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Veterans Affairs, Los Angeles, CA, United States, 4 Vatche & Tamar Manoukian Division of Digestive Diseases, Los Angeles,
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Treatment of obesity, an ongoing global epidemic, is challenging, as weight-loss efforts
require a multidisciplinary approach addressing both behavioral and biologic needs that
are not completely understood. Recent studies of the gut microbiome may provide better
insight into the condition, and ultimately serve to advance more effective therapies.
Research in this field has shifted from analyzing microbiome compositional differences
to investigating functional changes that affect disease pathophysiology and outcome.
Bacteria-derived metabolites are a way to bridge compositional changes to functional
consequences. Through the production of metabolites, such as short chain fatty acids,
tryptophan derivatives and bile acids, and interactions with peripheral and central
signaling pathways, the gut microbiome may alter the body’s metabolic and behavioral
responses to food. Here, we summarize these mechanisms driven by gut-derived
metabolites, through which the microbiome is thought to contribute to obesity, as well
as review recent investigations of interventions related to these metabolites. Limitations of
existing research, primarily due to paucity of causal studies in humans, are also discussed
in this review.

Keywords: gut, microbiome, microbiota, obesity, weight
INTRODUCTION

The obesity epidemic, which affects greater than a third of Americans (1), is a global health issue
involving 650 million adults worldwide (2). Successful treatment of obesity has historically been
difficult (3), likely from insufficient knowledge of its pathophysiology, and microbial colonizers of
the gut, which have gained recognition for their role in metabolic disease, may serve as the missing
link. Early research of the gut microbiome’s role in weight regulation has largely involved
correlational studies of microbial composition, and differences in microbiome content have been
reported among groups with varying genetic and environmental backgrounds (4, 5). Further, studies
have associated obesity with taxonomic changes of the microbiome in response to antibiotic use
(6, 7); similar investigations of the microbiome have been performed to evaluate various dietary
interventions (8–11). However, in recent studies, there has been a shift prioritizing assessment
of microbial function over composition in an effort to better guide its use in treatment of obesity.
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In this review, we summarize key and recent literature related to
mechanisms of several commonly studied metabolites involved
in microbiome-mediated pathways resulting in obesity,
including short chain fatty acids, bile acids, and tryptophan
derivatives, in obesity development (Figure 1, Table 1).
Clinical applications, as they relate to these metabolites, are
also discussed. We searched for original research articles in
PubMed and Google Scholar using combinations of the
following key words: gut microbiome, obesity, short chain fatty
acid, bile acids, tryptophan, LPS.
MECHANISM OF ACTION

Short Chain Fatty Acids
The most abundant microbial metabolites are short-chain fatty
acids (SCFAs), which are breakdown products of carbohydrates
that occur from bacterial fermentation in the gut. Numerous
studies have investigated the role of various SCFAs in mediating
the gut microbiota’s effects on metabolic syndrome. In general,
SCFAs have been associated with beneficial effects on metabolic
health. For instance, higher levels of fecal SCFAs, including
butyrate, acetate, and propionate, in humans have been
correlated with markers indicative of improved insulin
resistance, obesity and food intake (12–14).

To better understand these gut-derived metabolites, studies
have investigated the role of G protein-coupled receptors,
namely GPR43 and GPR41 (alternatively known as free fatty
acid receptors 1 and 3, respectively), which are both activated by
SCFAs (15). Kimura et al. found that mice with knockout genes
(KO) for GPR43 gained weight without a high fat diet (HFD),
while GPR43 overexpression prevented obesity despite a HFD
Frontiers in Endocrinology | www.frontiersin.org 2
(16). Results from such studies serve as evidence of the
receptor’s involvement in obesity development, which may in
part be mediated by the release of satiety hormones glucagon-like
peptide 1 (GLP-1) and peptide YY (PYY) from enteroendocrine
cells (17), free fatty acid oxidation of adipose tissue (18), and
control of energy expenditure (16). Additionally, GPR41
expression on vagal sensory neurons suggests that the receptor
may influence centrally mediated effects on normal eating
behavior, which was altered in GPR41 KO mice (19). SCFAs
may also directly communicate with the central nervous system,
as evidenced by carbon-labeled uptake by the brain of
intraperitoneally administered acetate in a PET-CT imaging
study (14).

