaries. Furthermore, the traffic analyzer can be a single point

of failure. To prevent this, a subset of UPFs also act as traffic analyzers in . The queries

have to be distributed among the traffic analyzers. Then the traffic pruning mechanism will

ensure traffic summaries are only sent to the correct traffic analyzer, and only if it crosses

the local threshold unless the query estimate exceeds global threshold (see §2.4). Carrying

out monitoring in a distributed manner brings about an inherent problem. Some query

pairs are disjoint in terms of the fields they inspect, while others are not. If two queries

intersect (e.g., have similar fields) and are deployed on two different traffic analyzers, then

the monitor will have to emit the traffic summary to both analyzers.
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Chapter 3

SmartWatch: Distributed Data

Center Monitoring

3.1 Introduction

Network-borne attacks that aim to disrupt mission-critical systems and applica-

tions are a persistent problem for both network and datacenter (DC) operators. To counter

threats, operators must deploy infrastructure to monitor systems and network traffic, driv-

ing analyses to detect anomalies and specific attacks in a timely manner. The infrastructure

may directly protect against some attacks or provide alerts that trigger intervention, either

automated or human, to block or ameliorate the impact of those attacks.

The main challenge addressed by our work is on designing a cost-efficient traffic

monitoring and analysis infrastructure that can detect a range of network attacks within a

high-rate traffic stream. Systems must detect not only relatively crude volumetric attacks

that overwhelm the network through sustained network activity (e.g., SYN flooding), but
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also more sophisticated attacks that probe for system weaknesses (SSH Brute forcing, port

scan [215]), or attacks that exploit protocol dynamics (low-rate TCP attacks [230]) or deliver

packet payloads that exploit application vulnerabilities incorrect implementations [262]. We

seek to design a framework that can:

• detect low and slow attacks using state tracking;

• accurately track flow-state changes caused by each and every packet to ensure attacks

cannot bypass the monitor;

• scale to monitor Terabit scale traffic by cooperative monitoring using multiple com-

ponents including programmable switches, sNICs and hosts.

• provide flow-logging for rapid volumetric attack detection as well as comprehensive

inspection of all flows offline;

• support a large number of monitoring features running simultaneously on the platform.

A number of different algorithms and monitoring platforms have been designed in

the past to address this. Programmable switches have been used for telemetry queries at

Terabit scale [194, 158] while SmartNICs (sNIC) enable end-hosts to scale to more modest,

40/100 Gbps, rates[304, 342]. Since sNICs support more operations [78] than switches, we

use them for stateful packet processing, to complement the coarse-grained query processing

of programmable switches. sNICs have become critical components of DC operations due

to the performance boost they provide for the tasks offloaded from server CPUs[184]. We

create a network monitoring system that leverages the sNIC capabilities of programmabil-
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ity, co-designed the scalability of programmable switches and flexibility of host-based CPU

processing. Programmable switches are used to forward just the ’right’ traffic subset for

fine-grained sNIC-based monitoring.

This paper proposes SmartWatch, a network monitoring platform architecture,

comprising a commodity-class host and sNIC, working cooperatively with programmable

switches. SmartWatch makes the following contributions:

• To detect or prevent stealthy attacks such as low-rate port scans, SmartWatch per-

forms lossless state-tracking and flow logging. SmartWatch yields 2.39 times better

detection rate compared to existing programmable switch based platforms. Compared

to host-based approaches, SmartWatch reduces packet processing latency by 72.32%.

• SmartWatch works cooperatively with P4 switches for network-based monitoring.

SmartWatch uses iterative-refinement between the programmable switch and sNIC

to judiciously use switch resources while operating at Terabit line rates. Switches

direct the right traffic subset to the sNIC for processing. Less than 16% of packets

processed by the sNIC go to the host.

• SmartWatch reduces the memory requirements of programmable switches for moni-

toring, thus allowing it to be used for common data center operations. This is done

by running coarse grained queries in the switch. Fine grained processing is done by

the sNIC-host subsystem.
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We build a monitoring framework to detect a wide range of anomalies, caused both by volu-

metric attacks as well as specific slower targeted attacks which are increasingly successful [1]

in the middle of a high traffic volume. For this goal, SmartWatch leverages the following

key capabilities.

Cooperative Monitoring

The 3 components (sNIC, host, P4Switch) cooperatively perform monitoring. The

sNIC offloads processing, reducing load on the host, and the P4Switch directly forwards the

bulk of benign flows to their destination, preventing any unnecessary performance impact.

Two-Stage detector: The first stage relies on obtaining coarse-grained flow information.

Flow subsets with attack indicators at a coarser granularity are forwarded for fine-grained

processing, starting with the next monitoring interval. The first detection stage is per-

formed on the P4Switches, where the focus is on processing high volumes of traffic. We

are cognizant of the impact on latency critical user traffic, so that our in-line monitoring

application minimizes the number of operations per packet and is lightweight. Following

the broad approach of Sonata[194], Nitro Sketch[244], and BeauCoup[158], this first stage

then steers traffic subsets that satisfy aggregate-traffic queries for finer grained analysis.

The next stage is implemented on the sNIC-host subsystem of SmartWatch where proces-

sor and memory intensive operations are performed on the packet. The ability to add more

monitoring functions as needed, ensuring efficiency and low latency, are all important.
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Control Loop: SmartWatch is responsible for configuring P4Switches, including specifying

queries to be run by the switch. A more specific query would direct more targeted, and

thereby less, traffic to SmartWatch from the P4Switch. We effectively create a control-loop

(Fig. 3.1) where the sNIC-Host subsystem receives different amounts of traffic based on the

degree of specificity of the query that SmartWatch installs on the P4Switch. The P4Switch

queries are implemented using P4 tables where stateful operations are performed using P4

registers. At the end of a P4Switch monitoring interval, processing of the switch queries

will determine some traffic subsets deemed as being suspicious (e.g., a threshold is crossed).

Subsequent packets of these traffic subsets are forwarded to the sNIC-host subsystem. Over

time, flows that get classified as benign by SmartWatch (e.g., after successful authentication)

no longer have to be forwarded for fine-grained inspection by the sNIC-host subsystem. A

P4 table in the P4Switch whitelists benign flows, thus reducing the overall traffic forwarded

to the sNIC-host subsystem. This also reduces any performance impact on those flows.

SmartWatchP4Switch

P4Switch

P4Switch

P4Switch

P4Switch

End 
Host

End 
Host

End 
Host

End 
Host

Traffic Subset

Switch Config

Monitoring Host

sNIC sNIC

Monitoring Host

sNIC sNIC

Monitoring Host

sNIC sNIC

Figure 3.1: SmartWatch Control Loop.
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Lossless flow monitoring

SmartWatch is a flexible network monitor for tracking flow state and logging flows

with the SmartNICs (sNIC). This enables us to detect both stealthy as well as large-scale,

volumetric network attacks. SmartWatch innovates by designing novel data structures in

a P4-programmable Netronome sNIC. With the 40 Gbps Netronome sNIC, we are able to

perform loss-less flow-state tracking and logging at ’near line rate’ - a maximum 43 Mpps

achieved with 64 Byte packets. This is consistent with [261] where even without any extra

processing, line rate is only achievable using packets larger than 128B (This paper uses the

same NIC). The bottleneck is most likely in the packet scatter-gather functionality across

the micro-engines [261]. Similar limitations were also observed with the Intel XL710 NIC-

based systems [244, 56]. Higher packet rates can be supported using a 100 Gbps sNIC

(which we plan to do) or by sampling as in [158, 244]. However, such sampling techniques

would not be able to support flow-state tracking.

Partitioning of Functions (Host vs. sNIC): The sNIC acts as an accelerator and

helps track flow-state significantly faster than performing these functions on a host (e.g.,

TurboFlow [304] vs. Krononat [137]). On the other hand, the host has a much larger mem-

ory reservoir [224]. sNIC operations are also limited as there are no recursive functions or

floating point operations available in the packet processing pipeline [78]. To ensure efficient

state-tracking at line rate, we consider an sNIC cycle-budget for each and every packet.

A violation of the cycle-budget potentially leads to dropping of packets at higher arrival

rates. To achieve flow state-tracking at high packet arrival rates, SmartWatch designs a
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novel in-memory data structure on the sNIC with a flow eviction policy. This frees up a

significant fraction of the time and cycle-budget on the sNIC for operations required by

monitoring tasks.

sNIC FlowCache: We leverage the sNIC’s memory to design a FlowCache that consist

of a hash table and ring buffers. An incoming packet/flow processed by each sNIC packet

processing entity updates the FlowCache using a hash of the 5-tuple. We use the sNIC mem-

ory (DRAM) to support 25 million flow entries. We propose a two-level cache on the sNIC

(e.g., like a CPU’s L1-L2 cache) and empirically select an eviction policy by examining the

performance with a number of CAIDA traces[21]. The ring buffers accommodate evictions

from the hash table and are used to periodically flush snapshots of the hash table to the host.

Reconfigurable FlowCache: Beyond providing a large reservoir of memory for tracking

flow state and logging flow information, the host is also responsible for processing packets

that the sNIC alone cannot process. Therefore, we need to minimize the cycles spent on the

host for logging flows (e.g., handling flow records exported from sNIC to host). We develop

a reconfigurable FlowCache that trades-off between sNIC packet processing throughput and

the host’s processing requirement. We do this adaptively by changing the eviction rate on

the sNIC in response to the packet arrival rate.

To the best of our knowledge, this work is the first of its kind to cooperatively

monitor traffic using a combination of programmable devices that span the range of memory

and compute capabilities.
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3.2 SmartWatch Architecture

In our cooperative monitoring scheme a P4Switch helps to identify attack indica-

tors at a coarse granularity, effectively utilizing its limited memory and simple packet pro-

cessing capabilities. Attacks listed in Table 3.1 may only be detected at a coarse granularity

by aggregate traffic queries using a framework typified by SONATA [194], ConQuest [157],

and Beaucoup [158].
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Figure 3.2: SSH Bruteforcing

Selective ’Bump-in-the-wire’ processing: In general, packets processed in the P4Switch

are directly forwarded to their intended destinations without any involvement of the P4-

capable sNIC or the host. The P4 pipeline in the P4Switch passively monitors the traffic

and computes the outcome of switch queries such as ”is the number of ssh connections

above a threshold?”. If the threshold is crossed, subsequent packets of this traffic subset

are steered to the sNIC (e.g., such as excessive SSH traffic destined to the same destination

IP prefix). Therefore, only traffic that requires further inspection is forwarded to the sNIC-
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Figure 3.3: Port Scan

host subsystem, and are subjected to the higher latency due to this ’bump-in-the-wire’-like

processing. At the sNIC-host subsystem we identify the SSH connection attempt outcomes

(e.g., failure or success) and determine if there is a SSH-guess attempt. SmartWatch will

then program the P4Switch to avoid benign flows (e.g., successful SSH authentication) from

being subjected to the additional latency of sNIC’s processing.

When installing rules in the P4Switch that whitelists benign flows, SmartWatch

needs to be wary of the amount of state used in the P4Switch. To solve this problem, we

borrow the ’hoverboard’ intuition from Andromeda [167]. Selecting heavy flows that are

benign (e.g., top-k) as opposed to mice flows helps reduce the amount of redirected traf-

fic to SmartWatch, with relatively few rules installed in the P4Switch. Figs. 3.2 and 3.3

shows the P4Switch state vs. the traffic volume directed from P4Switch to the sNIC for the

SSH bruteforcing and port scan attacks, respectively. We use CAIDA traces from different

years [21] for this experiment. We see that there exists a knee, beyond which whitelisting

flows does not reduce P4Switch state further. We describe these attacks in greater detail
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later in this paper. Furthermore, the sNIC FlowCache data structure is responsible for

identifying the top-k heavy benign flows, which we describe in this section.

Switch Query Refinement: We borrow the iterative refinement approach from Sonata[194]

to selectively steer flows from the P4Switch to sNIC or host. Let us consider an example

where we have to track the number of SSH connections per destination IP. Treating these

as key-value pairs, each destination IP is a key and the number of SSH connections is the

associated value. Now, instead of tracking each individual destination IP (dIP), we ag-

gregate them to a less-specific subset, such as based on their 16-bit prefix (dIP/16). This

coarse grained analysis requires less state on the P4Switch due to fewer key-value pairs.

Steering traffic that satisfies a query at the coarser dIP/16 granularity instead a dIP/32

granularity will cause much more traffic to be redirected, since dIP/32 is more specific.

Iterative-Refinement zooms into traffic by filtering just the correct flows to allow multi-

ple queries to run on the P4Switch despite its limited memory. If we compare Sonata’s

iterative-refinement to SmartWatch, in Sonata[194], the P4Switch memory is reused for

traffic subsets at a more specific granularity (e.g., /16 instead of /8). The rest of the traffic

is not examined. Instead of reusing the switch memory and only analyzing a narrow window

of traffic in the P4Switch as in Sonata[194], in our design we send the narrow window of traf-

fic to the sNIC-host subsystem, but have the switch continue to examine the coarser subset

of traffic. SmartWatch reuses Sonata’s[194] interface to load switch queries on the P4Switch.

38



15 30 60 120 240 580 1160 2320
Packet arrival rate (Mpps)

0

50

100

150

200

# 
CP

U 
Co

re
s

Host
SmartWatch (No P4Switch)
SmartWatch
P4Switch and Host

Figure 3.4: #CPU cores required

15 30 60 120 240 580 1160 2320
Packet arrival rate (Mpps)

0

10

20

30

40

50

# 
sN

IC

Host
SmartWatch (No P4Switch)
SmartWatch
P4Switch and Host

Figure 3.5: #sNIC required

Resource Usage: We simulated four different scenarios, including 1) standalone host based

monitoring system, 2) SmartWatch without a P4Switch, 3) SmartWatch, and 4) host with

P4Switch. The P4Switch runs the iterative query refinement algorithm derived from [194].

In this experiment, we speedup the CAIDA 2018 trace to emulate different packet arrival

rates. Our findings are in Figure 3.4 and 3.5. The y-axis is the amount of resources (i.e.,

CPU cores and sNIC respectively) required to sustain different packet arrival rates (x-axis).

There is only one P4Switch in this simulation experiment. We observe that the P4Switch
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helps SmartWatch reduce the number of sNIC and CPU cores by at least 14 times by

forwarding the bulk of the traffic through to the destination when the packet arrival rate is

2320 Mpps. The number of required sNIC and CPU cores are 4 and 6, respectively. This

makes SmartWatch practical to scale to Terabit level traffic. The detection rate of our

approach is also better, as shown in Section 3.4.3.

3.2.1 sNIC FlowCache Design

SmartWatch utilizes both the host-CPU and sNIC’s packet processing engines, re-

ferred to as Micro-Engines (ME), to track flows in a loss-free manner and minimize communi-

cation overhead between host and the sNIC. The sNIC has a P4 match-action table sequence

and a FlowCache data structure, which is designed using C functions. An incoming packet

is first scheduled to a packet-processing micro-engine, (PME), by a ’global’ load-balancer

where packets are serviced in a ”run-to-completion” manner (e.g., non-preemptive). The

P4 match action tables provide specific packet processing/forwarding rules for the incoming

flow. Packets are also processed by the FlowCache for monitoring tasks.

sNIC FlowCache: We use the sNIC’s memory to design a FlowCache that consist of a

hash table and ring buffers. The cache is in contiguous memory and is allocated at compile

time. An incoming packet processed by each PME updates the FlowCache using a hash of

the 5-tuple. We use the sNIC memory (DRAM) to support 25 million flow entries. The

ring buffers accommodate evictions from the hash table and are used to periodically flush

snapshots of the hash table to the host. We dedicate 8 ring buffers. Having these 8 ring

buffers mitigates the access contention for ring buffers among the 80 PMEs.
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Data Structure: We use a large hash table with an array of buckets to cache flow records

within the sNIC. To keep the per-packet latency low, we restrict the entries for a hash in-

dex to at most 12 buckets, ensuring the sNIC can maintain high throughput and minimize

packet drops. As observed in other programmable dataplanes[224], Cuckoo hashing is not

suitable for caching flow records in the sNIC because it can often require multiple memory

accesses. In a Cuckoo hash table, a hash collision will cause a hash entry to be moved

to its secondary location, causing a write operation. On the other hand, in our proposed

mechanism while there may be multiple read operations, there is just one write operation.

Empirically, with a limit of 12 recursive insertions (with Cuckoo hash) vs. 12 buckets (with

FlowCache), the 99.9 percentile latency for a CAIDA DC trace[21] was observed to be 2.43

times lower with FlowCache. This is because sNIC write operations are relatively expen-

sive compared to reads. Unlike a write, for a read the calling thread yields so that another

thread can continue its work while the memory is being read [113].
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Figure 3.7: FlowCache latency dist.
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Figure 3.8: Hit and Miss counts

Partitioning & Eviction Policies: The key insights from previous work with typical

Internet data center (DC) traffic characteristics and the CAIDA packet traces are: 1) a

few large flows account for a majority of the packets, 2) numerous small flows frequently

compete for a hash entry, and 3) packets of elephant flows arrive over several bursts. We
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Figure 3.9: Latency profile

experiment with a number of widely used eviction policies: Least Recently Used (LRU),

Least Packet Count (LPC) and First-In-First-Out (FIFO) on the hash table with 221 rows

× 12 buckets per row. We further devise a split of the hash table into two buffers, namely a

Primary P and an Eviction E . Note: we use the notation (x, y) to designate a configura-

tion with x buckets in P and y buckets in E per row, respectively. We measure the hit and

miss rate when the sNIC is subjected to 43 Mpps (64 Byte packets) CAIDA 2018 trace [21].

Note that all four policies have the same memory footprint. Misses cause evictions of flow

records to the host, and therefore we seek to minimize them. Among the four policies, LRU

has the highest hits, but LPC has lower latency. In order to effectively reap the benefits of

LRU (handle a continuous train of packets from a flow) and at the same time benefit from

the low latency with LPC (large number of hits coming a small set of elephant flows), we

installed a hybrid LRU-LPC policy in P and E respectively, which provides the highest hit

rate and lowest latency (median and 75%ile).
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Pinning Flow Records: Low and slow attacks require per-packet flow state updates to

accurately detect malicious flows. We seek to avoid host involvement to keep packet pro-

cessing latency small, by dynamically pinning flow records in the sNIC FlowCache. This

prevents the eviction of a flow record which potentially would result in inaccurate tracking

of a suspect flow’s state. In an event where all flow records of a row are pinned and one

flow must be evicted, the packet being processed is sent to the host, which we strive to

minimize. If a we cannot find a flow entry for a packet (Miss) either because it was evicted

or not-pinned, then we create a new flow entry. We will not retrieve packet counters from

the host as this tremendously increases packet latency.

Table 3.1: SmartWatch Resource Summ. (No P4Switch)

Attack sNIC Host
Cycles(%) Processed(%)

Heavy Hitter, Heavy Changes,
Cardinality, Flow Size Estimation 80.32 0
and Slowloris

Zeek SSH Bruteforcing 1.79 1.24

Zeek Expiring SSL certificate 1.98 1.35

Zeek FTP Bruteforcing 1.85 1.19

Zeek Kerberos Ticket Monitoring 1.99 2.9

In-Sequence Forged TCP RST 1.94 0.95

TCP Incomplete Flows 2.01 8.3

Stealthy Port Scan 1.99 0

DNS Amplification 1.93 0

Micro-bursts 2.08 0

EarlyBird Detection Worms 2.06 0
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Reduce Host Packet Processing with FlowCache We benchmark 15 attack

detectors simultaneously running in SmartWatch. Table 3.1 (Host Processed col.) shows

the percentage of trace packets (CAIDA 2018) processed by the host. Most are processed

by the sNIC. Thus, there is a dramatic reduction in host overhead. Depending on the

flow-state, select packets are forwarded to the host. The average packet processing latency

reduces to just 28% compared to when everything runs on the host. PCIe transactions and

packet copies contribute to the host-based processing being slower [241].

3.2.2 sNIC Reconfigurable FlowCache

Increasing the number of buckets accommodates more flows with fewer evictions

from the sNIC to the host. But, it lowers throughput due to higher processing latency.

To adapt to fluctuating packet arrival rates, we dynamically mutate between the General

and Lite mode, with minimal overhead. General Mode has 12 buckets per row in (4,8)

configuration. This captures most of the large flows and operates in a loss-free mode for

arrival rates upto 30Mpps. But, it is insufficient to keep up with the maximum achievable

line-rate (43Mpps) for the 40Gbps NIC. But, it also has the benefit of a lower eviction

rate (reduced transfers to host). The Lite Mode on the other hand supports higher packet

rates. Fig. 3.10, shows that both (2,0) and (1,0) meet near line-rate for 64B packets. So,

we select (2,0) as Lite mode. Unfortunately, the Lite mode results in a higher eviction rate

because of a lack of buckets to resolve collisions, despite having the same memory footprint.

Figure 3.13 shows that the CPU time [97] for the host thread responsible for snapshotting

flow records increases by 2.08 times when we employ the Lite (2,0) mode compared to the

General mode of the sNIC FlowCache. This is because of the 47% increase in eviction rate.
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Map Offline Tasks to Micro-engines. There are a total of 80 sNIC MEs usable for

i) packet processing (PMEs) or ii) custom processing (CMEs), separated from the packet

processing pipeline. Fig. 3.11 shows the variation of throughput as we change the number of

PMEs. We are able to allocate a total of 3 MEs for custom processing (as CMEs) without

any degradation in the maximum packet processing throughput. We use CMEs for the task

of switching between the two modes. Later, we also show their utility for other monitoring

tasks such as reporting flows that cause micro-bursts.
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Figure 3.10: Tput vs. MEM

Correct State-Tracking without Flow Duplicates. For the General Mode, packets

have to be checked against bucket [0, 12) across P (e.g. [0,4)) and E (e.g. [4,12)). For the

Lite Mode, only two buckets are checked at an offset determined by the higher order bits

of the hash digest. Clearly, the candidate buckets for the Lite Mode are a subset of the

General Mode. Thus, there is no overhead to switch from the Lite Mode to General Mode,
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Figure 3.11: Tput vs.# PME

and there is less flow-matching penalty in the Lite Mode. On the contrary, flow entries will

have to be reordered when transitioning from General to Lite Mode. The contiguous mem-

ory and the logical partitioning between P and E allows us to move the logical boundary

between them and resize the number of rows in the hash table. We use a global variable

mode for the current operation mode. A CME periodically tracks the packet arrival rate

(EWMA with α = 0.75 over a window of 100 samples) and compares with a threshold to

switch modes.

