
Parallel I/O, Analysis, and Visualization of a Trillion Particle
Simulation

Surendra Byna, Jerry Chou, Oliver Rübel, Prabhat, Homa Karimabadi,
William S. Daughton, Vadim Roytershteyn, E. Wes Bethel, Mark

Howison, Ke-Jou Hsu, Kuan-Wu Lin, Arie Shoshani, Andrew Uselton,
and Kesheng Wu

Lawrence Berkeley National Laboratory
One Cyclotron Road
Berkeley, CA 94720

DISCLAIMER
This document was prepared as an account of work spon-

sored by the United States Government. While this document
is believed to contain correct information, neither the United
States Government nor any agency thereof, nor the Regents
of the University of California, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
responsibility for the accuracy, completeness, or usefulness
of any information, apparatus, product, or process disclosed,
or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer,
or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United
States Government or any agency thereof, or the Regents of the
University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of
the United States Government or any agency thereof or the
Regents of the University of California.

Parallel I/O, Analysis, and Visualization of a
Trillion Particle Simulation

Surendra Byna⇤, Jerry Chou†, Oliver Rübel⇤, Prabhat⇤, Homa Karimabadi‡, William S. Daughton§,
Vadim Roytershteyn‡, E. Wes Bethel⇤, Mark Howison¶, Ke-Jou Hsu†, Kuan-Wu Lin†, Arie Shoshani⇤,

Andrew Uselton⇤, and Kesheng Wu⇤

⇤Lawrence Berkeley National Laboratory, USA. Email: {sbyna, oruebel, prabhat, ewbethel, shoshani, auselton, kwu}@lbl.gov
†Tsinghua University, Taiwan. Email: jchou@cs.nthu.edu.tw, vidcina@gmail.com, asymplone@gmail.com

‡University of California - San Diego, USA. Email: {homakar, vroytersh}@gmail.com
§Los Alamos National Laboratory, USA. Email: daughton@lanl.gov

¶Brown University, USA. Email: mhowison@brown.edu

Abstract—Petascale plasma physics simulations have recently
entered the regime of simulating trillions of particles. These
unprecedented simulations generate massive amounts of data,
posing significant challenges in storage, analysis, and visual-
ization. In this paper, we present parallel I/O, analysis, and
visualization results from a VPIC trillion particle simulation
running on 120,000 cores, which produces ⇠ 30TB of data for
a single timestep. We demonstrate the successful application of
H5Part, a particle data extension of parallel HDF5, for writing
the dataset at a significant fraction of system peak I/O rates. To
enable efficient analysis, we develop hybrid parallel FastQuery
to index and query data using multi-core CPUs on distributed
memory hardware. We show good scalability results for the
FastQuery implementation using up to 10,000 cores. Finally, we
apply this indexing/query-driven approach to facilitate the first-
ever analysis and visualization of the trillion-particle dataset.

I. INTRODUCTION

Modern scientific discovery is increasingly driven by
data [28]. Computational simulations routinely produce 100s
of GBs to 10s of TBs of data per simulation. For instance,
the Inter-governmental Panel on Climate Change multi-model
CMIP-3 archive is about 35 TB in size. The next generation
CMIP-5 archive, which will be used for the AR-5 report
[2] is projected to contain over 10 PB of data. Large scale
experimental facilities produce equally impressive amounts of
data. The LHC experiment is capable of producing 1 TB of
data in a second, many gigabytes of which are recorded for
future analyses. The Large Synoptic Survey Telescope (LSST)
will record many terabytes of data per night. The torrents of
data is expected to overwhelm our capacity to make sense of
them [14]. In the US, a serious national effort is underway to
address challenges of managing and analyzing big data1.

In this paper, we consider the challenges of analyzing the
data from VPIC, a state-of-the-art plasma physics code that
simulates 2 trillion particles (one trillion ions and one trillion
electrons) on 120,000 cores. The simulation produces an
unprecedented amount of data, making storage, analysis, and
visualization extremely challenging. We highlight our scalable

1http://www.whitehouse.gov/blog/2012/03/29/big-data-big-deal.

algorithmic and software strategy, and demonstrate how we
can enable meaningful scientific analysis. Our technical con-
tributions are as follows:

• We demonstrate the application of H5Part, a particle data
extension of parallel HDF5, for enabling high perfor-
mance parallel I/O in writing the one trillion electrons.

• We develop a hybrid parallel version of FastQuery using
both MPI and pthreads to enable scalable indexing and
querying for the trillion particle dataset.

• We use query-based visualization to quickly identify and
render particles of interest.

• We apply all of these capabilities to target open scientific
analysis problems, which were simply impossible to
address before.

A. Plasma Physics Simulation
Collisionless magnetic reconnection is an important mech-

anism that releases energy explosively as field lines break and
reconnect in plasmas spanning from the Earth’s magnetosphere
to solar eruptions. Such a reconnection also plays an impor-
tant role in a variety of astrophysical applications involving
both hydrogen and electron-positron plasmas. Furthermore,
reconnection is the dominant mechanism that enables the
plasma from the solar wind to enter the Earth’s magnetosphere.
Reconnection is inherently a multi-scale problem. It is initiated
in the small scale around individual electrons but eventually
leads to large-scale reconfiguration of the magnetic field.
Recent simulations have revealed that electron kinetic physics
is not only important in triggering reconnection, but also in
its subsequent evolution. This finding suggests that we need
to model the detailed electron motion, which poses severe
computational challenges for 3D simulations of reconnection.
A full-resolution magnetosphere simulation is an exascale
computing problem.

The advent of petascale computers together with advances
in particle simulations are now enabling us to conduct simu-
lations a factor of 1000 times larger than the state-of-the-art
just a few years ago. Our main code is the highly optimized

particle code VPIC [4]. This new capability is providing us
with the first glimpse of details of collisionless reconnection
in 3D. We have successfully conducted simulations with
1.2 trillion particles on the Kraken system at Oak Ridge
National Lab (ORNL) using 100K cores, and consisting of
2, 048 ⇥ 2, 048 ⇥ 1, 024 computational cells in 2011 [10]. In
this paper, we focus on the large data management and analysis
challenges and demonstrate the effectiveness of our approach
using a larger 2 trillion particle run conducted at the National
Energy Research Scientific Computing center (NERSC).

B. Science Use Case
Computational Plasma physicists are generally interested in

understanding the structure of high dimensional phase space
distributions. For example, in order to understand the physical
mechanisms responsible for producing magnetic reconnection
in a collisionless plasma, it is important to characterize the
symmetry properties of the particle distribution, such as agy-
rotropy. Agyrotropy is a quantitative measure of the deviation
of the distribution from cylindrical symmetry about the mag-
netic field. Another question of significant practical importance
in studies of magnetic reconnection is characterization of
the energetic particles. Particle properties of interest include
spatial location (x, y, z), energy, and projection of velocity
components on the directions parallel and perpendicular to the
magnetic field (Uk,U?,1,U?,2).

