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BRIEF COMMUNICATION Open Access

Plasma bile acids are not associated with energy
metabolism in humans
Gemma Brufau1†, Matthias J Bahr2†, Bart Staels3,4,5,6, Thierry Claudel1, Johann Ockenga7, Klaus HW Böker2,
Elizabeth J Murphy8,9, Kris Prado8, Frans Stellaard10, Michael P Manns2, Folkert Kuipers1,10, Uwe JF Tietge1,2*

Abstract

Bile acids (BA) have recently been shown to increase energy expenditure in mice, but this concept has not been
tested in humans. Therefore, we investigated the relationship between plasma BA levels and energy expenditure in
humans. Type 2 diabetic (T2DM) patients (n = 12) and gender, age and BMI-matched healthy controls (n = 12)
were studied before and after 8 weeks of treatment with a BA sequestrant. In addition, patients with liver cirrhosis
(n = 46) were investigated, since these display elevated plasma BA together with increased energy expenditure.
This group was compared to gender-, age- and BMI-matched healthy controls (n = 20). Fasting plasma levels of
total BA and individual BA species as well as resting energy expenditure were determined. In response to treat-
ment with the BA sequestrant, plasma deoxycholic acid (DCA) levels decreased in controls (-60%, p < 0.05) and
T2DM (-32%, p < 0.05), while chenodeoxycholic acid (CDCA) decreased in controls only (-33%, p < 0.05). Energy
expenditure did not differ between T2DM and controls at baseline and, in contrast to plasma BA levels, was unaf-
fected by treatment with the BA sequestrant. Total BA as well as individual BA species did not correlate with
energy expenditure at any time throughout the study. Patients with cirrhosis displayed on average an increase in
energy expenditure of 18% compared to values predicted by the Harris-Benedict equation, and plasma levels of
total BA (up to 12-fold) and individual BA (up to 20-fold) were increased over a wide range. However, neither total
nor individual plasma BA levels correlated with energy expenditure. In addition, energy expenditure was identical
in patients with a cholestatic versus a non-cholestatic origin of liver disease while plasma total BA levels differed
four-fold between the groups. In conclusion, in the various (patho)physiological conditions studied, plasma BA
levels were not associated with changes in energy expenditure. Therefore, our data do not support an important
role of circulating BA in the control of human energy metabolism.

Background
Recently, a novel and unexpected role for bile acids (BA)
in the regulation of energy metabolism has been
reported in mice [1]: addition of the primary BA cholic
acid (CA) to a high fat diet prevented body weight gain
by increasing energy expenditure and fat oxidation [1].
This effect was explained by plasma BA raising intracel-
lularly active thyroid hormone levels via a G-protein-
coupled receptor (Gpbar1/Tgr5)-mediated activation of
type 2 iodothyronine deiodinase (D2) in brown adipose
tissue [1]. In humans, GPBAR1 and D2 were found to

be expressed in white adipose tissue as well as skeletal
muscle and BA increased oxygen consumption in cul-
tured human myoblasts [1]. These data suggested that
similar (patho)physiological mechanisms in the control
of energy metabolism might be operational in humans,
but this concept has not yet been tested. Therefore, the
aim of our study was to investigate, in patients with dif-
ferent pathologies, whether plasma BA are linked to
energy metabolism in humans.

