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Solving iTOUGH2 Simulation and Optimization Problems  1 

Using the PEST Protocol 2 

Stefan Finsterle* and Yingqi Zhang 3 

 4 

Lawrence Berkeley National Laboratory, Earth Sciences Division, 5 

1 Cyclotron Road, MS 90-1116, Berkeley, CA 94720, USA 6 

Abstract 7 

The PEST protocol has been implemented into the iTOUGH2 code, allowing the user to 8 

link any simulation program (with ASCII-based inputs and outputs) to iTOUGH2’s 9 

sensitivity analysis, inverse modeling, and uncertainty quantification capabilities. These 10 

application models can be pre- or postprocessors of the TOUGH2 non-isothermal 11 

multiphase flow and transport simulator, or programs that are unrelated to the TOUGH 12 

suite of codes. PEST-style template and instruction files are used, respectively, to pass 13 

input parameters updated by the iTOUGH2 optimization routines to the model, and to 14 

retrieve the model-calculated values that correspond to observable variables. We 15 

summarize the iTOUGH2 capabilities and demonstrate the flexibility added by the PEST 16 

protocol for the solution of a variety of simulation-optimization problems. In particular, 17 

the combination of loosely coupled and tightly integrated simulation and optimization 18 

routines provides both the flexibility and control needed to solve challenging inversion 19 

problems for the analysis of multiphase subsurface flow and transport systems. 20 
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1. Introduction 25 

Simulation models are essential tools in environmental science and engineering. 26 

They are used for scientific hypothesis testing, design of laboratory and field 27 

experiments, site characterization and data analysis, hind- and forecasting, risk 28 

assessment and decision support.  Models in general and environmental models in 29 

particular are abstracted representations of a complex system, where certain aspects—30 

properties, features, processes, controls—are represented by approximate equations and 31 

(model-related) effective parameters. Parameterization is a key part of conceptual model 32 

development. In addition to the accuracy of the conceptual model, the ability of a model 33 

to reproduce historical data or to adequately predict future system behavior critically 34 

depends on (1) the number of parameters, (2) the consistency between the model 35 

parameter and the aspect of the real system the parameter is supposed to represent, (3) the 36 

parameter’s actual value and the way it was determined, and (4) its relation to other 37 

(adjustable and fixed) parameters. Doherty and Welter (2010) provide an excellent 38 

discussion of these and other parameterization issues.  39 

Simulations are often performed with one or more of its input parameters changed in 40 

a random or systematic manner to (1) evaluate the parameter’s impact on model output 41 

(sensitivity analysis), (2) determine their value based on measured data (parameter 42 

estimation, history matching, inverse modeling), (3) examine design alternatives or to 43 

optimize operational activities (optimal design), or (4) quantify accuracy and reliability of 44 

model predictions (uncertainty quantification). The following elements are common to 45 

these analyses: (1) Parameters need to be selected or defined; they may be identical to the 46 

primary parameters used in the model, or comprised of multiple, potentially transformed 47 
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primary parameters; (2) output variables need to be selected or defined; they may be 48 

directly calculated by the model, or be an aggregate of multiple, potentially transformed 49 

primary output variables; (3) one or multiple models are needed to relate the primary 50 

input parameters to the primary output variables; and (4) an algorithm is needed to 51 

generate or update the parameter values based on input information, the predicted output, 52 

or other rules and criteria. 53 

The iTOUGH2 code (http://www-esd.lbl.gov/iTOUGH2) provides inverse modeling 54 

capabilities for the non-isothermal, multiphase, multicomponent flow and transport 55 

simulator TOUGH2 (Pruess et al., 1999; Finsterle et al., 2008). iTOUGH2 has been 56 

extensively used for the analysis of synthetic, laboratory, and field data for applications 57 

related to geothermal reservoir engineering (Kiryukhin et al., 2008), nuclear waste 58 

isolation (Ghezzehei et al., 2004), geologic carbon sequestration (Zhang et al., 2011), 59 

environmental remediation (Linde et al., 2006), fractured rock hydrology (Finsterle et al., 60 

2002; Unger et al., 2004), landfill management (Jung et al., 2011), vadose zone 61 

hydrology (Kowalsky et al., 2005), geotechnical engineering (Moridis et al., 1999; 62 

Gallagher and Finsterle, 2004), water resources management (Zhang et al., 2010) and 63 

other application areas (for a review, see Finsterle (2004)).  64 

While the original iTOUGH2 code is tightly linked to the TOUGH2 simulator, its 65 

optimization routines are general enough to be coupled to any forward model. This 66 

concept has long been followed by general, model-independent, nonlinear parameter 67 

estimation packages such as PEST (Doherty, 2008; http://pesthomepage.org/) and 68 

UCODE (Poeter and Hill, 1998; http://water.usgs.gov/software/ucode.html). Both of 69 

these widely used universal codes are based on the PEST protocol (Doherty, 2008; Banta 70 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 4 

et al., 2008), which defines the interface between the analysis tool and the input and 71 

output files of the application software. To make iTOUGH2 capabilities accessible to 72 

more application models, the subroutines comprising the PEST protocol—provided by 73 

Doherty (2007; http://www.pesthomepage.org/getfiles.php?file=modules.zip)—have 74 

been implemented into iTOUGH2.  75 

The concept behind the PEST protocol requires the application model (1) to provide 76 

input through one (or more) ASCII input files, (2) to return output to one (or more) 77 

ASCII output files, (3) to run the model (or multiple models) using a system command 78 

