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Abstract: The power system is one of the most susceptible systems to failures, which are most
frequently caused by transmission line faults. Transmission line failures account for 85% of all power
system malfunctions. However, over the last decade, numerous fault detection methods have been
developed to ensure the reliability and stability of power systems. A hybrid detection method based
on the idea of redundancy property is presented in this paper. Because the continuous wavelet
transform itself does not extract fault features for small defects effectively, the stationary wavelet
transform approach is employed to assist in their detection. As a result of its ability to decompose the
signal into high- and low-frequency components, undecimated reconstruction by using the algebraic
summation operation (ASO) is used. This approach creates redundancy, which is useful for the
feature extraction of small defects and makes faulty parts more evident. The numerical value of the
redundancy ratio’s contribution to the original signal is approximately equal to 36%. Following this
method for redundant signal reconstruction, a continuous wavelet transform is used to extract the
fault characteristic significantly easier in the time-scale (frequency) domain. Finally, the suggested
technique has been demonstrated to be an efficient fault detection and identification tool for use in
power systems. In fact, using this advanced signal processing technique will help with early fault
detection, which is mainly about predictive maintenance. This application provides more reliable
operation conditions.

Keywords: fault detection; stationary wavelet transform (SWT); continuous wavelet transform
(CWT); Djibouti power grid; redundancy

1. Introduction

Power systems, which are made up of three subsystems, are the most complicated
systems ever created, making them one of the most fluctuating systems due to the unde-
sirable variation of voltages and currents [1]. Despite the fact that the primary goal of
power system engineers is to maintain the reliability and stability of the power system,
it is nearly impossible to prevent the effects of breakdowns [2]. There are many factors
that can cause power system outages, including unforeseen environmental conditions
and human error [3]. They do, however, occur regularly in electricity transmission and
distribution [1,4]. Moreover, transmission lines are responsible for more than 85% of power
system faults [1,5]. Transmission lines (TLs) are prone to two types of defects: open circuit
faults and short circuit faults. A short circuit fault, also known as a shunt fault, is an over-
voltage situation that occurs suddenly, whereas an open circuit or series fault is a stoppage
in current flow. Additionally, short-circuit faults in transmission lines are classified as
symmetrical or asymmetrical. As the name implies, a symmetrical fault is a balanced fault
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in which all three phases are simultaneously short-circuited, while an asymmetrical fault
shows the inverse [6].

Indeed, faults cannot be prevented; however, failure can be avoided if the defect is
rectified as soon as possible [7]. Fault and failure are both contingency events; a fault is
an unanticipated divergence from the standard condition in at least one of the system’s
major characteristics. A failure, on the other hand, is a permanent stoppage in a system’s
ability to accomplish a desired job under certain operating parameters [8]. Even faults
might develop gradually from an unnoticeable slight deviation, resulting in significant
maintenance costs [1]. In other words, there is a small defect that is unseen from the signal
and causes disturbances in power systems. This small defect is recognized by transient
phenomena, which may be classified into two categories. The first is when disruptions do
not interfere with the regular operation of the system and can be classified as oscillation
transients or impulsive transients. Those transients affect the quality of power, which
may also perturb the equipment’s performance for power distribution [9]. The others are
the fault transients observed most generally in transmission line faults, which produce
high-frequency components with abundant information [10]. The second sort of transient is
a gradual degradation of equipment performance that should be monitored and discovered
before it occurs.

To minimize maintenance costs, avert disasters, and achieve the purpose of power system
engineers, the early detection of the fault is an important process in engineering [11,12]. Early
detection, which is mainly based on a predictive maintenance approach, is the primary
answer to the recurring problem in transmission lines. The sooner the problem is addressed,
the better it is for the system. Predictive maintenance requests that the system be monitored
for tiny deviations and then diagnosed by analyzing the signal to maintain the safety and
reliability of the power supply [2,12]. One of the most important methodologies used
for fault detection and diagnosis is signal analysis, which aims to discover a simple and
effective transformation of the original signals [13].

Generally, the technique of condition monitoring is selected depending on the require-
ments of physical systems. Following that, fault detection and diagnosis are developed
utilizing the monitored system’s outputs [14]. Thus, signal processing techniques have been
important in the field of fault diagnosis in industrial applications. As technology develops,
new methodologies and approaches continually appear, providing more accurate, effective,
and adaptive solutions for locating and minimizing faults across a variety of industries.

Indeed, wavelet and Fourier transforms are popular feature extraction methods be-
cause they can detect linked fault features with resiliency and precision [15]. Technically,
the Fourier transform was not a good way to pull out features from non-stationary sig-
nals. However, the wavelet transform has been used a lot in fault detection and diagnosis
applications because it can analyze a large amount of data.