Alternatively, SCFAs may act by inhibiting histone
deacetylase (HDAC), a crucial enzyme in DNA transcription,
given reduced HDAC activity measured in butyrate-treated
enterocytes (20). Further, reduction of weight gain with
butyrate treatment in HFD-fed mice was lost in HDAC KO
mice, highlighting the significance of this enzyme in mediating
SCFA’s effects (20). Butyrate-mediated HDAC inhibition has
been associated with increased gene expression for PYY (21), as
well as for various antioxidants and mitochondrial synthesis
(22), which reduce metabolic dysfunction. In summary, SCFA’s
favorable effects on obesity are likely channeled through
several pathways.

Of note, data supporting beneficial effects of SCFAs have been
met with some skepticism, as results from an early study of obese
mice were suggestive of greater fecal energy extraction in
association with higher levels of SCFAs (23). In subsequent
studies, higher fecal concentrations of both various and total
SCFAs have been linked to obesity (24–26), and further,
circulating levels of SCFAs have been positively associated with
FIGURE 1 | Summary diagram of bacterial metabolites and some of their mechanisms of action.
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weight (27, 28). More studies are needed to elucidate the
mechanisms and clinical effects of SCFAs.

Bile Acids
The function of bile acids (BAs) within the gut not only lies in
intestinal lipid absorption, but also in mediating the metabolic
effects of the microbiome. From cholesterol, primary BAs are
formed and subsequently conjugated in the liver; when released
into the gut, microbiota mediate deconjugation and metabolism
to secondary BAs (29). In a correlational study of microbiome
from both mice and human subjects, levels of the BAs
ursodeoxycholate (UDCA), chenodeoxycholate, and
lithocholate (LCA) were reduced in obesity (30), suggesting
beneficial effects of non-12-hydroxylated BAs. Similarly, mice
that had improvements in metabolic markers, such as weight,
after Parabacateroides distasonis administration that elevated
UDCA and LCA (31). Further, antibiotic treatment leading to
altered microbiome in mice produced both an improved
metabolic phenotypes and increased tauro-b-muricholic acid
(TBMCA) levels (32).

BA mediated outcomes on metabolic syndrome involve the
farnesoid X receptor (FXR), whose activation modulates
expression of genes regulating metabolism and BA synthesis
(33, 34). FXR antagonism by BAs such as glycine-b-muricholic
acid (Gly-MCA) and TBMCA in intestinal cells has been
associated with prevention of obesity (32, 35), with similar
effects seen from mice with intestinal FXR KO genes (36). The
Frontiers in Endocrinology | www.frontiersin.org 3
microbiome’s link to this pathway was strengthened in a study
demonstrating more obesity in conventionally raised, compared
to GF mice but no difference in weight when mice were FXR KO
(36). However, intestine-specific FXR agonists such as
fexaramine also generated favorable metabolic profiles that
were associated with BA compositional changes (37–39). These
mixed results of FXR-mediated activity are not completely
understood and require further investigation.

In addition to FXR, Takeda G-protein coupled receptor 5
(TGR5) is also essential in the BA pathway, where its agonism
and overexpression in HFD-fed mice were both linked to
metabolic improvement (40). These outcomes may result from
TGR5-stimulated release of GLP-1, and receptor activation likely
plays a role in both peripherally-mediated metabolic and
centrally-mediated eating/behavioral mechanisms influencing
obesity (40–42). Effective use of BAs in combating obesity may
need to involve both receptors, which have been shown to
produce distinct downstream effects from one another (43).

Tryptophan Derivatives
In addition to its many roles as an essential amino acid,
tryptophan also modulates the microbiome’s effects on weight
and metabolism (44). After dietary ingestion, processing by the
gut can follow one of three pathways forming either serotonin,
kynurenine (Kyn) or indole metabolites (44). The link between
tryptophan derivatives and the gut microbiome was
strengthened in several correlation studies (45), including one
TABLE 1 | Summary table of mechanisms and downstream effects of each metabolite.

