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Transient Responses to Rapid Changes in Mean and
Variance in Spiking Models
Peyman Khorsand*, Frances Chance

Department of Neurobiology and Behavior, University of California Irvine, Irvine, California, United States of America

Abstract

The mean input and variance of the total synaptic input to a neuron can vary independently, suggesting two distinct
information channels. Here we examine the impact of rapidly varying signals, delivered via these two information conduits,
on the temporal dynamics of neuronal firing rate responses. We examine the responses of model neurons to step functions
in either the mean or the variance of the input current. Our results show that the temporal dynamics governing response
onset depends on the choice of model. Specifically, the existence of a hard threshold introduces an instantaneous
component into the response onset of a leaky-integrate-and-fire model that is not present in other models studied here.
Other response features, for example a decaying oscillatory approach to a new steady-state firing rate, appear to be more
universal among neuronal models. The decay time constant of this approach is a power-law function of noise magnitude
over a wide range of input parameters. Understanding how specific model properties underlie these response features is
important for understanding how neurons will respond to rapidly varying signals, as the temporal dynamics of the response
onset and response decay to new steady-state determine what range of signal frequencies a population of neurons can
respond to and faithfully encode.
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Introduction

Cortical neurons continuously receive input from a large

number of excitatory and inhibitory synapses [1]. This synaptic

bombardment persists even in the absence of sensory stimuli [2–4],

suggesting that it is internally generated by the brain [5,6].

Background synaptic activity introduces a high degree of

variability into cortical responses, apparent in both the irregularity

of cortical spike trains and also the high degree of subthreshold

membrane potential fluctuation [7–11].

The net synaptic current to a neuron, obtained from the

difference between excitatory and inhibitory components, may be

quite small compared to the total level of synaptic input (the sum

of these two components) if the majority of excitation is cancelled

by inhibition. In this case, although the mean input current may

be quite small, the variability introduced into the neuronal

responses can nevertheless be large. By changing excitation and

inhibition independently, the mean and variance (referred to here

as ‘‘noise’’) of the synaptic input current can be varied

independently of each other. It should be noted that although

we refer to the variance of input current as ‘‘noise’’, we do not

mean to imply that this signal has no useful function. In fact, one

purpose of this study is to further explore the consequences of

using noise, or input current variance, as a possible information

conduit to the neuron.

Although the presence of noise can limit the information

transmission capacity of a neuron or a neuronal population [10],

noise can also have a useful function in a network. For example,

uniform additive or multiplicative noise correlations in a neuronal

population can improve the coding accuracy of a population of

neurons, although limited-range correlations have a mixed effect

on population coding accuracy [12,13].

The effects of noise on firing rates of different integrate-and-fire

model neurons have been studied extensively (for examples, see

[14–21]). Noise can linearize the firing-rate curve by removing the

discontinuity at spike threshold, dampen resonance effects [14],

reducing network synchronization [22], and dynamically amplify

an embedded signal through stochastic resonance [23,24] or some

of its generalizations [25].

More recently, the possibility has been raised that noise itself

may represent a separate conduit of information in addition to the

mean input current to a neuron [26] and the consequences of

embedding information in this information channel have been

studied [18,27–29]. Interestingly, it was suggested [28] that the

noise channel is superior to the mean current channel for the fast,

faithful transmission of signals. Neuronal response dynamics,

however, are strongly influenced by the dynamics of action

potential generation as well as noise parameters [30,31].

In this study we examine the temporal dynamics of neuronal

responses to sudden changes in either the mean or variance (noise)

of the input current. For this study, we divide the firing response

into two stages, the ‘‘response onset’’, essentially a measure of how

quickly the model neuron’s firing rate reacts to a change in input,

and the ‘‘decaying response’’, a measure of how quickly the firing

rate stabilizes to its new steady-state after a sudden change (this

division is introduced mainly for clarity of presentation, as there is

no true absolute division between these two stages). We find that

the temporal dynamics of the response onset may be predicted
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based on the underlying membrane potential distribution. For this

analysis, we focus primarily on integrate-and-fire models to take

advantage of their mathematical tractability, but we also examine

a more biologically-realistic conductance-based model. The

response onset dynamics of each model differ depending on the

choice of model as well as the noise parameters (these findings are

in agreement with previous findings [30,31]). We find that the

decaying response, on the other hand, is well fit by an

exponentially decaying sinusoidal function for all models studied

here. Interestingly, the time constant of this decay has a power-law

relation with input noise over a wide range of parameters.