Several studies have been conducted on early fault identification and diagnosis in
power systems utilizing the wavelet transform [4,5,13,15,16]. Technically, the discrete
wavelet transform (DWT) is more widely used than the continuous wavelet transform;
thus, DWT decomposes the signal by using low- and high-frequency filters to obtain
the detailed and approximate coefficients [17]. Furthermore, the selected detailed and
approximate coefficients are helpful for fault detection as well as localization [8,18,19].
Following that, DWT is combined with another mathematical method to classify power
system faults. There are several papers about the DWT and fuzzy logic techniques, the
wavelet transforms (WT) and artificial neural networks, and the WT and neuro-fuzzy
techniques [5]. These methods are effective in terms of finding every type of fault, but
for small defect occurrences, it is recommended to use the stationary wavelet transform,
which is a redundant transform [14]. Because of the benefit of redundancy, which produces
a time-invariant structure across transformations, it is becoming popular in a variety of
engineering applications [14]. Especially for instantaneous changes and transient faults,
this method will make the small defect more visible and feature extraction easier.
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In addition, not only the techniques of signal processing are emerging for power
system applications, but various novel approaches have been developed for machinery.
Machinery is indeed a core component of various industrial applications, and signal
processing is fundamental to ensuring the reliability, safety, and performance of these
machines across a wide range of industries. Some of the new methods are the similarity-
based status characterization method, which offers a proactive and data-driven way to
monitor gear surface wear, and the vibration-based prognostic scheme for gear health
management in the surface wear progression of the intelligent manufacturing system. The
aforementioned methodologies are employed to assess the gearbox in order to mitigate
the propagation of surface wear, which can lead to hazardous failures and unexpected
economic losses [20,21]. The implementation of a redundancy-based predictive fault
detection approach was documented in reference [14]. This strategy was applied to address
bearing detection issues by analyzing the vibration signal.

In this paper, a novel approach for fault detection is suggested. The proposed approach
uses collected data from the Djibouti power grid Simulink model. Various fault types are
simulated, and then a stationary wavelet transformation will be applied to decompose
in a more understandable and visible way to detect the fault. The process is enhanced
by choosing a mother wavelet. Following that, an algebraic summation operation will be
used to reconstruct the signal. Observing the redundancy approach, the faulty area will be
extracted easier with the help of the continuous wavelet transform.

Contribution

Historically, wavelet transforms, including continuous wavelet transform (CWT) and
multi-resolution wavelet analysis (MRWA), have been employed for fault detection applica-
tions across several domains. In this study, the utilization of a redundant wavelet transform
is employed due to the limited effectiveness of the MRWA in accurately identifying the
features associated with transitory faults. These faults provide unique challenges in the
characteristic extractions.

The primary contributions of this study are the employment of the redundancy prop-
erty (RP) of the stationary wavelet transform (SWT) and the achievement of minimum
phase shifting. The detection of defects can be effectively achieved by the utilization of
the redundancy property (RP) of the stationary wavelet transform. However, it is worth
noting that no existing approach in the literature has made use of this particular prop-
erty (RP). Consequently, the fault signatures were enhanced through the use of a signal
reconstruction model, resulting in improved ease and effectiveness of interpretation. The
algebraic summation was used in a signal reconstruction model to illustrate the amplifi-
cation of signals in the signal decomposition approach using a stationary wavelet trans-
form. The redundancy ratio (RR) is calculated for each fault type, and it is approximately
equal to 36%.

Furthermore, it has been found that the Haar wavelet offers advantages in terms of
mitigating signal shifting in reconstructed signals. This study demonstrates originality and
presents a novel perspective on issues related to defect detection.

Subsequently, the continuous wavelet transform is used to display the time-scale
features of the reconstructed signals following the SWT application. As a result, the fault
features are depicted on the time-scale plane.

The rest of the paper is organized as follows: A considerable amount of detail about the
mathematical method is presented in Section 2. Section 3 describes the proposed method-
ology. Section 4 then discusses the simulation results. Section 5 covers the conclusions,
limitations, and suggestions for further research.

2. Mathematic Background

The wavelet transforms (WTs), which were developed to overcome the constraints of
the Fourier transform, are mathematical techniques for studying data such as signals or pic-
tures with properties that fluctuate across multiple scales [13]. WTs have the advantage of
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excellent feature extraction, which puts them among the best methods of analysis. It works
by breaking signals into shifted and scaled wavelets. Wavelet families can be observed
as orthonormal, orthogonal, or biorthogonal [22,23]. The orthogonal and biorthogonal
wavelet families have a linear phase feature that is beneficial in data reconstruction [24,25].
One of the fundamental advantages of wavelets is that they enable localization in both
time and frequency domains at once. The second key advantage of wavelets is that they
are extremely fast to compute when using the wavelet transform. In addition, the capacity
of wavelets, which is to separate minor characteristics in a signal, is a key advantage.
Wavelet transforms are decimated and undecimated operations depending on the type
of WT, and WTs can extract local spectral and temporal information simultaneously [26].
Based on operation types, a WT can be considered redundant, which is a property that is
not well approved due to its functions, but from another point of view, it is a popular and
good method for small defects [14]. Small defects, considered invisible faults, can cause
considerable damage. One of the popular methods is the stationary wavelet transform,
which will be described in the following.

2.1. Stationary Wavelet Transform

It is deemed redundant due to the nature of the SWT computation. Yet, redundancy
is useful in many engineering applications since it creates a time-invariant structure over
transformations [27]. Redundancy, like anything else, has both advantages and disad-
vantages. One problem is that the approach is naturally slow, but its advantage is that
it is simpler to define instantaneous changes and transients. As a result, the redundancy
property is a useful tool for transitory signals since they are little faults that cannot be
seen [8]. Additionally, it also helps to magnify the errors to characterize the properties of
the defective signals.