Methods
Twelve male patients with type 2 diabetes mellitus
(T2DM) defined according to the criteria established by
the American Diabetes Association [2] and 12 male BMI
and age-matched controls were investigated (table 1).
The inclusion criteria were: age between 40 and 60 years,
and BMI between 25-35 kg/m2. Subjects with fasting
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triglycerides >5.65 mM; HDL-cholesterol <1.55 mM;
abnormal TSH or history of thyroid dysfunction; treat-
ment with insulin, thiazolidinediones or BA sequestrants
at any time; or treatment with lipid lowering medication
within three months of screening were excluded. Diabetes
was diet-controlled in 7 subjects and treated with glipizide
in 5 subjects. Subjects with fasting glucose >5.5 mM, glu-
cose levels >7.7 mM 2 h after OGTT challenge or fasting
insulin >17.0 μU/mL were excluded from the control
group. The protocol was approved by the RCRC Institu-
tional Review Board (Austin, TX), and was performed at
Diabetes and Glandular Research Associates (San Antonio,
TX) and Clinical Pharmacology of Miami (Miami, FL).
After the baseline blood sampling, subjects received cole-
sevelam HCl (Daiichi Sankyo, Inc., Parsippany, New Jer-
sey) 3.75 g/d for eight weeks divided into two doses given
with lunch and dinner.
In addition, 46 adult patients (26 males/20 females)

with histologically-proven liver cirrhosis of varying clini-
cal severity (classified by the Child-Pugh score [3] as
Child A: n = 7, Child B: n = 19, Child C: n = 20) due to
different etiologies were investigated (viral hepatitis, n =
19; alcoholic, n = 13; primary biliary cirrhosis or pri-
mary sclerosing cholangitis, n = 14). All subjects were in
a stable clinical condition before entering the study.
Subjects with proteinuria, suspected infections, clinically
overt diabetes mellitus, thyroid dysfunction, or other
endocrine disorder and subjects taking any hormone
therapy or beta-blockers were excluded from the study.
Patency of portal vein and hepatic artery was documen-
ted in patients and controls by Doppler ultrasound. This
study protocol was approved by the Ethics Committee
of the Medizinische Hochschule Hannover, Germany.

All subjects were studied at rest in the morning after
an overnight fast, were thoroughly informed about ratio-
nale and possible risks of all procedures, and gave writ-
ten consent before entering the study.
Resting energy expenditure (REE) was measured using

indirect calorimetry as described (colesevalam-HCl study:
Sensormedics, Yorba Linda, CA; cirrhosis study: Deltatrac
metabolic monitor; Datex Instruments, Helsinki, Finland)
[4]. Measured REE values were related to REE values
predicted for healthy subjects using the Harris-Benedict
formula [5].
BA species were determined by gas chromatography-

mass spectrometry as described previously [6,7]. For the
cirrhosis study, plasma from 20 healthy control subjects
(12 males/8 females) matched to the cirrhosis patients
for sex, age and BMI (table 1) was used to establish
normal values for BA species in our laboratory.
Statistical analysis was carried out using the non-para-

metric Mann-Whitney U test (SPSS 16, SPSS Inc,
Chicago, IL). P values <0.05 were considered statistically
significant.

Results
REE was not different between controls and patients
with T2DM before starting treatment (figure 1). Total
plasma BA tended to be lower in T2DM due to reduced
CA and significantly decreased chenodeoxycholic acid
(CDCA) levels (-33%, p < 0.05; figure 2). However,
energy expenditure did not correlate with fasting plasma
levels of either total or individual BA.
Next, we explored the effects of 8-weeks treatment

with the BA sequestrant colesevelam HCl on energy
metabolism in these subjects. BA sequestrants reduce the
flux of BA from the intestine to the liver, thereby redu-
cing plasma BA concentrations, which we hypothesized
would translate into changes in energy metabolism. In

Table 1 Baseline clinical characteristics

colesevelam HCl
study

liver cirrhosis study

T2DM controls cirrhosis controls

n = 12 n = 12 n = 46 n = 20

Age (years) 52.5 ± 1.3 49.0 ± 1.4 48.1 ± 1.3 46.9 ± 2.5

Gender (male/
female)