In the scope of this paper, we will explore the following
scientific questions:

• Analysis of highly energetic particles:
– Are the highly energetic particles preferentially ac-

celerated along the magnetic field?
– What is the spatial distribution of highly energetic

particles?
• What are the properties of particles near the reconnection

hot-spot (the so-called X-line)?
– What is the degree of agyrotropy in the spatial

vicinity of the X-line? In other words, is the den-
sity plot of the U?,1 vs. U?,2 components highly
asymmetrical?

While these questions can be addressed to some extent
for smaller scale 2D and 3D simulations involving millions
or billions of particles, it is challenging to address these
questions when the number of particles reach beyond hundreds
of billions or trillions. Hampered by the lack of scalable tools,
physicists have largely ignored the particle data, used some
form of sub-sampling, or relied on coarser gridded data for
their analysis. To the best of our knowledge, this is the first
study that offers flexible technical capabilities for analyzing
trillion particle datasets.

C. Research Challenges
Motivated by these scientific questions and the desire to sup-

port this new regime of petascale plasma physics simulations,
we tackle the following computer science research problems:

• What is a scalable I/O strategy for storing massive particle
data output?

• What is a scalable strategy for conducting analysis on
these datasets?

• What is the visualization strategy for examining these
datasets?

In this paper, we demonstrate the use of H5Part and
HDF5 to address the scalable I/O challenges in Section II-A.
Section II-B describes our effort in developing a hybrid
parallel version of FastQuery, and applying it for indexing
and querying the trillion particle dataset. Section II-C outlines
our approach for query-based visualization in VisIt to select
scientifically relevant particles to render on the screen.

II. APPROACH

We now highlight our technical strategy for addressing the
research challenges outlined in the previous section.

A. Parallel I/O with H5Part/HDF5
The VPIC simulation writes a significant amount of data at

a user-prescribed interval. In this study, we use the data files
from a simulation of 2 trillion particles (including 1 trillion
ions and 1 trillion electrons). The simulation produces field
data and particle data. The field data include information such
as electric and magnetic field strength, and the particle data
include information about its position, momentum and energy.
The data for the ions is not stored to disk to reduce storage
requirement. Furthermore, most of the physics questions can
be answered with only information about electrons. The field
data is relatively small, on the order of tens of GB. The particle
data is much larger, on the order of tens of TB. The challenge
we need to address is to develop a convenient and efficient
storage strategy for handling such large data sets.

In the original implementation of the VPIC code each MPI
domain writes a file in binary format containing for its particle
data[20]. Each of the files has a header with the cell offsets
and the number of particles in the file. This file-per-process
(fpp) approach is able to achieve a good fraction of system I/O
bandwidth, but has a number of limitations. The first is that the
number of files at large scale becomes too large. For example,
in our largest scale test, the simulation generates 20, 000 files
per time step. Performing even a simple ls command on the
directory containing these files has significant latency. Second,
the fpp model dictates the concurrency of subsequent stages in
the analysis pipeline. Often a post-processing step is necessary
to re-factor fpp data into a format that is readable by analysis
tools.

In this work, we take the approach of writing a single global
file with a standard data format known as HDF5 [32]. More
specifically, we use a particle data extension of parallel HDF5
called H5Part. Parallel HDF5 has demonstrated competitive
I/O rates on modern computational platforms [18]. As far
as we know, we are the first to attempt to write tens of
terabytes in a single HDF5 file. The H5Part [16] extension
to HDF5 improves the ease of use in managing large particle
counts. H5Part is a veneer API for HDF5: H5Part files are
also valid HDF5 files and are compatible with other HDF5-
based interfaces and tools. By constraining the usage scenario

to particle-based simulations, H5Part is able to encapsulate
much of the complexity of implementing effective parallel
I/O in HDF5. That is, it trades off HDF5’s flexibility and
complexity in supporting arbitrary data models for ease-of-
use with a specific, particle-based data model.

Using a small set of H5Part API calls, we were able to
quickly integrate parallel HDF5 I/O into the VPIC codebase.
Our simple H5Part interface for writing VPIC particle data is
outlined in the following lines of code:
h5pf = H5PartOpenFileParallel (fname, H5PART_WRITE |

H5PART_FS_LUSTRE, MPI_COMM_WORLD);
H5PartSetStep (h5pf, step);
H5PartSetNumParticlesStrided (h5pf, np_local, 8);

H5PartWriteDataFloat32 (h5pf, "dX", Pf);
H5PartWriteDataFloat32 (h5pf, "dY", Pf+1);
H5PartWriteDataFloat32 (h5pf, "dZ", Pf+2);
H5PartWriteDataInt32 (h5pf, "i", Pi+3);
H5PartWriteDataFloat32 (h5pf, "Ux", Pf+4);
H5PartWriteDataFloat32 (h5pf, "Uy", Pf+5);
H5PartWriteDataFloat32 (h5pf, "Uz", Pf+6);
H5PartWriteDataFloat32 (h5pf, "q", Pf+7);

H5PartCloseFile (h5pf);

The H5Part interface opens the particle file and sets up the
attributes, such as the time step information and the number of
particles. The H5PartWrite· · · () calls wrap the internal HDF5
data writing calls.

The H5Part interface opens the file with MPI-IO collective
buffering and Lustre optimizations enabled. Collective buffer-
ing breaks the parallel I/O operations into two stages. The first
stage uses a subset of MPI tasks to aggregate the data into
buffers, and the aggregator tasks then write data to the I/O
servers. With this strategy, fewer nodes communicate with the
I/O nodes, which reduces contention. The Lustre-aware im-
plementation of Cray MPI-IO sets the number of aggregators
equal to the striping factor such that the stripe-sized chunks do
not require padding to achieve stripe alignment [9]. Because
of the way Lustre is designed, stripe alignment is a key factor
in achieving optimal performance.

B. Indexing/Querying with Hybrid Parallel FastQuery
In this work, we use FastQuery [8], [6], [7] to accelerate the

data analysis process of the trillion particle dataset. Here, we
briefly recap the salient features of FastQuery, and elaborate
on the new hybrid parallel implementation.

1) FastQuery: FastQuery is a parallel indexing and query-
ing system for array-based scientific data formats. It uses the
FastBit bitmap indexing technology [36] to accelerate data
selection based on arbitrary range conditions defined on the
available data values, e.g., “energy > 105 and temperature
> 106.” FastQuery has a unified plug-in interface to enable
the query functionality on varied array-based data formats.
Currently, our implementation of the interface supports a
wide range of scientific data formats including HDF5 [32],
NetCDF [33], pNetCDF [23] and ADIOS-BP [25].

The two main functions of FastQuery are indexing and
querying. Indexing builds the indexes of the data and stores
them into a single file, so it can be conveniently accessed

later for evaluating different queries. The indexing operation
contains three main steps: (1) read data values from the file,
(2) construct indexes data structure in memory, (3) write
bitmaps to the file.