Metabolite Target* Proposed Downstream Effects Effect on
Weight

Short Chain Fatty Acids (+)GPR43
(FFAR1)
(+)GPR41
(FFAR3)

• GLP-1 and PYY release, leptin mRNA expression

• Increase adipocyte oxidation (e.g., lpl, fiaf) and adipose tissue beiging

↓

(–)HDAC • Antioxidation (e.g., sod2, catalase)

• Decrease inflammation (e.g., ccl2)

• Increase mitochondrial synthesis (e.g., pgc1a)

↓

Bile Acids (–)Intestinal
FXR

• Regulate bile acid synthesis via FGF15

• Increase adipose tissue thermogenesis (e.g., ucp1, pgc1a, cox7a)

↓

(+)Intestinal
FXR

• Regulate bile acid synthesis via FGF15

• GLP-1 release

• Activate TGR-5

• Increase adipose tissue browning, insulin sensitivity, glycemic control

↓

(+)TGR5 • GLP-1 release ↓
Tryptophan Derivatives
(Indoles)

(+)AhR • Decrease inflammation (e.g., TNFa, IFg), LPS translocation and gut permeability

• Increase GLP-1 gene expression in intestines

↓

Lipopolysaccharides
(LPS)

(+)TLR2
(+)TLR4

• Increase inflammation in white adipose tissue (e.g., ccl2, TNFa) ↑

Polyunsaturated Fatty
Acids

(+)GPR40
(+)GPR120

• Decrease LPS-induced inflammation systemically and in hypothalamus (e.g., TNFa-induced inflammation,
TLR-2 and TLR-3 inhibition)

• Regulate adipogenesis (e.g., me1)

• Improve insulin sensitivity (e.g., GLUT4 translocation in adipocytes and glucose transport)

↓

July 2022 | Volume 13 |
*(+) activation of (–); inhibition of
AhR, aryl hydrocarbon receptor; ccl2, C-C motif chemokine ligand 2; cox7a, cytochrome c oxidase subumit 7a; FFAR, free fatty acid receptor; FGF15, fibroblast growth factor 15; fiaf,
fasting-induced adipocyte factor; FXR, farnesoid X receptor; GLP-1, glucagon-like peptide 1; GLUT4, glucose transporter type 4; GPR, G-protein coupled receptor; IFg, interferon gamma;
HDAC, histone deacetylase; lpl, lipoprotein lipase; me1, cytosolic malic enzyme 1; pgc1a, peroxisome proliferator-activated receptor gamma coativator-1 alpha; PYY, peptide YY; sod2,
superoxide dismutase 2; TGR, Takeda G-protein coupled receptor; TLR, toll-like receptor; TNFa, tumor necrosis factor alpha; ucp1, uncoupling protein 1.
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that associated changes in microbial composition with levels of
tryptophan-derived neurotransmitters and neurotransmitter
transporters in piglets administered antibiotics (46). Further,
the presence of spore forming bacteria were linked to higher
levels of serotonergic metabolites in mice (47). Obesity
development has also been attributed to activity of
indoleamine 2,3 dioxygenase (IDO), yielding higher levels of
kynurenine, as well as with lower circulating levels of indole
products (48–50). When mice on a HFD were either
administered indole or genetically lacked IDO, weight gain was
mitigated (48, 50).

Trypophan-derived metabolites likely exert their effects in
part through aryl hydrocarbon receptors (AhR) (33, 51), given
positive associations seen among indole metabolites, AhR
activation and improved metabolic markers. For instance, diet
induced obese (DIO) mice that had lower fecal indole derivative
concentrations also had decreased AhR activity, and several
metabolic effects (such as insulin sensitivity) were reversed
with use of an AhR agonist (52). Effects are thought to be
mediated by the microbiome, as indole metabolite levels were
altered in conventional, but not in GF, mice on HFD (53).
However, AhR antagonism was also associated with beneficial
metabolic effects in a study using both ligands antagonizing AhR
and AhR genetic deletions in mice (54); given that this
inconsistent response was thought to be mediated by Kyn
rather than indole, future studies may be needed to evaluate
differences in response from various AhR ligands.