In fact, SWT is recommended over DWT because of its capacity to recover the time-
invariant structure, whereas DWT has lost this ability [14]. The DWT may be conceived of
as the convolution process followed by decimation. This decimation procedure is skipped
in SWT, and filter coefficients are up-sampled at each transformation level. In other words,
SWT is a translation-invariance modification of the discrete wavelet transform, and it
produces redundancy, which is an unseen property in MRA [27]. As a result, SWT is also
known as the undecimated wavelet transform, which can sometimes be referred to as
“Algorithm à Trous” in French. The process of decomposition of SWT is shown below,
and according to Figure 1 [14], the signal is decomposed into low frequency, called the
approximation coefficient, and high frequency, called the detail coefficient [14].
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For reliable operation of a WT, it is crucial as well as challenging to choose the mother
wavelet for characterizing the transient signal. The different types of mother wavelets
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found in the literature are Haar, Couflet, Daubechies, Symmlet, etc. [3,5,26,28]. The most
commonly used ones are Haar and Daubechies; however, when it comes to power system
fault signals, the Daubechies wavelet is the most suitable one [5,28,29]. Following that, the
Daubechies mother wavelet makes the calculation short and fast for transient analysis [30].
For that reason, the Daubechies mother wavelet will be used in this paper.

2.2. Algebraic Summation Approach for Undecimated Reconstruction

Algebraic summation operation (ASO) is an operation for signal reconstruction [14].
Based on the purpose of this paper, an undecimated reconstruction operation is employed to
benefit from the redundancy of SWT for fault detection. For this reason, ASO is performed,
and its process is as follows. A block diagram showing ASO operation is shown in Figure 2.
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As a result, finding the reconstruction signal entails adding up all of the detail coeffi-
cients and the most recent approximation [19].

xrec = d1 + d2 + d3 + . . . + dn + an (1)

where d is the detail and a is the approximation. The reconstruction signal is amplified due
to the up-sampling operation of SWT, and with it, the small defect is easily extracted.

2.3. Continuous Wavelet Transform

The continuous wavelet transform (CWT), similar to the other types of wavelet trans-
forms, is a mathematical technique that is used to analyze and decompose signals or data
into frequency components in both the time and frequency domains. It is especially effec-
tive for collecting non-stationary or time-varying signals. The CWT can be defined by the
following formula for a signal f (t) [28,31]:

CWT f (a, b) =
∫ ∞

−∞
f (t)

1√
a

ψ*
(

t− b
a

)
dt (2)

where

f (t) is the input signal being analyzed.
ψ* is the complex conjugate of the mother wavelet.
a is the scale parameter, and it controls the width (frequency) of the wavelet.
b is the translation (time-shift) parameter.

Following that, the wavelet function—namely, the mother wavelet—must satisfy the
admissibility condition defined as follows [31]:

∫ ∞

−∞

|ψ(ω)|2

ω
dω < ∞ (3)

ψ(ω) is the Fourier transform of the mother wavelet ψ(t).
ω is the angular frequency.

In other words, the admissibility condition ensures that the wavelet function can
accurately represent and reconstruct signals while preserving their essential properties [28].
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Using CWT requires choosing specific families of mother wavelets, which include
the following.

Generalized Morse wavelet (“morse”) is a flexible and adaptable wavelet family that
includes a wide range of oscillatory behaviors. This wavelet is useful for analyzing non-
stationary and complex signals, since it can capture both narrowband and broadband
properties [28,32,33].

Analytic Morlet wavelet (“amor”) is a Morlet wavelet family member that is intended
to capture and analyze localized oscillations and transient phenomena in signals. In fact,
the Amor wavelet shape resembles a Gaussian curve modified by a sinusoidal oscillation.
Because of this, the wavelet is appropriate for analyzing signals with both frequency
and time fluctuations, especially in disciplines such as neuroscience for analyzing brain
oscillations [34].

Bump wavelet (“bump”) is a basic yet effective wavelet that is localized in both the
time and frequency domains. This wavelet is ideal for identifying signal transitions and
rapid changes [35].

In summary, these wavelet families have the purpose of representing various features
of the signal. The wavelet family to choose is determined by the parameters of the signal
being analyzed and the desired feature extraction. Because each family has distinct features,
they are appropriate for a variety of applications.

3. Proposed Methodology

The proposed hybrid fault detection method in this study’s major purpose is to
determine the characteristics of abnormal voltage signals induced by short-circuit faults
and transient phenomena. These signals are recorded from the Djibouti power grid model
and an artificial signal, which is a combination of harmonic components as well as a healthy
signal. The second step is the feature extraction of the recorded signals by hybrid wavelet
transformation with the Daubechies wavelet as a mother wavelet. Daubechies wavelets,
often known as “db” wavelets, are a family of wavelets with distinct vanishing points.
They are capable of providing accurate time–frequency localization.

The hybrid wavelet transform is a combination of SWT and CWT. The procedure
for the approach is as follows: Firstly, the collected signal is decomposed by the details
and approximation coefficients by SWT, and following that, the algebraic summation
operation (ASO) is applied to reconstruct the signal. The undecimated reconstruction
amplifies the small defects, which is one of the easiest ways to make instantaneous changes.
Then, the CWT is applied to the reconstruction signal because the redundant transformer
makes the small defect more visible. Before applying the CWT, signal shifting for different
Daubechies wavelet numbers is calculated to find the optimum one. The summary steps of
the workflow for the suggested fault detection system are presented in Figure 3.

In this paper, Shannon’s information criterion (SIC) known as the minimum de-
scription length (MDL) is used to determine the decomposition level using the following
formula [36]:

L = log2

(
fs

2× fmin

)
(4)

In fact, SIC is frequently used to guide the selection of the number of decomposition
levels in wavelet-based signal analysis. The main idea is to choose the optimal level that
provides a good representation of the signal feature and avoids overfitting [37].