(an executable or script/batch file), and (4) to run the models to completion without any 79 

user intervention. For each forward run invoked by iTOUGH2, selected parameters in the 80 

application model input files are overwritten with values updated by iTOUGH2, and 81 

selected variables in the output files are extracted and returned to iTOUGH2. The core of 82 

iTOUGH2, i.e., its optimization routines and related analysis tools, remains unchanged; 83 

only the communication format between input parameters, the application model, and 84 

output variables are borrowed from PEST. The inclusion of the PEST protocol into the 85 

iTOUGH2 architecture is shown in Figure 1. The parameter vector (which is updated by 86 

the minimization algorithm or by the sampling procedure used for uncertainty 87 

quantification) is transferred to the PEST protocol, which replaces generic parameter 88 

names in the so-called template file with the appropriate numerical values and generates a 89 

valid input file. The external model is executed using a system call, which may be a 90 

command line, the name of an executable code, or a script file. After completion of the 91 

model run, the resulting output files are parsed using directives from the PEST instruction 92 

file, and the values of interest are extracted and filled into the observation vector, which 93 
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is then used by iTOUGH2 to evaluate the objective function or for further analysis. The 94 

extended code allows the user to invoke optimization of TOUGH2 models, which are 95 

fully integrated within iTOUGH2, or any external models, which are loosely linked by 96 

the PEST protocol, or a combination thereof. 97 

We first summarize the iTOUGH2 optimization and analysis capabilities, which are 98 

now also available in combination with any simulation code that uses ASCII input and 99 

output files (or keyboard input and text output to the screen). We then discuss some 100 

examples that demonstrate the use of the PEST interface. These illustrative test cases 101 

make use of external multiphase simulators from the TOUGH2 suite of code; the 102 

extension to other simulation software is straightforward. 103 

 104 

2. iTOUGH2 Capabilities 105 

iTOUGH2 was originally designed to provide inverse modeling capabilities for the 106 

TOUGH2 suite of non-isothermal multiphase flow simulators (Finsterle, 2004; Finsterle 107 

et al., 2008). Sensitivity coefficients calculated as part of the gradient-based or second-108 

order minimization algorithms can also be used to examine the information content of 109 

actual or planned observations, to evaluate the design of an experiment or monitoring 110 

network, and to study the impact of parameter uncertainty on model predictions. These 111 

and most other iTOUGH2 capabilities described in this section are also applicable to any 112 

model that can be linked to iTOUGH2 through the PEST protocol; a few features are 113 

specific to the parameterization and prediction variables of the TOUGH2 codes. For 114 

example, lists of TOUGH2 elements, connections, sinks and sources, and material types 115 

can conveniently be grouped and defined as a single parameter to be estimated or a single 116 
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integrated observation to be matched (iTOUGH2 also allows the user to combine 117 

disparate parameters).  118 

 119 

2.1 Parameterization 120 

In the context of this paper, parameters are defined as adjustable variables that represent 121 

those aspects of a model that are subjected to sensitivity analysis, parameter estimation, 122 

or uncertainty propagation analysis. These parameters may refer to material properties, 123 

initial and boundary conditions, or geometric features (such as fracture spacing, or the 124 

location and shape of discrete zones). Heterogeneity may be parameterized using a 125 

relatively small number of geostatistical parameters (Finsterle and Kowalsky, 2008). 126 

Moreover, statistical properties (e.g., autocorrelation coefficients, Box-Cox parameters), 127 

weighting coefficients, and correction terms may also be considered parameters to be 128 

estimated (Finsterle and Zhang, 2011). Parameters may directly correspond to an input 129 

variable of the model, or represent a collection of properties and features, i.e., a single 130 

estimated parameter may be linked to multiple input variables. Parameters may also be 131 

transformed (e.g., by taking the logarithm, or by estimating a factor with which multiple 132 

input variables are multiplied). It is important to realize that any other model input that is 133 

fixed during an inversion becomes part of the model structure. The values and 134 

uncertainties of the parameters to be estimated always refer to this specific model 135 

structure. While parsimonious models with few parameters are often used to avoid 136 

overparameterization, their ability to make predictions is limited to models with the same 137 

or very similar model structure, as structural errors in the calibration model are partly 138 

absorbed by the estimated parameters. This makes these parameters tailored to that 139 
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specific model and thus less suitable for predictive calculations with a changed model 140 

structure. 141 

In iTOUGH2, most input values to the TOUGH2 simulators can be accessed directly 142 

through built-in commands. Moreover, an application programming interface (API) is 143 

provided to define user-specified parameters. All these parameters are internally 144 

transferred between the simulation and optimization routines without loss of precision. 145 

With the PEST interface, any input variable can be accessed (with a potential loss of 146 

precision) through ASCII files, which are written by means of so-called template files. 147 

All these parameters can be tied to each other, and some basic transformations can be 148 

performed (add, multiply, logarithm, and combinations thereof). For each parameter, the 149 

user can specify a prior value and associated standard deviation (for regularization), an 150 

initial guess (for starting the optimization), lower and upper bounds (for specifying the 151 

admissible parameter range), an expected variation (for sensitivity analyses), and a 152 

probability distribution (for uncertainty quantification). In summary, essentially any input 153 

parameter to any TOUGH2-related or numerical model with ASCII input and output files 154 

can be subjected to iTOUGH2 analyses. 155 

 156 

2.2 Observable Variables 157 

All main iTOUGH2 application modes (i.e., sensitivity analysis (SA), parameter 158 

estimation (PE), and uncertainty quantification (UQ)) examine the response of specific 159 

model output variables to variations in selected input parameters. Specifically for PE, the 160 

model output of interest is a generally small subset of the simulation results: It only 161 

consists of those output variables for which a corresponding measured data point is 162 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 8 

available. We therefore refer to this set of model output as the observable variables. 163 