General to Lite Transition When the packet arrival rate exceeds the rate supported by

the General mode, the CME triggers a switch over to Lite mode. The CME marks all the

hash table rows as ’dirty’. The first PME that finds a bucket within a ’dirty’ row performs

the cleanup, which involves reordering the flow entries and then marking the row as ’clean’.

The PME gains exclusive access to the row (i.e., allow no concurrent flow updates) and

reorders the flow records honoring the Lite mode’s logical boundary. We do this lazily, as
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packets arrive, as it is slower for a single CME to reorder all flow records, taking at most

14µs. The 80 PME on the sNIC process packets in parallel for other FlowCache rows even

if one PME has exclusive access to a specific row. However, some packets end up waiting

for the clean up process to relinquish the exclusive access to a row. We observed this wait

time to be less than 5µs, before it can make its own state updates.
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Figure 3.13: Host snapshotting overhead
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Lite to General Transition When the packet arrival rate drops below a threshold, the

CME initiates the transition to General mode. Flow entries do not have to be reordered

and the eviction process can run as usual. For example, a General mode’s row consists of

12 buckets, which is sub-divided to support six rows of two buckets each in the Lite mode.

Therefore, the packet is forwarded to the same ’12 buckets’ in physical memory. Since all

12 buckets will be probed in the General Mode and since the candidate buckets in the Lite

mode are a subset of the General mode, correctness is ensured.

3.2.3 Sub-components for Host Support

The host can provide a large amount of memory (> 200GB) and storage (∼2TB)

compared to the switch and sNIC. We leverage the host as a global pool to collect and store

all flow-related information over multiple snapshots for detailed forensics. We leverage the

sNIC to aggregate flow records and export them to the host periodically (every 5 seconds).

Since the sNIC may export a particular flow’s entry several times due to eviction or being

aged out, the host is responsible to correctly aggregate each flow’s information. We DMA

flow records by borrowing the implementation from [269]. The host caches these flows with

a 230×1 hash table. The entries from host cache are periodically (per measurement interval)

flushed to a Redis [99] datastore for flow-logging. The host CPU also has the capability to

process packets through SR-IOV ports (DPDK [190]). Some IDS/IPS components cannot

be offloaded to the sNIC as they require complex operations (See §3.1). We dedicate distinct

SR-IOV ports for each supported function on the host. Host NFs include: 1) Zeek[116] for

IDS/IPS scripts, 2) Timing Wheel[315] to buffer and release packets, and 3) NFs using the

host’s larger memory pool.
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3.3 Implementation

Low Cost to Add Monitoring Features. The required state for baseline flow

logging is 768MB to cache 25 million flow records, including timestamps and packet coun-

ters. Given the sNIC has 8 GB memory and supports bulk operations, additional attributes

can be added to the flow entry to track flow-state, enabling support of additional moni-

toring features. However, the packet processing overhead must be minimized to perform

lossless tracking. The baseline FlowCache, without any additional monitoring features,

which supports flow logging consumes most of the sNIC cycles (80.32% of the total cycles).

Flow logs exported to the host (always enabled) can be analyzed offline for heavy hitter

detection, heavy changes, cardinality estimation, flow size estimation, and Slowloris. Our

eviction policy ensures FlowCache processes packets at near-line-rate. Table 3.1 shows that

the cycles consumed by other monitoring features is very small compared to FlowCache,

and therefore do not reduce packet processing throughput. This is because of the parallel

processing across a large number of PMEs on the sNIC, including hardware support of

atomic operations.

Symmetric Hash Function: Detectors require session based flow-state tracking. We

need to ensure IP packets in the reverse direction map to the same bucket as that of the

forward direction. Hence, we use a symmetric hash function[326].
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Table 3.2: sNIC Comparison

Attribute / sNIC Bluefield LiquidIO Netronome
MBF1L516A OCTEON Agilio
-ESNAT TX2 DPU LX

Processor 2.5 GHz [84],[11] 2.2 GHz [68] 1.2 GHz [76]

Parallelism 16 cores [84] 36 cores [68] 96 cores [76]

L1 Size 32 KB [84] 32 KB [241] 64 KB [67]

L1 Access Time 5.0 ns [241] 8.3 ns [241] 13 ns [113]

L2 Size 1 MB [84] 24 MB [68] 256 KB [67]

L2 Access Time 25.6 ns [241] 55.8 ns [241] 51 ns [113]

DRAM Size 16 GB [241] 16 GB [241] 8 GB [79]

DRAM Access Time 132.0 ns [241] 115.0 ns [241] 137 ns [113]

Atomic Primitives Yes [241] Yes [241] Yes [113]

Programmability GNU [84] GCC [68] Micro C/P4 [67]

3.3.1 Generality of sNIC Implementation

In this section, we study the generality of our implementation on the Netronome

sNIC, the potential for adoption with other, such as BlueField and LiquidIO sNICs. The

details of the 3 sNICs are listed in Table 3.2. Using this, we ran a discrete event simu-

lation with a CAIDA trace[21] containing almost 2 billion packets, where all packets are

reduced to 64B to create a worst case stress test. All 3 sNICs support programmability and

atomic primitives with a cache structure and multiple packet processing cores. We model

the number of cycles consumed in the FlowCache for the BlueField and LiquidIO sNICs by

performing the measurements on our Netronome sNIC (e.g., no. cycles for hits / misses).

We then estimate the packet processing latency and the number of packets processed per

second across all compute units based on the different processor speeds and memory access

latencies (Table 3.2 specification). Using our trace-driven simulation, we derive the packet

throughput for BlueField and LiquidIO sNICs to be 40.7 and 42.2 Mpps respectively, com-

pared to the throughput for Netronome sNICs, which was 43 Mpps. The reason for their
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slightly lower throughput compared to Netronome is because of the fewer number of pro-

cessing cores. SmartWatch is a monitoring platform. But, thanks to its P4 and SR-IOV

capability, it can support common data plane functionalities such as switching, tunneling,

and QoS, which are typically supported by OVS [167] in today’s DCs. All three sNICs

support OVS offload and SR-IOV [84, 76, 70, 68]. SmartWatch and OVS can act as the

monitoring and connection tracking modules of the pipeline, respectively.

3.4 Evaluation

Testbed: We evaluate the effectiveness of SmartWatch on our local testbed con-

sisting of Linux servers (kernel ver. 4.4.0-142), each with 10 Intel Xeon 2.20GHz CPU cores,

256GB memory and Netronome Agilio LX 2×40 GbE sNICs with 8GB DDR3 memory and

96 highly threaded flow processing cores. We use three packet generators, each running

Moongen[176] to replay PCAP traces at the high rate (43 Mpps using 64B packets) for

our stress tests. Attack and background traces are timestamp shifted and then merged

using editcap [33] and mergecap [72], respectively. To truncate packets to 64B, we use

tcprewrite[110].

First, we compare SmartWatch against monitoring systems deployed on the host,

such as Zeek. Second, we show how SmartWatch can reduce the memory (SRAM) pressure

on a P4Switch for cooperative monitoring for detecting covert timing channels [329] and

website fingerprinting [142]. Third, we show how FlowCache helps improve long (5 sec)

and short (¡200µs) timescale traffic analysis. Lastly, we compare cooperative monitoring
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technique to Sonata[194] in terms of accuracy. In our experiments, all detectors that are

based on flow logging are processed offline on the host, while other attacks, such as SSH

Brute Forcing, are detected online.

Evaluation Traces: We use four different traces: 1) CAIDA Traces [21] (years 2015 to

2019) containing 1 to 1.9 billion packets., 2) For stress testing, we created traces with 64B

packets with CAIDA traces, 3) For targeted attacks, we used official test traces from Zeek

IDS [116], and 4) Univ. of Wisconsin DC measurement traces [145].

Figure 3.14: SSH Brute-forcing
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Figure 3.15: Forged TCP RST
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SSH brute-forcing

Attack: Many nodes with distinct source IPs use different username/password combina-

tions on SSH login servers [211]. For this attack we leverage the host running Zeek[116]

and partition processing tasks between the sNIC and host. The host is only involved in the

authentication phase, and if successful packets avoids PCIe transactions to the host.

Detection: Track the number of failed SSH login attempts, ψ, by a remote node in a given

time interval. Raise an alert when ψ exceeds a threshold[120].

P4Switch Role: For the SmartWatch framework, the P4Switch measures if the number of

SSH connections attempts have exceeded a threshold. Flow subsets with significant number

of authentication attempts observed in P4Switch are forwarded to the sNIC. The P4Switch

cannot conduct fine-grained analysis by itself as it cannot determine the number of failed

SSH connection attempts ψ for a specific remote node, since they are encrypted. It is not

possible to heuristically determine connection attempt outcomes in the P4Switch as it re-

quires per-packet state transitions (see §2.2).

SmartWatch Role: As a new SSH connection arrives, we pin the flow entry within the

sNIC until the outcome of the connection attempt is determined. FlowCache ensures that

subsequent packets of pinned entries are forwarded to a host NF running Zeek. Zeek heuris-

tically guesses the login attempt outcome by tracking connection state transitions and the

amount of data communicated [50]. If the host NF detects authentication success, Flow-
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Cache unpins the flow entry (evicted as needed) and does not send subsequent packets to

the host NF by updating the match action table. If ψ exceeds a threshold, the P4 table

blacklists the source IP. Here, the gain is experienced by all packets beyond the SSH au-

thentication phase. The sNIC tracks approved vs. non-approved flows, causing only 1.24%

packets in the SSH trace to go to the host (Table 3.1). The remaining packets of the trace

avoid costly transfers to the host.

Evaluation: Figure 3.14 shows the SSH packet latency for three scenarios: 1) successful

authentication with SmartWatch 2) successful authentication with baseline Zeek, and 3)

multiple authentication failure attempts with SmartWatch. Here, 3 failure attempts in 30

minutes generates an SSH GUESS ATTEMPT event. We utilize traces available in the

Zeek package for this experiment. Once a SSH connection is approved by Zeek (SSH AUTH

SUCCESS ), packets are no longer processed in the Zeek NF, reducing the average packet

processing latency by 77% compared to baseline Zeek. In Fig. 3.14, SYN packets result in

unavoidable latency spikes up to ∼2250µs because of the need to remove connection state.

Similar Attacks: Expiring SSL certificates[122], FTP brute-forcing[117], and Kerberos

ticket traffic[119]. Similar to SSH connections, Zeek can scrutinize the validity of the con-

nection in the host. Following Zeek’s approval, their packets are entirely processed in the

sNIC.
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TCP Forged Resets

Attack: An adversary disrupts TCP connections by sending a forged TCP RST packet to

either end of a connection. We leverage the host running a timing wheel where potentially

forged RST packets can be buffered until the RST packet is classified as malicious or benign.

In this example, the sNIC is responsible for steering the smallest possible traffic subset to

the host, thus reducing the high latency PCIe transactions.

Detection: This can be detected using 1) RST packets with outdated SEQ numbers; 2)

Multiple RST packets with increasing SEQ number; 3) race conditions between the RST

packet and in-flight end-host data packets. Here, we focus on the race condition between

the RST packet and data packet as it requires the most flow-state tracking and is difficult

for attackers to avoid. Race conditions are unlikely if the RST packet has been generated

by an end-host. Hence, it is recommended that a monitor maintain state for a time interval

T=2 seconds from the arrival of the RST packets to determine whether the RST is genuine

or forged [320]. On the host, we implement a timing wheel [315] to buffer RST packets.

P4Switch Role: In the SmartWatch framework, the P4Switch measures if the number of

RST packets exceeded a threshold. Flow subsets with a large number of RST packets seen

in the P4Switch are forwarded to the sNIC. The P4Switch by itself cannot conduct this

fine-grained analysis (see §2.2). The precise victim in the flow subset requires tracking the

arrival of RST packets and inspecting the sequence of subsequent packets [320].
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SmartWatch Role: FlowCache steers TCP RST packets to the host via a dedicated SR-

IOV port and pins the flow entry in sNIC FlowCache. The RST packet is released by the

timing wheel after T = 2 seconds if no race conditions are identified (i.e., not forged). On

arrival of a genuine data packet right after a forged RST packet, sNIC FlowCache notifies

the timing wheel (i.e., state-tracking) after which the forged RST packet is discarded from

the timing wheel, without reaching the destination. sNIC FlowCache records are unpinned

when the buffered RST packet is released to its destination, or when a forged RST is actually

detected. The gain is experienced by all packets arriving prior to the monitor seeing a RST

packet in a connection. In our experiments, only 0.95% packets of the CAIDA data center

trace go to the host and experience the additional processing delay of the monitoring NF

and PCIe transaction (Table 3.1).

Evaluation: Only unique RST packets should be inserted into the timing wheel while

duplicate RST or data-after-RST must be immediately notified to operator (i.e., an attack).

Ensuring uniqueness requires the timing wheel to be scanned while buffering the RST packet,

potentially degrading packet processing latency. This processing can be bypassed for some

packets using a Bloom Filter, accelerating the RST buffering operation. Fig. 3.15 shows the

packet processing latency and percentage of packets experiencing it for different values of T

for the 2018 CAIDA trace [21]. As T increases, so does the scanning time, as more buffered

RST packets have to be checked. The blue vertical line is the mean round-trip latency

for packets processed solely in sNIC FlowCache. This accounts for 99.053% packets of the

trace. As for RST packets, uniqueness identified using the Bloom Filter incurs an avg. 411

ns extra processing time and accounts for 69.7% of RST packets. Remaining RST packets
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incur extra latency due to the scan operation on the timing wheel, which is necessary to

identify the previous (unexpired) RST packet.

Similar Attacks: Similarly, we can detect TCP Incomplete Flows. Instead of looking

for race conditions, we check if a SYN packet wasn’t followed by DATA packet for some

time [291]. SYN packets aren’t blocked, as in forged TCP RST.

Port Scan Attacks

Attack: Port scan is a common method for discovering exploitable channels (i.e., open

ports) on network servers[215]. SmartWatch partitions the monitoring between the host

and the sNIC. The sNIC inspects and reports to the host the outcome of TCP three-way

handshake (i.e., incomplete vs. established). The host tracks this over longer time scales,

to classify if the remote node is a scanner or benign. But, no packets are forwarded to the

host.

Detection: [215] describes a detection scheme using the number of failed connection at-

tempts (i.e., failed three-way handshake) as an indicator to identify scanners. It determines

the outcome of the ith connection attempt from remote server r as an indicator variable

ϕri . [215] then runs a hypothesis test determining whether the remote node r is an attacker

or not.

P4Switch Role: For the SmartWatch framework, the P4Switch measures the number

of connection attempts. Flow subsets with significant number of connection attempts ob-
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served in the P4Switch will be forwarded to the sNIC. The P4Switch itself cannot conduct

fine grained analysis as it cannot track the connection outcomes which requires flow-state

tracking over long time scales, requiring significant amounts of P4Switch memory (see §2.2).

SmartWatch Role: FlowCache computes ϕri by tracking flow state on a per-packet ba-

sis. It waits a short period of time to see the responses for the SYN packet: a SYN ACK

(successful); a RST (incorrect service); or no response (incorrect destination/port) from the

destination. The flow record is pinned until ϕri is determined (e.g., 1 if it completes the

three-way establishment handshake, 0 otherwise). The indicator variable ϕri for the flow is

stored in the flow record and gets exported to the host. The host then classifies the remote

node r as an attacker/benign using hypothesis testing[215].

Evaluation: We use NMAP [82] to generate scanning traffic with different scanning inter-

vals. We merged this attack traffic with the Univ. of Wisconsin datacenter measurement

trace [145]. Thus, the attack traffic is hiding in a much larger data stream. Larger scanning

intervals become more difficult to detect (i.e., paranoid scanner). Figure 3.16 shows the

detection rate in relation to different scanning delays comparing SmartWatch and (stan-

dalone) P4Switch. As SmartWatch carries out memory intensive operations, it can track

protocol state transitions, allowing for it to compute the indicator variable ϕri and detect

scans with long scanning intervals.

Similar Attacks: Detecting DNS amplification by computing the amplification factor

sizeof(response)
sizeof(request) instead of ϕri [216].
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3.4.1 Reducing P4Switch memory pressure

We study two monitoring usecases in this section and detail how SmartWatch

assists a P4Switch (NetWarden[329] or FlowLens[142]) consume less SRAM and control

plane cores, aiding common forwarding operations in the DC.
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Covert Timing Channel

Evasion Covert timing channels can exfiltrate secret data by modulating the inter-packet

delays (IPDs) of network traffic, e.g., by using large (small) IPDs to encode ones (zeros)[329].

SmartWatch helps achieve the same True Positive and False Positive Rate (TPR and FPR)

with 8 times less P4Switch SRAM occupancy to collect the IPD distribution. Further, no

control-plane or co-located server resources are used.

Detection: Since the modulated traffic trace would have different IPD distributions (bi-

modal) from those of usual traffic (normal), timing channel detectors look for statistical

deviations (KS-Test[123]) between a given IPD distribution and a known-good distribution

as obtained from training data[329]. We use a CAIDA[21] workload, where 90% flows are

benign and the other 10% are modulated by the attacker to leak data. The modulation

ranges from 1µs to 100µs.

P4Switch Role: Since iterative-refinement does not support IPD collection, we compare

against two implementations of the P4Switch. FlowLens maintains a flow lookup table,

assigning a flow offset to each flow ID. The flow offset locates the flow’s set of bins to

store the IPD distribution. NetWarden is similar, but instead of using k bins for each

connection, it uses k CountMin Sketches to collect the IPD for all connections. The Net-

Warden dataplane consists of pre-checks that executes range checks on the IPD distribu-

tion. On the other hand, FlowLen’s control plane reads the batch of collected data from

the switch when a timer expires. We have extended these two P4Switch data structures
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(SmartWatchFlowLens, SmartWatchNetWarden) to forward packets to SmartWatch’s sNIC

subsytem when a pre-check[329] range query is satisfied.

SmartWatch Role: On the sNIC, we program the flow IDs that were determined suspi-

cious on the switch (e.g., pre-check). For all the programmed flows, we maintain fine-grained

bins (e.g., bin size = 1µs), intended to detect modulation between 1-100µs. Since the num-

ber of flows directed to the sNIC is small, this is feasible. On the sNIC’s CME, when

a timer expires we carry out the complete statistical test (KS-Test) within the sNIC and

classify the channel as benign or if it is being modulated by an attacker to leak information.

Flows programmed on the sNIC are pinned on SmartWatch’s FlowCache to prevent evic-

tions. The benefit of this sNIC-based co-design is less SRAM resource consumption on the

P4Switch along with the complete elimination of the need to use CPU cores in the switch’s

control-plane (or co-located host) to run the statistical test.

Evaluation: P4Switches have a limited amount of SRAM (order of 100MB [257]) that is

required for tables and registers [142]. FlowLens and Sonata occupy less than 40% and 20%

(e.g., 8 of 32 Mb per stage) SRAM, respectively[142, 194]. As SmartWatch concurrently

leverages both their data structures for the P4Switch deployment, it would leave only 40%

SRAM total to support common forwarding behaviors, like access control, rate limiting or

encapsulation. We show SmartWatch can have the P4Switch operate with substantially

more, 75% SRAM available for general operations (instead of only 40%) while achieving

similar True and False Positive Rate (TPR/FPR). We consider a high and low memory

implementation of NetWarden and FlowLens. For high memory FlowLens implementation,
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we set the quantization level (QL - influencing bin size and number of bins) to 0, causing

each flow to take up 3000 bytes. In contrast, we set the QL to 3 for the low memory im-

plementation (376 bytes per flow). For NetWarden, the low-memory implementation uses

a CountMin Sketch with 8 times less memory (0.5 MB as opposed to 4 MB) by altering

the Sketch’s dimensions. The sNIC fine-grained bins alongside the CME running the KS-

Test ensures the complete statistics calculation is carried out for packets forwarded to the

sNIC-host subsystem, attaining similar TPR and FPR, despite substantially lower SRAM

occupancy (Fig. 3.17). In SmartWatch, when a timing covert channel is detected, we simply

copy over the packet contents to the sNIC memory and create a new packet after a random

delay. However, given the limited sNIC memory, when the sNIC ’s buffers exhaust, we then

do this on a host NF.

Website Fingerprinting

Evasion: Allows users to hide the destination address behind a proxy and the content of

website visits from external observers using encryption [142]. SmartWatch helps achieve the

same accuracy with 14% P4Switch SRAM occupancy compared to 30% needed for FlowLens

and NetWarden.

Detection: Identify which sites are access by collecting the flows’ packet length distribu-

tions (PLD) and feeding them to a Naive Bayes classifier[142]. We use widely used traces

containing web page accesses over OpenSSH [346, 273].
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P4Switch/SmartWatch Role:The P4Switch and SmartWatch play the same role as with

the covert timing channel detection case, except we now collect PLD instead of IPD, and

the sNIC CME runs a Naive Bayes classifier instead of KS-Test.

Evaluation: The CME classifies destination IPs as a “hidden destination address” or

not. We calculate the accuracy using a Multinomial Naive-Bayes classifier, which leverages

the PLD of the incoming and outgoing data of a connection as features [142]. Fig. 3.18

shows the website fingerprinting accuracy with respect to the P4Switch SRAM occupancy.

With SmartWatch, we can bring down this occupancy to 14% from 30% and still achieve

good accuracy (¿ 90%). SmartWatch sees a steep drop in accuracy around 10% SRAM

occupancy because the range checks cannot identify what traffic needs to be sent to the

sNIC-host subsystem (Fig. 3.18).

3.4.2 Traffic Analysis

In this section, we compare SmartWatch’s FlowCache to common Sketch designs

for traffic measurement over long-timescales (5 sec) and examine its ability to perform

fine-grained traffic measurement (< 200µs) compared to a P4Switch.