Methods

In this study, we primarily examined integrate-and-fire neurons,

a type of single-compartment neuron model. The dynamics of the

membrane potential, V(t), is governed by

Cm
d

dt
V tð Þ~Y Vð ÞzI tð Þ, ð1Þ

where I(t) is the total input current, Cm is the total membrane

capacitance, and Y(V) is a model-dependent function of

membrane potential (discussed later in this section). In this study

we focus on three well-known integrate-and-fire models, the leaky

integrate-and-fire (LIF) model, the quadratic integrate-and-fire

(QIF) model [32,33], and the exponential integrate-and-fire (EIF)

model [30].

I(t) is the sum of two components, an external component, Iext,

analogous to an external current injected through a recording

electrode, and a synaptic component, Isyn, designed to approxi-

mate current arising from in vivo synaptic input [34]. Isyn is the sum

of a Gaussian white noise process with variance, s, and a mean

current, Im, filtered through a linear filter with time constant ts,

ts
d

dt
Isyn tð Þ~{Isyn tð ÞzIm tð Þzs tð Þg tð Þ, ð2Þ

where the time averages Æg(t)æ = 0 and Æg(t)g(t9)æ = d(t2t9), and ts is

the synaptic time constant. In our study, the synaptic time constant

varied from 0 to 20 ms, as noted. Im and s were adjusted so that

when comparing behavior of different models, the mean firing rate

and decay time (the time it takes for the firing rate to reach steady-

state after a change in input, see Results) were comparable across

models. Iext comprises the input signal, either a step in mean or

variance, and does not pass through the synaptic filter (see Results).

Due to existence of the noise component in the input current,

the time-dependence of an individual neuron’s membrane

potential is not deterministic. As a result, the membrane potential

is described by a probability distribution, P(V,I,t)DVDI, that

describes the probability of finding the membrane potential in a

range of [V,V+DV] when input current is in a range [I,I+DI] at

time t. The probability flow vector J(V,I,t) is a measure of the net

probability flux in (V,I) space. The probability distribution and

probability flow are linked through a conservation/continuity

equation known as the Fokker-Planck (FP) equation (see Text S1

for more details).

The FP equation connects any inhomogeneity of the probability

flow, J(V,I,t), in configuration space to the change in the local

probability distribution over time:

L
Lt

P V,I,tð Þz L
LV

JV V,I,tð Þz L
LI

JI V,I,tð Þ~0: ð3Þ

In the above equation, JV(V,I,t) and JI(V,I,t) are different

components of the probability flow vector. The boundary

conditions imposed on the Fokker-Planck equation, as well as

the Y(V) term, are model-dependent. For each model, the mean

firing rate is equal to the total probability flow across the spike-

threshold (defined by V = Vth).

Leaky integrate-and-fire (LIF) model
In the LIF model, YLIF(V) is a linear function of membrane

potential,

YLIF Vð Þ~gL {VzVrestð Þ, ð4Þ

where gL is the membrane conductance of the model. The resting

membrane potential, Vrest = 274 mV, sets V in the absence of any

input current. If V depolarizes above a threshold potential,

Vth = 254 mV, a spike is instantaneously generated and the

membrane potential is set to the reset potential, Vreset = 280 mV.

For large Im, the LIF firing rate asymptotically approaches a linear

dependence on input current. In some situations, the firing rate of

the LIF model can be calculated analytically [19].

Quadratic integrate-and-fire (QIF) model
As its name indicates, YQIF(V) depends quadratically on the

membrane potential in the QIF model:

YQIF Vð Þ~ gL

2D
V{V0ð Þ2{IT: ð5Þ

IT is the minimum current required to fire the neuron.

D= Vth2Vreset, determines the onset of spike generation and is

inversely proportional to the curvature of YQIF(V) at its minimum,

V0 [30]. In our simulations, V0 = Vrest to match the peak of the

membrane potential probability distribution (in the subthreshold

regime) to that of the LIF model. The rate of membrane potential

change increases with the square of its distance from the resting

potential. An action potential occurs when the membrane

potential diverges to positive infinity (the dynamics of the model

allow this to occur in a finite time interval), after which the

membrane potential is reset to negative infinity (although see

General Notes on Simulating IF Models). Other parameters were

adjusted to make the steady-state firing rate curve of the QIF

model similar to the LIF model. The minimum current required to

drive the model to fire, IT = gL(Vth2Vrest), was chosen to match

the threshold current of the LIF model.