Observable variables may refer to the calculated system state at a specific point in space 164 

and time, or is a transformed, integral measure derived from several model output 165 

variables (for example, costs). A special type of parameter-dependent output variables of 166 

interest are regularization and penalty terms. 167 

In iTOUGH2, most output variables from a TOUGH2 simulation can be accessed 168 

directly, i.e., from memory without loss of precision, through built-in commands. In 169 

addition, interfaces to geophysical forward models and their associated data types are 170 

implemented to perform joint hydrogeophysical inversion (Kowalsky et al., 2004; 2005; 171 

2011; Finsterle and Kowalsky, 2008). Moreover, an API is provided to define user-172 

specified observations. With the PEST interface, any output variable written to one or 173 

multiple ASCII files can be accessed by means of so-called instruction files. The 174 

potential loss of precision during this transfer (due to a limited number of significant 175 

digits printed to the output file) may be a critical shortcoming. Basic transformations of 176 

the observable variables can be performed, such as add, multiply, Box-Cox 177 

transformation (see Finsterle and Zhang, 2011), and combinations thereof. For each 178 

observational variable or entire data set, the user can specify a weight to be applied 179 

during the optimization procedure.  180 

In summary, essentially any output variable of any TOUGH2-releated or text-based 181 

numerical model can be analyzed by iTOUGH2 or used for parameter estimation by 182 

automatic model calibration. As in any inverse problem, the latter only yields meaningful 183 

results if the observable variables are sufficiently sensitive and linearly independent with 184 
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respect to the parameters of interest. The iTOUGH2 features discussed in the following 185 

subsections support such analyses. 186 

 187 

2.3 Sensitivity Analysis 188 

A sensitivity analysis (SA) consists of examining the impact of the model output 189 

variables with respect to changes in model input parameters. Such an analysis is useful to 190 

identify the key parameters of the system, to detect observations that may be suitable for 191 

parameter estimation, and to recognize which output is most strongly affected by 192 

uncertainties in input parameters. Moreover, sensitivity coefficients are used by 193 

derivative-based minimization algorithms to obtain the search direction along which 194 

parameters are updated to approach the optimum solution. This latter use prompts the 195 

calculation of an m × n Jacobian matrix J in iTOUGH2, with elements
j

i
ij p

z
J

∂
∂

= . Here, n 196 

is the number of input parameters, p, and m is the number of observable variables, z. To 197 

make sensitivity coefficients dimensionless and thus comparable with one another, they 198 

are scaled by the expected parameter variation, pσ , and the inverse of the a priori 199 

standard deviation of the observation, zσ  
i

j

z

p
ijij JJ
σ

σ
=

~ . The columns of the Jacobian are 200 

calculated (in parallel) by forward or centered finite differences. Once the scaled 201 

sensitivity coefficients are available, integral measures of overall parameter sensitivity, or 202 

overall information content of individual observations, data sets, or observation types can 203 

be calculated. The Jacobian matrix is also used to compute the Fisher Information matrix 204 

( JQJF 1−= zz
T , where 1−

zzQ  is the observation weighting matrix), which in turn reveals 205 
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expected estimation uncertainties, the correlation structure among parameters, and 206 

parameter identifiability as defined by Doherty and Hunt (2009). Finally, the relative 207 

significance of each observation point to the solution of the inverse problem—using as 208 

the criterion the D-optimality of the estimation covariance matrix—is evaluated. All these 209 

measures can be used in support of experimental design prior to data collection, or to 210 

examine the quality of an inversion. 211 

It is important to realize that all the sensitivity measures calculated by iTOUGH2 are 212 

based on local sensitivity coefficients as well as linearity and normality assumptions. For 213 

highly nonlinear systems or large parameter variations, methods and sampling designs 214 

that more fully explore the parameter space need to be used, so that the sensitivity 215 

measures are more robust and representative. 216 

 217 

2.4 Objective Function 218 

The objective function is a measure of misfit between the model results and the measured 219 

data. Prior information, regularization, and penalty terms may also be added. If 220 

assumptions about the stochastic structure of the residuals can be made, minimizing the 221 

appropriate objective functions leads to maximum likelihood estimates. While seldom 222 

explicitly stated or its appropriateness demonstrated, it is common to make a normality 223 

assumption and thus use the weighted least squares criterion as the performance measure 224 

to be minimized. Despite its popularity, an estimate based on least squares has the 225 

drawback of being potentially affected by violations of the underlying distributional 226 

assumptions. In particular, the presence of outliers in the data may lead to poor matches 227 

of the “good” data, which induces a bias of the estimated model parameters. Given the 228 
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fact that field measurements show many more outlier points than one would expect from 229 

the tail of the normal distribution, their potential impact on inverse modeling results 230 

should be carefully assessed. In addition to the standard weighted least-squares objective 231 

function, iTOUGH2 offers robust estimators, such as the least absolute value, Andrews, 232 

Huber’s and Cauchy estimators (Finsterle and Najita, 1998; Finsterle and Zhang, 2011). 233 

The L1-estimator is also the preferred option when using iTOUGH2 for the solution of 234 

cost optimization problems (Finsterle, 2005). 235 

The residuals need to be weighted, where the weights are often related to the 236 

distributional assumptions about the errors. They can be specified for individual 237 

residuals, entire data sets, or given as a function of the measured value. They can also be 238 

dynamically adjusted according to the procedure described in Carrera and Neuman 239 

(1986). 240 

 241 

2.5 Minimization Algorithms 242 

iTOUGH2 solves the inverse problem by finding the minimum of the objective function 243 

in the n-dimensional parameter space. The minimization algorithms currently 244 

implemented in iTOUGH2 are summarized in Table 1. They include derivative-based 245 

local algorithms as well as metaheuristic, derivative-free global search methods. For 246 

computationally expensive forward models, global optimization is often impractical, and 247 

the high efficiency of the derivative-based methods, specifically that of the Levenberg-248 