Volumetric Analysis

For packet rates below the capacity of SmartWatch, we support completely lossless

flow-logging (distinct from flow state tracking). When simultaneously running all monitor-
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Figure 3.19: Heavy Hitter Detection
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Figure 3.20: Heavy Change Detection

ing functions shown in Table 3.1, the packet throughput is not impacted by additional

features since they consume minute fractions of the cycles compared to FlowCache (Ta-

ble 3.1). The baseline FlowCache has flow-logging always active, so it can be used for

heavy hitter, heavy change detection, etc. As each PME operates at 1.2 GHz[76], the small

number of cycles used for additional monitoring features has only a small impact on packet

processing latency.
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Figure 3.21: Flow Size Distribution

Throughput: Fig. 3.23 compares SmartWatch to Sketch based mechanisms. We imple-

mented Elastic Sketch [331], Nitro Sketch [244], and MVSketch [312]. We compare Smart-

Watch running FlowCache in both the General and Lite modes: In this experiment, all the

monitoring functions listed in Table 3.1 are simultaneously running in SmartWatch. We use

Fig. 3.23 to guide us in only using 3 of the total 80 MEs for background processing (e.g.,

tracking the packet rate for switching between Lite and General mode). The remaining are

PMEs (x-axis). The General Mode supports loss-less monitoring for packet rates below 30

Mpps. For higher rates, up to the max. of 43 Mpps, SmartWatch performs loss-less monitor-

ing using the Lite mode. The control-loop (i.e., specific query adaptation with P4Switch)

ensures that the traffic sent to SmartWatch is limited to what it can process. The only

platform that yields higher throughput than SmartWatch is Nitro Sketch [244], but that is

because it performs packet sampling to reduce the average memory operations per packet.

CountMIN Sketch throughput is low due to multiple hash calculations per packet [244].
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Accuracy for Volumetric Analysis: For all experiments we use the CAIDA traces[21]

from years 2015 to 2019, and reduce the packet size to 64 Bytes, to be replayed at 43 Mpps.

First, we conduct heavy hitter detection. We use a predefined threshold for a heavy hitter

(0.001% of total packets received in the monitoring interval) and vary the monitoring interval

from 2 to 64 million packets. Second, we conduct heavy change detection. The predefined

threshold for heavy change is 0.05% of the total changes across two consecutive intervals.

Third, we compared the platforms based on the collected flow size distribution. For heavy

hitter and heavy change detection, as the monitoring interval increases so does the error

in Sketch based methods due to more hash collisions. SmartWatch’s lossless monitoring

approach instead evicts flow records to the host, preventing any accuracy drop. For heavy

hitter and heavy change detection, both modes of SmartWatch have overlapping lines, with

zero mean relative error. For flow size distributions, Elastic and MV Sketch prioritize the

retention of heavy flows, causing the small flows to be inaccurate. SmartWatch, on the

other hand, tracks all flows in a lossless manner and has lower error rate. However, for flow

size distributions, the Lite mode has a higher accuracy compared to General mode as the

latter does not sustain the high packet arrival rate in this experiment.

Micro-bursts

Anomaly: Micro-bursts are congestion events that (typically) last < 200µs, 40% of inter-

burst gaps are < 100µs [339]. In this task the sNIC is responsible for reporting the culprit

flows in a microburst without any approximation.
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Detection: ConQuest [157] and BurstRadar [214] propose detecting micro-bursts when

queuing delays go above an operator-specified threshold and then report the responsible

flows.

P4Switch Role: In SmartWatch, the P4Switch identifies the link experiencing the mi-

crobursts and forwards the flow subsets that suffered the microburst event to the sNIC.

Fine-grained analysis at sNIC accurately identifies the source of micro-burst (unlike the

overestimation in [157]).

SmartWatch Role: FlowCache works with a linear array, L, of size 96MB storing the

unique IP 5-tuple entries, to accurately report details of flows causing microbursts to the

host, along with the packet count. We use a doubly-linked entry (i.e., reference from Flow-

Cache entry to L entry and vice versa) to ensure connection uniqueness in L and to quickly

locate flow entries in FlowCache from L. SmartWatch monitors the queuing delay on the

sNIC as a trigger to activate micro-burst analysis. The PMEs calculate the difference

between the current timestamp and the MAC ingress timestamp to compute per-packet

queuing delay. When this delay exceeds the threshold, PMEs flag it, and generate an iden-

tifier for this micro-burst event. Subsequent packets update FlowCache and then L. Once

the micro-burst ends, the CME is responsible for scanning L. The small size of L allows

for rapid scanning for computing metrics of interest (within 200ms). A micro-burst ends

when the queuing delay drops below a threshold. Following this, the contributing flows are

identified by scanning the log, and all FlowCache records are allowed to be evicted to the

host.
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Evaluation: We use the Wisconsin trace [145], replayed at 10x the original rate, to detect

and identify contributing flows of the micro-burst patterns as in [156]. We test each burst

event by quantifying the flows present in the ground truth vs. the fraction in L, reflecting

how SmartWatch identifies (and reacts to) bursts. Then, there is no error introduced in

SmartWatch when reporting the flow responsible for the queue build-up. But, there may

be false micro-bursts identified due to a conservative setting of the threshold (of queuing

delay). The number of bursts estimated in SmartWatch vs. ground truth was higher by

1.32% to 8.23%, for queuing delay thresholds ranging from 2000µs to 200µs. Fig. 3.22 shows

that as we reduce the queuing threshold to classify a micro-burst, we miss a fraction of the

flows that were a part of the burst in the ground truth. A burst classification threshold of

200µs, captured 92.7% of the flows in the ground truth. But, a burst classification above

1700µs identifies all 100% of flows.

Similar Attacks: Worm detection where we lookup the hash of the combined payload and

destination IP and check whether the worm signature match (i.e., stored in L)[302].

3.4.3 Effectiveness of Co-op Monitoring

Detection Rate

SmartWatch and Sonata allow processing traffic across multiple links incident on

the switch, achieving an aggregate terabit scale monitoring. The standalone host will have

the highest detection rate because of the highest degree of flexibility and most memory.
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However, it is the least scalable option, as shown in Figure 3.4. Of all the stealthy attacks

detected by the host, we show the fraction of such attacks that are detected by SmartWatch

and Sonata in Table 3.3. The drop in detection rate for Sonata is because of the lack of

fine-grained processing. In SmartWatch, the higher detection rate is due to fine-grained

processing for flow-subsets. The slight reduction in detection rate for SmartWatch relative

to standalone host is due to the attacks expiring within the P4Switch before those packets

are forwarded to the sNIC.

Table 3.3: Detection rate relative to host

Attack Sonata SmartWatch

Slowloris 0.44 0.94

Zeek SSH Bruteforcing 0.24 0.79

Zeek Expiring SSL certificate 0.68 0.68

Zeek FTP Bruteforcing 0.25 0.81

Zeek Kerberos Ticket Monitoring 0.73 0.78

In-Sequence Forged TCP RST 0.11 0.80

TCP Incomplete Flows 0.84 0.93

Stealthy Port Scan 0.4 0.90

DNS Amplification 0.38 0.88

EarlyBird Detection Worms 0.59 0.70

P4Switch State

Figure 3.2 and 3.3 show the P4Switch State vs. the traffic volume directed from

P4Switch to SmartWatch with CAIDA traces from different years [21]. Here, we study

SSH Brute Forcing and Port Scan attacks . When the P4Switch switch redirects traffic

to SmartWatch, SmartWatch identifies SSH authentication attempts that succeed and also

the source IPs that are not IP scanners. These are benign flows and their packets no longer

have to be forwarded to SmartWatch from the P4Switch. However, when installing rules in
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the P4Switch that whitelists benign flows, SmartWatch needs to be wary of the amount of

state used in the P4Switch . To solve this problem, we borrow the ’hoverboard’ intuition

from Andromeda [167] . FlowCache in SmartWatch detects heavy benign flows and installs

them in the P4Switch switch. Selecting heavy flows that are benign (e.g., top-k) as opposed

to mice flows helps reduce the amount of redirected traffic to SmartWatch, with relatively

few rules installed in the P4Switch. In Figs. 3.2 and 3.3 we see that there exists a knee,

beyond which whitelisting flows does not reduce P4Switch state further.

3.4.4 Conclusion

In SmartWatch we introduce a monitoring pipeline suitable for data center anomaly

detection. The subsequent chapters shall build upon SmartWatch for 1) carrying con-

tainer placement based on measured container-pair affinities, 2) offloading the cellular data

plane for carrying out mobility prediction, and 3) collecting traffic matrices for cellular-wide

anomaly detection.
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Chapter 4

pMACH: Graph based Container

Placement

4.1 Introduction

Striking the right balance between conflicting scheduling requirements such as over-

provisioning to satisfy an application’s service level agreements (SLA) vs. tightly packing

servers to save power in a data center (DC) can be challenging. Tightly packing containers

is necessary to achieve high server utilization and power saving [316, 198, 240, 283] by turn-

ing off idle servers. In general, DCs operate at ∼ 20% server utilization [253, 220, 247] and

10% network utilization[292, 198] in order to meet application SLAs. However, this results

in high overall DC power consumption as more servers remain powered on.

While there exists some prior work to minimize both power and task completion

time [345], they are not incremental, leading to a significant number of container migrations.
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They ignore the cost of container migrations when adapting to workload changes or when

the workload is consolidated to a smaller number of servers to reduce power consumption.

Container migration (e.g., CRIU[65]) also results in downtime [37], and frequent migrations

can adversely impact task completion times and are likely to result in SLA violations [314].

Thus, it is desirable to have a DC scheduler that simultaneously reduces power, task com-

pletion time, and container migrations and is also scalable to DC scales. The challenges are

several - the need to operate servers efficiently [322], support fluctuating workloads [292],

account for application container affinity [170], and account for migration overheads [37].

Today’s DCs typically employ some form of heuristic-driven bin packing such as

RC-Informed[165], Borg[317], pMapper[318] and others [63, 278, 12]. These solutions do

not consider container affinity, potentially resulting in hosted cloud applications having

higher latency [345] due to large inter-container communications. State-of-the-art task

placement frameworks such as Borg [317] and RC-Informed [165] pack containers in highly

utilized servers. Borg aims to reduce stranded resources while RC-Informed over-subscribes

CPU resources at 125% [165], as a way of minimizing the number of servers deployed.

To minimize power consumption, pMapper[318] determines the target utilization for each

server based on the power model for the server. It then places VMs on servers using a

bin-packing algorithm, trying to meet the target utilization on each server. E-PVM [135]

places containers on the server with the lowest utilization, so as to leave large headroom for

load spikes and achieve low task completion time.
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Goldilocks [345] is another approach for scheduling latency sensitive tasks in a

DC. It balances task completion time and energy, benefiting from placing frequently com-

municating containers together. However, it uses a centralized, periodic graph partitioning

and scheduling policy using Metis [219], which does not scale to large DCs consisting of

tens of thousands of servers. The change in container graph going from one epoch to the

next may be incremental, but re-partitioning the entire graph, as in [345], results in a

lot of container migrations. Vertices can be moved from one partition to another due to

repartitioning. As vertex migrations correspond to container migrations, they are expensive

and must be minimized. Furthermore, their work does not consider the overhead associated

with transmitting the traffic matrix.

A DC cluster of several thousand servers, switches and links is typically broken

up into smaller identical units. These units are called pods, comprising of several hundred

servers along with the top-of-the-rack and aggregation switches. The DC network provides

high-performance connectivity between all pods in the DC. We propose pMACH a Two-

Tier distributed scheduling framework to adaptively ‘right size’ the DC by first considering a

pod-level partitioning of containers, and then repartitioning the container sub-graph within

a pod. pMACH schedules groups of containers (pMACH is generic, and may be used for

scheduling VMs as well) of a partition on a server. It minimizes container migrations

by adopting an incremental partitioning technique. pMACH’s main focus is on achieving

scalability using a Two-Tier partitioning algorithm, and executing the algorithm in an

entirely distributed manner, unlike the centralized approach that has been the state-of-the-

art. pMACH’s strengths are:
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• Scalability: pMACH can schedule a large number of containers over a cluster of ten

thousands of servers in a relatively short time.

• Multi-objective optimization: pMACH balances between power consumption,

task completion time, and task migrations.

• Efficient: pMACH only requires a small amount of processing resources (few cores

on a select server in each pod of the DC), and uses network offload to relieve CPU

cores of scheduler related activity.

• Practical: rather than assuming the container communication graph, pMACH col-

lects the needed information in real-time on a Smart network interface card (sNIC).

pMACH significantly reduces task completion time as containers that frequently

communicate with each other are placed together in the DC topology. Power saving is

achieved by having a minimal number of servers, so that unused servers can be turned off.

Container migrations are reduced by accounting for dirty vertices (vertices that are moved

from their original group to another group in the graph), thereby minimizing downtime.

We consider three mechanisms to perform hierarchical partitioning of the container graph,

namely, ParMetis Base partitioning, ParMetis Adaptive partitioning[297], and Tabu Search.

Both ParMetis offerings (e.g. Base and Adaptive) are highly parallelized. The difference

between them is that Adaptive partitioning reduces container migrations and is faster to deal

with workload variation. Tabu Search is a widely used meta-heuristic for graph partitioning

as shown in [239, 290, 209] and allows us to provide a multi-objective cost formulation,

accounting for container migration costs. Tabu Search however has poor scaling properties
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for larger graphs. Hence, we propose a hierarchical Two-Tier partitioning architecture that

combines the advantages of both ParMetis Adaptive partitioning and Tabu search.

To obtain the container graph, we use a sNIC to collect the communication graph

and provide it to the appropriate ParMetis graph partitioning worker nodes. This helps us

save crucial CPU cycles. We use an efficient data stream summarization [330] to derive the

edge weights with reasonable accuracy to allow frequently communicating container pairs

to be placed together, to minimize task completion time.

Both testbed measurements and large-scale trace-driven simulations show that

pMACH saves 13.44% more power compared to other scheduling systems. It speeds task

completion, reducing the 95th percentile by a factor of 1.76-2.11 compared to existing

container scheduling schemes. Compared to the static graph-based approach[345], our in-

cremental partitioning technique reduces the migrations per epoch by 82%. Our major

contributions include:

• A distributed scheduling system to scalably schedule containers across tens of thou-

sands of servers.

• A Two-Tier scheduler composed of ParMetis Adaptive partitioning and Tabu Search

to help reduce the partitioning time and container migrations.

• An efficient telemetry data structure on the sNIC to obtain the container graph in

real-time.

• We implemented pMACH in a DC testbed (Cloudlab[175]) using 16 servers. We

also implemented a large-scale flow-level simulation to demonstrate the scalability of

pMACH.
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4.2 Motivating Experiments

In this section, we carry out several experiments to measure the impact of container

affinity, energy consumption and migrations on the performance of a DC. We also test how

all these factors can be improved through graph partitioning.
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Figure 4.1: Affinity vs Response Time. The wicks represent 5th and 95th%tile.

Container Affinity: Previous work [345] shows that it can achieve 2.6 times

better task completion time compared to alternatives such as E-PVM, RC-Informed, and

p-Mapper by grouping frequently communicating containers together. To understand this

in our context, we utilize a 10-tier Kubernetes microservice application provided in [39] on

a testbed with four servers connected by an intermediate switch. First we let the Kuber-

netes scheduler decide the container placement by itself and in the second scenario we place

the high affinity container pairs together (e.g. CheckoutService with PaymentService) by

setting the nodeName [60] configuration. In Figure 4.1 we show that by exploiting affini-

ties across three services (Catalog, Checkout, and Payment) the 95th percentile response

time sees a speedup of 1.5, 1.2, and 1.5 times, respectively. This is a different workload
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compared to [345], resulting in a lower speedup. Clearly, container affinity must be consid-

ered while placing the containers, unlike other bin packing approaches such as E-PVM and

RC-Informed.
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Figure 4.2: Peak Energy Efficiency at 65%-75% CPU utilization

Energy Consumption: Figure 4.2 shows a boxplot of the energy consumption

in Joules, measured using RAPL [221] with respect to the load on the CPU. In this ex-

periment, we use a 16 core Intel(R) Xeon(R) CPU D-1548 2.00GHz x86 64 architecture

CloudLab [175] instance. We toggle the CPU utilization on all CPU cores of the instance

(x-axis in Figure 4.2) and study the total energy consumed by the CPU package (y-axis in

Figure 4.2) to complete a buffer I/O workload[64]. We observe that the energy consumed is

lowest around 65% to 75% CPU utilization, displaying a ‘U’ curve for energy consumption.

Similar observations have been made in the past [323, 345], generally referring to it as

Peak Energy Efficiency, which is defined as the point achieving the maximum number of

operations completed per watt. Such a strategy saves more total server power, while leaving

a larger headroom to deal with instantaneous load fluctuations. The non-linear relationship

between CPU load and power curve may be attributed to the cubic reduction in processing

80



power with a linear reduction in performance for DVFS and dynamic overclocking, such as

with Intel’s TurboBoost [55, 202, 325, 323].
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Figure 4.3: Migration Time Breakdown

Migrations: Consolidation can contribute to considerable power savings by turn-

ing off both servers and network switches and links. Maintaining affinity among containers

is important to reduce communication overhead and reduce task completion time. The

byproduct of consolidation and enforcing affinity are migrations. Containers will have to

be moved at scheduling epochs, resulting in container migration overheads (both additional

processing and communication) and undesirable downtime. Figure 4.3 shows that using

CRIU [65] a Memcached container instance from CloudSuite[23] takes upwards of 3.5 sec-

onds to migrate. Furthermore, the image predump, image transfer using rsync, and image

restore require stopping application execution resulting in application downtime. Overall, it

is important to minimize migrations, which was not considered earlier ([345]). The typical

sources of migrations delays are 1) checkpoint/restore 2) writes to remote storage, and 3)

scheduling delays [109].
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Figure 4.4: Partition Balance

Since we transform the container placement problem to a graph partitioning al-

gorithm, we must consider how effective the partitioning is. ParMetis distributes vertices

among cores (e.g. MPI workers) to parallelize the algorithm while balancing the load on

the MPI workers. The technique can operate in two modes, namely, COUPLED or UN-

COUPLED. These two approaches vary in partitioning time. In the COUPLED approach

all vertices that belong to the same original partition are placed within the same CPU core

before the next partitioning phase starts. The advantage of the COUPLED approach is

that partitioning time is much lower because of increased local computation and reduced

communication between the cores [95]. One constraint while running in the COUPLED

mode is that the number of MPI workers must equal the original and target number of

partitions. As we explore the partitioning time in this section by varying the number of

partitions (e.g. 1024), we cannot physically have those many MPI workers, forcing us to

operate in the UNCOUPLED mode. Later in the paper, we explain how we can scalably

respect this constraint imposed by the COUPLED approach and leverage its speedup.
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Figure 4.5: Relative Edge Cut

Graph partitioning imposes significant processing requirements with large graphs.

Even though it is possible to have a 256-node MPI cluster [171] that can quickly partition

such graphs, it would be impractical and expensive to have such a dedicated cluster in a DC.

We perform the graph partitioning in a distributed manner in the DC by carefully

designating CPU cores in selected servers in each pod of the DC. Taking advantage of the

high-bandwidth links in the DC, and intelligently splitting it into a hierarchical solution,

we are able to partition the large graph rapidly.
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Figure 4.6: ParMetis Migrations
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To manage the scale of the problem, we envisage partitioning the graph first at

a coarser granularity (Tier-1). Then, we partition each subgraph (Tier-2). Adpar-Adpar

refers to the partitioning result, where the first tier of partitioning employs the ParMetis

Adaptive partitioning, generating X partitions. The second tier partitioning then internally

partitions the graph, using ParMetis Adaptive partitioning, into Target #Partitions
X partitions.

We also define Two-Tier, where the first tier carried out by ParMetis Adaptive partitioning

and the second tier is carried out using Tabu Search. We carry out several experiments

to compare these partitioning techniques.Explained in the next para. The partitioning was

done using a single CPU core.
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Figure 4.7: Migrations (non-ParMetis

Container Graph: We utilize a trace derived from the CDF of DC traffic, using

a NS3-based DC simulation [27]. We obtain the communication matrix time series for differ-

ent workloads. This yields both the container-pair connectivity and the edge-weights that

represent the amount of communication per epoch. The container graph vertex weights are

the percentage utilization, measured when running CloudSuite[23] container instances on

84



CloudLab[175] servers. Using the docker stat API[31], we measure the CPU, memory and

disk utilizations. We use three different workloads (Memcached, Hadoop , and web-search

using Apache Solr). The simulation generates the connectivity graph and the communica-

tion (i.e., edge weights), and the testbed measurements provide the utilization (i.e., vertex

weights). We combine the two based on the application type (e.g. Memcached, Hadoop,

Websearch). If an edge connects a Memcached client to a server, then the vertex weight is

that of the Memcached client and server. This graph has 4 million vertices. We consider

three metrics for partition goodness and relate them to the container placement.

Imbalance: Vertices represent the container resource requirements in a multi-

dimensional form (e.g. CPU, MEM, DISK). Our goal is that each partition (i.e., server

resource) should see close to the same, balanced, load. Therefore partition imbalance (e.g.,

deviation from mean partition weight) must be minimized. Figure 4.4 shows the imbalance,

for every dimension, computed as the average absolute difference between each partition’s

weight and the mean partition weight. In this experiment we set the number of partitions to

1024. Figure 4.4 shows that ParMetis Base partitioning has the lowest partition imbalance.

Adaptive partitioning is more imbalanced as it tries to minimize migrations (e.g. it priori-

tizes vertex moves that place the vertices back to their original partition). The hierarchical

approach, Adpar-Adpar, has a similar imbalance as Adaptive partitioning as it relies on the

same mechanism. Tabu Search results in higher imbalance as it penalizes vertex migrations

more. Finally, Two-Tier (i.e., Adaptive at the coarse level and then Tabu Search) depicts

slightly higher imbalance compared to adaptive partitioning as the second tier Tabu Search

heavily penalizes container migration within the sub-graph.
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Edge Cut: Edge weights represent the communication between the containers,

and the edge cut denotes the communication intensity between partitions. As partitions

represent the placement of containers on a physical server in our case, the more we reduce

the edge cut, the more we take advantage of container pair affinity with frequently commu-

nicating containers being placed closer together. Figure 4.5 shows the edge cut relative to

base partitioning, e
eBP

, where e denotes the edge cut provided by the partitioning algorithm

and eBP denotes the edge cut afforded by Base partitioning. Adaptive partitioning and

Adpar-Adpar depict very similar edge cut and sometimes even lower than Base partition-

ing. As Tabu Search heavily penalizes vertex migrations that are required to minimize edge

cut, standalone Tabu search has a higher edge cut. Finally, Two-Tier improves over Tabu

search by leveraging the lower edge cut across coarse-grained partitions generated by Tier-1.