12/0 12/0 26/20 12/8

BMI (kg/m2) 31.1 ± 0.8 29.4 ± 1.1 23.0 ± 0.4 23.6 ± 0.9

Cholesterol (mM) 5.0 ± 0.3 4.4 ± 0.2 4.7 ± 0.2 4.9 ± 0.3

Triglycerides (mM) 3.0 ± 0.4 1.4 ± 0.2# 1.0 ± 0.1 1.1 ± 0.1

Glucose (mM) 9.4 ± 0.7 5.0 ± 0.2# 6.2 ± 0.2 4.6 ± 0.1‡

HOMA-IR 6.60 ±
0.98

1.97 ±
1.04#

4.58 ±
0.42

1.80 ±
0.26‡

AST (U/l) 21 ± 2 19 ± 1 37 ± 3 15 ± 1‡

ALT (U/l) 25 ± 2 24 ± 3 32 ± 3 16 ± 1‡

g-GT (U/l) n.d. n.d. 89 ± 10 17 ± 2‡

Data are given as means ± SEM. n.d., not determined. # Significantly different
from type 2 diabetic subjects, ‡ significantly different from patients with liver
cirrhosis as determined by the Mann-Whitney U-test, at least P < 0.05.
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Figure 1 Resting energy expenditure (REE) in controls and in
type 2 diabetic subjects before and after 8-weeks of treatment
with colesevelam HCl. Data are given as means ± SEM.
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response to the treatment, DCA levels decreased in both
groups (-60% in controls, -32% in T2DM; p < 0.05), while
CDCA was only lowered in controls (-33%, p < 0.05,
figure 2). In contrast to our hypothesis, colesevelam-HCl
did not change REE, and BA levels (total and individual)
did not correlate with REE after treatment whether nor-
malized to body surface area (figure 3) or expressed per
kg of fat free mass (data not shown).
The second study investigated patients with liver cir-

rhosis, since these display a varying degree of elevated
plasma BA levels and their metabolic state closely
resembles the BA-mediated metabolic effects reported
in mice: increased REE, increased percentage of energy
derived from fat oxidation, and decreased body fat mass
(BFM) [5,8-10]. Notably, the underlying pathophysiologi-
cal basis of these findings is largely unknown, but could
conceivably involve BA.
Patients displayed varying degrees of hypermetabolism

with an average increase in REE of 18% above the Harris-

Benedict prediction (table 2). Total as well as individual
plasma BA levels were significantly elevated in cirrhotic
patients (table 2). However, neither total plasma BA con-
centrations (r = 0.049, NS, figure 4) nor individual BA
species were correlated with REE. When a subgroup
including only subjects with moderately elevated total BA
(< 18 μM, n = 19) was studied, REE was still not asso-
ciated with plasma BA (r = -0.124, NS, insert figure 4).
Similarly, subgroup analysis by gender showed no corre-
lation between plasma BA and REE excluding a potential
sex-specific effect (data not shown).
In addition, we compared a subgroup of patients with

cholestatic etiology of cirrhosis with greater than 2-fold
increased plasma BA (p < 0.01, table 2) to a group with
non-cholestatic cirrhotic liver disease exactly matched
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Figure 2 Plasma bile acid profiles in controls and type 2
diabetic subjects before and after 8 weeks of colesevelam HCl
treatment. (A) Total bile acids, (B) cholic acid (CA), (C)
chenodeoxycholic acid (CDCA) and (D) deoxycholic acid (DCA). Data
are shown as means ± SEM. *p < 0.05 vs baseline and #p < 0.05 vs
controls as determined by the Mann-Whitney U-test.

Figure 3 Correlation between fasting plasma total bile acid
levels and resting energy expenditure (REE) in controls
(squares) and in diabetic patients (circles) before (A) and after
8-weeks of Colesevelam HCl treatment (B). Spearman’s rank
correlation coefficient was used to assess a possible association
between the two different parameters.