Querying uses the indexes to evaluate user-specified query
conditions on data and retrieve data records satisfying the
conditions. If the necessary indexes have not been built,
FastQuery would scan through the data values to evaluate the
query. Typically, the indexes are available and the querying
process includes two main steps (1) load bitmap from file,
and (2) evaluate indexes for query.

2) Hybrid Parallel Implementation: In order to process
massive datasets, FastQuery uses parallelism across distributed
memory nodes, as well as multiple cores available on each
node. The basic strategy of the parallel FastQuery implemen-
tation is to partition a large-scale dataset into multiple fixed-
size sub-arrays and to assign the sub-arrays among processes
for indexing and querying. When constructing the indexes,
the processes build bitmaps on sub-arrays one after another,
and store them into the same file by using collective I/O calls
in high-level I/O libraries, such as HDF5. When evaluating a
query, the processes apply the query on each sub-array and
return the aggregated results.

In our previous work [8], we have shown that this parallel
strategy can be implemented using MPI alone. While this is an
effective approach, there are limitations to this flat-MPI based
approach. (1) Each MPI task needs to maintain information
about the others so it knows how to communicate with them.
As more MPI domains are used, more memory space has to
be devoted to MPI, which reduces the memory available to
the user operations [3]. (2) For operations on the same node,
efficient MPI implementations will make use of the shared
memory. However, explicitly using the shared memory in user
code is typically more efficient than going through the MPI
interface [17]. (3) It is faster to synchronize and load-balance
among the small number of threads on a computer node than
across a large number of MPI tasks.

In this work, we seek to improve FastQuery by implement-
ing a hybrid parallelism approach with MPI and Pthreads [12],
[17]. This extended implementation supports the HDF5 data
format. Our strategy is to let each MPI task create a fixed
number of threads. The MPI tasks are only responsible for
holding shared resources among threads, such as the MPI
token for inter-process communication and the memory buffer
for collective I/O, while the threads do the actual processing
tasks of creating indexes and evaluating queries.

The hybrid parallel FastQuery divides a dataset into multiple
fixed size sub-arrays, and builds the indexes of those sub-
arrays iteratively. In each iteration, one sub-array is assigned
to each thread, the indexes for the sub-arrays are collected
together and stored to the same HDF5 dataset in the index file.
In each iteration, a HDF5 collective IO call (i.e. H5Dcreate and
H5Dset extent) is required to create or extend the dataset for
storing indexes, the building process is synchronized among
MPI tasks before the indexes can be written to a file. Since
only one thread spawned by a MPI domain can participate in

a collective call, we select one thread to be the master thread,
and use it for making the collective IO calls. In other words,
in each iteration, a thread reads data and constructs indexes
independently for a separate sub-array. Next, the indexes from
all threads are collected to a shared memory buffer. At that
point the master thread can make the HDF5 collective call
along with the other MPI tasks, which will create the bitmap
dataset and write the indexes to the file.

During query processing, the hybrid parallel FastQuery
is able to load indexes from the index file and evaluate
bitmaps in-memory without involving any HDF5 collective
calls. We implement a hierarchical load balancing strategy.
At the MPI level, we use a static assignment to divide sub-
arrays to MPI domains evenly, so that no synchronization or
communication overhead is introduced among domains. Once
groups of sub-arrays are assigned to an MPI task, it becomes
a shared working pool among threads. Among the threads, we
developed a dynamic load balancing strategy that enable the
threads to request sub-arrays one at a time from the common
pool. Since a query may produce different number of hits on
a sub-array, we expect the dynamic approach to provide better
load-balancing and improve overall performance.

C. Query Driven Parallel Visualization with VisIt
We use VisIt for rendering selected output from the particle

simulation. Even though VisIt is demonstrated to operate at
scale [5], a brute force rendering of one trillion particles is
infeasible. Typical computer displays contain O(1M) pixels,
which roughly implies an overdraw factor of O(1M) if all
particles were transparently rendered. Reducing the number
of particles before rendering can be achieved in a number of
ways: a statistical down-sampling technique that preserves the
statistical characteristics of the data could be used, a ’super-
particle’ approach (wherein a single representative particle
can be rendered instead of a collection) can be used, or a
scientifically motivated query-driven criteria can be used to
select particles of interest. All three options are feasible, in the
current paper, we choose the query-driven option to first down-
select scientifically interesting particles, and then visualized
them with VisIt [31]. A novel feature that we use in this paper
is Cross-Mesh Field Evaluation (CMFE) which enables us to
correlate particle data with the underlying magnetic field and
evaluate properties such as field direction and field strength at
particle locations. We use this powerful feature to address the
scientific use cases listed in the previous section.

III. SYSTEM CONFIGURATION

In our work, the test data is produced by running VPIC on
the NERSC Cray XE6 system “Hopper.” Hopper has 6, 384
twenty-four core nodes with 32GB of memory. It employs
the Gemini interconnect with a 3D torus topology. The file
system storing our data is a Lustre parallel file system with
156 Object Storage Targets (OSTs) and a peak bandwidth of
about 35GB/s.

VPIC uses Cray’s MPI library (xt-mpt 5.1.2) and HDF5
version 1.8.8 with local modifications. The particle data is

written with H5Part version 1.6.5, along with Cray’s MPI-IO
implementation. The local modification to the HDF5 library
source code disables the truncate call, which was causing
significant overhead in closing files. We use VisIt 2.4 for our
visualization needs, and a development version of FastQuery
for all of the results reported in the next section.

IV. RESULTS

A. Parallel I/O in VPIC
The VPIC simulation uses 20, 000 MPI domains - four per

node, where each MPI domain spawns 6 OpenMP threads for
a total of 120, 000 cores in the simulation. Each MPI domain
processes ⇠ 51 million (±15%) particles. VPIC produces field
and particle data, which are periodically dumped to the file
system. The field portion of the I/O is about 80GB in size
and is not considered for the performance study. Each particle
has eight four-byte fields, and the dump for all trillion electron
particles amounts to ⇠ 30TB.

VPICBench is a parallel I/O kernel that uses the same
H5Part calls shown in Section II-A for writing VPIC particle
data. This simplified kernel contains the full data volume
generated by the code with a slightly simplified pattern.
VPICBench disables the simulation component of the VPIC
code, which enables testing without exhausting our project’s
compute allocation. The simplified pattern uses an equal
number of particles on all participating cores, whereas the
number of particles in a real VPIC run varies across cores by
a small amount. The I/O rate for VPICBench (and for VPIC)
is the total amount of data written divided by the total time in
opening, writing all the variables, and closing the file.

A parallel file system (Lustre in this case) can have a
significant impact on performance based on properties of the
file established at the time it is opened. The number of I/O
resources available (the number of OSTs) can be set as the
file’s stripe count, and the amount of data sent to one OST as
a contiguous region of the file can be set as the stripe size. We
conducted a series of tests with VPICBench ran using 8k tasks,
and varied the stripe count from 64 OSTs to the maximum
of 156. The best performance was at 144 OSTs. Similarly, a
series of tests using stripe sizes from 1MB to 1GB established
that choosing 64MB gave the best performance. All the tests
reported here use stripe count 144 and stripe size 64MB.