In the absence of noise (and provided that there is sufficient

input current to drive the neuron), the firing rate of the model

varies as the square root of the mean input current. This firing

behavior matches the observed near-threshold behavior of all type

I neurons. The QIF model can be mapped to the much-studied h-

models [33] with a simple transformation [35].

Exponential integrate-and-fire (EIF) model
For the EIF model, first proposed by Fourcaud-Trocmé et al.

[30], YEIF(V) consists of a linear and an exponential term,

YEIF Vð Þ~gL {VzV0ð ÞzgLDexp
V{VT

D

� �
: ð6Þ

As with the QIF model, the parameter D= (Vth2Vreset) is

important for determining action potential onset. Its value was

chosen to match the asymptotic steady-state firing rates (for large

input current) of the LIF model. In the large V limit, YEIF(V)

Responses to Rapid Input Steps
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grows superlinearly, causing V to diverge to positive infinity after

sufficient depolarization. Also as the QIF model, the divergence of

the membrane potential represents an action potential, but V is

reset to Vreset after an action potential. We set VT = 2Vth2Vreset to

match the threshold input current (in the absence of noise) to that

of the LIF model. Also, V0 = 2Vrest so that in the absence of any

additional current or noise, the subthreshold behavior of the EIF

model is similar to the LIF model.

In contrast to the QIF model, the firing rate of the EIF is

approximately linear for large input (the precise dependence is Im/

log(Im)).

General notes for simulating IF models
Model neurons were simulated using a fourth-order Runge-

Kutta method. For the purposes of this study, firing rate was

measured as the population firing rate of 105 to 106 identical

neurons. Iext and Im were identical for each neuron in the

population, but the noise component was random and different for

each neuron.

When possible, we matched the parameters of the integrate-

and-fire models. The membrane time constant, tm = 20 ms, and

the membrane conductance, gL, are equal across all integrate-and-

fire models. Vrest (for the LIF model) and V0 (for QIF and EIF

models) were set equal to each other so that the locations of

membrane-potential probability distribution peaks (in the sub-

threshold regime) for different integrate-and-fire models were

matched. As already noted, all other parameters were chosen to

make the firing rate curves of the model as similar as possible. As a

result, the models require identical threshold current for spiking,

and the asymptotic dependence of firing rate on constant input

current is the same for the EIF and LIF models (up to a

logarithmic factor).

The membrane potential divergence (spiking mechanism) for

the QIF and EIF models cannot be achieved numerically because

it involves infinitely large potentials. Instead, we defined a large

upper bound potential for the EIF model and a large upper and

lower bound for the QIF model. The dynamics outside these

boundaries, where the effect of noise is negligible, was replaced

using approximate analytical expressions [30]. The firing rate is

calculated by combining these numerical and analytical results.

Conductance-Based Models
For a more biologically-realistic model, we also studied a

conductance-based model proposed by Connor et al. [36]. The

total membrane current, I, consists of four dynamical components

in addition to Isyn and Iext:

I~ILzIKzINazIAzIextzIsyn, ð7Þ

IL~�ggL V{ELð Þ,

IK~�ggKn4 V{EKð Þ,

INa~�ggNam3h V{ENað Þ,

IA~�ggAa3b V{EAð Þ,

where EL, EK, ENa, EA and gL, gK, gNa, gA are the reversal

potentials and maximal conductances of a membrane leak

conductance, a delayed-rectifier potassium conductance, a fast

transient sodium conductance, and a transient A-type potassium

conductance, respectively. The dynamics of these conductances is

described by five gating variables: n, m, h, a, and b. These gating

variables, xj = (n, m, h, a, b), all satisfy a simple first-order

differential equation

tj
d

dt
xj~{xjzxj

? Vð Þ: ð8Þ

More details about this model and its parameters can be found in

Connor et al. [36]. In order to study the firing rate dynamics with

fine time resolution, it was necessary to choose a clear-cut

definition for when an action potential fires. Unless otherwise

specified, we used a spike detection threshold of 20 mV. Choosing

a different detection threshold did not affect our results (not

shown) because of the rapidness of sodium activation.