Migrations: The graph is repartitioned periodically to take into account the

change in workload that may result in different assignment. We express migrations as a

percentage of the total number of containers running during a given time interval. Figure 4.6

and 4.7 shows the percentage of containers migrated as a consequence of two different types

of perturbations: namely, workload changes caused by partitioning every 10 minutes

considering the graph snapshots at that time; and consolidation where the number of

target partitions are reduced by one to save energy. For hierarchical partitioning schemes,

as the Tier-2 sub-graph partitions will correspond to servers, consolidation only reduces the

target number of partitions in the Tier-2 step. The target number of partitions for the Tier-1

partitioning remains unchanged as the coarsened partitions correspond to pods as described

below. Figure 4.6 shows that Base partitioning is ill-suited, similar to Metis used in [345],
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for DC container placement, since the number of migrations is very high. This is because

Base partitioning does not take the previous partitioning result into account and only tries

to aggressively minimize edge cut and imbalance. However, Adaptive partitioning, shows

very few migrations for workload changes as it takes the previous partitioning solution into

account. But, it fails to yield the same low number of migrations when there is consolidation

as compared to the original partitioning (e.g., previous epoch’s partitioning result). It uses

migrations to mitigate either the poor balance or edge cut when one partition is taken away.
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Figure 4.8: ParMetis Base

Figure 4.7 shows that none of the approaches using ParMetis (e.g., Base or Adap-

tive) performs as well as Tabu Search when considering consolidation in terms of vertex

migrations. Tabu Search’s custom cost function allows us to provide a higher penalty for

migration. With hierarchical approaches, the first tier is not impacted by consolidation be-

cause the target number of partitions is fixed, but the the number of partitions for the second

tier may reduce. Adpar-Adpar suffers because the second tier Adaptive partitioning has

too many migrations. The Two-Tier scheduler drastically outperforms other approaches,
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except Tabu-Search, when considering consolidation. This is because the target number of

partitions for Tier-1 is unchanged and Tier-2 heavily penalizes migrations by assigning a

higher weight to migrations in its formulation, while also including edge cut and imbalance.
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Figure 4.9: ParMetis Adaptive

4.3 pMACH: Distributed Container Scheduling

We need to rapidly partition container graphs with minimal communication over-

head. End-hosts are responsible for transmitting sub-graphs to designated partitioning

workers (pWorker) in the pod, avoiding communication across pods (e.g., which is un-

avoidable in the centralized approach). We do this in the background, with the partitioning

task in epoch t operating over data gathered in epoch t−1. Next, the entire container graph

is partitioned using Adaptive Partitioning. It’s highly parallel and focuses on container-

pairs that communicate across neighbouring pods. Adaptive partitioning also minimizes

edge cut in the output partitioning. Lastly, to factor the cost of migrations, since Adaptive

Partitioning is poor at consolidation, we run Tabu Search on the same pWorker, which is
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slower but operates on a smaller graph. Altogether, the distributed architecture for graph

partitioning is a key innovation that makes wide-scale, real-time scheduling that is adaptive

to workload changes, practical.
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Figure 4.10: Adpar-Adpar
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Figure 4.11: Two-Tier

A scheduler in a DC is typically responsible for the placement of tasks among

a large number, typically of the order of 10,000 servers (e.g., as in Google’s DCs [317]).

Furthermore, as in a fat-tree DC network (DCN) architecture (e.g., [271]), we consider
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a k-ary fat tree network with k3

4 end hosts. In our context that would roughly translate

to 11,664 servers distributed among 36 pods handled by one scheduler. To help manage

this scale, factoring in the complexity of the graph partitioning algorithm, pMACH uses

a Two-Tier hierarchical scheduler, as shown in Figure 4.12. pMACH develops a two-level

graph partitioning algorithm, namely the ParMetis Adaptive partitioning as the first tier

and Tabu Search as the second tier. Tier-1 is responsible for partitioning the container

graph over pods using the large-scale, scheduler-wide communication graph as input. Tier-

2 is responsible for intra-pod scheduling using a smaller pod-wide communication graph as

input. This design is inspired by DC such as [177, 317] that use pods as a logical and physical

clustering of DC resources, creating a modular solution that can adapt to different-size DCs.
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Figure 4.12: Two-Tier Hierarchical Scheduler

Adaptive partitioning of a graph with 4 million vertices, with a target of 36 par-

titions, takes 101ms compared to 5619ms with Tabu Search. This speedup holds even as

the number of partitions increase. As the Tier-2 input container sub-graph is small, par-

titioning takes at most 71ms. Therefore, intra-pod scheduling is managed by Tabu Search
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for scheduling the containers over fewer, k2

4 (324) servers. Since pMACH employs an epoch

based scheduler, we place new containers according to the Best-Fit algorithm[16] with a

70% cap on utilization (i.e., to operate at Peak Energy Efficiency).
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Figure 4.13: Distributed Scheduling

In Figure 4.13, we show the three stages in our distributed container scheduling

technique to schedule containers on to servers. The end hosts transmit the communication

graph to the designated pWorker within the pod for the purposes of graph partitioning.

Next, the Tier-1 ParMetis Adaptive partitioning program is invoked. We designate one

pWorker (one core on one select server) per pod to partition the graph. If a scheduler’s

domain consists of k pods, then Adaptive partitioning will take the container graph as input

and generate k partitions. In the next stage, the same pWorker in each pod concurrently

run independent instances of the Tier-2 Tabu Search optimization problem where the input
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graph consists only the containers running in this pod plus the graph changes made by

Tier-1 scheduler (i.e., inter-pod migration). Once the serialized Tabu Search procedure for

the pod terminates, we migrate containers corresponding to dirty vertices from the original

partition to the new partition, where the partition ids correspond to server ids. Some

containers may have to be moved to another pod as per the Tier-1 partitioning output.

min
∑

1≤i<j≤n

|Ec
i,j | (4.1)

W 1
d ≈W 2

d .. ≈Wn
d , where d ∈ D (4.2)

∀Pi,
∑
j∈Pi

Ac
j ≤ Bc

i , where 1 ≤ i ≤ n (4.3)

The Tier-1 scheduler runs ParMetis adaptive partitioning using the objective func-

tion to minimize edge cut (Eq. 4.1). It seeks to ensure the partition weights are almost bal-

anced (Eq. 4.2). Eq. 4.3 guarantees that the partition resource demands do not exceed the

pod capacities. Here, n represents the number of partitions, Ec
i,j is the sum of edge weights

between partition i and j, W i
d represents the dth dimension weight of partition i, where

d ∈ D. The dimensions D include CPU, memory, and disk. Bc
i represents the capacity of

pod i. Pi is the container group assigned to pod i and Aj represents the resource demands

of container j. This cost formulation does not explicitly factor the cost of migrations, but

it tries to minimize migrations by leveraging the previous partitioning result along with the

assumption that graph changes are small.
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Figure 4.14: Vertex distribution over pWorker

Our MPI program can run on a centralized server, where the computation is dis-

tributed over CPU cores or in a distributed manner. According to Figure 4.14, pMACH

can distribute vertices (e.g., containers) over pWorkers in four different ways (e.g., central-

ized/distributed, each being COUPLED/UNCOUPLED). We measure pMACH’s partition

time overhead for different implementations of ”Two-Tier” as shown in Fig. 4.14. Partition-

ing time is the dominant time for scheduling, followed by the migration related down-times,

whose impact on the task completion time is studied in section 4.4.1. In Figure 4.15, we see

the partitioning time breakdown for Two-Tier, composed of the latency to run ParMetis

Adaptive repartitioning (Adaptive) and Tabu Search on a container graph that contains 6

million vertices. We experiment with a distributed approach (16 servers each with 1 core)

and a centralized server based approach (1 server with 16 cores). For each, we explore the

COUPLED and UNCOUPLED approach.
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Figure 4.15: pMACH Partitioning Time

The COUPLED approach is on average 1.8 times faster than the UNCOUPLED

approach. By switching from the UNCOUPLED to COUPLED Tier-1 partitioning scheme,

we see a significant speedup because Tier-1 is responsible for processing a large-scale con-

tainer graph, dominating the total partitioning time. We choose the COUPLED over UN-

COUPLED approach for its lower partitioning time. In a centralized approach, the data

collected across end-hosts in all pods must be transmitted over the network to a single

server (or a group of servers). Typically, communication spanning pods is more expensive

since more links are traversed. The distributed approach, reserves one pWorker per pod,

resulting primarily in intra-pod communication (from end hosts in the pod to the pod’s

designated worker). Therefore, the COUPLED distributed approach reduces the commu-

nication overhead across pods. Hence, we opted for the COUPLED distributed approach
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over the COUPLED centralized approach. The COUPLED-centralized scheduler is 1.18

times faster compared to the COUPLED-distributed approach. This is because workers

communicate over shared memory in the COUPLED-centralized scheduler as opposed to

network links. We tolerate this partitioning time penalty to minimize cross-pod communi-

cation during the traffic matrix distribution phase. In summary, we select the COUPLED

distributed scheduling mechanism as it is scalable and faster. The complexity analysis for

Tier 1 and 2 can be found [218] and [279], respectively.
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Figure 4.16: Coeff selection

We partition the intra-pod container sub-graph at the Tier-2 scheduler once the

Tier-1 scheduler has computed and transmits the changes to the container graph to each

of the pods. The intra-pod container graph is the graph involving the containers (i.e., the

vertices) within that pod. The Tier-2 scheduler runs a sequential Tabu Search algorithm

using an objective function as shown in Eq. 4.4.
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min α× EC + β × IB + γ ×DV

EC =
∑

1≤i<j≤n

|Ec
i,j |/E

IB =
1

n|D|
∑
d∈D

∑
1≤i≤n

|W i
d −Wd |/Wd

DV =
∑
v∈V

IPt−1(v)̸=Pt(v)/|V |

(4.4)

∀Qi,
∑
j∈Qi

Ac
j ≤ Sc

i , where 1 ≤ i ≤ n (4.5)

The objective function consists of three parameters (e.g α, β, and γ) that act as

weights to the edge cut (EC), imbalance (IB), and dirty vertices (DV ). The indicator vari-

able IPt−1(v)̸=Pt(v) equals 1 when the vertex is assigned to a different partition as compared

to the original partition, otherwise 0. To ensure edge cut, imbalance, and dirty vertices are

dimensionless, we normalize the multi-objective function using the following: E represents

the total edge weight and |V | represents the total number of vertices. Equation 4.5 ensures

that the resource demands do not exceed server capacity. Sc
i represents the capacity of

server i. Qi is the container group assigned to server i. By setting a large value for γ

relative to α and β, we penalize vertex migrations more. Therefore, even in the event of

consolidation, container migrations are low.

We employ Tabu Search for iterative refinement of our graph partitioning solution,

following [209]. Each solution (e.g., candidate) provides a cut, which assigns containers to

servers. We start with an original partition. At each iteration, we compute the neighborhood

solutions (e.g., current solution + a candidate vertex migration). From this, we filter away

Tabu moves and then select the vertex move that satisfies Eq. 4.4. Next, the current solution
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is updated and the selected move is stored in a Tabu list for a predefined tenure (e.g., next

t iterations). The Tabu list ensures that a local minimum is not returned by discouraging

the search from coming back to previously-visited solutions. Under certain circumstances a

move that is in the Tabu list can be selected, which is referred to as the aspiration criterion.

In our technique, a Tabu move will be selected if it yields a solution that is better than the

best solution so far. The Tabu Search program stops if a fixed Max Iterations value is

reached or if there was no improvement in b iterations. Next we describe how we select the

coefficient for Tabu Search. First, we compute different partitioning outputs of the same

graph by varying α and β (e.g., α+β+γ = 1). We then summarize the partition quality Q

as 1
N(EC) +

1
N(IB) +

1
N(DV ) (see Eq. 4.4) where N scales the individual quantity to the range

[0, 1] across all partitioning outputs of the same graph. Fig 4.16 shows how Q changes with

α and β. This plot summarizes multiple partitioning outcomes over several input graphs,

using the median Q. We observe (α, β, γ) equal to (0.234, 0.512, 0.254) maximizes the

median value of Q and use it for subsequent experiments.
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Figure 4.17: Pod Architecture: Monitoring and Graph Partitioning
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Unlike previous approaches for scheduling and power management in DCs where

the communication graph is assumed to be known (or ignored), pMACH explicitly accounts

for it and utilizes a sNIC to collect the container-level communication graph. The intra-host

container communication graph is collected by the software switch running on the host[245]

while the inter-host container communication graph is collected by the sNIC, which are

a often used in today’s DC networks [185]. We assume every node contains a sNIC to

offload the traffic matrix collection, reducing the overhead on the host while collecting the

information at link speed [242, 185].

Figure 4.17 shows the pod-architecture. All servers in the pod are responsible for

generating the communication graph. The container resource utilization weights along with

intra-host and inter-host container communication weights are transmitted to the designated

server within that pod for graph-partitioning. The vertex weights are derived using the

docker stat API[31]. The edge weights are measured in the sNIC and software switch. As

communication weights help characterize affinity, estimating them helps us trade-off between

space (memory and bandwidth) vs. partitioning quality. Reducing bandwidth consumption

helps reduce interference for latency sensitive user traffic. Reducing the partitioning quality

degrades application task completion time. It is possible to seek a balance between

space and application performance. We describe four data plane algorithms below that we

evaluated to collect the communication graph edge weights. Based on the analysis in section

4.4.2, we choose Elastic Sketch.
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Confluo: Uses a data structure called Atomic MultiLog that supports highly-

concurrent read-write operations [222]. Since all the edge weights are accurately recorded,

Confluo occupies a lot of space, but has no error estimating edge weights.

CountMIN Sketch: A compact space data structure for summarizing data

streams. It uses hash functions to map container-pair communication events to frequencies

(e.g., edge weight) at the expense of overcounting due to collisions [163].

Elastic Sketch: It consists of two parts: a “heavy” part recording high-affinity

container pair communication weights and a “light” part recording low-affinity container

pair communication weights. The heavy part is a hash table while the light part is Count-

MIN Sketch [330].

Nitro Sketch: It combines a Count Sketch[154] with a sampling strategy to

reduce the number of communication edge weight update operations. It is the fastest, but

results in higher error estimating communication weights [245].

The Tier-1 ParMetis scheduler equates pods to partitions while the Tier-2 Tabu

Search scheduler equates servers to partitions. This is possible because both ParMetis

and Tabu Search support heterogeneous partitions. In ParMetis Adaptive partitioning,

the user can supplement the tpwgts argument to regulate the fraction of vertex weight

that should be distributed to each partition (e.g. pod) for each dimension[95]. Likewise

in Tabu Search, vertex moves that violate server capacity can be deemed as illegal moves

(e.g., non-neighboring moves). Therefore, both ParMetis and Tabu Search can capture

heterogeneous pod and server capacities. Different CPU speeds (e.g., GHz) can also be

captured by adjusting vertex weights.
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4.4 Evaluation

We evaluate pMACH on a testbed implementation and compare it with a number

of alternatives published in the literature, viz., E-PVM[135], MPP[318], Goldilocks[345],

Best-Fit[16] (e.g. Borg stand-in) and RC-Informed[165]. We also do limited measurements

with a sNIC. Finally, we carry out large scale simulations to predict the performance of

DCs.

Testbed: We run the Cloudsuite benchmark, which has 432 containers on a

testbed containing 16 servers (each with 20 cores) on Cloudlab[175]. The container graph

is obtained from running the CloudSuite[23] workload components Memcached, Hadoop

MapReduce, and Apache Solr (an equal number of instances of each). The vertex weights,

depicting server resource consumption is measured using the docker stat API[31]. Cloud-

Suite benchmarks comprise multiple containers with communication between each other,

and the graph’s edges characterizes this connectivity. We consider the provisioning of new

services where containers are created and killed in the trace at different points in time

based on real production datacenter traces [27]. We used the IPTraf monitoring tool [57]

to measure the communication rate between pairs of containers, which is used as the edge

weight. IPTraf monitors the virtual port for each container. Similar to [198, 345], servers

with no active containers are turned off to reduce power consumption. The epoch length

is 10 mins. We empirically determined that scheduling decisions with epoch lengths < 10

mins, made it prone to transient changes, unsuitable for partitioning.
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Figure 4.18: Active Servers

4.4.1 Testbed Results

Partitioning Quality: In Figure 4.18 we plot the number of active serves over

time for different scheduling techniques. It is observed that E-PVM occupies the largest

number of servers, as it places containers in the least utilized server. The bucket based RC-

Informed technique yields the lowest number of active servers due to CPU over subscription.

Best-Fit packs containers at 95% utilization, yielding fewer servers compared to Goldilocks

and pMACH that pack at 70% utilization to operate at peak energy efficiency. MPP tries

to minimize power consumption by greedily increasing the target utilization on the server.

Its curve overlaps with that of Best-Fit in Fig. 4.18. In Figure 4.19 we see that the power

consumption with Goldilocks and pMACH is the lowest, a reduction of 13.44% compared

to RC-Informed. RC-Informed consumes less power than E-PVM, Best-Fit, and MPP

because it occupies fewer servers. Goldilocks and pMACH consume less power by running

at utilizations that result in peak energy efficiency in terms of tasks completed for the

energy consumed. Packing at 70% utilization also provides more head room to sustain CPU
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utilization spikes. In these experiments we have three different container workloads running

(e.g. Memcached, Hadoop, and Web-Search). In Figure 4.20 we show the 95th percentile

task completion time for the Twitter Memcached Workload by varying the RPS between

44K to 440K across the entire testbed, which effectively varies the resource utilization for

the containers. The task completion time is measured at the Memcached-client as it issues

get and set requests to the Memcached-servers. As expected, Goldilocks and pMACH show

a substantial improvement, with the 95th percentile task completion time speedup of 2.011

as it takes account of the container pair affinity.
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Figure 4.19: Power Consumption

Goldilocks did not do incremental graph partitioning. At every epoch, Goldilocks

re-partitioned from scratch and assumed the containers migrate to their new location, while

ignoring the overhead of migrations. Here, we incorporate the impact of container migra-

tions of pMACH in the application-level metric of task completion time. In this experiment,

containers are migrated as per the scheduler’s decision, using CRIU. Much of the scheduling

activity is performed concurrently with task execution. But, the downtime due to migra-
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tions directly impacts the task completion time. The average downtime is 2.39s. However,

the parallelism in performing 44 migrations with all 16 servers results in 6.06s downtime.

While this downtime could be reduced by live migration optimizations, e.g., [327], it is cru-

cial to reduce the amount of migrations, as we strive with pMACH. pMACH still achieves

close to Goldilocks’ completion time by minimizing dirty vertices. Figure 4.21 shows con-

tainer migration events as a percentage of total number of containers. Unlike Goldilocks,

MPP and pMACH, the other scheduling mechanisms distribute containers only when they

arrive, and have no migrations. Goldilocks has average 51.8% migrations per epoch. But,

pMACH only has 8.83% migrations, benefiting from its incremental partitioning approach.

MPP has the least migrations as it migrates containers only when the server’s utilization

deviates from the target utilization. This results in poorer task completion time and higher

power consumption than pMACH.
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Figure 4.20: Task Compl. Time (Memcached)
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Figure 4.21: Container Migrations

Energy Consumption: We now verify if indeed running at 70% utilization is

efficient for overall DC energy consumption. Figure 4.22 shows the energy consumption,

measured using RAPL[221], for 16 servers against different levels of packing capacities using

pMACH’s scheduler. Consistent with previous work on Peak Energy Efficiency [322, 323]

we observe that the total power consumption is the lowest when the utilization per server

is capped at 70%.
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Figure 4.22: CPU Load vs. Normalized Energy
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4.4.2 Distributed Data Collection

We study different ways to collect the communication graph on the sNIC using

the trace to derive the partitioning quality in section 4.4.1. This section emphasizes the

reduction in network bandwidth for transmitting the graph and the resulting tradeoff in

application performance. We replay the packet trace over a sNIC, transfer the data collected

from the sNIC to the host, and partition the communication graph using the data collected

from the sNIC as well as the intra-host container communication obtained by the cluster

metrics collection framework. All the approaches other than Confluo [222] use some sort

of probabilistic approximation, allowing them to have lower packet processing and data

transmission overhead, but are more prone to estimation error. In all the data structures the

tuple key is the source and destination container IP. We also use a local testbed consisting

of server with 20 Intel Xeon 2.20GHz CPU cores and 256GB memory running Linux (4.4.0-

142). It has Netronome Agilio LX 2×40 GbE sNICs which have 8GB DDR3 memory and

96 flow processing cores.
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Figure 4.23: Sensitivity to amount of state
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Figure 4.23 shows the task completion time vs the overall memory usage at all the

servers in a 16 server implementation. We run the pMACH graph partitioning technique to

determine the container placement, similar to the testbed experiments of section 4.4.1. We

compute the 95th percentile of task completion time for the Memcached workload. Memory

usage reflects the amount of data that must be transferred over the wire. Confluo consumes

the most amount of memory compared to all other platforms as it must track all edges, but

also yields the lowest task completion time. Nitro Sketch and CountMIN Sketch result in

high task completion times because of the edge weight overestimation that results in many

of the low-affinity containers pairs being scheduled together. These low-affinity containers

compete with container-pairs that actually have high affinity and thus result in overall

poor placement. We observe Elastic Sketch has a negligible increase in task completion

time compared to Confluo but with a substantial memory usage reduction of 2.38 times.