1) Weak scaling study: Figure 1 shows the results of a
scaling study for 1K to 128K MPI tasks. This is a weak
scaling study in that the number of particles per task is constant
at eight million. As the number of MPI tasks increases, the
I/O rate becomes greater. With fewer MPI tasks running on
a highly shared system such as Hopper, interference from
I/O activity of other jobs reduces the maximum I/O rate
could be achieved. At the scale of 128K cores, VPICBench
occupies 85% of Hopper, which reduces the interference from
other jobs sharing the I/O system. The 128K task instance
writes about 32TB of data, and Figure 1 shows that at that
scale the delivered I/O performance is about 27GB/s, which
compares favorably with the rated maximum on Hopper of
about 35GB/s.

Fig. 1. VPICBench weak scaling study: I/O performance with increasing
number of processes writing data to a HDF5 file using H5Part.

Fig. 2. The eight VPIC variables are written out in sequence, for 32TB in
the 128K task test. Transient I/O rates at the servers can exceed the rated
maximum bandwidth for Hopper. The dotted lines for “ave” indicate the actual
begin and end of the I/O.

Figure 2 shows the transient I/O rates for the largest
VPICBench test in the scaling study. In this case, writing the
32TB of data takes around 20 minutes. In the graph, time
is along the x-axis and the aggregate observed data rate at
the severs is on the y-axis. The data is gathered on Hopper
via the Lustre Monitoring Tool (LMT)[13], [34] by recording
the server I/O counters (bytes read and bytes written) every
five seconds. The difference between successive bytes written
gives a data rate for each OST and the sum of those values
(across all OSTs) for a five second interval gives the aggregate
rate observed by the servers. Note that transient values in the
graph can be well above the rated maximum bandwidth for
Hopper of 35GB/s. This is not surprising, since any sustained
test of I/O performance is going to amortize very fast transient
behavior with other, slower behavior, e.g. while files are being
opened or closed. Section IV-A-2 will return to the LMT data
while reviewing the results of the trillion particle VPIC I/O.

Historically[1], the performance of MPI-I/O collective, sin-
gle file I/O was considered inferior to a POSIX, file-per-
process I/O model due to concerns with lock contention.
Figure 2 shows that the current MPI-I/O and HDF5 libraries
can perform quite well, with no obvious penalty for lock

Fig. 3. The 120K core VPIC run showed comparable performance except
for a couple of slow servers. The slower servers lead to a small amount of
I/O continuing after the bulk had completed, and leads to the slightly wider
gaps between individual variable dumps.

management. The only odd feature in Figure 2 is that the
aggregate rate goes to zero briefly after a variable is written.
This is due to an implicit MPI collective operation in the
MPI I/O layer, an MPI Allgather(), at the beginning of each
variable’s I/O in the collective buffering algorithm.

2) Writing one trillion particles: The I/O performance of
VPICBench in the weak scaling study was encouraging, and
the VPIC case study adopted the same H5Part interface and
the same file system tuning parameters. The simulation uses
120,000 cores of hopper. The write phase for a dump produced
30TB, and Figure 3 shows the observed I/O rates.

In Figure 3, the initial spikes are due to the simulation’s
magnetic field data dump - the small file-per-process phase
that is not part of this study. After that, each peak corresponds
to writing one of the eight variables of the particle data. In
addition to providing a time series plot of the I/O, the LMT
data also gives some confidence that no other I/O intensive
activity was taking place at the same time on Hopper. All of
the I/O in the graph is accounted for by the expected data dump
volume. Figure 3 shows transient I/O rates above 35GB/s

as was the case in Figure 2. The I/O peak for each variable
is followed by a short interval of slower I/O activity, which
reduces the amortized I/O rate to about 23GB/s. Two servers
shared a failed RAID controller and had their traffic diverted
to it’s fail-over partner. The twelve affected OSTs ran 30%
slower but otherwise performed correctly. That delay shows
up as the small continuing I/O following each variable’s main
peak. Without the faulty OSTs, VPIC’s data dump with H5Part
and HDF5 will achieve the similar performance seen in the
VPICBench.

The question arose as to whether the fpp strategy would
have performed better. For comparison, a 120K core in-
stance of VPIC ran using an fpp model writing directly via
the POSIX interface. Figure 4 shows the result and also
shows two important features. First, there is no pause for
an MPI Allgather() between the variables, which gives it a
small advantage. Second, the aggregate I/O rate across all
the OSTs starts out quite high but then trails off alarmingly.

Fig. 4. A 120K core VPIC test run using a file-per-process (fpp) model does
not show the pause between variables but does exhibit a common feature
of fpp runs at scale. The files can end up non-uniformly distributed over
the OSTs. The OST with the greatest load takes the longest, slowing down
throughput.

This is partly due to the same slow OSTs already mentioned,
but is also a common feature of fpp I/O at scale[35]. The
distribution of the 20, 000 individual files among the OSTs is
not uniform. Some OSTs will be assigned significantly more
files than others. The OST with the heaviest burden will take
the longest, while lightly loaded OSTs complete their work
early. That is why the aggregate rate tends to drop towards
the end of the job. Nevertheless, the amortized, aggregate data
rate was a respectable 26GB/s. Despite this, the fpp I/O model
does have disadvantages compared to a single-file I/O model
like H5Part/HDF5. For example, with a single file, the file
system can apportion data uniformly across OSTs, but with
the fpp approach, it is very unlikely the data can be allocated
evenly across the OSTs. Furthermore, the fpp is only effective
for writing, but not for later data analyses as discussed before.

Considering the ease of use and metadata management
provided by the HDF5 and H5Part libraries, their use is well
justified in VPIC. Finally, the barrier between the I/O of each
variable in both VPIC and VPICBench is not strictly necessary,
and its removal may allow a little more concurrency in the I/O,
thereby further improving the performance.

B. Parallel Indexing/Querying

To demonstrate scalability of our indexing and querying
approach, we measured FastQuery performance on two sets of
VPIC particle data, one with 100 billion electrons and another
with one trillion electrons. The data is stored in HDF5 files,
with one file per time step. With 100 billion particles, each
HDF5 file is ⇠ 3.2TB. As mentioned earlier, with 1 trillion
particles, each HDF5 file is ⇠ 30TB. We use the smaller data
set to study the performance of building indexes and use the
larger data set to study both indexing and querying functions.
The visualization tools described in the next section use the
indexes generated in this process for accelerating analysis of
the particle data.

In our strong scaling study, we vary the number of cores
from 500 to 10,000. Given the fixed number of cores, we

TABLE I
THE TOTAL INDEXING TIME (IN SECONDS) FOR 100-BILLION PARTICLE

DATASET.