Marquardt algorithm, is needed to identify the local minimum of a carefully formulated 249 

inverse problem. If many, potentially strongly correlated parameters are subjected to the 250 

estimation process, a dynamic parameter selection and conditioning scheme is 251 
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implemented based on the parameter’s relative sensitivity and overall correlation. A 252 

composite scaled sensitivity measure (i.e., the sum of the absolute values of all weighted 253 

sensitivity coefficients) is calculated for each parameter. Similarly, a measure of overall 254 

parameter correlation (i.e., the ration of the conditional to marginal estimation standard 255 

deviation) is evaluated. All parameters with a sensitivity or correlation measure less than 256 

a certain fraction of the most sensitive or least correlated parameter are temporarily 257 

moved to the parameter null space. An alternative approach to dynamically delineate the 258 

parameter solution from the parameter null space is described in Finsterle and Kowalsky 259 

(2011). 260 

 261 

2.6 Residual and Error Analysis 262 

Even if the minimization algorithms described above successfully identified the local or 263 

global minimum of the objective function, this does not guarantee that (1) the match to 264 

the data is satisfactory and the model is a good representation of the actual system, (2) the 265 

estimated parameters values are reasonable, and (3) the estimation and prediction 266 

uncertainties are acceptable. A detailed residual, error, and uncertainty analysis is needed 267 

to assess the inverse modeling results, and to gain insights into the system behavior and 268 

its dependence on parameters, which can point towards aspects of the model that may 269 

need to be refined. Some of the methods used to analyze residuals after an iTOUGH2 270 

optimization are described in Finsterle and Zhang (2011). The covariance matrix of the 271 

estimated parameters is calculated based on a linearity and normality assumption. A 272 

correction procedure to account for nonlinearities�originally proposed by Carrera 273 

(1984)�is also implemented. Prediction uncertainty is evaluated using linear uncertainty 274 
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propagation analysis or Monte Carlo simulations using a Latin Hypercube sampling 275 

strategy that allows the inclusion of parameter correlations (Zhang and Pinder, 2003; 276 

Kitterød and Finsterle, 2004).  277 

 278 

2.7 Relation between iTOUGH2 and PEST 279 

The inclusion of the PEST protocol in iTOUGH2 does not imply that any of the PEST 280 

optimization capabilities are implemented in iTOUGH2; the sole purpose of the PEST 281 

protocol is to make iTOUGH2 optimization routines available for use in connection with 282 

external forward models. In general, parameter estimation codes such as PEST, UCODE, 283 

and iTOUGH2 all aim at solving highly nonlinear least-squares problems for 284 

computationally expensive forward models. Consequently, the inverse modeling 285 

capabilities of these codes are similar; the significance of the differences among these 286 

codes depends on the needs of a specific application. Both PEST and iTOUGH2 contain 287 

versions of the Levenberg-Marquardt algorithm with the ability to truncate the parameter 288 

space; the method used to reduce the impact of parameters with strong correlations or low 289 

sensitivities, however, are different. The concept of estimating superparameters (Tonkin 290 

and Doherty, 2005), implemented in PEST, is a powerful method to address highly 291 

parameterized inverse problems. The regularization approach employed by iTOUGH2 is 292 

described in Finsterle and Kowalsky (2011). In addition to the Levenberg-Marquardt 293 

algorithm, iTOUGH2 provides the local and global minimization methods summarized in 294 

Table 1. Both PEST and iTOUGH2 provide geostatistical methods to parameterize 295 

heterogeneity, and the pilot-point approach to adjust these property fields to match the 296 

observed system response.  Both codes perform a rather extensive residual and 297 
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uncertainty analysis as a basis to evaluate prediction errors. Parallel execution of 298 

independent forward simulations is supported by both software packages. Details of the 299 

implementation of these capabilities as well as the amount of user control and 300 

convenience of input are specific to each of these codes. Because PEST, iTOUGH2, and 301 

other similar packages are continually updated, the user is referred to the respective 302 

user’s guides for detailed capability descriptions.  303 

The use of the PEST protocol to estimate parameters of iTOUGH2 pre- and 304 

postprocessing software in combination with the estimation of standard TOUGH2 305 

parameters (an example is shown in Section 3.2 below) is a unique capability; it 306 

combines the loosely coupled and tightly integrated approaches to parameter estimation, 307 

and greatly expands the flexibility to calibrate and analyze TOUGH2 models. 308 

 Both PEST and iTOUGH2 are mainly concerned with inverse problems where the 309 

evaluation of the forward model is computationally very expensive. This essentially 310 

precludes the use of stochastic, sampling-based parameter estimation approaches, even 311 

though the potential of such approaches to evaluate posterior probability density 312 

functions addresses an important parameter estimation issue. We are currently working 313 

on the implementation of statistical sampling approaches to perform global sensitivity 314 

analyses, advanced uncertainty quantification, and global optimization within a Bayesian 315 

framework; we will report on these advances in due course. 316 

 317 

3. iTOUGH2 Applications using PEST Protocol 318 

The following examples demonstrate potential usages of the PEST protocol in 319 

combination with iTOUGH2 analysis and optimization routines. The discussion focuses 320 
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on the code’s features rather than on the scientific contents of the individual analyses. 321 

The three examples make use of, respectively, iTOUGH2’s parameter estimation, 322 

uncertainty quantification, and grid search capabilities. The external codes used are 323 