In cases where the specified decomposition level number L is unsatisfactory, it is
recommended to use a level between 1 and the detected ‘s SIC’ number, as indicated in the
following:

1 ≤ L < SHI (5)

Loptimum =
SHI − 1

2
(6)
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The optimum level is the best level of decomposition to provide effective feature
extraction while preserving signal information. As the result of this proposed methodology,
to indicate the enhancement of the approach, a redundancy ratio (RR) is defined as below:

RR ,

∣∣∣max
(

xoriginal

)∣∣∣
|max(xreconctructed)|

(7)

3.1. Application on Djibouti Power Grid Model

The Republic of Djibouti is a small country in the Horn of Africa with a population
of one million people. Furthermore, Djibouti is a country near the equator with only two
seasons (winter and summer). Typically, the grid is described as two main 230 kV lines
imported from Ethiopia with two types of voltage transformation [38]. The first one is a
step-down transformer of 230/63 kV with 63 MVA; following that, there is another step-
down transformer of 63/20 kV and 12 MVA. In this paper, one line, which is the Ali-Sabieh
line (Figure 4) will be analyzed, and all calculations will be performed on it. The line is an
overhead line with a length of 78 km, and it encompasses many components, including
circuit breakers, transmission line, transformer, and load. Each block is composed of a
primary side (ABC) and a secondary side (abc).
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In general, faults in transmission lines can be classified as open circuit or short circuit,
as shown in Figure 5 [26]. Following that, the short circuits are more common than
open circuits, and the latter are composed of two types, such as symmetrical faults and
unsymmetrical faults. Thereafter, each type has sub-categories, which are mentioned
below [26].
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3.2. Artificial Signal

The artificial signal is created to confirm the power of the SWT because this signal
characteristic is known prior. Thus, the signal is a combination of 3rd and 5th harmonics
with noise as well as a healthy signal. Indeed, harmonics are not something new; they used
to be in power systems, and researchers have investigated solutions for avoiding the effects
of harmonics in the system [9,39,40].

The causes of harmonics may not be found exactly, but they are mostly coming
from power electronic equipment, arcing equipment as well as saturable devices such as
aging transformers [41,42]. Moreover, the harmonic may also be created by short-circuit
faults. For precise harmonic components such as the 3rd and 5th ones, these components
demonstrate the non-linear load availability, and the noise shows the weak communication
of the equipment as well as to make a simulation more realistic because in many real-world
scenarios, signals are rarely perfectly clean and free of noise. The formula for the artificial
signal is shown below:

x′ = xh + 0.5sin(2π f3t) + 0.6sin(2π f5t) + error (8)

xh = sin(2π fot) (9)

error = 0.2n(t) (10)

where xh is the healthy signal, n(t) ∈ N(0, 1) and N(0, 1) represent the standard normal
distribution, while fo is the fundamental frequency at 50 Hz, f3 is the third harmonic, and
f5 is the fifth harmonic.

The noise power of the error signal is proportional with the variance random signal
and if so, for the added standard normal distribution in the simulation process, its power
has unit value (σ2 = 1). However, in this application, the noise power inserted in the
artificial signal is approximately 4%, and it is found as shown below:

σ2 = (0.2)2 = 0.04 (11)

Harmonics is challenging because it has a huge impact on power systems, and its
effects start by heating the insulation, causing damage [43]. Thus, the 3rd and 5th harmonics
are the more common components occurring in the system, and especially the 3rd harmonic
has a rapid increase in current, which is very dangerous for the system [39,41,44]. For
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that reason, fault detection before any damage has occurred is essential to maintaining the
stability of the power system.

4. Simulation Results on Predictive Fault Detection

The Djibouti power system model was used to simulate a short circuit in various
scenarios. In the line between Jaban-as and Ali-Sabieh, three-phase faults (ALIS 63-1 and
ALIS 20-1) were implemented. Table 1 below depicts the five fault categories, which include
single-line-to-ground faults, double-line-to-ground faults, three-phase faults, three-phase-
to-ground faults, and line-to-line faults.

Table 1. Fault type classification in power system.

Fault Type Phase A Phase B Phase C Phase G

A-G 1 0 0 1
A-B 1 1 0 0

AB-G 1 1 0 1
ABC 1 1 1 0

ABC-G 1 1 1 1

The simulation results are presented below after incorporating the short-circuit fault
block into the model using MATLAB/SIMULINK R2023b. In order to achieve optimal
continuity in the simulation and accurately capture the rapid transient events that occur
in the power system, a sampling frequency of 20 kHz was initially chosen. However, it is
advisable to pick a lower sample frequency than the one now chosen.

Figure 6 shows the signal representation of the different fault types such as single
line to ground, line to line to ground, three phases, three phases to ground, double line
to ground and the last one is the artificial signal that was created. According to the
figure, a short-circuit fault emits a transient signal when it begins and when it is cleared.
When a three-phase fault occurs, the voltage drops to zero, causing signal distortion and
a significant rise in current. Only the voltage parameter is examined in this paper, since
tiny defects caused by transient phenomena are noticed in this parameter. Following that,
the chosen signal is based on the distortion size; hence, for A-B and AB-G faults, other
phases were chosen rather than the faulty phases since the distortion size for the faulty
phases was unimportant. As depicted in Figure 6, the signals had a duration of T = 0.2 s
and were sampled at a frequency of 20 kHz. Hence, the number of data points, denoted as
N, is determined by the following calculation:

N = 20000× 0.2 = 4000 (12)

Alternatively, in the context of digital applications, the selection can be made based on
the formula 2n, where n represents an integer. In this case, the value of n is 12, resulting in
212 equaling 4096 points, which is the closest approximation to the desired 4000 points.