This is because Elastic Sketch prioritizes the retention of heavy flows, in turn preserving

container-container affinity.
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Figure 4.24: Time Series
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Figure 4.24 shows the result of the experiment in the form of a time series, where

the memory state of the data summarization approach is transferred every epoch. Confluo

transfers 4.76MB of data per epoch, while the other dataplane algorithms transfer only

about 2MB data per epoch. Clearly, Elastic Sketch, despite using 57.98% less bandwidth,

has low application task completion time, matching Confluo.
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4.4.3 Large Scale Simulation Results
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Figure 4.26: Active Servers
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We also performed a flow-level, large scale simulation with a 36-ary fat tree topol-

ogy, with 11, 664 servers and a total of 104, 958 containers (e.g., targeting 20-30% utilization

for baseline E-PVM[253, 220, 247]). We utilize a trace from a NS3-based DC simulation [27].

We obtain the communication matrix time series for different workloads (i.e., Memcached,

Hadoop, and Microsoft Web Search). This represents the container graph edge weights and

connectivity. We then merge the graph edges with container graph vertex weights per appli-

cation (e.g., Memcached). We ran actual instances of containers from the Cloudsuite [23]

benchmark on CloudLab[175] and measured resource demands to get the vertex weights.
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Figure 4.27: Power Consumption

In Figure 4.26, we see E-PVM always chooses the least utilized server, but all 11664

servers are active. RC-Informed requires the least number of servers because it permits

oversubscription of server resources. Best-Fit requires a slightly higher number of servers,

because it sets target of 95% utilization. Similarly, MPP does not oversubscribe server

resources, but greedily selects the servers to provision, based on the power model. Goldilocks

and pMACH use more of servers as they operate at a lower target of 70% utilization. But,
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Figure 4.28: Task Completion Time
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Figure 4.29: Container Migrations

as we see in Figure 4.27 for the power consumption, using the power model we measured

on CloudLab[175], Goldilocks and pMACH consume the least energy as they operate at

peak energy efficiency. In Figure 4.28 we compute the 95th percentile task completion time

for Apache Solr search engine in the testbed and vary the search request rate. We use

the processing time distribution for search queries based on a benchmark measurements

made in CloudLab[175]. We use packet latency obtained from measuring the container pair

communication latency in our testbed using the Arista 7050SX-72Q switch. We ignore the
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queuing delays based on typically low link utilizations in DCs (< 25%) [146]. By accounting

for container-pair affinity, the 95th percentile task completion speeds up by 1.76x. Lastly,

in Figure 4.29 we see that the migrations reduce from 51.70% with Goldilocks to 8.7%

with pMACH. MPP’s migrations remain below 1.3%, but consumes 19% more power and

76% longer task completion time. This is because MPP does not operate at peak energy

efficiency and ignores container affinity.

4.4.4 Conclusion

In pMACH we capture the container pair affinities and use that to better container

placement, resulting it lower energy consumption and lower task completion time. pMACH

shall also be the basis for our query processing engines introduced in our third contribution,

namely 5GDMon, that provides a cellular-wide monitoring infrastructure.
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Chapter 5

Synergy: Faster Handovers using

Mobility Prediction

5.1 Introduction

The emergence of 5G promises high speed and low latency, enabling a wide range of

innovative applications like Internet of Things (IoT), augmented/virtual reality, At the crux

of the 5G data plane in the packet processing core of the cellular network is the User-Plane

Function (UPF) which serves as the interconnect point between the mobile infrastructure

and the data network[92]. At the UPF, complex rules have to be followed for forwarding

and tunneling. It processes packets belonging to different sessions with different priorities,

including the need for shaping and policing the traffic. Additionally, the UPF must perform

flow-state dependent processing, such as when a mobile device goes idle (to save battery

energy) and the UPF has to be aware of the idle/active transitions of individual mobile
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devices (also called User Equipment, or UE). Similarly, when a UE is mobile, a handover is

performed for the UE to have its radio network association change from one (source) base

station to another (target) base station. For these situations, the UPF has to be aware of

the state of the UE (hence the flow’s state) which potentially requires the UPF to buffer

packets until the UE is ready to receive data.

Implementing 5G core (5GC) NFs [36] on general-purpose CPU cores (we refer to

as ‘host’), including the UPF, can limit throughput and increase latency, especially when

the number of CPU cores for the UPF is limited. Overheads, such as context switches,

interrupts, PCIe transactions, data serialization and de-serialization, packet copy, contribute

to constraining the performance[274]. Since the 5GC supports a large number of UEs

connected to multiple base stations, facilitating a wide range of critical applications and

services[259], achieving high performance for the 5GC is key. Utilizing network acceleration

to implement 5GC NFs can substantially improve throughput.
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UPF 

(sNIC)

HostNRF AUSF PCF UDM

NSSF AMF SMF UDR

UPF
(Host)

UE
Control Plane Data Plane Data 

Network

gNB
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Figure 5.1: Synergy 5GC Architecture

Another avenue for network acceleration is using programmable switches. While

programmable switches (P4Switch) for the 5GC data plane packet processing show promise[249],

they have two drawbacks. First, P4Switches do not have large buffers or the ability to hold

packets as required by the 5GC’s UPF [249]. To overcome this feature gap, [249] buffers
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packets in the host using a buffering microservice. Secondly, the limited amount of memory

on a P4Switch (e.g., in the order of 100MB SRAM [258]) limits its ability to support flow

state tracking, even though it can forward traffic at very high rates [274]. This impedes its

ability to maintain flow state and conduct monitoring for a large number of flows.

In this work, we implement Synergy, a 5G UPF on a SmartNIC (sNIC), as shown in

Fig. 5.1. Not only does it provide network acceleration to outperform host-based UPFs, but

it can effectively carry out state tracking and buffering unlike programmable switches[274].

With the sNIC having memory of the order of GBs, packets can be buffered and flow state

can be effectively retained on the sNIC. The P4 programmability [94] on the sNIC also

enables handling various packet processing tasks. Furthermore, the CPU cores being just

a PCIe transaction away provides for a tight coupling between the UPF on the sNIC and

the other NFs of the 5G ecosystem running on host CPUs. Synergy is publicly available at

[108].

Beyond implementing the core functions for a UPF on the sNIC to be compliant

with the 3GPP specification [2, 3], we focus on two significant additional capabilities. The

first is to support a responsive buffering capability in the UPF, since it impacts the idle-

active and handover latency. Instead of buffering packets in the source 5G base station

(gNB) during handover (as in Sec. 9.2.3.2.2 in [6]), ‘Smart buffering’ of packets within the

UPF has been proposed as a way of reducing the latency in L25GC [210] and CleanG [260].

This avoids the hairpin routing from source gNB to target gNB through the 5GC, and the

associated latency. Synergy implements packet buffering in the sNIC UPF while ensuring

packets are delivered in order. However, no change to the 3GPP control protocol messages
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are needed. Buffering at the source gNB (especially for small cells) may also be unattractive

from a cost standpoint. Synergy is built on top of 3GPP compliant 5GC implementations

L25GC[210] and Free5GC[36].

The sNIC can buffer most of the packets locally as opposed to the host so that

it can rapidly respond to UE state changes and retain high packet throughput. We show

that the packet loss rate during handovers reduces by 2.04× when buffering within the

sNIC instead of the buffering within the host. Compared to other sNIC-based flow state

management approaches such as DeepMatch[208] and SmartWatch[274] that can also be

used in UPF processing, Synergy achieves at least 1.40× lower packet loss rate because it

reduces the flow state access latency . Our solution Synergy improves packet processing

rate and latency during control-plane events such as handover and paging. We introduce

a two-level flow caching mechanism that reduces flow state access times by at least 15%

compared to UPF built over the flow management technique of SmartWatch[274] (§5.3.1).

Synergy increases its capacity by 44×, to support up to 12 million flows (§5.2) compared

to UPF built with the flow management technique of DeepMatch.

Mobility prediction helps in pre-populating and updating state on the 5GC NFs,

thereby reducing the handover latency. In order to accommodate mobility predictions,

we modify the sNIC packet processing pipeline to parse and monitor the control plane

traffic in the sNIC. Control plane messages contain location[81] that can be monitored

for mobility prediction. Synergy leverages intelligent algorithms for effectively predicting

mobility events. 5G uses a control/user plane split (CUPS)-based architecture[341]. In

this work, we propose running the control plane NFs on the host and the userplane on
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the sNIC. Since the sNIC and host are just separated by a PCIe transaction, it leads to

very low programming latency. This allows us to push table modification more quickly as

required for handovers and paging. Synergy parses control plane packets destined for control

plane NFs running on the host and updates the flow state maintained in the sNIC. Feeding

the monitored data to a mobility predictor helps achieve 2.32× lower average handover

latency compared to not performing mobility prediction. Our paper makes the following

contributions:

• We implement a 3GPP compliant 5G UPF on a highly parallel sNIC.

• Design a responsive buffering scheme on the sNIC to improve packet processing effi-

ciency.

• Extend the monitoring functionality on the sNIC and use it towards mobility predic-

tion.

• Evaluate our platform against real-world traces as well as simulation-generated traces.

Majority of the cellular ‘services’ are provided by the core network, which is re-

sponsible for connecting UEs to the Data Network (typically the Internet or an IP network).

The user accesses network services via a cellular base station (gNB) using a mobile device

that we refer to as the User Equipment (UE). Some subcomponents of the core network

(as shown in Fig. 5.1) are the Access and Mobility Function (AMF), Service Management

Function (SMF), and User Plane Function (UPF). The AMF is responsible for authenti-

cating the UE, connectivity, and mobility management. The Packet Forwarding Control

Protocol (PFCP) is used by the SMF to configure the UPF data forwarding behaviour and
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user policies [2, 3]. The control plane must setup a unique tunnel endpoint identifier (TEID)

to tunnel dataplane traffic between the gNB and UPF using GTP[249]. The datapath from

the gNBs of the Radio Access Network (RAN) to the Data Network (Internet) is provided

by the User Plane Function (UPF). It performs packet processing for user flows and includes

support for UE mobility, buffering for idle UEs, traffic accounting, and QoS based on rules

configured by the control plane[249].

Traffic Classification: Each uplink or downlink packet must be matched to a

UE and its associated traffic class by the UPF based on a set of Packet Detection Rules

(PDRs)[125]. A PDR may match the UE’s IP address, the tunnel headers (uplink packets),

the packet’s five-tuple, or the domain name of the remote end-point. The matching PDR

determines how the UPF then processes the packet. The control plane installs, changes,

and removes PDRs when a UE attaches, moves to another gNB, goes idle or detaches[249].

Mobility and packet forwarding: As a UE moves, it may connect to a

new gNB. The UPF applies a Forwarding Action Rule (FAR) identified by the PDR to

place the appropriate tunnel header for DL packets forwarded to the right gNB. The FAR

for DL traffic specifies the tunnel header field and gNB IP address. Generally, a FAR

specifies a set of actions to apply to the packet, including tunneling, forwarding, buffering,

and notifying the control plane. FARs are installed and removed when a UE attaches or

detaches, respectively, and the DL FAR changes when the UE is handed off to a new gNB,

goes idle, or is woken up[124, 249].

116



Buffering for idle UEs: Battery optimizations seek to have UEs go idle as soon,

and for as long as possible. When a UE goes idle, the UPF buffers DL traffic destined to

a UE until it wakes up to send or receive packets. When traffic first arrives, the UPF

alerts the control plane, which then interacts with the gNB to wake up the UE. Once the

UE wakes up, the UPF transmits the buffered DL traffic and resumes normal forwarding,

ensuring packets are delivered in-order [260, 249].

Handover procedure: During a handover procedure, when a UE connects to a

new gNB, the user typically experiences added delay and possibly data loss. The handover

operation can take up to 130 milliseconds to complete[210]. This can severely affect data

plane traffic. Further, UE handover operations may be more frequent because of the smaller

cell sizes and emerging applications such as connected vehicles [49]. These require complet-

ing handovers as quickly as possible. Along with the many control message exchanges [25],

the 5G handover involves data packets being buffered at the source gNB. When the UE

synchronizes with the target gNB these packets are re-routed to the target gNB, through

the 5GC, using ‘hairpin’ routing. In Synergy we delegate this buffering task to the UPF,

avoiding the hairpinning.

Requirement: Synergy aims to accelerate UPF performance while still being

feature-rich, allowing the operator to dynamically update rules.

Network Acceleration: Achieving high performance for the UPF can be enabled

by network acceleration, since hash computations, encapsulation, and state management

are not impeded by interrupt processing, context switches, PCIe transaction delays, and

expensive packet copies on the host. We design Synergy to achieve high performance,
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compared to a state-of-the-art host-based 5GC like Free5GC[36], with the dataplane (UPF)

implemented using the DPDK[190] libraries.

UPF Programmability: The UPF must dynamically update FARs and PDRs

along with their priorities (see §5.1). These translate to P4 table updates that need to be

programmed into a switch or an sNIC if the UPF runs on one of these. Platforms based

on programmable switches can handle on average 1200 new table rules per second[329].

Since rules will have to be pushed when the UE goes idle, encounters mobility, attaches

or detaches the network, the 1200 rules/sec. will limit how many control plane events can

occur in the 5GC (which may support multiple gNBs). P4Switch-based UPFs are being

considered [249] because of the potential for higher dataplane throughput. Synergy can

outperform them from the perspective of responsiveness and lower control plane latency.

Optimized UPF Buffering: Buffering is required for idle-active transitions.

Furthermore, we also delegate the buffering task from the gNB to the UPF for mobility

management. We advocate this implementation change to reduce computation and memory

overhead on gNBs (especially small cells).

Requirement: Synergy aims to monitor the control plane traffic to predict future

mobility events and reduce the control plane overheads incurred during handover.

Accommodate mobility predictions: Predicting mobility using off-the-shelf

neural networks can speedup the handover process by prepopulating state at the 5GC. This

speedup directly benefits the end-user experience. Since prepopulating state will also lead

to more memory and computation overhead on the UPF, we incorporate a probabilistic

data structure to minimize the throughput impact of mobility prediction.
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Control Plane-UPF colocation: By co-locating control plane NFs on the same

host as the UPF (e.g, on sNIC), we ensure control plane messages also traverse the same

sNIC where the UPF is running. In doing so, we monitor control plane traffic, such as

Location Request/Response to update the data structures stored in the sNIC and ultimately

use it for mobility prediction.
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Figure 5.2: Memory Latency sNIC

5.2 Design

We design the 5G UPF to operate on a Netronome Agilio LX 2×40 GbE sNIC,

which has 8GB DDR3 memory and 96 highly threaded flow processing cores, referred to as

Micro-Engines (MEs). User code runs on up to 81 MEs distributed on seven islands and

each ME has a private code store that can hold 8K instructions. MEs are 32-bit 1.2 GHz

RISC-based cores that have 8 thread contexts [208]. Switching contexts takes 2 cycles (non-

preemptive threads scheduling). The sNIC can be programmed in both Micro-C, which is

an extended subset of C-89, and P4 [274]. P4 code parses the uplink and downlink traffic

arriving at the UPF. P4-defined match-action tables, populated by the control plane at

run-time, determine actions to apply to the packet based on the parsed headers [208].
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Memory Hierarchy: MEs have access to large, shared global memories (8

GB) and small local memories (4 KB capacity) that are fast but require programmer

management[208]. Table 5.1 shows the memory hierarchy on the 40 GbE sNIC [208], in

terms of capacity and usage. Fig. 5.2 shows the memory latency for write operations. As

expected, CLS being closer to the ME has lower write latency overhead compared to EMEM

and IMEM bulk write operations (4 Bytes). We do not evaluate CTM because that is used

to store packet payloads as they are being processed. Since EMEM is composed of SRAM

and DRAM, where the SRAM acts as a cache to DRAM, EMEM writes would result in a

longer tail than IMEM that solely consists of SRAM. The EMEM DMA operation depicts

the latency to copy MTU-sized packets (1500 bytes) from CTM to EMEM, which is crucial

to packet buffering.

Table 5.1: sNIC Memory Hierarchy

Memory Capacity Usage

Code Store (CS) 8 K Instrs. Code instructions

Local Memory (LM) 4 KB Registers

Cluster Local Scratch (CLS) 64 KB Local to island. Shared
across multiple MEs

Cluster Target Memory (CTM) 256 KB Local to island. Shared
across multiple MEs

Internal Memory (IMEM) 4 MB Global Memory (SRAM)

External Memory (EMEM) 8 GB Global Memory (SRAM
+ DRAM)

We leverage the buffering mechanism we develop on the UPF to improve the

performance of handover and paging. The sNIC is more efficient for packet processing

compared to host-based systems. However, others have taken the approach of just buffering
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Figure 5.3: Latency to Buffer/Drain Packets

the packets on the host while carrying out the rest of the features on a P4Switch [249]. The

host has substantial memory compared to the sNIC to buffer packets. However, by buffering

packets in the sNIC, we can store and drain packets much faster than would be possible

when buffering on the host. We now carry out an experiment that compares the buffering

and packet draining latency on the sNIC and host. This experiment uses a host-based

DPDK implementation to efficiently buffer packets by holding on to the rte mbuf [101]. For

the sNIC implementation, we use a sNIC provided instruction (i.e., pktdma ctm to mu) to

buffer the packet by DMA’ing it to EMEM (DRAM) memory. For releasing the packet, in

the host implementation, the packet is pushed to the NIC for transmission and its memory

released. To drain the packet in sNIC, we use the sNIC instruction (i.e., pktdma mu to ctm)

to DMA packets from EMEM to send it over the network. Fig. 5.3 shows that it takes 20×

the latency to individually buffer and drain packets in the host when compared to performing

the same operations on the sNIC. The reason for this is that a host-buffered packet would

involve DMA in and out of the host memory, traversing the PCIe bus. On the other hand,

a sNIC-buffered packet only causes the packet to be DMA’d from one sNIC memory to

another (e.g., CTM and EMEM).
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On the sNIC, we load a P4 match action table for PDR matching. However, the

capacity of this table is only 64K entries[196], forcing us to resolve P4 table misses on

the host. Other platforms such as T4P4S[319] and NetFPGA[75] that are based on other

vendors have similar capacity constraints for individual P4 tables[196], especially when there

is wildcard matching, as is required in the UPF. Since this limited-capacity P4 table will

likely only store active flows, a DL packet for a UE device that is currently in an inactive

state will most likely miss the P4 table and consequently be resolved on the host. In order

to prevent this for most flows, we must have a data structure that is distinct from the P4

table of much larger capacity to maintain state for a large pool of flows, including inactive

flows. This data structure to store flow state is declared and allocated in Micro-C. We refer

to it as the ‘flow table’ while the P4 match action tables (e.g., not Micro-C) are referred to

as ‘P4 table’. In general, the packet will be processed by the P4 and Micro-C pipeline in the

sNIC. This flow table can also help with monitoring control plane communication, which

we discuss later. In order to construct the flow table, we design our own data structure and

select appropriate update procedures implemented in Micro-C.
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The UPF performs several state-dependent activities such as monitoring, han-

dover, paging, and traffic shaping. Furthermore, to determine which memory location to

store the packet in, and to transmit the packet, we need to track the flow state. For buffering,

we draw inspiration from SmartWatch[274] and DeepMatch[208], in order to fully leverage

the sNIC memory hierarchy. Since we seek to buffer packets for hundreds of UE sessions,

each with at least thousands of packets within the sNIC, packets will have to be buffered

in EMEM (§5.2) because of its large DRAM capacity.
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Figure 5.5: Hybrid Memory Architecture

Fig. 5.4 shows the average delay caused by packet DMA, IMEM/EMEM flow table

operations, and others (e.g., instructions, local memory) for SmartWatch and DeepMatch.

It can be seen that EMEM flow table lookup contributes significantly toward SmartWatch’s

processing latency. This is because the 90th percentile bulk write operation on EMEM

is 2.182× higher than IMEM due to the external DRAM as shown in Fig. 5.2. But,

SmartWatch has 44× higher total capacity than DeepMatch (which only uses the IMEM).

Even after allocating memory to buffer the contents of 262K 1500B packets in EMEM,

we still were able to allocate a flow table of 12 million flow records on the EMEM (e.g.,

SmartWatch), compared to just 295K flow records in IMEM (e.g., DeepMatch).
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For Synergy we propose a hybrid of these two approaches where the IMEM acts as

a cache to the flow table stored in EMEM, operating under our programmatic control. We

use an LRU replacement policy to evict flow records from the SRAM IMEM to the DRAM

EMEM. We refer to this as our “Hybrid approach”. The intuition is that, by having a

cache hierarchy, we can reduce the average memory access time compared to SmartWatch,

while increasing the memory capacity compared to DeepMatch. The intent is to have the

working set of flows in the IMEM, so that they can be accessed faster, but retain the ability

to fetch flow state from EMEM if there is a miss in the IMEM. We strive to minimize misses

that require searching EMEM for flow state. Since our program explicitly places recently

used flow records in IMEM that is entirely in SRAM, we do not have to rely on the sNIC’s

SRAM auxiliary cache’s policy for the EMEM DRAM (as part of the EMEM design), since

this may get polluted as we explain further below. Fig. 5.5 shows the memory architecture

of DeepMatch, SmartWatch, and our Hybrid approach. DeepMatch stores the entire flow

table in SRAM. SmartWatch stores the entire table in DRAM, but the sNIC controls what

flow records are cached in SRAM. In the rest of the paper, we will refer to DeepMatch and

SmartWatch’s flow management techniques as “SRAM only” and “DRAM w/aux. cache”,

respectively. The Hybrid approach lets the programmer control the placement of flow

records in SRAM and DRAM, which is adopted by Synergy for the sNIC UPF. Synergy is

general and is applicable for many other sNIC architectures that provide onboard SRAM

and DRAM. While this flow replacement policy is novel, the lockless flow update scheme

and how we DMA the state to the host have been leveraged from our previous work [274].
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We use sampling to select whether the host NF or sNIC should buffer the packet.

If it is in the sNIC, we find the appropriate memory location to buffer the packet in the

sNIC EMEM. We utilize the pktdma ctm to mu instruction provided by the Netronome

sNIC to use the internal DMA to move the packet from one memory to another. On the

other hand, if the packet is to be buffered on the host, we forward the packet to a dedicated

virtual port to DMA to the host. A buffering service NF accesses the packet in the host

memory. Buffering tasks are delegated from the sNIC to the host as needed. Even though

a limited amount of buffering activity occurs on the host, the state tracking remains within

the sNIC, including the trigger to release packets buffered in the host NF.