Downstream effects of microbial tryptophan metabolism have
been correlated to the central nervous system as part of the brain-
gut axis. In trials of obese humans, indolepropionic acid (IPA)
levels inversely correlated with food addiction and magnetic
resonance imaging (MRI) derived activity in reward centers of
the brain (55), with the latter finding seen again in relation to
fecal tryptophan levels (56). In addition, central inhibitory
control positively correlated with IPA levels in obese humans;
mice with microbial transplants from obese humans with
impaired inhibitory control not only exhibited similar behavior
but also altered prefrontal cortex activity as measured by
metabolic gene expression (57). Tryptophan and its
metabolites, as part of the brain-gut axis, have gained
recognition for their integral role in obesity development.

Miscellaneous Metabolites
Metabolic influence of the gut microbiome may also involve the
immune system. In a study of rats continuously infused
lipopolysaccharide (LPS), often a virulent component of gram-
negative bacterial cell walls (58), chronic LPS exposure led to
hyperphagia and leptin resistance (59). However, virulence and
endotoxic response from LPS may vary, contingent on the
bacterium from which it is derived (60). Toll-like receptors
(TLR) may mediate these effects. Caesar et al. reported greater
weight gain and activation of LPS receptor, TLR4, from serum of
lard-fed mice, with weight preservation in mice with KO genes
for TLR adaptor molecules (61). Further, serum bacterial DNA
levels were similar between obese and nonobese mice, suggesting
a more direct role for molecular signaling than systemic bacterial
Frontiers in Endocrinology | www.frontiersin.org 4
infiltration in inducing these effects (61). TLR4 activation is
linked to increases in inflammatory markers within adipose
tissue, which in turn produces phenotypes associated with
metabolic syndrome (61).

Polyunsaturated fatty acid (PUFA)-derived metabolites have
also been linked to metabolic health. The microbiome was
implicated in transforming PUFAs to their metabolites in a
study that reported lower fecal levels of PUFA metabolites in
GF, compared to conventional, mice (62). Further, FMTs from
HFD-fed mice supplemented with a PUFA metabolite enhanced
glycemic control compared to those from mice without
supplementation (63). These gut-derived substances may act
through their activation of GPR40 and GPR120, producing
favorable outcomes such as reduction of inflammation,
lipogenesis, and glucose intolerance (64–66). Overall, results
from studies involving these metabolites have been encouraging.
CLINICAL APPLICATIONS

In this section, we discuss potential novel options for oral
treatment of obesity involving the gut microbiome, in the
context of alterations to metabolites and mechanisms discussed
in our review.

Direct Microbiome Involvement
Two of the most common classes of therapies targeted directly at
changing composition of the gut include prebiotics and
probiotics. Though outcomes from studies measuring probiotic
efficacy in treating obesity have been mixed, recent clinical trials
of Akkermansia muciniphila have shown promising results.
Obese patients who received A. muciniphila supplementation
achieved more weight loss compared to those who received
placebo, and metabolic changes in the treatment group were
associated with decrease in plasma LPS levels; however, a
difference was not seen with levels of GLP-1 (67). Mouse
organoids exposed to A. muciniphila experienced greater
modulation of genes, such as HDAC and Gpr43, than those
for Faecalibacterium prausnitzii (68), which may suggest more
efficacy of A. muiniphila use. In addition, various prebiotics,
which are fibers digested by the gut microbiome, have been
associated with changes in microbial composition (69–71), as
well as with weight and metabolic activity (70, 71). Despite some
encouraging data, no formal recommendations on use of A.
muciniphila or prebiotic formulations exist.