It is difficult to derive the fault characteristic using a straightforward mathematical
procedure. As a result of its redundancy technique, SWT becomes the best one to easily
extract small defects.

To begin, the Shannon information criteria should be calculated to determine the
level of signal decomposition. However, with a sampling rate of 20 kHz, the level of
decomposition is equal to 7, and according to the optimum level formula, in this instance,
it is equal to 3. In addition, the Daubechies wavelet number should be chosen to avoid any
curve shifting. Therefore, for each fault type, the mother wavelet number is selected by
calculating the signal shifting amount.
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According to Figure 7, the shifting shows the phase difference between the original
and the reconstructed signals’ waveforms. Hence, this figure indicates the shifting phase
according to the Daubechies wavelet type (db#) to be used in this application. As a result,
it is observed that the Daubechies number is proportional to the phase shifting distance. In
other words, the higher the Daubechies number, the more visible signal shifting is found.
For this reason, it is suggested that the least number of Daubechies is suitable to avoid
any shifting.

The Daubechies wavelet with the filter coefficient [1, 1], also known as db1, shares
the same approximation as the Haar wavelet. For that reason, db1 is known as the Haar
wavelet, and it is suggested in this paper because the two signals, the reconstructed and the
original signal, have zero shifting. The results of the decomposition for the chosen wavelet
mother are shown in the following:
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Figure 8 represents the signal decomposition using SWT for the approximation and
detail coefficients of different faults. As the optimum level of decomposition is selected,
three details and one approximation are observed, which are referred to as high frequency
and low frequency as well.

Hence, it is observed from Figure 8 that for each sub-figure, a high frequency is
shown at approximately 0.1 sec, which was the time disconnection of the short-circuit
block simulation. The high frequency seen is from transient phenomena, which are defined
as temporary events occurring in the system. In other words, it is a rapid change in the
power system.

After this decomposition, its signal reconstruction is completed using the ASO opera-
tion. It is the summation of the three details and one approximation observed in Figure 8.
The reconstructed signal has the same shape as the original signal, but it is only ampli-
fied. This technique is highly effective for easily extracting signals. In other words, the
signal amplified is known as “redundancy”, which is one of the popular properties of SWT.
Redundancy is observed in Figure 9.

Due to the up-sampling approach of SWT, the redundancy is observed very precisely,
and the small defects that were difficult to extract become rapidly and easily extracted. For
the redundancy ratio as defined in Equation (7), RR is approximately determined as 0.36.

Using db1, which is similar to a Haar wavelet, the reconstruction signal and original
signal have zero shifting. However, the order of Daubechies was determined by calculating
the shifting amount of the signal, even though, in the literature, some researchers suggested
that the Daubechies wavelet function types db8 and db4 are good for signal de-noising and
fault detection problems [3,29,45].
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The Haar wavelet has been calculated without a temporary array, and it is based
on discontinuity, which makes it discontinuous and look like a step function as well.
Once the reconstruction is completed using ASO with the advantage of redundancy, the
wavelet transform is applied to extract features of the transient signal. Precisely, the
continuous wavelet transform is used with different mother wavelet families depending
on the suitability of the signal. For CWT, analytic wavelets are used to determine time–
frequency parameters [14].

Consequently, for each fault type, a unique mother wavelet is used, which is described
in the following Table 2 [40].
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Table 2. The mother wavelet family selected for the different fault types.

Fault Type Mother Wavelet Selected

A-G ‘bump’
A-B ‘amor’

AB-G ‘amor’
ABC ‘morse’

ABC-G ‘bump’
Artificial signal ‘morse’

Depending on the type of fault as well as the distortion form, the mother wavelet
family type has been selected. For instance, an A-G fault typically exhibits a relatively small
defect that is not easily discernible in the time domain. Consequently, a bump wavelet is
deemed appropriate for detecting and characterizing such faults. The amor wavelet is a
mother wavelet commonly employed for fault types characterized by sinusoidal oscillation,
such as AB and AB-G. The Morse wavelet, as the third mother wavelet, is well-suited
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for a wide range of oscillatory phenomena, including ABC and artificial signals. Once
the mother wavelet has been chosen, the result from the continuous wavelet transform is
shown in Figure 10.
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In fact, a small defect is hard to detect because of its characteristic; therefore, using
the up-sampling approach, this hidden characteristic is easily extracted. Following the
undecimated reconstruction approach using the ASO operation, the original signal has
been amplified, which makes the extraction easier using the continuous wavelet transform.
Figure 10 represents the spectrum in which the fault characteristics are observed. In
Figure 10, there are six sub-figures, and the first five sub-figures show the spectrum
for the recording signal from MATLAB Simulink R2023b, and the last one is about the
artificial data.

Table 3 below illustrates the fault characteristics detected from the spectrum shown
in Figure 10.
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Table 3. The fault characteristics detected from the spectrum.