Results

We seek to examine the temporal dynamics of firing responses

to input signals embedded in either the mean or the variance

(referred to here as ‘‘noise’’) of the input current. Common

methods of quantitatively studying signal transmission include

examining the firing-rate response of neurons to step functions in

their inputs [28,37] and measuring the modulation coefficients,

first harmonics in output Fourier component of the firing rate

when driven by oscillating input [18,30,31]. We employ the

former by introducing an external injected current, Iext, and

studying the firing responses of neuron models to steps in the mean

and in the variance (noise) of Iext. Like Isyn, Iext is the sum of a

mean current and a Gaussian white noise (see Methods). However,

Iext does not pass through the synaptic filter and thus is unaffected

by ts (the synaptic time constant – see Methods). We chose these

input signals for simplicity of analysis and also because

understanding the firing responses to these inputs lays the

foundation for understanding IF model responses to more

complicated, fast-varying input signals.

We examine two basic features of IF model responses to steps in

input signals: the ‘‘response onset’’ and subsequent ‘‘decaying

response’’. Understanding what factors modulate the ‘‘response

onset’’ provides insight into how quickly the firing rate of a neuron

or a population of neurons can react to time-varying input. Any

components in the input that vary faster than the time scale of the

response onset will be suppressed in the neuronal firing response.

The ‘‘decaying response’’, on the other hand, describes the

approach of the neuronal firing rate to a new steady-state value.

This response component is a measure of how quickly a network

‘‘forgets’’ a change in input signal. Any signal that varies at time

scales slower than the population response decay time will be

reflected faithfully in the population firing rate.

Response Onset to Step Functions
Leaky integrate-and-fire model response onset. Because

YLIF(V) is linear for the leaky integrate-and-fire (LIF) model (see

Methods), the 2-dimensional Fokker-Planck (FP) equation can be

reduced to an effective 1-dimensional Fokker-Planck (FP) equation

[38] for P(V,t) = # dI P(V,I,t) and

L
Lt

P V,tð Þ~{
L

LV
J V,tð Þ, ð9Þ

where P is the probability distribution of the membrane potential

Responses to Rapid Input Steps

PLoS ONE | www.plosone.org 3 November 2008 | Volume 3 | Issue 11 | e3786



(see Methods). The above equation explicitly can be written as,

L
Lt

P~{
1

tm

L
LV

{VzVrestz
I

gL

� �
P

� �

z
s2

2tm tmztsð Þ
L2

LV2
P:

ð10Þ

where the probability vector J(V,t) = # dI JI(V,I,t). The membrane

conductance of the model is referred to as gL and the membrane

time constant, tm. I is the mean input current to the neuron,

Im+ÆIextæ. The synaptic input current consists of Im, the mean, and

a Gaussian white noise process with variance s2, filtered through a

linear filter with time constant ts. The LIF model mean firing rate,

n(t), in this dimensionally reduced form, is equal to boundary value

J at spike threshold, J(Vth,t). For the LIF model, the probability

flow can be written as

J~
1

tm
{VzVrestz

I

gL

� �
P

� �
{

s2

2tm tmztsð Þ
L

LV
P, ð11Þ

where the first and the second terms on the right hand side are

called the drift and diffusion terms, respectively (see Text S1 for

more information).

The top two panels of Figure 1 display the membrane potential

distribution for a population of LIF neurons for ts of 0 ms (Fig. 1A)

and 5 ms (Fig. 1B). When ts is 5 ms, P(Vth) is greater than zero

(Fig. 1B). In fact, P(Vth) is a monotonically increasing function of ts

that vanishes in the limit of tsR0 (also see Fig. 1C and Fig. 1D).

The direct contribution of the mean current to firing rate comes

through a coupling with the value of the probability distribution at

threshold, P(Vth,t), in the drift term [19,28,39]. As a result of this

coupling, a jump in mean input current, dI, causes an

instantaneous jump in the firing rate of the LIF model, dIn,

dIn~dI
I

gLtm
P

� �
Vth

: ð12Þ

Figure 1C and 1D demonstrate how P(Vth) varies as a function of

ts and mean input current for low (Fig. 1C) and high (Fig. 1D)

noise conditions. The peaks in P(Vth) correspond to case where Im

is just below the value required to fire the neuron and reflect the

hypersensitivity of the firing rate responses at this point to any

changes in input. As would be expected, this peak becomes less

pronounced and the firing response less sensitive to input

parameters as the noise magnitude increases (compare Fig. 1C

for lower noise with Fig. 1D for higher noise). In Figure 1 and for

the rest of this study, mean input is expressed in mV, the

depolarization that results from the input current.