TOUGHREACT, a script file invoking various mesh generation steps as a preprocessor 324 

to a TOUGH2 simulation, and an iTOUGH2 inversion itself. The PEST template files 325 

modify the TOUGHREACT input file that holds chemical properties, and input file with 326 

statistical parameters for the generation of a discrete fracture network, and the weighting 327 

coefficients in an iTOUGH2 input file. Although the examples consider simulations of 328 

flow and transport in the subsurface, iTOUGH2 with the PEST protocol can be used to 329 

solve optimization problems for any type of simulation application. 330 

 331 

3.1 Multicomponent Reactive Transport  Inversion and Comparison with PEST 332 

iTOUGH2 provides inverse modeling capabilities for many but not all of the members of 333 

the TOUGH family of non-isothermal multiphase flow simulators. A list of publicly 334 

available modules that are fully integrated into iTOUGH2 can be found on the TOUGH+ 335 

web site at http://esd.lbl.gov/TOUGH+/software-itough2.html. The PEST protocol 336 

expands inverse modeling to all TOUGH-related simulators, specifically 337 

TOUGHREACT.  338 

This example demonstrates parameter estimation using the TOUGHREACT 339 

simulator (Xu et al., 2004) and the parallel version iTOUGH2-PVM (Finsterle, 1998). 340 

TOUGHREACT is a model for the simulation of nonisothermal multiphase flow and 341 

reactive transport in fractured porous media. 342 
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In this example, TOUGHREACT is applied to simulate urea hydrolysis (ureolysis) as 343 

a means to remediate 90Sr contamination in the saturated zone (e.g., Fujita et al., 2000, 344 

2004; Mitchell and Ferris, 2005). This simulation involves the modeling of a ureolysis 345 

column experiment (Wu et al., 2010) in which water with added urea was injected into a 346 

soil column (for about 15 days), while the water composition at the column outlet was 347 

monitored and compared to model results. Ureolysis consumes hydrogen ions and 348 

produces ammonium and bicarbonate ions. Consequently, the injection of urea into the 349 

column causes pH and alkalinity to increase, driving calcite precipitation. Strontium, 350 

which strongly partitions into soils, exchanges with ammonium ions produced by 351 

ureolysis and precipitates with calcite. These coupled biogeochemical processes are 352 

modeled with TOUGHREACT. The reaction network and model input parameters are 353 

described in Spycher et al. (2009) and Wu et al. (2010). The data were originally inverted 354 

using Parallel Pest (PPEST; Doherty, 2008). These results are used for comparison with 355 

inversions of the same simulation using iTOUGH2.  The one-dimensional column is 356 

discretized into 205 gridblocks at regularly spaced intervals of 1 mm. A sequential-357 

iterative (transport/reaction) method is implemented. The model considers ureolysis as an 358 

enzymatic reaction and accounts for calcite precipitation, ion exchange, and ammonium 359 

oxidation. Further details about the system behavior and the TOUGHREACT model can 360 

be found in Spycher et al. (2009) and Wu et al. (2010). 361 

The following five parameters (see Table 2) are estimated by inverse modeling: (1) 362 

the initial and boundary concentration of the urease enzyme, which directly affect the 363 

ureolysis rate, (2) the initial and boundary concentration of the biomass, which affects the 364 

oxidation rate of produced ammonium ions, (3) the logarithm of the precipitation rate 365 
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constant for calcite, (4) the exchange coefficient (selectivity) of potassium, and (5) the 366 

soil cation exchange capacity. These five parameters are input into TOUGHREACT 367 

through the ASCII input file chemical.inp, which holds all geochemical parameters and 368 

properties of the aqueous component species, minerals, gases, and sorbed species for a 369 

given simulation. On running iTOUGH2, this file (chemical.inp) is automatically 370 

generated by a PEST template file. The template file takes the same format as the regular 371 

input file, except that the values of the five parameters to be estimated are replaced with 372 

the corresponding variable names, surrounded by a special character chosen as the 373 

parameter delimiter.  374 

These five parameters are then estimated by matching breakthrough curves of 375 

measured concentrations of pH, NH4
+, NO3

-, dissolved O2, Urea, Ca, Sr, Na, and K. A 376 

PEST instruction file is used to instruct iTOUGH2 on the location of the calculated pH 377 

and concentrations in the TOUGHREACT output file.  iTOUGH2 can then read the 378 

TOUGHREACT output after each successive forward run to compare computed and 379 

observed pH and concentration values. 380 

The standard iTOUGH2 control file is used to relate the template and instruction files 381 

to the appropriate TOUGHREACT input and output files, respectively. Moreover, the 382 

parameters to be estimated as well as the observed data are defined using the standard 383 

iTOUGH2 commands (see the command index at http://esd.lbl.gov/iTOUGH2). Finally, 384 

inversion options are selected and computational parameters provided. In this case, five 385 

Levenberg-Marquardt iterations are performed, where the columns of the Jacobian matrix 386 

and the evaluation of a potential update step with different Levenberg parameters λ are 387 

performed in parallel using PVM (Finsterle, 1998).  388 
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The inversion results are summarized in Table 2 and compared to the results obtained 389 

with Parallel PEST (PPEST; Doherty, 2008). Both codes converged to the same objective 390 

function value and the same solution in the parameter space. The differences between the 391 

estimated parameters are a result of the different implementation of the Levenberg-392 

Marquardt algorithm in iTOUGH2 and PPEST, and specifically the different default 393 

values of computational parameters (such as the initial values of the Levenberg and 394 

Marquardt parameters, step size limitations, etc.). However, these differences are much 395 

smaller than the estimation uncertainty, which is also consistently calculated by the two 396 

optimization codes. With PPEST, almost twice as many TOUGHREACT forward runs 397 

were required as with iTOUGH2, mainly because PPEST switched to central finite 398 

differences for evaluating derivatives after two iterations, which also explains the (small) 399 

differences in the calculated estimation uncertainty.  400 

This particular inversion took approximately 16 hours to complete on a Linux cluster. 401 