Fault Type Fault Time Detected Frequency Detected

A-G 0.01667–0.1167 s 600–650 Hz
A-B 0.1167 s 800 Hz

AB-G 0.1167 s 800 Hz
ABC 0.1167 s 700 Hz

ABC-G 0.1167 s 700 Hz

As mentioned above, the fault characteristics are shown in the table, and they have
been recorded using the spectrum from CWT applied to recorded signals. From Table 3,
the frequency components observed from the simulation are the 12th, 13th, 14th, and 16th.
These frequency components were detected due to the faults that occurred in the power
system. Thereafter, the undecimated reconstruction helps to clearly extract the small defects
because the same methodology was applied to the artificial signal, which has an added
known characteristic, and it shows that the method is effective. In fact, faults can always
be seen physically, but small disturbances that have a real impact on the system cannot
be observed. Consequently, the redundancy found by the undecimated reconstruction
approach is powerful for power system faults, especially for small disturbances.

Figure 10f confirms the capability of characteristic extraction of the proposed method-
ology. Since the frequency components added were the 3rd and 5th harmonics, from the
mathematical method used, the frequency detected is 250 Hz, which is the 5th harmonic.
Because the entire artificial signal was not inserted, only the fifth harmonic is identified.
From this result, it can be concluded that the proposed methodology is suitable for the
small defects detected in the power system.

The accuracy of the developed technique is based on the stationary wavelet transform
(SWT). The power of the contribution is hidden in the SWT as well. In decomposed signals
by the stationary wavelet transform, the signal reconstruction is completed with the help of
the minimum phase shifting (minimum phase distance), which is provided by db1, or Haar
wavelet function. This minimum shifting amount is a measure of the accuracy of the data
used in the study. Also, the stationary wavelet transform is a redundant transform, and
then it shows the amplifications of the fault signatures in the minimum phase condition.

5. Conclusions

Faults in transmission lines are the most prevalent because they damage the protective
systems and, more importantly, ruin the electrical equipment. For that reason, it is crucial to
monitor the equipment by analyzing the signals to detect faults and extract features as well.
However, there are small defects that are unseen on the signal, and their effects are observed
drastically. This type of fault is the most dangerous since it is invisible. Consequently, the
undecimated reconstruction approach using SWT is useful for these types of faults because
it produces redundancy, which is an approach that amplifies the small defects to make
it easier to extract the feature. In this paper, the proposed methodology is to decompose
the signal by using SWT, and the decomposition level is chosen by Shannon’s information
criterion, in which the optimum level is selected by the mean of the minimum level
and the calculated level. Following that, the undecimated reconstruction using the ASO
operation approach is applied. Thus, the redundancy property helps the feature extraction,
and using the continuous wavelet transform, the findings show that 12th, 13th, 14th,
and 16th harmonic components are observed in the spectrum. Without the undecimated
reconstruction, these features were unfound, and due to this approach, the features were
extracted easily and rapidly due to the precise wavelet mother type of continuous wavelet
transform. To verify the success of the method, the proposed methodology was applied to
a known feature added to an artificial signal, and as a result, it was found that the proposed
approach is efficient for the small disturbance found in the power system. In terms of the
comparison with other methods, fault detection is used in the frequency domain directly,
but here, the small defects (or transients) are amplified in the time domain; after that, these
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amplified signals are transformed to the time–frequency (or scale) domain. Hence, the
performance of this study is provided by an easy detection approach with the help of the
definition of redundancy ratio as given in Equation (7).

Overall, this proposed method can be generalized to any small defects that may
occur in a power system. For future work, it is recommended to simulate other types of
signals to confirm the effectiveness of the proposed detection approach. In terms of a more
practical application, an intelligent robot moving along the lines can be used to collect data
from some cracks in the insulators and the slack cable connection. Simultaneously, these
data will be transferred to the computers to make the final decision using the proposed
mathematical methods.
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11. Şeker, S.; Ayaz, E.; Türkcan, E. Elman’s recurrent neural network applications to condition monitoring in nuclear power plant

and rotating machinery. Eng. Appl. Artif. Intell. 2003, 16, 647–656. [CrossRef]
12. Righetto, S.B.; Izumida Martins, M.A.; Carvalho, E.G.; Hattori, L.T.; De Francisci, S. Predictive Maintenance 4.0 Applied in

Electrical Power Systems. In Proceedings of the 2021 IEEE Power & Energy Society Innovative Smart Grid Technologies
Conference (ISGT), Washington, DC, USA, 16–18 February 2021; pp. 1–5. [CrossRef]

13. Komorowski, D.; Pietraszek, S. The Use of Continuous Wavelet Transform Based on the Fast Fourier Transform in the Analysis of
Multi-channel Electrogastrography Recordings. J. Med. Syst. 2015, 40, 10. [CrossRef]

14. Bayram, D.; Şeker, S. Redundancy-Based Predictive Fault Detection on Electric Motors by Stationary Wavelet Transform. IEEE
Trans. Ind. Appl. 2017, 53, 2997–3004. [CrossRef]

15. Jurado, F.; Saenz, J.R. Comparison between discrete STFT and wavelets for the analysis of power quality events. Electr. Power Syst.
Res. 2002, 62, 183–190. [CrossRef]

16. Pranav, M.S.; Karthik, C.; Kavitha, D.; Vishal, K.; Tarun, J.; Vanitha, V. Fault Detection and Classification in Three Phase
Transmission Lines using Signal Processing. In Proceedings of the 2018 3rd IEEE International Conference on Recent Trends in
Electronics, Information & Communication Technology (RTEICT), Bangalore, India, 18–19 May 2018; pp. 347–350. [CrossRef]