The trends demonstrated in this figure suggest that a

comparably bigger instantaneous response to a mean current

jump will be evoked for larger values of ts. In the top two panels of

Figure 2, we compare the firing rate of a population of LIF

neurons in response to a jump in mean input current for ts = 0 ms

(Fig. 2A) and ts = 5 ms (Fig. 2B). In Figure 2B, the LIF response to

a step in mean input current contains a significant instantaneous

component that is not present in Figure 2A.

A jump in mean current pushes the peak of the probability

distribution towards spike threshold, instantaneously increasing

the probability flow at threshold and inducing an instantaneous

jump in firing rate. However, when ts is very small (for example

see Fig. 2A, where ts = 0 ms), the total firing rate is dominated by

the diffusive part of the probability flow (both the diffusive and the

drift parts of the probability flow depend on Im, see Text S1), and

the resulting instantaneous jump in firing rate, dIn, is negligible

compared to the final change in firing rate after the probability

distribution reaches its new steady state. Because of the dominance

of the diffusive component of probability flow, the firing rate of the

LIF model to a small jump in mean current approaches its final

steady-state from below (see Fig. 2). However, if the noise level is

very low or the synaptic time constant is very large, the response

onset will overshoot the final steady-state firing rate (discussed

later). At steady-state, the LIF neuron acts like a nonlinear

integrator in that its firing rate, n( Im,s), is primarily determined

by the mean input current and only weakly by noise magnitude.

A small jump in noise amplitude, ds, also results in an

instantaneous jump in firing rate, dsn,

dsn~ds
s

tm tmztsð Þ {
L

LV
P

� �� �
Vth

: ð13Þ

The direct contribution of noise to the firing rate response depends

on the first derivative of the probability distribution at threshold,

2hP(Vth) as it appears in the diffusion term of the probability flow

Figure 1. Membrane potential profile of a population of LIF
neurons within a finite interval of time. A and B) Membrane
potential probability distributions with (A) ts = 0 ms or (B) ts = 5 ms. Im
was adjusted to that the overall firing rate was 20 Hz. The variance (s)
of the noise was 640 mV2-ms. In (A), the nonzero value of P(V) at V = Vth

arises from the finite time steps that we use by necessity in our
simulations. C and D) The value of the probability distribution at spike
threshold, P(Vth), as a function of Im and ts under (C) low noise and (D)
high noise conditions. E and F) Absolute value of the first derivative of
the probability distribution at threshold, |hP(Vth)|. In the low noise
regime the variance of the synaptic component was 160 mV2-ms and in
the high noise regime it was 1440 mV2-ms. (Input is given in mV, the
resulting membrane potential depolarization).
doi:10.1371/journal.pone.0003786.g001

Responses to Rapid Input Steps
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(see eq. 11). The behavior of 2hP(Vth) determines the response to

a step in noise [28]. Figures 1E and 1F show how 2hP(Vth) varies

as a function of ts and Im. Comparison of Figures 1E and 1F with

Figures 1C and 1D demonstrates that the dependence of 2hP(Vth)

on ts is more complex than for P(Vth). As before, the peaks in the

plots correspond to the condition in which the neuron is just below

firing threshold and extremely sensitive to changes in input. In the

sub-threshold regime, increasing ts causes an increase in the

magnitude of 2hP(Vth). In the superthreshold regime, however,

there is a range in which 2hP(Vth) decreases with increases in ts.

This range corresponds to the situation in which the mean current

is far above threshold. Because this trend only occurs for a very

small set of parameters that do not correspond to a biologically-

realistic situation, we did not investigate it further.

Figures 2C and 2D show firing rates in response to a step in

noise for relatively noisy conditions near spike-threshold. Because

2hVP is coupled to the magnitude of the noise, s, the response

onset to a jump in noise is always associated with an instantaneous

increase in firing rate that ‘‘overshoots’’ the final steady-state

value. Examples of this ‘‘overshoot’’ behavior can be seen in

Figures 2C and 2D. As stated, in this regime increasing ts always

causes an increase in the magnitude of 2hP(Vth), enhancing the

magnitude of the overshoot. The increase in noise magnitude

eventually acts to flatten the probability distribution, decreasing

the absolute value of 2hVP at firing threshold. The net increase in

steady-state firing may thus be relatively small.