Almost all the CPU time is consumed by repeatedly running the TOUGHREACT 402 

simulation model; only a negligible CPU fraction is used by the minimization algorithm, 403 

residual, and uncertainty analyses. Evaluating the Jacobian matrix and testing Levenberg 404 

parameters in parallel on five processors sped up the inversion by a factor of 2.5. In this 405 

case, the parallelization yields a moderate gain in overall performance because of the 406 

relatively small number of parameters to be estimated. 407 

This example demonstrates that parameters of a complex reactive transport simulator 408 

can be estimated using iTOUGH2, and that the results are consistent with the PEST 409 

estimates. 410 

 411 
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3.2 Analyzing Seepage using Multiple Discrete Fracture Network Models 412 

iTOUGH2 can be used to simultaneously adjust parameters of an external model and an 413 

internal TOUGH2 model. This is useful if the external model is either a pre- or post-414 

processor of TOUGH2. In this example we combine a pre-processor for generating 415 

realizations of a discrete fracture network with a TOUGH2 simulation of water seeping 416 

into an underground opening. The parameters to be considered uncertain and adjusted by 417 

iTOUGH2 are the stochastic parameters used by the mesh generator, i.e., the fracture 418 

density and parameters of the probability distributions from which length and orientation 419 

of two fracture sets are sampled. Selected output from both the external mesh generator 420 

(here, the number of fractures) and the flow simulator (seepage into the opening 421 

excavated from the fractured formation) are evaluated for an uncertainty analysis. 422 

Multiple steps are needed to generate a discrete fracture network model (see Table 3). 423 

These mesh generation steps are executed by a Linux shell script file sh.DFNMgen; it is 424 

the executable called by iTOUGH2 prior to each TOUGH2 forward simulation.  425 

The fracture network consists of two fracture sets generated using six statistical 426 

parameters: the fracture trace length follows a power-law distribution (Bonnet et al., 427 

2001), with the coefficient α and exponent –a as its parameters; the orientations of the 428 

two fracture sets follow normal distributions, each with a given mean and standard 429 

deviation. Fracture aperture—and thus permeability—is correlated to the fracture length 430 

(for details, see Liu et al., 2002), with increasing permeabilities in the excavation 431 

disturbed zone as a linear function of distance from the opening. 432 

Once the base fracture network has been generated, unconnected fractures are 433 

removed, the fracture traces are discretized according to the TOUGH2 spatial 434 
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discretization scheme, an opening representing an excavated niche is cut form the mesh, 435 

and boundary elements are created. The output from these mesh generation steps is a file 436 

MESH that is read by TOUGH2 for the subsequent simulation of unsaturated flow 437 

through the discrete fracture network and seepage into the niche. Figure 2 visualizes the 438 

sequence of mesh generation steps, and shows some realizations obtained by varying the 439 

statistical input parameters. The permeability and steady-state saturation fields are also shown. 440 

The main output of interest is the steady-state seepage rate into the niche, which is obtained 441 

directly from the corresponding TOUGH2 variable using standard iTOUGH2 commands. In 442 

addition, the total number of fractures of the base network and the number of connected 443 

fracture are extracted from the output files of the mesh generator using an appropriate 444 

PEST instruction file. 445 

Figure 3 shows the section of the iTOUGH2 input file in which program options and 446 

computation parameters are specified. In this application, the execution of 500 Monte 447 

Carlo simulations based on the Latin hypercube sampling strategy is used to examine the 448 

impact of the characteristics of the discrete fracture network on seepage. A 449 

covariance/correlation matrix of the six PEST parameters is provided, with the variances 450 

on the diagonal, and correlation coefficients on off-diagonal elements. Here, it is assumed 451 

that the two fracture sets are approximately orthogonal to each other; a correlation 452 

coefficient of 0.9 between the third and fifth parameters (those representing the mean 453 

angles for each fracture set) induces this statistical correlation. A weaker correlation 454 

coefficient of 0.5 is given for the respective standard deviations. The executable to run is 455 

specified in the iTOUGH2 input file (Figure 3).  In the present example, the executable is 456 

the script file sh.MESHgen; it will be run before each TOUGH2 simulation. Other entries 457 

in the iTOUGH2 input file include the names of the PEST template and instruction files 458 
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and their corresponding input and output files, as well as run specifications. Here, 500 459 

Monte Carlo simulations are evaluated in parallel on 30 processors on a Linux cluster. 460 

The names of the nodes are stored on file NODEFILE, which is generated by the 461 

scheduler. 462 

Figure 4 shows the results of the analysis. The histogram in Figure 4a shows that the 463 

total number of fractures (and the number of connected fractures) varies from about 150 464 

to 300 as a result of uncertainty in the stochastic input parameters used to generate the 465 

fracture network. The changes in the characteristics of the fracture network impact the 466 

amount of water seeping into the underground opening (Figure 4b). This impact, 467 

however, is relatively mild. This is a result of the fact that the primary factor affecting 468 

seepage is the overall size and geometry of the opening, which is not uncertain. Changes 469 

in the uncertain statistical parameters have to lead to substantially changed network 470 

characteristics to be able to affect seepage. This explains why the seepage distribution is 471 

relatively peaked, and why a stochastic continuum representation is appropriate for 472 

seepage predictions (Finsterle, 2000). A detailed discussion of issues related to the 473 

modeling of seepage into a large opening from an unsaturated fractured formation can be 474 

found in Wang et al. (1999), Liu et al. (2002), Finsterle et al. (2003), Ghezzehei et al. 475 