17. Peng, Z.K.; Chu, F.L. Application of the wavelet transform in machine condition monitoring and fault diagnostics: A review with
bibliography. Mech. Syst. Signal Process. 2004, 18, 199–221. [CrossRef]

https://doi.org/10.1007/s13369-022-07030-x
https://doi.org/10.1049/hve.2016.0005
https://doi.org/10.1007/s12667-014-0129-1
https://doi.org/10.37394/23201.2020.19.3
https://doi.org/10.1016/j.epsr.2014.01.002
https://doi.org/10.1016/j.ifacol.2018.09.558
https://doi.org/10.1016/j.engappai.2003.10.004
https://doi.org/10.1109/ISGT49243.2021.9372230
https://doi.org/10.1007/s10916-015-0358-4
https://doi.org/10.1109/TIA.2016.2622231
https://doi.org/10.1016/S0378-7796(02)00035-4
https://doi.org/10.1109/RTEICT42901.2018.9012246
https://doi.org/10.1016/S0888-3270(03)00075-X


Information 2023, 14, 540 17 of 18

18. el Bouny, L.; Khalil, M.; Abdellah, A. ECG Noise Reduction Based on Stationary Wavelet Transform and Zero-Crossings Interval
Thresholding; IEEE: Piscataway, NJ, USA, 2017; p. 6. [CrossRef]

19. Kumar, A.; Tomar, H.; Mehla, V.K.; Komaragiri, R.; Kumar, M. Stationary wavelet transform based ECG signal denoising method.
ISA Trans. 2021, 114, 251–262. [CrossRef] [PubMed]

20. Feng, K.; Ni, Q.; Beer, M.; Du, H.; Li, C. A novel similarity-based status characterization methodology for gear surface wear
propagation monitoring. Tribol. Int. 2022, 174, 107765. [CrossRef]

21. Feng, K.; Ji, J.C.; Ni, Q.; Li, Y.; Mao, W.; Liu, L. A novel vibration-based prognostic scheme for gear health management in surface
wear progression of the intelligent manufacturing system. Wear 2023, 522, 204697. [CrossRef]

22. Ukil, A.; Yeap, Y.M.; Satpathi, K. Frequency-Domain Based Fault Detection: Application of Short-Time Fourier Transform. In
Fault Analysis and Protection System Design for DC Grids; Ukil, A., Yeap, Y.M., Satpathi, K., Eds.; Springer: Singapore, 2020;
pp. 195–221. [CrossRef]

23. Orthogonal Wavelet—An Overview|ScienceDirect Topics. Available online: https://www.sciencedirect.com/topics/
mathematics/orthogonal-wavelet (accessed on 18 February 2023).

24. Orthogonal and Biorthogonal Filter Banks—MATLAB & Simulink. Available online: https://www.mathworks.com/help/
wavelet/orthogonal-and-biorthogonal-filter-banks.html (accessed on 18 February 2023).

25. Akinci, T.C.; Ekren, N.; Seker, S.; Yildirim, S. Continuous wavelet transform for ferroresonance phenomena in electric power
systems. Int. J. Electr. Power Energy Syst. 2013, 44, 403–409. [CrossRef]

26. Masood, B.; Saleem, U.; Anjum, M.N.; Arshad, U. Faults detection and diagnosis of transmission lines using wavelet transformed
based technique. In Proceedings of the 2017 IEEE Jordan Conference on Applied Electrical Engineering and Computing
Technologies (AEECT), Amman, Jordan, 11–13 October 2017; pp. 1–6. [CrossRef]

27. Nason, G.P.; Silverman, B.W. The Stationary Wavelet Transform and some Statistical Applications. In Wavelets and Statistics;
Antoniadis, A., Oppenheim, G., Eds.; Lecture Notes in Statistics; Springer: New York, NY, USA, 1995; pp. 281–299. [CrossRef]

28. Martinez-Ríos, E.; Bustamante-Bello, R.; Navarro Tuch, S.; Perez-Meana, H. Applications of the Generalized Morse Wavelets: A
Review. IEEE Access 2022, 11, 667–688. [CrossRef]

29. Polat, C.; Özerdem, M.S. Introduction to Wavelets and their applications in signal denoising. Bitlis Eren Univ. J. Sci. Technol. 2018,
8, 1–10. [CrossRef]

30. Bhowmik, P.S.; Purkait, P.; Bhattacharya, K. A novel wavelet transform aided neural network based transmission line fault
analysis method. Int. J. Electr. Power Energy Syst. 2009, 31, 213–219. [CrossRef]

31. Seker, S.; Ayaz, E. Feature extraction related to bearing damage in electric motors by wavelet analysis. J. Frankl. Inst. 2003, 340,
125–134. [CrossRef]

32. Olhede, S.C.; Walden, A.T. Generalized Morse wavelets. IEEE Trans. Signal Process. 2002, 50, 2661–2670. [CrossRef]
33. Whitney, R. Quantifying near fault pulses using generalized Morse wavelets. J. Seismol. 2019, 23, 1115–1140. [CrossRef]
34. Cohen, M.X. A better way to define and describe Morlet wavelets for time-frequency analysis. NeuroImage 2019, 199, 81–86.