Our results demonstrate that sudden small changes in input

current will evoke different firing rate changes, dIn and dsn,

depending on whether the change is in the mean, dI, or the variance,

ds. Although in this study we focus on using equations (12) and (13)

to connect jumps in input to the firing rate behavior during response

onset, these equations hold for other patterns of time-varying input.

QIF and EIF integrate-and-fire model response

onset. Whereas the firing rate of the LIF model is equal to

the probability flow at firing threshold, the mean firing rate of the

QIF model is equal to the probability flow at infinity. The

probability distribution of the QIF model is shown in Figure 3A

(Figure 3B is the probability distribution of the EIF model,

discussed next). As described previously, the probability

distribution in this model decays exponentially for depolarized

values of membrane potential. As a result, only a negligible

fraction of the population is near threshold at any given time.

(Note that for both QIF and EIF models, the dynamics are such

that neurons approach infinity extremely rapidly. Thus firing can

occur even though such a small population of neurons are near

threshold). In the large V limit, there is no direct coupling between

the probability flow and the mean current or noise,

n tð Þ~limV??J V,tð Þ& 1

tm
limV??YQIF Vð ÞP V,tð Þ

~
gL

2tmD
limV??V2P V,tð Þ:

ð14Þ

As a result, the QIF model response to a jump in either mean

input current or noise does not contain an instantaneous

component. Figure 4 displays examples of QIF responses to

jumps in either mean (Fig. 4A and B) or noise (Fig. 4C and D). As

for the LIF neuron, the level of noise and the size of the synaptic

time constant affect whether the firing rate smoothly approaches

the final steady-state value from below or overshoots its value after

a step of input current. Also as the LIF neuron, a step in noise

results in a transient overshoot of the final firing rate, although this

overshoot is not instantaneous. The most significant difference

between the response onset of the LIF and the QIF model is the

lack of an instantaneous component for the QIF response. This

difference arises primarily because the QIF model does not include

a hard spike threshold.

Similar to the QIF model, the response onset of the EIF model

also does not contain an instantaneous component. The

probability distribution of the EIF model is given in Figure 3B.

The EIF probability distribution function dies off as an

exponential of an exponential at depolarized values of V. As with

the QIF model, the firing rate depends only indirectly on input

current variables because of the low probability distribution near

spike threshold. As a result, there is no instantaneous component

in the response onset to step functions of either mean current

(Fig. 5, A and B) or noise (Fig. 5, C and D). Also as the QIF model,

Figure 2. LIF neuron firing rates in response to steps in mean
and noise. Each panel is the firing rate of an LIF neuron in response to
A) a step in mean input current with ts = 0 ms, B) a step in mean input
current with ts = 5 ms, C) a step in input current noise with ts = 0 ms, or
D) a step in input current noise with ts = 5 ms. In (A) there exists a small
instantaneous jump that arises because of the finite time steps used in
our simulations. For panels (A–C), the variance of the synaptic
component was 1440 mV2-ms (prior to the input step). In (D), the
variance of the synaptic component was 1000 mV2-ms and the variance
of the external input (prior to the step) was 40 mV2-ms.
doi:10.1371/journal.pone.0003786.g002

Figure 3. Membrane potential distributions of QIF and EIF
models. A) Probability distribution of the QIF model membrane
potential. B) Probability distribution of the EIF model. For both panels,
ts = 0 ms and the variance of synaptic component was 9000 mV2-ms,
resulting in an average firing rate of 20 Hz.
doi:10.1371/journal.pone.0003786.g003
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the presence of an overshoot of the final steady-state firing rate

depends on the level of noise and size of synaptic time constant.

Such an overshoot is clearly visible in Figure 5C and 5D. There is

virtually no overshoot visible in Figures 5A and 5B because the

overshoot of the EIF model dies off faster than that of the QIF

model for the same level of noise variance (see Decaying Response

to Step Function). In the limit of DR0, the EIF model turns into

the LIF model, and in this limit, the overshooting component

becomes equivalent to the instantaneous response onset of the LIF

model.