#cores 500 1,250 2,500 5,000 10,000
MPI-alone 1704s 935s 572s 423s 280s

hybrid 1660s 850s 587s 347s 256s

500 1250 2500 5000 100000

100

200

300

400

500

600

700

number of cores

tim
e

(s
ec

on
ds

)

read data(MPI,hybrid)
write bitmap(MPI,hybrid)
build index(MPI,hybrid)
sync time(MPI,hybrid)

Fig. 5. Time for indexing 100-billion particle dataset with different number
of cores.

arrange them either in an MPI-only configuration or in a hybrid
parallel configuration. The hybrid configuration launches 3
threads for each MPI process.

Based on earlier study of sub-array size to use for Fast-
Query, we have chosen the sub-array size to be ⇠10 mil-
lion [8]. We carefully choose this number so that the total
number of particles can be evenly distributed among the sub-
arrays and the sub-arrays can then be evenly divided among
the cores.

1) Strong Scaling: In this strong scaling study, the number
of cores increases but the data set of 100-billion particles is
the same. We measure the time to index 4 variables (the x, y,
and z coordinates, and the energy field), which is half of the
variables in the data file. The indexes use a 3-digit precision
binning option from the FastBit indexes. This option allows
us to answer most of the user queries without going to the
raw data while at the same time keep the index size relatively
small. The size of the resulting index file is ⇠ 1.3TB, which
is about 80% of the original data size (⇠ 1.6TB) for the
corresponding variables.

Table I summarizes the total time spent in building indexes
using 500, 1250, 2500, 5000 and 10,000 cores. As shown from

0 2000 4000 6000 8000 100000

5

10

15

20

number of cores

sp
ee

du
p

fa
ct

or

total time
read data
write index
build index

Fig. 6. The speedup factor of each indexing steps for the hybrid configuration.

TABLE II
THE TOTAL TIME (SECONDS) OF QUERYING ON 1-TRILLION PARTICLES.

#cores scan MPI-alone hybrid
250 975 10.1 10.8
500 532 8.6 5.5
1250 266 4.1 2.7

this table, the total time reduces from 30 mins to less than
5 mins as the number cores increases from 500 to 10,000.
Furthermore, the hybrid configuration shows consistent im-
provement over the MPI-alone configuration.

Figure 5 shows the breakdown of total time in building
indexes. Since the size of data, 1.6TB, is more than the size
of indexes, 1.3TB, it requires more time for reading data than
writing bitmaps. However, as shown in Figure 6, the scalability
of writing bitmaps is worse than reading data and in-memory
computation. Thus, as the number of cores increases, the write
time quickly becomes the most significant part of the total
indexing time.

While building an index, FastQuery iterates through groups
of sub-arrays. The “sync time” shown in Figure 5 measures the
delay between two consecutive iterations. This delay is caused
by the synchronization implicitly in the HDF5 collective op-
erations, but are not completely captured by the timer around
the write operation. In general, as more cores are used, there
are fewer iterations and therefore less delays to be accounted
for by this “sync time.”

From Table I, we see that the MPI-only configuration takes
more time than the hybrid configuration. From Figure 5,
we see that the in-memory computation time for the two
configurations are very close. Therefore, the main difference
must come from the I/O time. The key difference between
the two configurations in FastQuery is that the hybrid parallel
configuration consolidates the write operations into a smaller
number of cores than the MPI-only case. In general, reducing
the number of concurrent I/O calls can reduce I/O contention
and improve I/O throughput [12], [17]. Figure 6 provides
another view of the relative efficiency of the three indexing
steps by showing the speedup factors. This figure shows that
the in-memory computation time is perfectly scalable, but the
speedup factor of I/O time gradually decades toward some
I/O rate limit. With 10,000 cores, the maximum I/O rate we
achieved is around 14GB/s for read and 12GB/s for write.

2) Indexing/Querying Trillion Particles: On the larger data
set with 1 trillion electrons, we indexed the variable “Energy”
using 10,000 cores. The total time of building the index using
MPI-alone configuration is 629 seconds, while using hybrid
configuration is 511 seconds. The hybrid configuration used
about 18.8% less time than the MPI-only configuration. In
the hybrid configuration, FastQuery took 215 seconds to read
3.8TB data from the file, built indexes in 67 seconds and then
wrote the 2.6TB indexes to file in 172 seconds. The I/O rate
was 17.7GB/s for read and 15.1GB/s for write.

For measuring the time spent in querying functions, we
use a sample query of the form “Energy > 1.2.” Table II
and Figure 7 show the time needed to answer this query on

250 500 12500

2

4

6

8

10

12

number of cores

tim
e

(s
ec

on
ds

)

total time(MPI,hybrid)
read bitmap(MPI,hybrid)
computation(MPI,hybrid)
sync time(MPI,hybrid)

Fig. 7. Time for querying 1-trillion particles with different number of cores.

1 trillion particles. From the total time in Figure II, we see
that the time needed to answer the same query without index
(marked as scan) is 60 – 100 times longer than using FastBit
indexes. Without index, it took more than 4 minutes to scan
through the 3.8T data by using 1250 cores. In contrast, with
index, the query can be resolved in 10 seconds by using just
250 cores. With 1,250 cores, MPI-alone implementation took
4.7 seconds, but hybrid FastQuery only took 2.7 seconds.

Between the two configurations of FastQuery, the hybrid
option is typically better and in some cases, a lot better. The
reduction in execution time seems to be mostly due to the
reduce in time needed to perform the read operation according
to Figure 7. This agrees with our earlier observations based
on indexing time as well as those published in literature. We
use the “sync time” to indicate the average time of waiting the
last MPI task to finish in Figure 7. Because our hybrid imple-
mentation dynamically assigns sub-arrays among threads, the
load could be more evenly distributed. Thus we also observed
less synchronization time for hybrid implementation.

Overall, hybrid parallel FastQuery performs both indexing
and querying more efficiently than the put MPI implementa-
tion of FastQuery.

C. Scientific Use cases

We developed a plugin within VisIt that uses the hybrid
parallel FastQuery software for parallel evaluation of queries
on H5Part files. The plugin is capable of operating in parallel
on distributed memory nodes. Armed with this powerful
capability, we now revisit the scientific questions postulated
in Section I-B.

1) Analysis of highly energetic particles: Identification of
mechanisms leading to particle energization remains an impor-
tant unsolved problem in plasma physics. There are indications
that the energization mechanism may be different in 2D and
3D models. A critical analysis capability for identification of
acceleration mechanism is the ability to i) determine prefer-
ential acceleration direction with respect to local magnetic
field and ii) determine where energetic particles are located
and how their concentration correlates with magnetic field
structures. Specifically, an important physics result obtained in
3D magnetic reconnection simulations of the type considered
here is the formation, evolution, and interaction of so-called

1.0
0.5

0.0
-0.5

-1.0 Ux

Uz

Uy

1.0

0.5

0.0

-0.5

-1.0

-1.0

-0.5

0.0

0.5

1.0

1.880

Energy

1.735

1.590

1.445

1.300

Fig. 8. Visualization of the 1 trillion electron dataset at timestep 1905
showing all particles with Energy > 1.3 (gray). In addition all particles with
Energy > 1.5 are shown in color, with color indicating Energy. A total of
164, 856, 597 particles with Energy > 1.3 and 423, 998 particles with Energy
> 1.5. The particles appears to be accelerated preferentially along the direction
of the mean magnetic field (oriented at 45� in the x�y plane), corresponding
to formation of four jets. The distribution of energetic particles is asymmetric,
with the most energetic particles acquiring negative Uy .