(2004). 476 

 477 

3.3 Pareto Frontier 478 

The Pareto frontier can be considered to be the set of solutions to a multicriteria 479 

optimization problem, where the relative weights of the criteria are varied to examine the 480 

tradeoffs between competing objectives. Here, we determine the Pareto frontier by 481 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 22 

running multiple iTOUGH2 inversions, where the relative weights are adjusted in 482 

predefined increments. The grid-search option of iTOUGH2 is used, where the parameter 483 

to be varied is the weight assigned to two observation types, each representing a different 484 

objective. For each weight combination, an iTOUGH2 inversion is performed, and the 485 

mean residual of each observation type is extracted and used to create the Pareto frontier 486 

plot. In this example, iTOUGH2 controls iTOUGH2 optimization runs through the PEST 487 

protocol. 488 

The optimization problem considered is a remediation design problem, where the 489 

tradeoff between two objectives is examined. These competing objectives are (1) 490 

maximization of contaminant removal within a specified cleanup time of 5 years, and (2) 491 

minimization of cleanup costs, simplified here as the total amount of water pumped from 492 

six wells during a pump-and-treat operation. The individual minimization problem of 493 

determining optimal pumping rates (assuming that the relative costs of pumping and 494 

residual contamination are known) is described in Finsterle (2005). This optimization 495 

problem is then solved repeatedly for different weights of the two competing objectives. 496 

By giving higher weight to the remediation goal, pumping rates are expected to go up; 497 

conversely, if emphasis is placed on reducing pumping costs, the pumping rates will 498 

generally go down at the expense of increased residual contamination. The tradeoff 499 

between these two objectives is evaluated at 40 discrete points with relative weights (wp 500 

and wc) for the pumping cost and remediation objectives, respectively, under the 501 

constraint that wp + wc = 1. The only parameter adjusted is the weight of the pumping rate 502 

criterion, wp; its value is varied from zero to one. The second parameter (representing the 503 

weight given to the residual contamination criterion) is not a free parameter. It is tied to 504 
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the first parameter using the equation wc = 1 - wp. The weights are entered into the 505 

iTOUGH2 input file, which is created by the PEST template file. For each weight 506 

combination, the optimal distribution of pumping rates in the six wells is determined by 507 

an iTOUGH2 optimization that minimizes both the (weighted) total amount of water 508 

pumped and the (weighted) residual contaminant mass. The total rate and residual 509 

contaminant mass after each optimization is extracted from the residual analysis section 510 

of the iTOUGH2 output file using a PEST instruction file. Plotting the two objectives 511 

against each other provides the Pareto frontier. 512 

The 40 iTOUGH2 inversions are invoked through the standard Unix script command 513 

itough2 (or the equivalent WINDOWS batch file), which is provided as the executable. 514 

The resulting Pareto frontier is shown in Figure 5, demonstrating that there is a 515 

relatively well-defined optimal solution (i.e., the region of the Pareto frontier near the 516 

origin), where both criteria can be met without too much tradeoff. 517 

 518 

4. Concluding Remarks 519 

In the indirect approach to inverse modeling, optimization algorithms are wrapped around 520 

the numerical model whose parameters are to be estimated based on select output 521 

variables calculated by this model. Similarly, sensitivity analyses and uncertainty 522 

propagation analyses (specifically sampling-based methods) often treat the underlying 523 

forward operator as a black-box model. The fact that the optimization algorithms 524 

generally can be decoupled from the algorithms that solve the forward problem provides 525 

great flexibility in applying them to a large variety of scientific analysis and engineering 526 

design problems.  527 
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 The applicability of the iTOUGH2 simulation-optimization code has been expanded 528 

by allowing the user to link it to any stand-alone modeling software with ASCII-based 529 

input and output by means of the widely-used PEST protocol. Using the PEST protocol 530 

has obvious benefits for both the user and the developer. It gives the user the flexibility to 531 

perform inversion and analysis tasks for a variety of potentially coupled simulation 532 

models using a common, established concept and a single set of instructions. The non-533 

intrusive coupling between the optimization routines and application models allows the 534 

developer to focus on improving the inversion and analysis tools rather than on 535 

integrating new or modified forward models into the framework.  536 

On the other hand, a tight integration of the simulation and optimization codes (the 537 

approach followed by the original iTOUGH2 code) has also its advantages. Sharing 538 

variables in memory rather than transferring them through external text files eliminates 539 

concerns about the loss of precision, an issue that needs to be carefully addressed when 540 

using the PEST protocol. Moreover, fully integrating the simulator into the optimization 541 

code allows the latter to be “knowledgeable” about the parameters, observable variables, 542 

and the processes being simulated. Input can be streamlined and checked, and the 543 

execution of the forward simulation can be controlled and adjusted based on the needs of 544 

the inversion.  545 

The tradeoff between flexibility on the one hand and control and convenience on the 546 

other is not resolvable without considering a specific application. The extension of 547 

iTOUGH2 by including the PEST protocol is intended to provide the user with improved 548 

means to solve challenging simulation-optimization problems, using a variety of codes, 549 
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including TOUGH2-related simulators that have not yet been specifically integrated into 550 

the iTOUGH2 framework. 551 
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Table 1. Minimization algorithms implemented in iTOUGH2 716 

Minimization Algorithm 
Reference Description Comments 

Local Search Algorithms 

Downhill Simplex 
(Nelder and Mead, 1965) 

Approaches minimum through 
sequence of reflections, 
expansions, and contractions 
of an (n+1)-dimensional 
simplex. 

No assumptions made about 
form of cost function; 
relatively inefficient. 

Gauss-Newton 

(Gauss, 1821) 

 

( ) WrJWJJp TT 1−
=Δ  

Includes truncated SVD 

Efficient for linear least-
squares problems only; 
requires derivatives. 