For buffering workloads that the sNIC sees a drop in throughput for large packet

sizes due to a hardware limit of 16 outstanding DMA requests per CTM [208]. For packet

sizes larger than 1024 bytes, we observe the EMEM DMA operation to take at least 2.15×

more latency, on average, compared to processing 512 byte packet streams. Let the number

of outstanding DMA requests in a CTM to the EMEM, per 1 sec measurement interval, be

Θctm. In Synergy, when Θctm > 10, we sample 10% of new buffering tasks so that they can

be done on the host (i.e., for new handovers or if a device goes idle) instead of the sNIC.

The sNIC maintains the required flow state, with the host just buffering the packet. With

this, the DMA engines between the sNIC and host are used instead of the bottlenecked

DMA engines between the CTM and EMEM. As shown in Fig. 5.6, setting the sampling

rate less than 0.3 ensures most packets are processed with low latency when buffered. A

sampling rate of 0.3 results in 2.35× higher average latency compared to that at a sampling

rate of 0.1 (at 0.1, more packets are processed in the sNIC instead of the host). Fig. 5.7
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shows that setting the max. outstanding DMA requests above 10 causes the packet loss to

increase by at least 1.87× because the queuing delay in the sNIC increases.

Design Summary: We introduced an efficient buffering mechanism in the sNIC

UPF to be used during handover and paging. Furthermore, we have designed ways to reduce

the time to access flow state which is important for speeding up state-dependent processing

such as handovers, paging, tunneling, traffic shaping, and monitoring. In Synergy, moni-

toring is used for mobility prediction as described next.
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Figure 5.6: Latency vs. Sampling Rate
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The Location Reporting Control procedure is to allow the AMF to request the

gNB node to report the UE’s current location, or the UE’s last known location with

timestamp[81]. Since the AMF is colocated on the same host as the sNIC running the

UPF in Synergy, those packets go through the sNIC before being delivered to the AMF. As

location reports arrive at the sNIC, we parse the packet and update the same flow state that

we had maintained for paging and handover purposes. This ensures that packets are parsed

and the data structures updated with similar low processing and memory overhead as data

plane packets. Since the prediction model uses location to make predictions, we use loca-

tion reports. However, there are other models that use channel quality as features, such as

the cause field within the “handover-required” message from source gNB to AMF (Section

4.9.1.3 in [43]), which is triggered by the source gNB based on measurement reports[71].

Handovers occur when the base station signal strength for a UE decreases. This

occurs often as a result of mobility. Time to complete control plane operations (e.g. mo-

bility handoff, service establishment) directly impacts the delay experienced by end-user

applications[127]. Furthermore, with 5G, the control traffic is expected to increase rapidly

due to a shift to smaller cell sizes, which will likely cause more mobility handoffs[127]. Mo-

bility prediction allows the network operator to pre-install the network state in the core

networking elements, minimizing the delay experienced by end-user applications due to

frequent handovers. Fortunately, vehicular mobility is a highly correlated process due to

roadways, which can be effectively exploited by the gNBs-reported measurement of the

radio signal strength from their connected mobile users [255].

127



1 2 4 8 16 32
Look Ahead Time (Seconds)

0.00

0.25

0.50

0.75

Ac
cu

ra
cy Correct target

gNB prediction
Incorrect target
gNB prediction
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We use a SUMO-based [104] vehicular mobility dataset [114] for subsequent ex-

periments. For our experiments, we use the mobility predictor introduced in [232] since

it is decentralized and shown to be highly accurate [232, 255]. Their technique uses neural

networks to predict the next gNB by making use of the angle of arrival, which is derived

from the vehicle and gNB coordinates. At each point in time, a vehicle (UE) connects with

the gNB providing the best communication conditions, measured in terms of path loss[232].

As vehicles move, the UE attaches and detaches to various gNBs. We call the gNB

the UE is attached to as the serving gNB. Throughout the duration when the UE is attached

to a serving gNB, we collect UE location samples. All these collected location samples are

used as a feature vector to determine the next serving gNB. The predictor uses a Gated

Recurrent Unit-based Recurrent Neural Network (RNN) and returns a soft prediction, in

the form of a probability vector for the next serving gNB. The prediction accuracy improves

as the UE moves closer to get to the next gNB and as more samples are fed to the RNN

model[126]. Fig. 5.8 shows the rate of correct and incorrect mobility predictions for the

target gNB in the simulation, where the error bars represent the standard deviation observed

across gNBs. Predictions made 1 to 5 sec prior to a handover have the highest accuracy.

Correct predictions will make sure that the handover is accelerated due to the prepopulated
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state. Fewer mispredictions will ensure less compute and memory resources are wasted in

the 5GC. If we make a prediction every 5 sec, the number of predictions is manageable and

the accuracy is reasonably high. Unfortunately, in real-time, we do not know whether the

UE is 5 sec or more seconds away from handover. Therefore, we will have to expire the

predictions every 5 sec, increasing the memory and processing overhead as more flows are

programmed. Therefore, we have a probabilistic data structure on the sNIC to ensure that

we minimize these memory operations.

CLS Memory

…

8 Bloom Filters

ME (Code)Def FoundInBloomFilter():           ME (Code)
  N_HASH_FUNCTIONS = 3, ret = 0xFF

  For i in 1 .. N_HASH_FUNCTIONS

    h_i = hash_function_i(flow_key)

    ret &= mem_read8(BloomFilter[h_i, :])//CLS

  Return ret > 0

If FoundInBloomFilter():

  Check Prediction Table (EMEM)

h1
h2

h3
mem_read8 (1 Byte)

Figure 5.9: Bloom Filter Architecture

We take the N2Handover codebase[42] and divide it into two phases correspond-

ing to prediction and handover. The prediction phase is primarily concerned with pre-

populating state to accelerate the end-to-end handover latency while the handover phase

is carried out as the final step when the UE actually moves to the new gNB. When a DL

packet arrives at a UPF, destined to a UE that does not have the required state to pro-

cess the packet, the UPF in Synergy is responsible for buffering the packet. The packet is

buffered until the state is propagated across the control-plane NFs and then all the buffered

packets are drained and forwarded to the UE.
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Next, we try to minimize the overhead related to checking for mobility predictions.

As each EMEM access for prediction table lookup can take as much as 416 ns, this will

severely degrade throughput. This is because predictions will likely reside in EMEM DRAM

as they have not been accessed before, precluding the sNIC from caching the prediction

in EMEM SRAM. Furthermore, we do not explicitly store the prediction in IMEM as

the volume of predictions can be high. To solve this problem we use lightweight Bloom

Filters[193] hosted on the CLS for prediction. We store the prediction in CLS because it

is at least 3× to 10× faster than accessing IMEM and EMEM (see Fig 5.2), respectively.

A Bloom filter is a data structure designed to determine, rapidly and memory-efficiently,

whether an element, in this case a prediction, is present in a set. We use 8 parallel Bloom

Filters, for predictions made every 625 millisec, that are arranged in memory such that one

mem read8 (e.g., 1 Byte) can access all parallel Bloom Filters at the same hash index. Fig.

5.9 shows the code running in the ME to determine whether to check handover predictions

for a UE when we miss on the EMEM and IMEM for its flow record. Although Bloom

Filters have some false positives, our design seeks to minimize the penalty, and the space

savings outweighs this drawback[150].

On replaying the SUMO trace[114] on our testbed, we see on average 22.34%

packets every second, missing on the IMEM and EMEM flow table. Those packets are

checked against the Bloom Filter before visiting the prediction table. The Bloom Filter is

non-invertible, meaning we cannot retrieve the prediction from the Bloom Filter. There

are three outcomes: 1) the prediction is found in the Bloom Filter, and then also found

in the prediction table (True positive), 2) the prediction is found in the Bloom Filter, but
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not found in the prediction table (False positive), and 3) the prediction is not found in the

Bloom Filter (True negative). In the case of true positives, the required state to process

the packet in the sNIC is retrieved from the prediction table. As a consequence, the packet

gets processed in the sNIC, not suffering the long latency processing costs of the host. In the

case of true negative, no further cycles are wasted searching the prediction table (416-1666

ns) once the Bloom Filter lookup completes. Lastly, false positives that occur for less than

1.5% of packets that visit the Bloom Filter result in wasted cycles searching the prediction

table without retrieving the required state for processing the packet. In the event of true

negatives and false positives, the packet will have to be forwarded to the host for processing.

We now describe the Synergy architectural design for the 5G UPF within the

sNIC (shown in Fig 5.10) to speed up the PDR lookup, allow for dynamic adaptation of

the packet processing pipeline, and ensure that the mobility predictions do not impede

processing throughput. A packet first arrives at the network-bound interface (NBI) ingress

and is transferred to the CTM memory. The packet is served by one of the packet processing

MEs in a run-to-completion manner. This processing includes both the P4 pipeline and

additional Micro-C program(s). We adapt the Hybrid approach introduced in §5.2 for

updating flow state to achieve the highest throughput. The IMEM hosts the cache of the

flow table while the EMEM memory hosts the flow table and prediction table. The per-

island CLS hosts the Bloom Filter that is used for the very efficient probabilistic check if

there are any pre-populated flow records based on mobility prediction. The EMEM also

hosts the buffer where packets will be stored when a UE is idle or has an ongoing handoff.
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Handover latency directly influences the end-user experience. To reduce it, we

carry out mobility prediction and prepopulate the state within the control plane NFs and

UPF. We evaluate the benefit of this in §5.3.3. To achieve this, the host-sNIC interface

incorporates several features: 1) ring buffers in the EMEM can export flow records to the

host; 2) the host updates P4 table entries and data structures hosted in EMEM including

the prediction table; 3) the sNIC can forward packets to the host using an SR-IOV virtual

port. As described in §5.2 we monitor control plane packets and update the flow state

with the UE location information within the sNIC. This efficiently gets exported to the

host via DMA. The tight coupling between the sNIC and host ensures that we provide the

features to the prediction model running on the host quickly. The host programs the sNIC

to update the P4 pipeline for handling packets of different sessions. By having the sNIC be

just a PCI transaction away, we are able to push rules to the sNIC at lower latency. This

allows us to reduce handover delays (see §5.3.3) Lastly, for situations where Synergy cannot

fully process the packet within the sNIC, the packet is forwarded to the host with minimal

overhead instead of over the local data center network.

Slow flow lookups directly reduce the throughput of the UPF, despite the paral-

lelism offered by the 80 MEs, each with 8 thread contexts. Slower flow lookups as a result

of the higher memory access latency, are difficult to overcome even by switching to another

thread’s context causing the drop in throughput [208]. Furthermore, the capacity of the

flow table has to be high otherwise flow table misses will also lead to long latencies because

of host processing.
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Figure 5.10: Synergy Architecture

Fig. 5.11 shows the logical packet processing pipeline. When a packet arrives, we

first find its flow state by computing a hash index and searching buckets at that hash index

in IMEM and then EMEM memories. If we find the flow in IMEM (lower latency), we

update the flow state and fetch the packet metadata as necessary. This may include state

indicating the UE is idle or in an ongoing handover, requiring buffering. If we miss on the

IMEM, we check the EMEM, where if we find the flow record, we swap the least recently

used flow record in IMEM (LRU) with the flow that we hit in the EMEM. If the packet is to

be buffered, we DMA the packet payload to EMEM. Next, we perform wildcard matching

in the P4 table based on the Service Data Flow traffic filter (e.g., source-destination IP

or port), UE IP, and TEID and then execute the corresponding action. If there is no P4

table hit, we check if there is a simple action to be carried out based on packet metadata

(e.g., tunneling without wildcard matching). If yes, we carry out the action and clone the

packet to the host so that it can subsequently update the P4 match action table; otherwise,

we simply forward the packet to the host and let the UPF on the host process the packet.

The P4 table also specifies meters to configure the average rate, burst size, and policing of

the traffic. This is configured dynamically by the operator during runtime and executed by
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the target sNIC. If the traffic exceeds the configured rate and buffers overflow, we utilize

the function ‘netro meter drop red [77]’ provided by the Netronome sNIC to drop traffic

exceeding the limits.

We define a 5GC instance as one complete set of control plane NFs and the UPF

that can fully-process uplink and downlink packets. We ensure that the affinity[275] of

the control plane NFs and UPF for a 5GC instance are accounted for in placing them on

the same host server (node). There may be multiple 5GC instances within a data center

to handle increased traffic loads. In Synergy, the load is balanced by assigning new UE

sessions to the appropriate 5GC instance by an orchestrator. A UEs session is assigned

to a 5GC instance for the period the UE maintains its attachment to the 5GC. Thus, the

state does not have to be moved between 5GC instances. We believe that the number of

CPU cores available on the node supporting the 5GC instance is sufficient to handle the

control plane load from the set of UEs generating the dataplane load handled by the sNIC.

If the control plane load does go up, vertical scaling by adding CPU cores for a particular

overloaded control plane NF can relieve the bottleneck at the NF. This deployment strategy

is similar to that of L25GC[210].

As the node may support other third-party NFs, we seek to provide isolation

between different groups of mutually trusting NFs. We use the notion of security domains

introduced in NetVM [207]. Host NFs developed by the same vendor are allowed to share a

private memory pool. But, that cannot be accessed by a different application on the same

node. A DPDK primary process creates a private shared memory pool with an associated

distinct file prefix, implemented as hugepages in the Linux file system. Each security domain
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Figure 5.11: Synergy Flow Chart

uses the file prefix for the huge page it access to, which is provided to it by the primary

DPDK process [32]. Location reports are encrypted to maintain user privacy. The crypto

module of our target sNIC device[26] decrypts these location reports. The required keys

are provided to the sNIC by the NF that is co-located on the same host.

Due to Synergy’s buffering and monitoring capabilities, the throughput achieved

with Synergy is not as high as what is achievable with P4Switch [249]. Currently, the

orchestrator in Synergy load balances UE sessions over 5GC instances. The load on the

control plane NFs is likely dominated by the number of UE sessions. The load on the UPF

potentially needs to consider the UE flow characteristics, but we anticipate a conservative

allocation would help avoid the UPF from being overloaded. This is left as future work.
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Here we study the generality of our UPF implementation on the Netronome

Agilio LX sNIC [8], and the potential for adoption with other sNICs, such as the Bluefield

MBF1L516A ESNAT and LiquidIO OCTEON TX2DPU sNICs. All three sNICs have a

multi-core architecture. Although the Bluefield and LiquidIO sNICs have fewer CPU cores

(e.g., MEs) compared to the Netronome Agilio LX, they operate at a faster clock rate (at

least 2.2 GHz instead of 1.2 GHz for Netronome Agilio LX). All their memory architectures

have three levels. In the Netronome sNIC the three levels correspond to CLS, then EMEM

SRAM along with IMEM, and the last-level being the EMEM DRAM. The last level cache

and L1 cache have similar access times for all three architectures. The L2 access time is

25.6 ns in Bluefield vs. at least 50 ns with Netronome and LiquidIO. Atomic primitives are

supported in all architectures along with programmability using GNU in Bluefield, GCC

in Liquidio, and Micro C/P4 in Netronome [274]. Given the similarity of the architectures

and capabilities, Synergy should in principle be portable to any of the other sNICs.

5.3 Evaluation

Testbed: We evaluate the effectiveness of Synergy on our local testbed consisting

of Linux servers (kernel 4.4.0-142), each with 10 Intel Xeon 2.20GHz CPU cores, 256GB

memory, and Netronome Agilio LX 2 × 40 GbE sNICs with 8GB DDR3 memory and 96

highly threaded flow processing cores.

Traces: We use two traces. A real-world trace[285] and a SUMO-based vehicular

mobility dataset[114]. The real-world 5G trace dataset is collected from an Irish mobile

operator. This dataset contains timestamps, coordinates, gNB id, bitrate, and channel
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quality indicator. The dataset is collected with a UE streaming videos and downloading

files with the user in a vehicle driving on city streets. The second is a dataset with 700k

vehicle trips across 247 gNBs. It provides the gNB, timestamp, and vehicle coordinates.

At each point in time, the UE connects with the gNB providing the best communication

conditions, measured in terms of path loss[232].
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Figure 5.12: Tunneling Throughput

5.3.1 Interference of Buffering on sNIC Flow State Access

The faster the flow state can be retrieved and updated, the higher is the achievable

packet processing rate. Here we show why Synergy achieves the lowest latency in compar-

ison to “SRAM only” and “DRAM w/aux. cache” alternatives (see 5.2). Recall “SRAM

only” and “DRAM w/aux. cache” are derived from the SmartWatch and DeepMatch de-

signs, respectively. For the host UPF, we use Free5GC[36], with UPF implemented on top

of DPDK[190]. We first evaluate the packet latency observed for packet buffering with a

workload having up to 200K flows, which is below the total SRAM size in all three alterna-

tives. We try two variants, one with buffering (e.g., DMA to EMEM DRAM) enabled and
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the other with it disabled. As shown in Fig. 5.13, with buffering at the sNIC, Synergy has

a similar performance as “SRAM only” because the small number of flows fit in IMEM. On

the other hand, compared to “DRAM w/aux. cache”, the 99 percentile latency is 1.38×

lower in Synergy’s approach when buffering is enabled. This is because in Synergy the DMA

of packet payload from CTM to EMEM does not pollute the flow table stored in SRAM.

For Synergy the programmer controls the flow records in IMEM SRAM while in “DRAM

w/aux. cache”, the sNIC control the flow records stored in the SRAM cache of EMEM,

making it vulnerable to cache pollution. With buffering disabled, “DRAM w/aux. cache”

and Synergy perform the same as there is no cache pollution caused by DMA operations.

Next, we increase the number of active users by manipulating the trace. The average la-

tency to buffer packets is shown in Fig. 5.14. The “SRAM only” approach has higher latency

when the number of active users exceeds IMEM capacity as it has a lot of misses due to its

limited capacity of flow records. Synergy achieves at least 15% lower access time compared

to “DRAM w/aux. cache” due to more memory accessed from IMEM SRAM instead of the

EMEM DRAM. Synergy’s approach of programmatic flow record placement along with the

large capacity DRAM ensures it is the most scalable among the three approaches.
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Figure 5.14: Latency wrt users

5.3.2 Handover Performance

First, we show the control plane handover latency when the state is prepopulated

by mobility prediction in all the control plane NFs vs. baseline latency for the handover

procedure without any mobility prediction. This has been measured on Free5GC with
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Figure 5.15: Speedup via state prepopulation

DPDK [36] 5GC implementation. We observe that prepopulating state through mobility

prediction provides an average speedup of 2.73×. Mispredictions are equivalent to no pre-

diction, as the state will not be populated using the correct target gNB. This would cause

the process to have to go through the entire control plane handover procedure. For this

experiment, we used a vehicular mobility trace[114]. Fig. 5.16 demonstrates that by utiliz-

ing handover prediction, we can achieve 3.78× lower median handover latency for correctly

predicted mobility events as opposed to mispredictions and no predictions (i.e., baseline).

Considering all mobility events, including mispredictions and correction predictions (i.e.,

Overall curve in Fig. 5.16), we see a 3.49× lower median handover latency compared to

baseline.

Lastly, we evaluate the throughput achieved with and without the Bloom Filter

optimizations running in the sNIC against a 256 byte packet stream. Fig. 5.17 shows

the throughput for various Bloom Filter allocation strategies. When we do not allocate a

Bloom Filter, the sNIC looks up the prediction table for each and every packet that misses

140



0 100 200 300 400
Latency (millisec)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Event
Correct
Prediction
No/Miss
Prediction
Overall

Figure 5.16: Synergy latency distribution

on EMEM and IMEM flow table, causing the throughput to drop to less than 18 Gbps.

However, with the Bloom Filter, we check the prediction table only when the prediction

is found in the Bloom Filter. By allocating the Bloom Filter in EMEM or IMEM the

throughput drops by at least 5 Gbps compared to line rate. This is because in either

case, significant cycles are still spent looking up the Bloom Filter in IMEM and EMEM

respectively (Fig. 5.2). Finally, by allocating the Bloom Filter in CLS, as is done in Synergy,

we achieve line rate for this experiment. This is because the read-accesses of the Bloom

Filter allocated in CLS are at least 3× to 10× faster than accessing IMEM and EMEM

(Fig. 5.2). However, since the CLS memory is local to each island, we must replicate the

Bloom Filter in each island as packets of a flow can be processed in any island. But this

longer Bloom Filter update procedure overhead does not fall in the packet datapath and

does not degrade throughput.
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Figure 5.18: sNIC/P4Switch P4-based UPF

5.3.3 Programming Overheads

Finally, we evaluate the impact of the overhead of programming the sNIC on end-

user handover experience. The longer the host takes to push rules into the sNIC in response

to a handover event, the longer packets will have to be buffered before they can be forwarded.

This contributes to handover delay. We compare Synergy against the P4Switch approach.

Both P4Switch and sNIC-based UPF platforms have P4 tables and data structures that will

have to be updated by the host. To emulate the P4Switch, we consider a limit of 1200 new

flows per second, as in [329], using the same values for P4 table and rule updates as with the
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sNIC UPF. Fig. 5.18 shows the handover delay with respect to the number of active users

in a SUMO-based vehicular mobility trace [114]. We observe that Synergy attains 2.11×

lower handover delay on average. This is because the sNIC, according to our experiments,

can yield up to 6.6× higher programming rate as the control plane NFs and the UPF are

colocated on the same host.

5.3.4 Conclusion

In Synergy we offload a critical data plane component to the SmartNIC to cap-

ture mobility patterns and use it towards mobility prediction. 5GDMon is a distributed

implementation of Synergy that detects anomalies in the constrained cellular environment.
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Chapter 6

5GDMon: Monitoring Cellular

Networks

6.1 Introduction

Cellular Networks have become predominantly IP-based data communication in-

frastructures. As such, cellular networks are also increasingly vulnerable to attacks, just as

any other data communication network. Cellular networks have limited resources, especially

radio resources, that must be managed carefully to provide the best quality of experience for

as many active users as possible. Resource management and ensuring the cellular network’s

infrastructure and users are protected against attacks requires monitoring network traffic

as in traditional IP networks.