Conductance-based models response onset. Previous

work and the results discussed in the previous sections show that

the action potential threshold mechanism appears to play a critical

role in the response onset [27]. For this reason we examined the

response onset in a more biologically-realistic conductance-based

single-compartment neuron model [36] (also see Methods). In the

absence of noise, the dynamics of the conductance-based model

(when it is firing) forces it through a closed loop trajectory (due to

the existence of a limit cycle attractor) in its D-dimensional

configuration space. With the addition of noise, this trajectory

widens to a D-dimensional closed tube [15], although for a realistic

noise magnitude, the trajectory is almost a 1-dimensional loop in

configuration space. Because of this, we may reduce the

probability distribution to a two-dimensional subspace of

configuration space and still access sufficient information to

understand the behavior of the model. We have chosen P(V,n)

for this purpose, where n is the potassium channel gating variable

(see Methods).

The probability distribution of the conductance-based model,

while firing, is plotted in this reduced representation in Figure 6A.

The bulk of the probability distribution is located at subthreshold

membrane potentials (left-rear in Fig. 6A). During an action

potential, the response trajectory travels counter-clockwise in the

figure. During the depolarizing phase of an action potential, the

neuron travels forward and to the right on the figure, representing

depolarization of the membrane potential and activation of

voltage-gated potassium channels. During the repolarization phase

of the action potential, the neuron hyperpolarizes and potassium

channel activation decreases as the neuron travels into the left-rear

of the figure.

Because the spike-generation mechanism of the conductance-

based model is very fast relative to the temporal dynamics of the

subthreshold membrane potential, only a small subpopulation of

neurons exists in the action potential regime at any time, including

the regime near spike-detection threshold. As with the QIF and

EIF models, the response onset following a step in mean or noise

input does not have an instantaneous component (see Fig. 6B),

although (also as with QIF and EIF model neurons), a step in noise

causes a sudden increase in probability flow towards higher

membrane potentials that results in a fast transient (see Fig. 6C).

However, unlike the LIF model, this transient response, although

rapid, is not instantaneous. The rise time of the membrane

potential during the upward phase of the action potential is very

brief relative to the repolarization time. This can be seen directly

by inspecting the voltage trace of an individual spike (not shown)

or by comparing the size of the probability distribution during the

upward phase of the action potential (foreground) with the

probability distribution during the downward phase (background).

The fast rise time is on the order of a few milliseconds, which is

exactly the time to peak in the firing rate transient that occurs after

the jump in noise.

Decaying Response to Step Function
A general feature of firing responses to step functions in either

mean or variance displayed by all models in this study is a

decaying oscillation towards the new firing rate value. Any jump in

input creates a disparity between the probability distribution

Figure 4. QIF model firing rates in response to a jump in mean
input current or noise. A) Response to a step of mean input current
with ts = 0 ms. B) Response to a current step with ts = 5 ms. C) Response
to a step in noise for ts = 0 ms. D) Response to a step in noise for
ts = 5 ms. For (A) and (B), the variance of synaptic component was
36000 mV2-ms. For (C) and (D), the variance of synaptic component
(prior to the noise step) was 4000 mV2-ms.
doi:10.1371/journal.pone.0003786.g004

Figure 5. EIF model firing rates in response to a jump in mean
input current or noise. A) Response to a current step with ts = 0 ms.
B) Response to a current step with ts = 5 ms. C) Response to a step in
noise for ts = 0 ms. D) Response to a step in noise for ts = 5 ms. As in
Fig. 4, for panels (A) and (B), the variance of synaptic component was
36000 mV2-ms. For (C) and (D), the variance of the synaptic component
(prior to the noise step) was 4000 mV2-ms.
doi:10.1371/journal.pone.0003786.g005
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profile (the steady-state solution immediately before the jump) and

the new steady-state solution. For a population of neurons, this

initial imbalance has a synchronizing effect and creates oscillations

in the firing rate across the population [16]. This synchronized

firing arises because of the simultaneous change in input across the

population and not through any coupling between neurons in the

population. The period of the oscillations is determined by the

final firing rate because it is directly related to the average

interspike interval of the firing response of any one neuron in the

population.