[CrossRef] [PubMed]
35. Silik, A.; Noori, M.; Altabey, W.; Ghiasi, R.; Wu, Z. Comparative Analysis of Wavelet Transform for Time-Frequency Analysis and

Transient Localization in Structural Health Monitoring. SDHM 2021, 15, 1–22. [CrossRef]
36. Seker, S. An analytical approach based on information theory for neural network architecture. In Proceedings of the 1993

International Conference on Neural Networks (IJCNN-93-Nagoya, Japan), Nagoya, Japan, 25–29 October 1993; Volume 1,
pp. 309–312. [CrossRef]

37. Pelton Wheel Bucket Fault Diagnosis Using Improved Shannon Entropy and Expectation Maximization Principal Compo-
nent Analysis|SpringerLink. Available online: https://link.springer.com/article/10.1007/s42417-021-00379-7 (accessed on
12 August 2023).

38. Dommisse, J.; Bouckaert, J.; Basso, E.; Hammou, K. Schéma Directeur du réseau National de Distribution électrique de Djibouti Sujet:
Livrable 1A—Analyse de la demande et du réseau MT/BT existant Commentaires; Document Technique DIS_DJI/4AA/0818521/000/0;
ENGIE Impact: Belgique, 2022. Available online: Engieimpact.com (accessed on 29 November 2022).

39. Arrillaga, J.; Smith, B.C.; Watson, N.R.; Wood, A.R. Power System Harmonic Analysis; John Wiley & Sons: Hoboken, NJ, USA, 1997.
40. Ghorbani, J.; Atashpar, S. Nonlinear Loads Effect on Harmonic Distortion and Losses of Distribution Networks. In Proceedings of

the International Power System Conference PSC, Tehran, Iran, 17–18 February 2011; Volume 25. [CrossRef]
41. Macii, D.; Petri, D. Harmonics Estimation in Transient Conditions using Static and Dynamic Frequency-domain Techniques. In

Proceedings of the 2018 IEEE 9th International Workshop on Applied Measurements for Power Systems (AMPS), Bologna, Italy,
25–27 September 2018; pp. 1–6. [CrossRef]

42. Santoso, S.; McGranaghan, M.F.; Dugan, R.C.; Beaty, H.W. Electrical Power Systems Quality; McGraw-Hill Education: New York,
NY, USA, 2012. Available online: https://www.accessengineeringlibrary.com/content/book/9780071761550 (accessed on 29
November 2022).

43. Sivaraman, P.; Sharmeela, C. Chapter 1—Power quality and its characteristics. In Power Quality in Modern Power Systems;
Sanjeevikumar, P., Sharmeela, C., Holm-Nielsen, J.B., Sivaraman, P., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 1–60.
[CrossRef]

https://doi.org/10.1109/EITech.2017.8255255
https://doi.org/10.1016/j.isatra.2020.12.029
https://www.ncbi.nlm.nih.gov/pubmed/33419569
https://doi.org/10.1016/j.triboint.2022.107765
https://doi.org/10.1016/j.wear.2023.204697
https://doi.org/10.1007/978-981-15-2977-1_6
https://www.sciencedirect.com/topics/mathematics/orthogonal-wavelet
https://www.sciencedirect.com/topics/mathematics/orthogonal-wavelet
https://www.mathworks.com/help/wavelet/orthogonal-and-biorthogonal-filter-banks.html
https://www.mathworks.com/help/wavelet/orthogonal-and-biorthogonal-filter-banks.html
https://doi.org/10.1016/j.ijepes.2012.07.001
https://doi.org/10.1109/AEECT.2017.8257776
https://doi.org/10.1007/978-1-4612-2544-7_17
https://doi.org/10.1109/ACCESS.2022.3232729
https://doi.org/10.17678/beuscitech.349020
https://doi.org/10.1016/j.ijepes.2009.01.005
https://doi.org/10.1016/S0016-0032(03)00015-2
https://doi.org/10.1109/TSP.2002.804066
https://doi.org/10.1007/s10950-019-09858-7
https://doi.org/10.1016/j.neuroimage.2019.05.048
https://www.ncbi.nlm.nih.gov/pubmed/31145982
https://doi.org/10.32604/sdhm.2021.012751
https://doi.org/10.1109/IJCNN.1993.713919
https://link.springer.com/article/10.1007/s42417-021-00379-7
Engieimpact.com
https://doi.org/10.13140/2.1.5047.3288
https://doi.org/10.1109/AMPS.2018.8494851
https://www.accessengineeringlibrary.com/content/book/9780071761550
https://doi.org/10.1016/B978-0-12-823346-7.00001-3


Information 2023, 14, 540 18 of 18

44. Lin, H.C. Intelligent Neural Network-Based Fast Power System Harmonic Detection. IEEE Trans. Ind. Electron. 2007, 54, 43–52.
[CrossRef]

45. Asman, S.H.; Abidin, A.F.; Yusoh, M.A.T.M.; Subiyanto, S. Identification of transient overvoltage using discrete wavelet transform
with minimised border distortion effect and support vector machine. Results Eng. 2022, 13, 100311. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TIE.2006.888685
https://doi.org/10.1016/j.rineng.2021.100311

	Introduction 
	Mathematic Background 
	Stationary Wavelet Transform 
	Algebraic Summation Approach for Undecimated Reconstruction 
	Continuous Wavelet Transform 

	Proposed Methodology 
	Application on Djibouti Power Grid Model 
	Artificial Signal 

	Simulation Results on Predictive Fault Detection 
	Conclusions 
	References