Table 2 Plasma bile acid levels and energy expenditure in patient groups with liver cirrhosis

cirrhosis (all)
(n = 46)

cholestatic subgroup
(n = 14)

non-cholestatic subgroup
(n = 14)

normal value

Total BA (μM) 31.2 ± 3.3 40.5 ± 3.4 11.9 ± 1.5 < 10

CA (μM) 10.3 ± 2.2 13.2 ± 0.7 4.2 ± 0.7# <1.0

CDCA (μM) 13.7 ± 2.9 16.1 ± 4.3 6.7 ± 1.7# <3.0

DCA (μM) 3.02 ± 1.48 5.81 ± 2.99 0.60 ± 0.16# <1.0

REE (kcal/d/1.73 m2) 1716 ± 33 1676 ± 64 1650 ± 58

REE (kcal/d/kg FFM) 36.9 ± 0.8 38.5 ± 1.9 37.9 ± 1.3

REE (% increase) 18 ± 2 19 ± 4 18 ± 3

Data are given as means ± SEM. BA, bile acids; CA, cholic acid; CDCA, chenodeoxycholic acid; DCA, deoxycholic acid; REE, resting energy expenditure; FFM, fat
free mass. The percent increase in REE is the measured value related to the value predicted by use of the Harris-Benedict formula as described in the text.
# Significantly different from the cholestatic subgroup as determined by Mann-Whitney U-test, at least P < 0.05.
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for sex, age and Child-Pugh stage. However, REE was
virtually identical in both patient groups (table 2).
Significant differences were also not seen when REE was
expressed per kg of fat free mass (table 2).

Discussion
Our data demonstrate that in different human popula-
tions with normal, decreased and variably increased BA
concentrations, plasma BA levels are unrelated to
energy metabolism. Importantly, lowering of plasma BA
levels upon treatment with a BA sequestrant left REE
essentially unchanged in controls and in patients with
T2DM, a finding that is counterintuitive to BA having a
major role in the regulation of human energy
metabolism.
Based on data showing an association between circu-

lating plasma BA and energy expenditure Watanabe et.
al concluded that in mice, brown adipose tissue (BAT)
is the primary target for the metabolic effects of BA [1].
This conclusion is supported by the fact that BAT had
the highest relative expression levels of both Gpbar1
and D2 of all mouse tissues investigated [1]. Respective
expression levels in human BAT have not been
reported, yet [11]. In order to translate the extrahepatic
metabolic effects of BA to the human situation, the
expression of GPBAR1 and D2 in human skeletal mus-
cle was investigated, but appeared to be very low [1].
Other studies confirmed these results [12] and indicated
that the gallbladder is actually the primary site of
Gpbar1 expression [13]. This argues against significant

BA signaling in human skeletal muscle. In addition, it
should be noted that CA and CDCA, major BA species
in man, are only poor ligands for Gpbar1 in vitro [12].
In our study, plasma concentrations of none of the indi-
vidual BA species, including one of the strongest
Gpbar1 activators DCA [12], correlated with resting
energy expenditure. Furthermore, others have shown
Gpbar1 knockout mice have no difference in weight
gain compared with wild-type mice when fed a CA-con-
taining high fat diet for 9 weeks [13], which was unex-
pected on the basis of the previous hypothesis [1].
Another group independently generated Gpbar1 knock-
out mice and observed that feeding a high fat diet with-
out cholic acid for 8 weeks significantly increased body
weight and body fat mass, but only in female Gpbar1
knockouts [14]. These results indicate that also in mice
the effects of the proposed BA-Gpbar1 signaling axis on
energy metabolism are inconsistent.
Additional data arguing against a significant impact of

circulating BA on energy expenditure come from studies
in obese patients that underwent bariatric surgery. This
procedure uniformly results in decreased REE in propor-
tion to weight loss [15,16], while in contrast plasma BA
levels increase [17,18].
Since the role of bile acids in the regulation of energy

metabolism remains unclear, further studies are war-
ranted. However, our data suggest that there is a chance
that GPBAR1/TGR5 agonists, that are currently devel-
oped as a novel therapeutic modality against obesity in
humans [19], might not be effective.
In summary, we found that in a variety of human set-

tings plasma levels of either total or individual BA were
not correlated with energy expenditure. These data sug-
gest that the described metabolic relationship between
REE and BA in mice might not be readily translatable
into the human situation.
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