Limited radio resources require careful resource allocation and scheduling to meet

the quality of experience expected by users. The Open Radio Access Network (O-RAN)

architecture is seeking to evolve the cellular RANs to virtualized RANs with software-
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based components connected via open interfaces, with the use of ‘intelligent controllers’

(such as the non-real-time and near-real-time RAN intelligent controllers) to help make

informed decisions based on data collected from the operation and traffic demand observed

on segments of the network[129, 281]. The O-RAN software framework splits the RAN

processing into several sub-components, with a Central Unit (CU), a Distributed Unit

(DU), and a Radio Unit (RU)[201] together performing the processing that a traditional

monolithic 5G base station (gNB) would perform (see Fig. 6.1). The RAN intelligent

controllers (RICs) are tasked with streaming telemetry from the RAN so that they can

provide intelligence to a Service Management Orchestrator (SMO) to deploy control actions

and policies for resource allocation and management of the traffic by the CU, DU, and

RU of the O-RAN environment. Network control functions manage the RAN by utilizing

applications (called xApps) along with the RICs. A number of O-RAN RU and DU units

may be managed by an SMO and RIC complex. A number of O-RAN complexes may be

backhauled to a 5G cellular core network which is the main interface to the rest of the data

network (including the Internet). Thus, by its nature, the overall O-RAN-based cellular

infrastructure is widely distributed, with a number of vantage points for monitoring traffic

and exercising control for varying subsets of the traffic carried by the overall cellular network.

The traffic observed at the cellular core is the aggregation of all the traffic at the different O-

RAN subnetworks. Traffic monitoring, closely coupled to the cellular network architecture

can help in resource management, identifying anomalies, and combating attacks. Given the

network’s distributed nature, monitoring needs to be performed at multiple vantage points

(e.g., close to each of gNB and the cellular core (see Fig. 6.2).
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Cellular networks are prone to typical attacks observed on the internet, such as

DDOS, Port Scans, and botnet attacks. Beyond this, unlike data centers and the Internet

in general, resources are constrained, and therefore, likely warrant greater protection. In

this work, we explore a distributed monitoring approach leveraging the software-based O-

RAN and cellular core network infrastructure to thwart distributed attacks. Distributed

attacks are difficult to detect if monitored solely at the core network since a considerable

amount of traffic from many O-RAN subnetworks would be aggregated at the core, and the

anomalous traffic could easily fly under the radar of traffic monitor at the core. Additionally,

just monitoring traffic at each edge independently may also not identify distributed attacks

as the volume of traffic at each distinct O-RAN subnetwork may not be high (although still

capable of impacting the performance of legitimate traffic given the limited radio network

bandwidth). But the aggregate load from these distributed attacks may be significant.

An efficient traffic monitoring approach through summarization from the different O-RAN

subnetworks can help to identify threat information accurately (see Fig. 6.2).

In this paper, we argue that cellular attack detection requires: aggregation, refine-

ment, and filtering. This is because of the limited radio resources and the heterogeneity

of cellular cells. The purpose of traffic aggregation is to group monitored data that have

a shared characteristic[231], thus minimizing the memory overhead to maintain statistics

for the group. Refinement lets us zoom into traffic subsets, thereby adaptively allocating

more memory resources only to those traffic subsets that would return higher detection

accuracy[263, 195]. Lastly, filtering ensures that we only transmit to a monitor only those

traffic subsets that help to evaluate a query result[197].
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We borrow inspiration from Jaal[138], a distributed monitoring framework, that

utilizes a clustering mechanism to aggregate and transmit traffic summaries to extract the

required information from traffic spread through the network. We leverage [197] for traffic

filtering, which identifies traffic of interest on a network-wide basis by measuring traffic at

various monitors and comparing it to a dynamically configured threshold. Traffic below

the threshold is not transmitted to the global traffic analyzer to reduce data transmission

overheads. We refer to this work as CMY because it uses the Cormode–Muthukrishnan–Yi

upper bound [164] as the basis for setting the thresholds. Lastly, we are inspired by the

traffic-refinement strategy from another monitoring framework, Dream[263]. It hypothesizes

that beyond a certain detection accuracy, provisioning more memory resources to a single

monitoring task will not increase the detection accuracy. Therefore, it adaptively allocates

memory to monitoring tasks. We shall refer to this property as refinement. In other words,

zooming in by allocating more memory to attain more fine-grained, or less aggregated, data

for a traffic-subset. The desideratum of this work is as follows:

Monitoring in a heterogeneous cellular network: The cellular network includes a

range of gNB sizes, such as Macro Cells, Micro Cells, etc. The traffic handled by different

gNBs can also greatly vary, meaning that any monitor must be able to analyze the traffic

adaptively. Jaal’s traffic summaries consume considerable memory. However, accuracy

drops significantly if we configure Jaal’s parameters to reduce memory consumption. This

is because of a lack of traffic refinement. As Dream[263], we must allocate more memory

resources to those selected traffic subsets that improve overall detection accuracy. Jaal does

not adapt to the heterogeneous traffic intensities as seen in the different cell sizes.
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Figure 6.1: Monitoring an O-RAN based Cellular Net

Detection at Periphery: Cellular resources are scarce, and therefore we want to be able

to detect attacks as rapidly as possible at the periphery. In Dream, if one of the monitored

prefixes is “interesting” from the perspective of a specific task, it divides that prefix to

monitor into traffic subsets and uses more memory to monitor it. However, the refinement

proposed in Dream is slow in the cellular context, mainly because it only considers IP

prefixes and ignores other fields, such as flags, necessary to isolate benign vs. malicious

traffic. For example, during a SYN Flood attack[195], using the SYN flag will better help

discriminate benign and malicious traffic subsets rather than simply using IP prefixes.

Low Communication Overhead: Cellular monitoring overhead must be low while main-

taining reasonable accuracy. CMY mainly configures thresholds and does not aggregate

traffic based on subsets having similar traits. Therefore, the number of messages sent us-

ing CMY can be very high (400k messages for just 20 sites per epoch)[197]. To overcome

this problem, we first used sampling, as is done in NitroSketch[245]. However, this only
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increased the convergence time with perceptible accuracy degradation. Elastic Sketch and

Defeat suffer from the inherent problem of sketches, which involves trading off memory

vs. accuracy and causes overestimation due to hash collisions. Furthermore, despite being

invertible for five-tuple (e.g., can recover flows from sketch data structure itself [312]), ded-

icated sketches will have to be deployed as several detectors require data beyond just the

five-tuple (e.g., SYN Flag). This results in higher memory requirement.

Low Processing Overhead: Network acceleration is pivotal as we will have to identify

threats from high-speed networks. This can be achieved using hardware acceleration; in

particular, we shall use SmartNICs to combat this problem. Using SmartNICs helps us

minimize the loss-rate (e.g., unaccounted packets). Once the data is monitored, it will be

summarized in software, before being emitted to the query processor.

The key differentiator between CMY[164] and 5GDMon is that CMY does not

leverage the traffic aggregation (like Dream [263] or Jaal [138]), leading to high commu-

nication overhead. Furthermore, the query computation is performed at a central node

(e.g., root), which also results in a high load at the root. The key differentiator between

Dream [263] and 5GDMon is that Dream focuses on tracking anomalies by monitoring IP

prefixes while 5GDMon, considers a more feature-rich packet header vector to detect anoma-

lies. Since Dream utilizes limited switch TCAM memory, it restricts the number of active

monitoring tasks. 5GDMon leverages memory and compute heterogeneity. A SmartNIC

(with limited memory and compute capability, like switches in Dream), allows processing

high volumes of traffic using hardware support. The host in 5GDMon (with more memory

and CPU cores) then summarizes traffic streams. Contributions:
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• A distributed monitor deployed on ORAN and UPF devices.

• Design a novel data summarization technique to aggregate packet logs collected from

multiple vantage points. Our approach supports zooming into arbitrary traffic sub-

sets by using hierarchical clustering that yields dendrograms which are then split

appropriately to yield the desired level of summarization.

• Design a data collection mechanism on the SmartNIC, which runs on the distributed

unit, to leverage acceleration, combating the high traffic volume.

• We combine this approach with a state-of-the-art pruning technique, but operate over

the summarized logs instead of raw packet logs to reduce data transmission overheads.

• We evaluate our platform against simulation-generated traces as well as real-world

traces.
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6.2 5GC Preliminaries

The User Plane Function (UPF) is the first access point for packets flowing through

the 5G Core of a cellular network. User Equipment (UE), or mobile devices, connect to

the IP network through the UPF with their radio access provided through base stations

(gNB)[276]. A recent standard, the Open RAN (O-RAN), enables the Radio Access Network

(RAN) to be vendor-independent and software-based, disaggregating the various data and

control components involved in forwarding data and managing the radio resources. O-RAN

allows for innovative uses of machine learning (in 5GDMon, we use an unsupervised machine

learning technique, as shown in §6.3.2) to optimize and regulate the RAN radio resources.

O-RAN enablers include the following:

Disaggregation: As depicted in Fig. 6.1, the disaggregation of the RAN separates gNBs

into their functional components, extending the functional disaggregation and software-

based functionality concept put forth by 3GPP for Next Generation Node Bases[5]. The

gNB is divided into a Central Unit (CU), a Distributed Unit (DU), and a Radio Unit

(RU)[281]. This logical division enables the deployment of different functions in different

parts of the network and on diverse hardware platforms[280]. For instance, the DU, which

helps with lower levels of the protocol stack, including the physical layer, can offload a

packet monitoring thread for a more efficient collection of traffic logs in 5GDMon as shown

in §6.3.6.

RAN Intelligent Controller (RIC): The second enabler are the RICs, which bring in

programmable components that can execute optimization processes with closed-loop control

to manage the RAN. This encompasses two logical controllers that can serve as monitoring
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points of the RAN. The RICs analyze this data and utilize AI and ML algorithms to decide

and implement control policies and actions on the RAN to provide data-driven, closed-loop

control that can automatically optimize the network by RAN slicing, load balancing, han-

dovers, scheduling policies, etc.,[147, 280]. In 5GDMon, we implement traffic summarization

(§6.3.2) and pruning (§6.3.4) in the Near Real Time RIC.

Open Interfaces: The O-RAN Alliance has established technical specifications that out-

line open interfaces connecting various components of the O-RAN architecture. The inter-

RAN interfaces from the 3GPP specifications[5] facilitate the gNB disaggregated architec-

ture. These O-RAN interfaces expose the data analytics and telemetry to the RICs, enabling

control and resource management and other deployment optimizations[280]. In 5GDMon,

we use these open interfaces to communicate which traffic subsets need to be investigated

more via signatures (see §6.3.5). This allows us to push more monitoring resources to the

traffic subsets that provide the greatest return in accuracy, as envisioned in Dream [263].

5G monitoring is both bandwidth-consuming and latency-sensitive. The band-

width overhead is unavoidable as the traffic monitoring is distributed, with multiple mon-

itoring entities communicating with one another. Latency sensitivity stems from the re-

quirement to achieve low threat detection time. The main objective of this work is to

ensure monitoring is supported within the O-RAN architecture and its open interfaces.

Multi-dimensional data, such as network logs, are acquired and processed via clustering

algorithms to summarize the traffic. To study the scale of cellular-wide monitoring, we use

the gNB coordinates in the city of Cologne[114]. In Fig 6.3, each dot represents a gNB,

and its position within the plot indicates its geographical coordinates in kilometers. With
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Figure 6.3: Geo-distribution of gNB.

vehicle mobility, the associated UE would have attached to the gNB that currently provides

the best radio conditions (received signal strength (RSSI)). Here, the colors represent which

UPF the gNB communicates with, which is the gateway to the cellular core (5GC). Since

this data is not publicly available, we use K-Means to determine a static allocation of gNB

to UPFs, as done in [187]. In this example, we estimate four UPFs serve the 247 gNBs.

Even though O-RAN provides disaggregation, analytical capabilities through RICs,

and open interfaces in a virtualized environment, how to combine these operational princi-

ples such that it allows for the secure operation of the 5G infrastructure remains unspecified.

5GDMon addresses key aspects of this problem. As described in [83], three interconnected

aspects must be addressed, namely multi-channel utilization, network monitoring, and au-

tomation of security processes. Network monitoring provides operators with key informa-

tion by observing and analyzing traffic activity within the 5G network. 5GDMon presents a

monitoring algorithm that scales well to support multiple gNBs by leveraging unsupervised

machine-learning techniques and network acceleration. Secondly, security workflows must
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use automation to improve responsiveness to threats. In 5GDMon, we use automatic sig-

nature generation and iterative traffic refinement [195] to analyze the traffic at the required

level of granularity. This also means that analysis will adapt to its deployment, whether it

is macro or micro cells[66]. Lastly, Multi-channel utilization involves using several channels

with varying performance and security characteristics to ensure a secure environment that

honors the operator’s intended resource allocations. In 5GDMon, we throttle the traffic

that is inferred to be malicious (see §6.4 on AVIS resource provisioning).

6.3 5GDMon: Design

Cellular radio resources are limited, and it is important that we prevent adversaries

from unreasonably consuming resources and thus impacting the QoE of other users. The

goal of our work is to design a network telemetry system to thwart distributed attacks that

can be effective even for large-scale cellular networks. Monitored data captured at software-

based O-RANs (i.e., traffic summaries) and transmitted to traffic analyzers (i.e., UPFs

resident at the 5G Core) must be informative and concise. We prune traffic summaries

and load-balance the traffic sent from a large number of ORAN-based monitors to the

traffic analyzers to efficiently utilize network bandwidth and ensure timely, accurate threat

detection. Traffic queries are also distributed across traffic analyzers to ensure the compute-

load (to process the queries) is balanced while keeping the data-transmission overhead low

(see §6.3.3). Fig. 6.4 depicts a flowchart for 5GDMon monitoring. Packets are first collected

to form a packet matrix (dimensions: packet batch size x packet features). Next, the packets

matrix is converted to a packet dendrogram that links all the packets based on similarity,

thus forming a tree (see Fig. 6.5). A dendrogram is used to compactly represent hierarchical
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clustering in the form of a tree diagram, displaying the relationships between groups of

similar data (packets in our case)[29]. In 5GDMon, the leaves represent packets. Each link

connects a pair of clusters at a time (packets at the bottom level) based on the similarity

of the clusters (e.g., using the Ward-method[115]). Depending on the desired accuracy

vs. space trade-off, we cut the dendrogram to form flat clusters (explained in §6.3.2). At

this point, each packet is assigned a cluster label. We refer to these matrices as traffic

summaries. While traffic summarization aggregates traffic, the entire traffic matrix may

not be necessary to compute a specific query result. Therefore, we can employ pruning,

as explained in §2.4. Depending on the queries deployed, the traffic is pruned to ensure

that we only transmit the summaries required by the query. Depending on where the query

is processed, the traffic is finally sent to the appropriate traffic analyzer, as explained in

§6.3.3.
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6.3.1 O-RAN and Core Pipeline Overview

The DU in Fig. 6.1 hosts the Radio Link Control Protocol[128], the medium

access control (MAC), and the physical layer(PHY) [131]. In 5GDMon, the DU collects

traffic data, while the Near-RT RIC is responsible for traffic summarization. In general,

the DU is also responsible for managing the radio resource allocation for the UEs [87]. On

detection of threats, in our design, the DU will be notified to control/restrict the resource

allocation of the offending UEs even if they are distributed and are located across many

gNBs.

Downlink and uplink data packets are sent to and from the UE through the DU.

The DU implements the functional blocks of the L2 layer of a 5G protocol stack. There are

generally 8 threads in DU, one of which is the Lower MAC Handler[88]. The Lower MAC has

a packet handler that we use to monitor and collect packet matrices. We offload the thread

responsible for matrix collection to a SmartNIC, which we discuss in §6.3.6, to maximize

the fidelity of the data collected by leveraging network acceleration. Traffic summarization

and pruning tasks are deployed in the Near-RT RIC. Fig. 6.1 shows how the monitored

data propagates across the disaggregated O-RAN and core. Traffic is monitored at the DU

and transmitted to the Near-RT RIC for summarization and pruning. The pruned traffic

summaries are then transmitted to the UPF via the core control path. Fig. 6.2 shows

how the monitored data propagates through the cellular core network comprising multiple

UPFs. A subset of UPFs run traffic analyzers. The traffic summaries will be further pruned

at the UPF before they are sent to the appropriate traffic analyzer for query computation.
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6.3.2 Traffic Summarization

Traffic summaries aim to reduce communication overhead by aggregating pack-

ets while still maintaining high detection accuracy across the network. Traffic summaries

outlined, for example, in Jaal[138] using K-Means++[58], aggregate traffic statistics such

that it can be transmitted efficiently for query inference. Using K-Means++ ensures that

packets with similar attributes are clustered together. In 5GDMon we carry out hierarchical

clustering[7] for traffic summarization that is more adaptive. We can cut the dendrogram

(e.g., computed for hierarchical clustering) at varying depths to achieve the desired level of

summarization. This allows us to analyze the entire traffic stream at a coarse granularity

and then zoom into the traffic subsets at a more refined level. Let P denote the packet

matrix, where the columns represent the packet header features, and rows depict individ-

ual packets. Since each packet header attribute can consist of variable ranges, such as IP

address (e.g., 232 addresses) and TCP flags (e.g., Binary), we normalize header values by

the maximum possible value of the respective header field (e.g., normalized(x) = x
max(x))

as in [138].

As shown in Fig. 6.2, the packet monitoring task begins in the O-RAN nodes,

which are the leaves of the ORAN-UPF monitoring hierarchy. On these leaf nodes (O-RAN),

we carry out hierarchical clustering to convert the packet matrix (P ) to packet clusters (i.e.,

traffic summaries). The traffic summaries (P̃ ) and their membership counts (C) are then

transmitted upstream to the UPF after the pruning step (see §2.4). The dimensions of the

packet matrix P are the packet batch size × the number of packet features. Packet batching

enables summarization via aggregation, and the network operator configures the batch size.
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A small packet batch size will lead to frequent clustering operations, slowing the overall

processing pipeline. We set the packet batch size to 4000 packets based on experiments with

the SmartNIC that we carry out in §6.3.6. The number of clusters is selected dynamically to

trade off between excessive summarization and accuracy. As we run hierarchical clustering

on P to get traffic summaries P̃ , which aggregates similar packets together, the bandwidth

overhead of transmitting the packet data upstream reduces. Fig. 6.5 shows an overview of

the matrix transformation. The colors tagged to individual packets in P indicate the cluster

label assigned to the packet based on hierarchical clustering in the next step. Taking the

four packets that have been tagged as the green cluster G for illustration, we would have

CG equal four, while for all feature f ∈ {src ip, dst ip...}, P̃ f
G is set to (

∑
pkt∈G P

f
pkt)/CG .
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Hierarchical clustering provides a dendrogram that will have to be converted to

flat clusters to form packet clusters (5GDMon traffic summaries). As shown in Fig. 6.5,

each non-leaf node (e.g., links) and leaf node represent a potential cluster[277]. Starting

from the leaves, which are potential clusters of their own, links connect two clusters at a

time to form a tree. The height of the link (h) represents the dissimilarity of the clusters

being merged (e.g., low at the leaves and high at the root). Inconsistency is computed for

each link by comparing its height (h) with the average height of other links in its subtree

(H = h0, h1...h#children). The larger the inconsistency, the greater the difference between

the clusters connected by the link. Inconsistency is measured as h−MEAN(H)
STD DEV (H) [52, 277]. Next,

we determine an inconsistency threshold to determine at what height to cut the dendrogram

(see red line in Fig. 6.5). Cutting the tree above the root link, results in one large flat cluster

such that the entire packet batch is one cluster (e.g., just one row in the traffic summary).

This would be too coarse-grained for accurate traffic analysis. On the other hand, cutting

the tree at the lowest level will result in each packet being a cluster of its own. This will

result in considerable overhead for transmitting the traffic summaries. The inconsistency

increases as we traverse from the leaves to the root, and having an inconsistency threshold

dynamically computed ensures we can adapt to different traffic characteristics and volumes.

As in [277], we determine the knee of the inconsistency values to be the inconsistency

threshold because that is where links transition from low to high inconsistency values, which

results in sufficient summarization without merging significantly-dissimilar packet clusters.

Fig. 6.9 shows the cumulative distribution of the inconsistency values for all links of the
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dendrogram. We use a knee detection algorithm[296] to determine at what inconsistency

value to cut the graph, as this is the point where we transition from low inconsistency

(fine grained-summaries) to high inconsistency (coarse grained-summaries). Thereby, we

balance the detection accuracy vs. the size of the traffic summary. In Fig. 6.9, the knee

inconsistency value (i.e., blue dot) represents the first inconsistency threshold. Using this,

we cut the dendrogram to get flat clusters (traffic summaries) and transmit traffic summary

upstream (see Fig. 6.5).
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6.3.3 Query Partitioning

Any two query pairs may depend on the same packet features. Query-pairs that

share packet features should run on the same traffic analyzer (i.e., UPFs) to avoid traffic

summaries from being duplicated (i.e., multicasted). On the other hand, query-pairs with

disjoint packet features should run on separate traffic analyzers to distribute the query-

processing load. To this end, we adopt ParMetis partitioning [297] to loadbalance the

query processing tasks while ensuring similar queries (e.g., queries that share packet header

fields) are placed closer together, minimizing the need to duplicate summaries. The goal of

ParMetis partitioning is to cut a graph in such a way that the number of edges (or edge

weights) between partitions are minimized, and each partition contains roughly the same
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amount of vertices (or vertex weight). In 5GDMon, ParMetis partitions an input graph

wherein each vertex corresponds to a query. An edge exists between two queries (vertices)

if they share a packet feature. The edge weight equals the number of intersecting fields to

ensure the partitioning algorithm considers the magnitude of query-query similarity.

Figure 6.10: Zooming for traffic refinement
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Figure 6.11: sNIC host monitoring

The graph partitioning output places each query on a different partition and then

assigns the partition (e.g., a set of similar queries) to traffic analyzers (running on UPFs).