-0.5

Ux

0.0U
y

#Particles

-1.0 0.0 0.5 1.0

-0.5

-1.0

0.5

1.0

0

9809

1.987e4

2.993e4

3.999e4

Fig. 9. Visualization of the 1 trillion electron dataset at timestep 1905
showing the density of all particles with Energy >1.3 (see also Figure 8).

flux ropes — twisted bundles of the magnetic field lines. Some
of the unresolved issues include the association of the energetic
particles with flux ropes, the contribution of energetic particles
to the overall current, and whether their energy predominantly
corresponds to the motion parallel to the magnetic field. We
applied the visualization tools developed in this paper in order
to address the questions posed in Section I-B.

Are the highly energetic particles preferentially accelerated
along the the magnetic field?

Figures 8 and 9 show the phase space of particles with
energies > 1.3 from the 1 trillion particle dataset. Even though
the dataset corresponds to an early time in the simulation,
these two figures clearly show that magnetic reconnection has

2.01.00.0-1.0-2.0-3.0-4.0
Uy

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

U
||

Energy

4.579
3.81

3.041.5
2.27

Fig. 10. Scatter plot showing all particles with Energy > 1.5 (see also
Figure 11) in Uy and Uk space colored by Energy. We observe a strong
positive correlation between Uy and Uk. The particles of highest Energy
appear in regions of high negative Uk (and Uy) values, indicating that the
high energy particles are aligned (i.e., move parallel) to the magnetic field.

..

-150

-100

-50

0

50

100

150

y

0
50

100
150

200
250

300
x

z

-60

-40

-20

0

20

40

60

2.0

1.0

0.0

-1.0

-2.0

U
||

Fig. 11. Plot showing all particles with Energy > 1.5. The query selects
57,740,614 out of the 114,875,956,837 particles, i.e., ⇡ 0.05% of all particles.
Color indicates Uk. We observe different particle structures with strong
positive (red) and negative (blue) Uk values.

already started. Phase space formation of reconnection gener-
ated energetic jets at 45� in the x� y plane, corresponding to
the direction of average magnetic field, is apparent, especially
in the 2D density plot in the U

x

� U

y

plane (Fig. 9). These
figures also show evidence of preferential acceleration of the
plasma in the direction parallel to the average magnetic field
as evidenced by the highly distorted distribution function in
the x�y plane in Figure 8. Another important finding evident
from the phase space figures is that energetic particles carry
significant current. These two findings, enabled for the first
time through the new analysis capabilities discussed here,
are quite encouraging and are leading us to formulate new
questions regarding the particle behavior in 3D reconnection.

In order to understand properties of the energetic particle at

0
50

100
150

200
250

300
-150

-100

-50

0

50

100

150

y

x

z

-60
-40
-20

0

20

40

60

0.5027

0.07391

0.01087

0.001598

0.000235

|J|

Fig. 12. Iso-surface plot of the positron particle density np with color
indicating the magnitude of the total current density |J |. Note the logarithmic
color scale. The blue box (indicated by the arrow) is located in the X-
line region of the simulation and illustrates the query (157.654 < x <

1652.441)&&(�165 < y < �160.025)&&(�2.5607 < z < 2.5607),
which we use in Figure 13 to study agyrotropy.

-1.5
U ,1

U
,2

0.0

-1.0 -0.5 0.0 0.5 1.0 1.5

-0.5

-1.0

0.5

1.0

Fig. 13. Particle scatter plot (black) of U?,1 vs. U?,2 of all energetic
particles (with Energy > 1.3) contained in the box in the x-line region
indicated in Figure 12. Additional iso-contours indicate the associated particle
density (blue=low density and red=high density). The complete query used
to extract the particles is defined as: (Energy > 1.3)&&(157.654 < x <

162.441)&&(�165 < y < �160.025)&&(�2.5607 < z < 2.5607). The
query results in a total of 22,812 particles. The elliptical shape of the particle
distribution is indicative of agyrotropy in the x-line region.

later timesteps, when the dynamics have evolved sufficiently
far away from the initial conditions, we considered a 100-
billion-particle simulation with equivalent physics2. We ap-
plied query based techniques to create a scatter plot of U

y

vs Uk in Fig. 10. Two important results can be immediately
deduced from the plot: i) the highest energy particles tend
to have Uk ⇠ U

y

, which indicates that they are localized in
the reconnection regions where the in-plane magnetic field
vanishes and ii) the plot is asymmetric, with the highest energy
particles having negative values of Uk, indicating that they
carry significant current in agreement with the analysis of the

2Due to a compute node failure, the trillion particle simulation did not
produce data for timesteps later than 1905. We expect to have data for later
timesteps of the trillion particle dataset available soon.

trillion particle simulation.
What is the spatial distribution of highly energetic particles?
As is illustrated by Fig. 11, energetic particles are predom-

inantly located within the current sheet, suggesting they carry
significant current. These results also suggest that the flux
ropes can confine energetic particles (as illustrated by the red
regions in Fig. 11), but more careful analysis is needed to
resolve this issue, which is beyond the scope of this paper.

2) What are the properties of particles near the recon-
nection hot-spot?: Fig. 13 shows the particle distribution
F (U?,1, U?,2) in the vicinity of an X-line. The particles
are selected in a small box, as indicated in Fig. 12. The
distribution clearly shows the agyrotropy of the distribution,
i.e. the lack of cylindrical symmetry about the local magnetic
field. Agyrotropy is an expected signature of the reconnection
site in collisionless plasma. While it has been well-documented
in simple 2D simulations, classification of agyrotropic distri-
butions in 3D simulations have been much more challenging.
While some information about agyrotropy can be recovered
from coarser-level moment computations, a direct computation
based on particle data provides richer information about the
structure of particle phase space. With these new capabilities,
we are now well poised to compute agyrotropy and other finer
characterizations of distribution functions.

To summarize, the query-based visualization techniques
presented in this paper have enabled us to explore and gain
insights from massive particle datasets for the first time.
We have verified localization behavior of energetic particles,
gained insights into relationship between the structure of
magnetic field and energetic particles, and discovered agy-
rotropic distribution of particles near the reconnection hot-spot
in 3D. Several of these phenomena have been conjectured
about in the past, but it is only by the development and
application of these new analysis capabilities that we can
unlock the scientific discoveries and insights present in these
unprecedented simulations.