Polyphenols are plant metabolites often poorly absorbed in
the gut, resulting in delivery to gut microbiome for processing
and essentially functioning as prebiotics (72). Several studies of
polyphenols, such as resveratrol and various fruit extracts have
correlated levels with improved metabolic markers (73–75) and
altered microbial bile acid composition, TGR5 expression and
TLR4 activation (76, 77), indicative of microbiome-induced
metabolic changes. However, poor bioavailability has limited
its clinical applicability, and additional studies of human use are
warranted to develop effective formulations of polyphenol
ingredients (78, 79).
July 2022 | Volume 13 | Article 918923
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Indirect Microbiome Involvement
Other potential therapies are aimed at pathways involving the
gut microbiome. For example, synthetic forms of metabolites
from microbial processing have been studied in instances when
poor drug delivery restricts effective use. Clinical use of butyrate
is limited by its short half-life; instead, its prodrug, tributyrin
may provide metabol ic benefi t wi th an improved
pharmacokinetic profile (80). Additionally, Gly-MCA, bile acid
derivative, effectively inhibited intestinal FXR to reduce obesity
in mice, while resisting hydrolytic activity by bile salt hydrolase,
whose activity could hinder its use in vivo (35). Alternatively,
treatment with obeticholic acid, an FXR agonist with better
delivery compared to its less lipophilic bile acid derivative, has
been associated with improved hepatic steatosis in humans
(81, 82).

Therapeutic agents for obesity may also target associated
pathways of gut-microbial action. Use of BA sequestrants
reducing intracolonic BA levels may have downstream,
suppressive activity on FXR and has been linked to GLP-1
secretion and improved glycemic control (83). Perhaps the
most well-recognized instance of microbiome-induced pathway
modulation involves the use of GLP-1 receptor agonists, such as
semaglutide (84) whose success and widely accepted use in both
diabetes and obesity treatment is unsurprising, given the extent
of data associating GLP-1 release with healthier phenotypes. In
summary, modulations to microbial metabolites and their
complex pathways present considerable opportunities for
obesity treatment, which require further investigation.
DISCUSSION AND LIMITATIONS

As we deepen our understanding of the gut’s role in metabolism
and advance our knowledge of precision medicine, it becomes
more evident that incorporating the microbiome will be critical
to both prognostication and treatment of obesity. While recent
research has focused on characterizing function over
composition of the microbiome, an interplay between the two
inherently exists, and treatment should integrate knowledge of
both entities. For instance, we believe that microbiome-based
therapies will be an adjunct to established treatments for obesity,
as well as a tool for personalized medicine in the future. Oral
probiotic or prebiotic supplements aimed at altering the
composition and function of the microbiome, in conjunction
with dietary and lifestyle modifications, can reach separate
targets and increase the likelihood of success for weight loss.
Frontiers in Endocrinology | www.frontiersin.org 5
Furthermore, systemic and fecal concentrations of molecular
signals from the microbiome’s functional domain may serve as
biomarkers to predict outcomes, including risk of obesity,
development of metabolic syndrome, or likelihood to respond
to therapies for obesity, such as specialized diets (e.g., keto,
Mediterranean, high protein) or bariatric surgery.

While the gut microbiome holds promise in improving
treatment options for obesity, several challenges remain.
A significant proportion of data stems from studies involving
mice, which may be less accurate when applied to humans (85).
Further, trials involving human subjects may also present
difficulties. First, variations in human behavior may restrict the
ability to conduct controlled studies. For example, compliance
with an intervention such as diet or exercise may vary between
subjects and often relies on the participant’s disclosure, which
may be inaccurate. Given the impact of patient-dependent
factors, such as diet, on the gut microbiome, a wide spectrum
of baseline microbial composition and diversity likely exists,
which may affect outcomes. Additionally, unlike studies of GF
and genetically altered mice, trials involving humans have mostly
produced data suggestive of correlational, rather than
causative, relationships.

There are also limitations to the existing knowledge in the
field. Well-defined roles for specific microbes of the gut have yet
to be defined, and there are varied results in the literature. This is
also true of several molecules, such as FXR and AhR, whose
activation has been associated with both beneficial and harmful
effects on metabolic disease. We may still have limited
understanding of complex signaling pathways, which should
continue to be investigated. Further, there should be increased
efforts to evaluate and discover clinical applications of the gut
microbiome in obesity treatment.

In summary, a rapidly expanding body of research suggests
that the gut microbiome is essential in the development of
metabolic diseases, including obesity. This is likely mediated
through several gut-derived metabolites and their downstream
effects on both central and peripheral pathways, which require
further research and understanding.
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