The # of partitions ( # traffic analyzers) are determined by the network operator. The

benefit of carrying out ParMetis partitioning instead of randomly assigning the queries to
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traffic analyzers is shown in Fig. 6.7 and Fig. 6.8. In this experiment, we run 10 queries

and vary the number of traffic analyzers in the x-axis. The y-axis represents the amount

of traffic communicated and the average number of traffic summaries ingested across all

analyzers, respectively (scaled between 0 and 1). As we increase the number of analyzers,

the amount of duplication increases, but the load on each analyzer also decreases (e.g.,

having 10 analyzers reduces the average load by 88%). The data-point corresponding to

one traffic analyzer represents the baseline used in [330, 236, 197, 263]. By deploying

ParMetis, as the # traffic analyzers increases, the average load decreases tremendously,

and the communication overhead increases only slightly. In this experiment, we use the

traffic traces from [285] to represent benign traffic and replay them towards the O-RANs

that are geographically organized as per [114]. We insert attack traffic using scapy-based-

replayers [195]. It is evident that ParMetis partitioning outperforms all other approaches

to balance the load and minimize duplication. We note that load is further balanced by

having the vertex weights set to the # traffic summaries processed (e.g., Labelled as ‘with

Feedback’ in Fig 6.8 and Fig. 6.7). Therefore, we use this ParMetis partitioning scheme for

subsequent experiments.

Ultimately, each query will be placed on a traffic analyzer. Each UPF becomes

aware of the query-to-analyzer mapping so that it can direct the appropriate traffic sum-

maries to the analyzer. On the other hand, the O-RAN will only have to transmit the

traffic summary to the UPF responsible for that O-RAN segment (see Fig. 6.2). The UPFs

iterate over all traffic analyzers (a subset of UPFs) and determine which traffic summaries

are to be emitted to which analyzer based on the query-to-analyzer mapping.
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6.3.4 Pruning

Traffic pruning ensures we do not transmit unnecessary traffic summaries to a

traffic analyzer. Therefore, it will filter away summaries that do not meet a local threshold

as described in §2.4. This tremendously reduces the transmitted traffic as can be seen in

Fig. 6.6. The x-axis depicts # queries while the y-axis represents the percentage reduction

in the amount of traffic transmitted. Please note, from CMY[164], we borrow the pruning

strategy but operate on traffic summaries instead of raw packet logs in order to reduce the

data transmission overhead even further.

6.3.5 Signature and Refinement

A signature in 5GDMon is simply a traffic-summary filter transmitted from the

analyzers to the O-RAN (where traffic is summarized) for the purposes of refinement (i.e.,

zooming into the traffic subset). If P is a traffic summary that exceeds a query threshold

(i.e., during coarse-grained analysis), then we send P to all O-RAN sites. In the subse-

quent monitoring interval[195], we locate the links of the dendrogram where the previous

inconsistency threshold cuts the dendrogram (Plink) and identify all links l ∈ Plink where

CosineDist(P, l) < θ. This threshold θ is configured by the network operator (e.g., 0.05 in

our experiments). We use cosine distance, as it is bounded between 0 and 1 and is not dom-

inated by any single feature like with euclidean distance[277]. Let us refer to the selected

links as L = {l ∈ Plink : CosineDist(P, l) < θ}, which were chosen because they were

similar to the signature P. The next task is to determine the new inconsistency threshold

on the new subtrees (i.e., dendrograms) so that we can transmit finer-grained summaries
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than earlier (for the traffic subset). To accomplish this, we only retain the dendrograms

under L and compute the new inconsistency threshold (e.g., orange data point in Fig. 6.9)

based on the inconsistency values of the retained dendrograms (see Fig. 6.10). We then cut

the new dendrograms and generate the traffic summaries that are transmitted to the UPF

after pruning. This step will be repeated multiple times until the malicious traffic subset is

identified. Please note that, in parallel, we would also process the original dendrogram (i.e.,

copy) using the default inconsistency threshold to ensure other queries are never neglected

during refinement. Fig. 6.10 shows how the dendrogram is cut when we have to dig deeper

into a cluster. The sub-tree that is emphasized by the red boundary at time instance t1 is

zoomed-into at time instance t2. The rest of the traffic is analyzed at a coarse granularity.

6.3.6 Packet Matrix Collection

Fig. 6.12 shows the data structure maintained in the SmartNIC (sNIC) to compute

the traffic logs for queries. We use a simple hash table to track duplicates in a best-effort

manner (e.g., references from the hash table to the header log). Here a flow-key is defined

as a tuple containing all the header fields that are used for monitoring. Our design strives

to minimize duplicates in the header log given the small sNIC memory (e.g., 8GB[274]);

however, if there is a miss on the hash table and the flow-key is already present in the

header log (unknown when processing the packet), we accept the duplicate flow-key. To

ensure failure to update the header log does not lead to packet loss, we decouple the packet

processing pipeline from the header log update procedure on the sNIC. When a packet

arrives, we copy the packet’s features (only those required by queries) from the header

and push them into a ring buffer. We set aside four sNIC micro engines (i.e., compute

165



sNIC

Monitoring
Engines
(4 MEs)

  DRAM

P
O
R
T

P
O
R
T

Header #1

Header #2

Header #3

Header #4
.
Header #n

Header
Log

C
O
U
N
T
S

# Features

 h(features)
Ref #1

Ref #3

Ref #4

Ref #5

Hash
TablePacket Processing

Engine (76 MEs)

SRAM

Ring Buffers

Packets

Packets
Features

Figure 6.12: sNIC traffic monitoring

engines, called MEs) among the 80 user-programmable MEs. The four MEs are responsible

for consuming header features from the ring buffer and updating the header log. The ring

buffers are much smaller in size and hosted in SRAM (instead of DRAM), so they are fast

to access. Furthermore, since the ring buffer entry is directly appended to the header log

(e.g., DRAM), we get to use a bulk operation instead of individually copying part of the

packet in smaller chunks on the slow DRAM. Lastly, the header log is DMA’d to the host

when the packet batch is full. We do not transmit the hash table as it only helps remove

the duplicates stored in the sNIC. Fig. 6.11 shows the loss rate of running this design in

the sNIC is 57% lower than the host (which uses Confluo[222]), aggregated across all gNBs

when subject to the vehicular-mobility[114] dataset.
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6.3.7 Mapping Monitoring to ORAN and Core

The DU collects monitoring data in the O-RAN. 5GDMon offloads the DU’s mon-

itoring thread to the sNIC (see §6.3.6) to collect the packet matrix and forward it to the

Near-RT RIC. Only the packet handler routine is offloaded to the sNIC, while everything

else still runs in software on the host. Implementing which other threads of the DU should

be offloaded onto the sNIC is part of our ongoing work. As shown in Fig. 6.1, at the Near-

RT RIC, we summarize and prune the traffic and send it upstream to the UPF responsible

for the gNB. The pipeline is non-blocking, utilizes huge pages and is pinned to run in as

real-time as possible. This is necessary as we want the overhead to be as low as possible. As

shown in Fig. 6.2, at the UPF, the data traffic is pruned again and sent upstream towards

the traffic analyzer (another UPF), where the query result is computed. Once the traffic

analyzer determines that a UE is malicious or if a UE is to be rate limited, the CU and DU

are notified to carry out the corresponding action.

6.4 Evaluation

Testbed: The effectiveness of 5GDMon was assessed on a local test setup that

comprised Linux servers (kernel version 4.4.0-142). Each server was equipped with 10 CPU

cores of Intel Xeon with a clock speed of 2.20GHz, 256GB of memory, and a Netronome

Agilio LX 2x40 GbE sNIC with 8GB DDR3 memory and 96 flow processing cores. The

stress tests were performed using three packet generators that utilized Moongen[176] to play

back PCAP traces at a high rate (43 Mpps) using 64B packets.

Traces: Two traces were employed to depict benign traffic, including a real-world trace[285]
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obtained from measurements with a 5G network of an Irish mobile operator containing in-

formation such as timestamps, coordinates, gNB id, bitrate, and channel quality indicator.

This data was collected through UE streaming videos and downloading files while the user

was in a vehicle traveling on city streets. The other trace[114] is a dataset of 700k ve-

hicle trips across 247 gNBs, including gNB id, timestamp, and vehicle coordinates. The

UE connects to the gNB, offering the best communication conditions determined by path

loss[232] at each point in time. The attack traffic was introduced using both synthetic traces

generated by Scapy[195] and real-world traces obtained from Zeek[116].

Table 6.1: Packet Header Vector (Features)[93]

Header Attributes

GTP-U QoS Flow Identifier, Reflective QoS identifier,
N-PDU number, Seq number, TEID, Message Type

TCP Header Source / Destination Port number, Seq number,
Ack number, RST/SYN flag

IP Header Proto, Source / Destination IP addr
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Figure 6.13: Data Transmission Overhead
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Data Transmission Overhead

In Fig. 6.13, we evaluate the communication overhead between the O-RAN and

traffic analyzer per one-minute epoch. The reason why Defeat[236] and Elastic Sketch[330]

have more overhead is that they are sketch-based mechanisms that always use constant
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Figure 6.16: Detection Time
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Figure 6.17: Milan Activity

space. Furthermore, due to the richness of the features involved (e.g., including TCP

flags), multiple sketches have to be deployed, as we have to construct sketches specific

to each and every query. CMY[197] also has high overhead because it lacks aggregation,

resulting in a high number of ORAN-UPF messages. As explained in [197], CMY sends

400k messages/epoch when deployed at just 20 sites. Dream [263] is slightly worse than
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Figure 6.18: CPU runtime

5GDMon in terms of communication overhead because 5GDMon aggressively zooms into

malicious traffic subsets. Jaal[138] performs worse because traffic summaries are still large in

size (O(#summaries×#features) where #summaries = 500). 5GDMon also uses traffic

summaries but utilizes pruning (like CMY, both at the O-RAN and UPF) alongside iterative

refinement to tremendously reduce the communication overhead. This works well because a

majority of the traffic is likely not attack traffic, and only needs to be processed locally (e.g.,

Near-RT RIC). That traffic is not transmitted as it does not cross local threshold values

(see §6.3.4). We also show the benefit of having a hierarchical monitor (e.g., ORAN →

UPF → TrafficAnalyzer) in Fig. 6.14, instead of simply having just the O-RAN and

traffic analyzers. Carrying out hierarchical data transmission provides more opportunities

to prune the traffic based on local thresholds, allowing us to filter away more traffic.
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Accuracy

Secondly, we evaluate the accuracy against several attacks in Fig. 6.15, comparing

this work to other platforms. The reason 5GDMon has higher accuracy than Jaal is that

5GDMon can zoom into the traffic subsets instead of just analyzing at a coarse-grained

level. Defeat and Elastic Sketch have poorer accuracy as sketch-based approaches are

prone to overestimation. CMY achieves similar (and sometimes slightly better) accuracy

than 5GDMon because it transmits the exact counts and filters away traffic that cannot

theoretically satisfy the query. Lastly, Dream achieves slightly lower accuracy compared to

5GDMon because its aggregation does not consider header attributes other than IP prefixes

(e.g., TCP SYN flag).
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Figure 6.19: Mirai Botnet
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Figure 6.20: Resource Allocation

Detection Time

In Fig. 6.16, we show the detection time scaled such that the maximum is 1. Here

we only consider those attacks that have been successfully detected. Jaal, Defeat and Elastic

Sketch’s static summarization leads to always-coarse traffic summaries. Thus it takes longer

to detect the attack as benign traffic is not isolated from malicious traffic. CMY carries

out no aggregation and exchanges a lot of messages, causing the detection time to increase.

On average 5GDMon and Dream have the lowest detection delay because they zoom into

malicious traffic subsets.

Resource Consumption

In this section, we study the monitoring overhead in terms of CPU runtime. For

this experiment, we use a cellular mobility dataset from the city of Milan [141] that provides

the number of messages, calls, and internet usage, demarcated by squares (i.e., geographical

segregation). In this experiment, we focus on the square with a soccer game in the stadium

of San Siro (see Fig. 6.17). The activity, which is the sum of sms usage, call usage, and
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internet usage, surges during that period of time (i.e., 5:30 pm onwards). We use perf to

measure the total CPU time (scaled between 0 - 1). As expected, sketch-based approaches

such as Defeat and Elastic Sketch have the lowest CPU time (see Fig. 6.18). This is because

of the constant time operation involved with both of these sketch monitoring structures.

Besides sketch-based approaches, 5GDMon has lower runtime, meaning it is more resource

efficient because it operates on less data, as shown in Fig. 6.13.
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Figure 6.21: Proxy Detection
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Figure 6.22: TEID bruteforcing
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Mirai Botnet

We first consider a Mirai botnet attack[74], where devices are scanned, and once

infected they scan the network themselves to infect other devices. This attack is detected

by identifying a high variance in the destination IP addresses for target port values 23 and

2323 [138]. We run the experiment in an “unrestricted” setting where there is no detector

that removes the infected devices and then compare it against 5GDMon and other related

works that depict high accuracy. Since 5GDMon has high accuracy and a quick detection

rate, it can detect and remove infected devices quickly as time progresses (see Fig. 6.19). We

noticed that the 5GDMon, on average, has 37.99% fewer infected devices than CMY. Fig.

6.23 shows that despite aggressively removing infected devices, the number of legitimate

devices removed as a function of time is similar and low (e.g., < 5 UEs incorrectly removed

among 1750 UEs) across all monitoring platforms. In all four monitoring platforms, false

positives were caused by UEs participating in peer-to-peer (P2P) networks. This may be

because of the similarity between botnets and P2P networks (like BitTorrent), which have

now become the basis of new botnets like Hajime[200].
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Figure 6.23: Mirai Botnet FPR

Resource Allocation

In Fig. 6.20, we show the fairness for video streaming achieved using the AVIS[155]

resource allocation algorithm from an experiment consisting of 242 UEs. We selected AVIS

over the state-of-the-art ASAP[336] because ASAP depends on the UE client’s video buffer

level, which would not be available at the DU. We utilize the alpha-fair[307] metric to

evaluate the quality of video delivery that is computed by using the rate-allocation, trans-

mission rate, and the number of users. The anomaly is created by several malicious UEs
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requesting a high volume of video feeds, causing AVIS to allocate more resources to the

malicious UEs that would otherwise have been allocated to legitimate UEs. We then use

several detection algorithms to identify and rate-limit such UEs. In Fig. 6.20, we show the

alpha-fair metric for all the UEs that are not rate-limited by the resource detector. Because

of 5GDMon’s ability to quickly and accurately identify heavy hitters, it exhibits 1.35×

higher alpha-fairness compared to alternative solutions. Fig. 6.24 shows that 5GDMon and

alternative platforms have a low false positive rate, causing on-average two legitimate users

to get throttled.
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Figure 6.25: Proxy Detection (RE)
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Figure 6.26: TEID bruteforcing (RE)
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Proxy Detection

A Proxy app is simply a third-party application that integrates the proxy ser-

vice into the SDK without the knowledge of the mobile device’s (UE’s) owner. As noted

by [256], any UE can be utilized as a proxy peer by installing a proxy app. Proxy providers

grant anonymity to their customers by masking the proxy client’s IP address [256]. Proxy

providers attain this by directing their client’s traffic through various proxy peers (e.g., UEs,

whose owners may not realize this use of their device). Since proxy apps abuse on-device

resources by relaying traffic, it is imperative to detect the use of a UE as a proxy peer

since proxy apps steal cycles that could have been used for legitimate applications on the

UE [256]). The UE that is exploited to be a proxy peer typically establishes and maintains

one or more long-lasting proxy connections to proxy gateways using TCP. Therefore, it can

be detected by observing the gap between TCP SEQ and ACK, both in terms of absolute

difference (i.e., ConnSEQ − ConnACK) and ratio (i.e.,
ConnSEQ

ConnACK
) [256]. In our experiment,

we deploy this connection gap-based detector (e.g., ratio and absolute difference) with vary-

ing thresholds. In Fig. 6.21, we show the ROC curve to detect mobile proxies where we

note that the area under the curve of 5GDMon is 5.8% higher than CMY. We also measure

the relative error (RE), which is defined as the |γ−γq
γq

| where γq is the query threshold and γ

is the ground truth (i.e., true count)[158]. In Fig. 6.25, we show that 5GDMon on average

achieves 3.92× lower RE than alternatives when varying the query threshold γq.
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Bruteforce TEID

Similar to SSH Bruteforcing, attackers can identify the TEID using brute forcing,

as explained in [111]. The attacker can then tear down the session for which it has learned

the TEID, causing a denial of service attack. In this experiment, we scan the TEID space

over varying time intervals. If the time delay between consecutive probes is short, it is easier

to detect the attack vs. when the probing delay is high. In this experiment we calculate

the accuracy and RE of the queries in Fig. 6.22 and Fig. 6.26, respectively. On average,

the accuracy improves by 8% to 36% while the RE reduces by 1.96× to 3.04× compared to

alternative solutions.

6.4.1 Global Inconsistency Threshold

Locally computing the inconsistency threshold have a few disadvantages. 1) An

adversary can generate a traffic stream that causes the inconsistency distribution to be

skewed, allowing attacks to fly under the radar by forcing aggressive summarization. 2)

The traffic aggregation levels will be sensitive to local traffic characteristics (e.g., relative

dissimilarities in a cell cannot be compared against other cells), perturbing the aggregation

that occurs in the UPF and Traffic Analyzers. Since we strive to detect network-wide

anomalies, it is critical for us to use thresholds that can summarize the traffic at the global

scale instead of being based on regional-local characteristics.

To combat this, we maintain inconsistency histograms in the ORAN. The Near-

RT RIC is responsible for emitting the inconsistency values to the Non-RT RIC where it is

aggregated over five minute epochs. The Non-RT RICs then send the 5-minute inconsistency
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histogram to a controller where the cdf of the inconsistency values is computed, followed by

computing its knee. The knee inconsistency value is then transmitted to all ORANs where

it is used to summarize the traffic.
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Figure 6.27: Global inconsistency threshold computation
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180



Chapter 7

Conclusions

Providing a comprehensive monitoring infrastructure that can detect stealthy at-

tacks in the midst of high traffic volumes is a challenge. State-of-the-art monitoring tech-

niques either detect stealthy attacks at very low packet rates or limit their detection ca-

pabilities to volumetric attacks for high packet arrival rates. SmartWatch bridges this

dichotomy by cooperatively splitting up the monitoring tasks between P4 programmable

networking switches, P4-capable SmartNICs and the host. Our proposed control loop helps

avoid having to make a trade-off between detection rate vs. packet processing rate. Further-

more, SmartWatch helps reduce the SRAM memory pressure on programmable switches,

by reducing the required state on the switches. On the other hand, the SmartNIC helps

reduce the packet processing latency even further, by offloading flow-state tracking and

flow-logging tasks from the host to the network-centric components of sNIC and P4Switch.

In summary, SmartWatch selects the correct monitoring-granularity and monitoring-target

to detect both volumetric and stealthy attacks. SmartWatch’s network switch and host co-
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design for cooperative monitoring yields 2.39 times better detection rate compared to just

programmable switches, thanks to SmartWatch’s fined-grained processing without compro-

mising packet processing throughput. Compared to host-based fine-grained approaches,

SmartWatch reduces the packet processing latency by 72.32%

pMACH is a framework that solves the complex provisioning problem in container-

ized data centers. pMACH includes a novel graph-based locality aware container placement

scheme that significantly reduces power consumption, task completion time, and migra-

tions. We show that by operating server resources at Peak Energy Efficiency, we both save

power and provide greater headroom for traffic spikes. Our Two-Tier distributed graph

partitioning architecture can scale to tens of thousands of servers and compute the parti-

tioning result quickly. By carefully CPU cores in selected servers in each pod of the data

center, and taking advantage of the high-bandwidth data center links, we split the graph

partitioning into a hierarchical solution. pMACH tracks container-to-container communi-

cation and uses data stream summarization techniques to communicate the traffic matrices

efficiently to designated servers in each pod for partitioning the graph.

Synergy is a SmartNIC-based UPF, a key 5GC component, that leverages the tight

coupling of the SmartNIC and the host. It provides network acceleration, programmability,

and monitoring for mobility prediction. Mobility and paging events have much better

performance because a majority of packets are buffered within the SmartNIC, outperforming

host and programmable switch-based approaches in terms of latency and packet loss. This is

in part due to Synergy’s two-level structure for flow table maintenance, which increases the

scale while reducing latency. Synergy further reduces handover latency by pre-populating
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state in the control plane NFs. This is done by monitoring control plane traffic that flows

to control plane NFs colocated on the same node. For mobility prediction, we maintain

a Bloom Filter to judiciously access the prediction table, increasing the packet processing

rate in the SmartNIC UPF. Efficient programming of SmartNIC flow tables allows us to

manipulate actions and associated priorities rapidly, reducing the handover delay.

5GDMon is a distributed monitoring solution for 5G cellular networks (and be-

yond) by leveraging the software-based O-RAN environment. To carefully protect the lim-

ited radio resources, 5GDMon focuses on detecting attacks on the 5G infrastructure as well

as the end-user mobile devices with high accuracy, while minimizing overhead. 5GDMon

uses Agglomerative Clustering to summarize traffic while sup- porting refinement beyond

processing and pruning traffic at multiple software-based nodes in the cellular network,

both in the RAN and the 5G core. 5GDMon load balances query processing across multiple

analyzers and intelligently places queries so as to reduce the communication overhead when

queries are related to one another. Overall, this makes the distributed monitor scalable.

The monitoring threads in the ORAN are offloaded to a SmartNIC to achieve a low loss

rate. Furthermore, the processing pipeline is designed so that the monitoring pipeline does

not impede the data forwarding pipeline. Compared to existing approaches Dream and

CMY, 5GDMon achieves at least: 2.52× lower data transmission overhead, 1.58× lower

botnet penetration, 1.37× better fairness, and 4.78× lower error in detecting proxies.
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SIGCOMM Comput. Commun. Rev., 46(2):18–24, May 2016.

[169] Ramraj Dangi, Praveen Lalwani, Gaurav Choudhary, Ilsun You, and Giovanni Pau. Study
and investigation on 5g technology: A systematic review. Sensors, 22(1), 2022.

[170] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large clus-
ters. In OSDI’04: Sixth Symposium on Operating System Design and Implementation, pages
137–150, San Francisco, CA, 2004.

[171] Narayan Desai, Rick Bradshaw, Andrew Lusk, and Ewing Lusk. Mpi cluster system soft-
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