V. RELATED WORK

A. Parallel I/O
High-level libraries such as Parallel netCDF (PnetCDF) [23]

and ADIOS [22], [25], [24] provide support for writing and
reading large files. PnetCDF is developed to perform parallel
I/O operations on files larger than 4GB in size. The ADIOS
library has demonstrated high I/O rates in writing large-
scale simulation data. ADIOS provides a light-weight API for
applications to modify their I/O interface and write data into
a newly introduced BP format. ADIOS also provides various
tools for converting data from BP to the standard file formats,
such as netCDF5 HDF5. While the conversion cost is linear
with respect to data sizes [24], for analyses and visualizations
that touch datasets on the order of TB the cost can be very
high. Both PnetCDF [11] and ADIOS support writing data into
subfiles to reduce the number of nodes writing data to OSTs.
To reduce the number of writers in file-per-process approach
of writing data, Karimabadi et al. [20] used a technique called
gating. This technique partially serializes I/O by controlling

the number of processes that can write data concurrently.
Filesystem-aware MPI-IO implementations, such as Cray’s
MPI library, optimize the number of aggregator nodes directly
interacting with OSTs in writing or reading data [9].

In this work, we choose to use a particle data extension
of HDF5, called H5Part, because its API conveniently match
with the application of interest. It provides good read and write
performance for the specific application while other formats
maybe efficient for write only or read only.

B. Analysis
Most analysis systems assume the whole dataset could be

stored in memory. As data sets grow in size, the analysis
operations are forced to concentrate on the most relevant data
records to reduce the memory requirement. Here we briefly
mention a few examples that integrate querying functions
with visualization and analysis [19], [29]. One of the earliest
example is the VisDB system, which combines a guided query-
formulation facility with relevance-based visualization [21].
Data items are ranked in terms of relevance to a query, and
the top quartile of most relevant results are then input to a
visualization and rendering pipeline. This approach examines
all data records in order to determine relevance, even though it
only displays the most relevant records. Another early system
is the TimeFinder system [15], which supports interactive
exploration of time-varying data sets. It provides a way to
quickly construct queries, modify parameters, and visualize
query results. However, it also needs to examine all data
records in order to answer these queries.

To speed up the selection process, there has been a number
of efforts on query-driven visualization and analysis which
make use of database indexing techniques to accelerate data
queries [31]. We have chosen to use a set of efficient bitmap
indexing techniques in FastBit [37], [38] because they have
been demonstrated to work well on scientific data [30], [27].
Rübel et al. demonstrated the use of FastBit to accelerate query
driven visualization of laser plasma accelerator simulations
containing on the order 100s of millions of particles per
timestep [27], [26]. Evaluation of queries for single files were
performed in serial in these efforts. In order to be able to
evaluate queries efficiently also for trillions of particles, we
integrated FastQuery with VisIt, enabling parallel evaluation
of queries for massive data files.

VI. CONCLUSIONS

In this paper, we have addressed data management and
analysis challenges posed by a highly scalable, plasma physics
simulation that writes one trillion particles. On the parallel
I/O front, we demonstrated state-of-the-art collective write
performance using H5Part and HDF5 to a single, shared 30TB
file. We demonstrate a write performance of 23GB/s, and
peak rates utilizing the entire system I/O bandwidth. Without
hardware and file system failures that we experienced, this I/O
rate will be even higher.

We developed and applied a hybrid parallel version of
FastQuery to index and query the trillion particle dataset. We

show strong scaling for FastQuery up to 10,000 cores, and
demonstrate indexing times of ⇡ 9 minutes and querying times
of ⇡ 3 seconds to process the trillion particle dataset.

We apply query-driven visualization to render selected par-
ticles of interest in VisIt. We apply these techniques to address
open scientific problems in plasma physics, and demonstrate
that our approach holds much promise for data-driven scien-
tific discovery for the future. The test runs of the new software
have provided strong evidence for confirming the agyrotropy
near X-line and preferential acceleration of energetic particles
along the magnetic field direction. These insights are only
possible with advanced data analysis techniques developed
here.

ACKNOWLEDGMENT

This work was supported by the Director, Office of Science,
Office of Advanced Scientific Computing Research, of the
U.S. Department of Energy under Contract No. DE-AC02-
05CH11231. This research was supported in part by National
Science Foundation under NSF grant OCI 0904734. This
research used resources of the National Energy Research
Scientific Computing Center. Simulations were also supported
by an allocation of advanced computing resources provided
the NSF at the National Institute for Computational Sciences
and by NASA (Pleiades), and the National Center for Compu-
tational Sciences at Oak Ridge National Laboratory (Jaguar).

The authors would like to thank NERSC and Cray staff
for troubleshooting I/O issues on hopper. We would also like
to thank members of the HDF Group for their advice on
HDF5 I/O optimizations, and Burlen Loring for his advice
and support.

REFERENCES

[1] K. Antypas and A. Uselton. MPI-I/O on Franklin XT4 System at
NERSC. In 52nd Cray User Group Conference, Edinburgh, UK, 2010.

[2] IPCC Fifth Assessment Report. http://en.wikipedia.org/wiki/IPCC
Fifth Assessment Report.

[3] P. Balaji, A. Chan, W. Gropp, R. Thakur, and E. L. Lusk. Non-data-
communication overheads in MPI: Analysis on blue gene/P. In A. L.
Lastovetsky, M. T. Kechadi, and J. Dongarra, editors, PVM/MPI, volume
5205 of Lecture Notes in Computer Science, pages 13–22. Springer,
2008.

[4] K. J. Bowers, B. J. Albright, L. Yin, B. Bergen, and T. J. T. Kwan.
Ultrahigh performance three-dimensional electromagnetic relativistic
kinetic plasma simulation. Physics of Plasmas, 15(5):7, 2008.

[5] H. Childs, D. Pugmire, S. Ahern, B. Whitlock, M. Howison, Prabhat,
G. H. Weber, and E. W. Bethel. Extreme scaling of production visual-
ization software on diverse architectures. IEEE Computer Graphics and
Applications, 30:22–31, 2010.

[6] J. Chou, K. Wu, and Prabhat. FastQuery: A general indexing and
querying system for scientific data. In SSDBM, pages 573–574, 2011.
http://dx.doi.org/10.1007/978-3-642-22351-8 42.

[7] J. Chou, K. Wu, and Prabhat. FastQuery: A parallel indexing system
for scientific data. In IASDS. IEEE, 2011.

[8] J. Chou, K. Wu, O. Rübel, M. Howison, J. Qiang, Prabhat, B. Austin,
E. W. Bethel, R. D. Ryne, and A. Shoshani. Parallel index and query
for large scale data analysis. In SC11, 2011.

[9] Getting Started with MPI I/O. http://docs.cray.com/books/S-2490-40/
S-2490-40.pdf.

[10] W. Daughton, V. Roytershteyn, H. Karimabadi, L. Yin, B. J. Albright,
B. Bergen, and K. J. Bowers. Role of electron physics in the develop-
ment of turbulent magnetic reconnection in collisionless plasmas. Nature
Physics, 7(7):539–542, July 2011.