Levenberg-Marquardt 

(Marquardt, 1963; Levenberg, 
1944; Finsterle and Kowalsky, 
2011) 

( ) WrJDWJJp TT 1−
+=Δ λ  

Includes different Tikhonov 
matrices and automatic 
truncation 

Efficient for nonlinear least-
squares problem; requires 
derivatives. 

Global Search Algorithms 

Grid Search Evaluate cost function in 
entire parameter space on 
regular or irregular grid. 

Complete information about 
cost function; very inefficient. 

Simulated Annealing 
(Metropolis et al., 1953) 

Metaheuristic algorithm 
mimicking slow cooling of 
metals; includes thermal 
fluctuations and temperature 
schedule; accepts uphill steps 
based on Metropolis algorithm 
with decreasing probability. 

No assumptions made about 
cost function; may escape 
local minima; inefficient. 

Harmony Search  
(Geem et al., 2001; Ayvaz, 
2007) 

Metaheuristic algorithm 
mimicking musical 
improvisation; searches for 
harmony by improvisation and 
pitch adjustment. 

 

Differential Evolutionary 
Algorithm  
(Storn and Price, 1997) 

Metaheuristic algorithm 
mimicking evolution with 
weighted differences between 
populations and trial vector. 

 

a J Jacobian matrix; W=: Weighting matrix; D: Tikhonov matrix; r: Residual/cost vector 
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Table 2. iTOUGH2 and PPEST Inversion Results of  TOUGHREACT Model 718 

Parameter Initial 
Best Estimate Uncertainty 

PPEST iTOUGH2 PPEST iTOUGH2 

Obj. Function 7.3034 5.2356 5.2356 n/a n/a 

Model Runs n/a 91 51 n/a n/a 

Init. enzyme conc. 3.000 × 10-10 1.847 × 10-10 1.845 × 10-10 0.239 × 10-10 0.238 × 10-10 

Init. biomass conc. 1.022 × 10-14 1.026 × 10-14 1.026 × 10-14 0.092 × 10-14 0.093 × 10-14 

log10(precip. rate) -7.398 -7.302 -7.304 0.051 0.055 

K selectivity 0.49 0.538 0.535 0.129 0.125 

Cation exch. cap. 10.000 8.608 8.580 1.148 1.090 

n/a: not applicable 

 719 

Table 3. Steps to Generate Discrete Fracture Network Model 720 

Step Activity Software 
0 Script file invoking mesh generation steps 1–6 

External executable called before each TOUGH2 simulation 
sh.DFNMgen 

1 Generate 2D network of fracture traces based on statistical 
parameters on fracture density, fracture length, and fracture 
orientation provided through an input file that is created by the 
PEST template file 
Remove unconnected fractures 
Discretize fracture traces, assign aperture and permeabilities to 
fracture elements, create TOUGH2 element and connection 
information 

xDFNM 

2 Combine element and connection information block to create base 
mesh file 

sh.DFNMgen 

3 Move X and Z coordinates of mesh xMoveMesh8 
4 Add top boundary element xAddBound8 
5 Add bottom boundary element xAddBound8 
6 Cut out niche from mesh, adjust permeabilities near niche to 

reflect excavation disturbed zone 
xCutNiche8 
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Input Parameter Set p

Output Variables z

∂z/∂pp=f(z*-z) F(z(p))

Further Analyses

PEST
Template

File

PEST
Instruction

File

Input
File

Output
File

 723 

Figure 1. iTOUGH2 architecture: optimization and analysis tools evaluate the system 724 

response z as a function of adjustable input parameters p, where the relation 725 

between z and p is either given by the fully integrated TOUGH2 simulator or 726 

by an external model through the PEST protocol, which uses text-based 727 

template and instruction files for communication with the external model, 728 

which is shown in the right-most box. 729 

730 
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Figure 2. Four realizations of the base discrete fracture network, permeability field, and 734 

steady-state saturation distribution. 735 
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 736 
> COMPUTATION 737 
 738 
  >> STOP 739 
     >>> Number of SIMULATIONS: 500 740 
     <<< 741 
 742 
  >> ERROR propagation analysis 743 
     >>> MONTE CARLO SEED: 5555 744 
     >>> LATIN HYPERCUBE SAMPLING CORRELATION MATRIX: 6 745 
         1E-4    0.0    0.0    0.0   0.0   0.0 746 
          0.0  100.0    0.0    0.0   0.0   0.0 747 
          0.0    0.0  100.0    0.0   0.9   0.0 748 
          0.0    0.0    0.0    4.0   0.0   0.5 749 
          0.0    0.0    0.9    0.0 100.0   0.0 750 
          0.0    0.0    0.0    0.5   0.0   4.0 751 
     <<< 752 
 753 
  >> OPTION 754 
     >>> PEST 755 
         >>>> EXECUTABLE     : sh.DFNMgen     run BEFORE TOUGH2! 756 
         >>>> TEMPLATE       : 1 757 
                               input.tpl      input.dat 758 
         >>>> INSTRUCTION    : 1 759 
                               fracture.ins   fracture.frq 760 
         <<<< 761 
  762 
     >>> STEADY STATE 763 
  764 
     >>> PVM: 30  FILE: NODEFILE 765 
     HOST1PVM    766 
     HOST2PVM    767 
     ...  768 
     HOST30PVM   769 
     <<< 770 
  << 771 
< 772 
 773 

Figure 3. Excerpt of iTOUGH2 input file with control parameters. 774 
775 
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(a) (b) 777 

Figure 4. (a) Histogram of number of fractures generated for different statistical input 778 

parameters, and (b) resulting distribution of annual seepage per meter of 779 

tunnel. 780 

781 
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Figure 5. Pareto frontier. 783 
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