[11] K. Gao, W. keng Liao, A. Nisar, A. Choudhary, R. Ross, and R. Latham.
Using subfiling to improve programming flexibility and performance of
parallel shared-file I/O. In Proceedings of the 2009 International Con-
ference on Parallel Processing, ICPP ’09, pages 470–477, Washington,
DC, USA, 2009. IEEE Computer Society.

[12] D. S. Henty. Performance of hybrid message-passing and shared-
memory parallelism for discrete element modeling. In SC’00, Wash-
ington, DC, USA, 2000. IEEE Computer Society.

[13] C. M. Herb Wartens, Jim Garlick. LMT - The Lustre Monitoring Tool.
https://github.com/chaos/lmt/wiki. Developed at Lawrence Livermore
National Lab.

[14] T. Hey, S. Tansley, and K. Tolle, editors. The Fourth Paradigm: Data-
Intensive Scientific Discovery. Microsoft, Oct. 2009.

[15] H. Hochheiser and B. Shneiderman. Visual specification of queries for
finding patterns in time-series data. In Proceedings of Discovery Science,
pages 441–446, 2001.

[16] M. Howison, A. Adelmann, E. W. Bethel, A. Gsell, B. Oswald, and
Prabhat. H5hut: A High-Performance I/O Library for Particle-Based
Simulations. In Proceedings of 2010 Workshop on Interfaces and
Abstractions for Scientific Data Storage (IASDS10), Heraklion, Crete,
Greece, Sept. 2010. LBNL-4021E.

[17] M. Howison, E. W. Bethel, and H. Childs. MPI-hybrid parallelism
for volume rendering on large, multi-core systems. In Eurographics
Symposium on Parallel Graphics and Visualization, pages 1–10, 2010.

[18] M. Howison, Q. Koziol, D. Knaak, J. Mainzer, and J. Shalf. Tuning
HDF5 for Lustre File Systems. In Proceedings of 2010 Workshop
on Interfaces and Abstractions for Scientific Data Storage (IASDS10),
Heraklion, Crete, Greece, Sept. 2010. LBNL-4803E.

[19] C. R. Johnson and J. Huang. Distribution-driven visualization of volume
data. IEEE Transactions on Visualization and Computer Graphics,
15(5):734–746, Sept. 2009.

[20] H. Karimabadi, B. Loring, A. Majumdar, and M. Tatineni. I/O strategies
for massively parallel kinetic simulations, 2010.

[21] D. Keim and H.-P. Kriegel. VisDB: Database exploration using multi-
dimensional visualization. IEEE Computer Graphics and Applications,
14(4):40–49, 1994.

[22] ADIOS. http://www.nccs.gov/user-support/center-projects/adios/.
[23] J. Li, W. keng Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp,

R. Latham, A. Siegel, B. Gallagher, and M. Zingale. Parallel netCDF:
A high-performance scientific I/O interface. In SC’03, page 39, New
York, NY, USA, 2003. ACM.

[24] J. Lofstead, F. Zheng, S. Klasky, and K. Schwan. Adaptable, metadata
rich IO methods for portable high performance IO. In Proceedings
of the 2009 IEEE International Symposium on Parallel&Distributed
Processing, IPDPS ’09, pages 1–10, Washington, DC, USA, 2009. IEEE
Computer Society.

[25] J. F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and C. Jin. Flexible
IO and integration for scientific codes through the adaptable IO system
(ADIOS). In CLADE’08, pages 15–24, New York, NY, USA, 2008.
ACM.

[26] O. Rübel, C. G. R. Geddes, E. Cormier-Michel, K. Wu, Prabhat, G. H.
Weber, D. M. Ushizima, P. Messmer, H. Hagen, B. Hamann, and
W. Bethel. Automatic beam path analysis of laser wakefield particle
acceleration data. IOP Computational Science & Discovery, 2(015005
(38pp)), November 2009.

[27] O. Rübel, Prabhat, K. Wu, H. Childs, J. Meredith, C. G. R. Geddes,
E. Cormier-Michel, S. Ahern, G. H. weber, P. Messmer, H. Hagen,
B. Hamann, and E. W. Bethel. High Performance Multivariate Visual
Data Exploration for Extemely Large Data. In SuperComputing 2008
(SC08), Austin, Texas, USA, Nov. 2008.

[28] A. Shoshani and D. Rotem, editors. Scientific Data Management:
Challenges, Technology, and Deployment. Chapman & Hall/CRC Press,
2010.

[29] G. Smith, M. Czerwinski, B. Meyers, D. Robbins, G. Robertson, and
D. S. Tan. Facetmap: A scalable search and browse visualization. IEEE
Transactions on Visualization and Computer Graphics, 12(5):797–804,
Sept. 2006.

[30] K. Stockinger, E. W. Bethel, S. Campbell, E. Dart, , and K. Wu.
Detecting Distributed Scans Using High-Performance Query-Driven Vi-
sualization. In SC ’06: Proceedings of the 2006 ACM/IEEE Conference
on High Performance Computing, Networking, Storage and Analysis.
IEEE Computer Society Press, Nov. 2006.

[31] K. Stockinger, J. Shalf, W. Bethel, and K. Wu. Query-driven visualiza-
tion of large data sets. In IEEE Visualization 2005, Minneapolis, MN,

October 23-28, 2005, page 22, 2005. http://doi.ieeecomputersociety.org/
10.1109/VIS.2005.84.

[32] The HDF Group. HDF5 user guide. http://hdf.ncsa.uiuc.edu/HDF5/doc/
H5.user.html, 2010.

[33] Unidata. The NetCDF users’ guide. http://www.unidata.ucar.edu/
software/netcdf/docs/netcdf/, 2010.

[34] A. Uselton. Deploying server-side file system monitoring at NERSC.
In Cray User Group Conference, Atlanta, GA, 2009.

[35] A. Uselton and B. Behlendorf. Visualizing I/O performance during
the BGL deployment. In 8th LCI Conference on High-Performance
Clustered Computing, South Lake Tahoe, CA, 2007.

[36] K. Wu. FastBit: an efficient indexing technology for accelerating data-
intensive science. Journal of Physics: Conference Series, 16:556–560,
2005. http://dx.doi.org/10.1088/1742-6596/16/1/077.

[37] K. Wu, S. Ahern, E. W. Bethel, J. Chen, H. Childs, E. Cormier-
Michel, C. Geddes, J. Gu, H. Hagen, B. Hamann, W. Koegler, J. Lauret,
J. Meredith, P. Messmer, E. Otoo, V. Perevoztchikov, A. Poskanzer,
Prabhat, O. Rubel, A. Shoshani, A. Sim, K. Stockinger, G. Weber, and
W.-M. Zhang. FastBit: Interactively searching massive data. In SciDAC,
2009.

[38] K. Wu, A. Shoshani, and K. Stockinger. Analyses of multi-level and
multi-component compressed bitmap indexes. ACM Transactions on
Database Systems, pages 1–52, 2010.