The noisy component of the input current eventually cancels

the mismatch between the steady-state probability profiles before

and after the input step by allowing the potential distribution to

asymptotically approach the new steady-state distribution. The

higher the magnitude of the noise, the faster the firing rate relaxes

to its final steady firing rate. For relatively small jumps in input

current parameters, it is possible to asymptotically fit the firing rate

with only one decaying component,

n tð Þ~n?{Dnsin vtzwð Þexp {
t

tdecay

� �
, ð15Þ

where tdecay describes the time scale of relaxation. The thin black

lines in Figures 7, 8, and 9 are the fits of such oscillating, decaying

functions. These figures demonstrate the firing-rate response (grey

Figure 6. Membrane potential distribution of the conductance-
based model. A) Probability distribution of the conductance-based
model, plotted against membrane potential (V) and the potassium
gating variable (n). The variance of the synaptic component was
1000 mV2-ms. B) Firing rate of the conductance-based model in
response to a step of input current. The synaptic time constant, ts,
was 0 ms. The variance of synaptic component was 4000 mV2-ms. C)
Firing rate of the conductance-based model in response to a step of
noise, with ts = 0 ms. The variance of synaptic component (prior to the
noise step) was 2250 mV2-ms.
doi:10.1371/journal.pone.0003786.g006

Figure 7. LIF oscillating response to jumps in mean input
current and noise. For the top panels, the jumps in firing rate were
driven by steps in mean input current. For the bottom panels, the
model neurons are responding to steps in noise. In panels (A) and (C),
ts = 0 ms and the variance of synaptic component was 10 mV2-ms. In
panels (B) and (D), ts = 5 ms. Prior to the step in noise, the variance of
synaptic component was 90 mV2-ms in (C) and 40 mV2-ms for the
variance in synaptic component and 10 mV2-ms for the external input
variance in (D).
doi:10.1371/journal.pone.0003786.g007

Figure 8. Oscillatory QIF responses to jumps in mean input
current and noise. The top panels are QIF firing rates in response to
jumps in mean input current and the bottom panels are QIF firing rates
in response to jumps in noise. For panels (A) and (C), ts = 0 ms. For
panels (B) and (D), ts = 5 ms. The variance in synaptic component was
4000 mV2-ms for (A) and (B), or 2250 mV2-ms prior to the step in noise
for (C) and (D).
doi:10.1371/journal.pone.0003786.g008
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lines) of the LIF, QIF, and EIF models, respectively, to jumps in

input with lower levels of noise than in Figures 2, 4, and 5 which

enhances the oscillations. Because of the relatively low levels of

noise, the firing rate responses in Figures 7, 8, and 9 overshoot the

final steady-state firing rate.

The firing-rate dynamics of our models can be understood by

studying the Fokker-Planck equation that governs the dynamics of

the probability distribution, P(V,t). The Fokker-Planck operator

LFP explicitly depends on the input-current mean and variance.

The spectrum of the FP operator, l0(t), l1(t), … , defines a

hierarchy of time scales. For time scales Dt that are much larger

than 1/|Re(l2(t))| the dynamics of FP equation can be replaced

by a simple oscillator. In particular, the firing rate of our noisy

population is the real part of n(t) in the following first-order

differential equation

d

dt
n tð Þ&l1 tð Þ n tð Þ{ 1

2p
Im l1 tð Þð Þ½ �

� �
: ð16Þ

The asymptotically decaying oscillatory behavior after a jump in

input parameters is a general solution to this equation. The final

firing rate is proportional to the imaginary part of l1(t) while the

decay time constant is related to the inverse of the real part of l1(t).

Interestingly, the relationship between tdecay and noise magni-

tude follows a power law for a large range of parameters

tdecay!
1

s2
: ð17Þ

As shown in Figure 10, this power-law relation holds across all IF

models in the limit of small noise magnitudes. This relationship

holds whether the input jump is in mean (open squares in

Figures 10A, 10B, and 10C are for the LIF, QIF, and EIF models,

respectively) or noise (demonstrated for the QIF model in Fig. 10B,

filled circles). The relationship between tdecay and noise magnitude

can be understood through a perturbative calculation of the first

non-zero eigenvalue of the Fokker-Planck equation for small

Figure 9. EIF oscillatory responses to jumps in mean input
current and noise. The top panels of EIF firing rates in response to
jumps in mean input current and the bottom panels are EIF firing rates
in response to jumps in noise. As in figures 7 and 8, for panels (A) and
(C), ts = 0 ms, and for panels (B) and (D), ts = 5 ms. As in Fig. 8, noise
variance was 4000 mV2-ms for (A) and (B), or 2250 mV2-ms prior to the
step in noise for (C) and (D).
doi:10.1371/journal.pone.0003786.g009

Figure 10. Oscillation decay time constants for the integrate-
and-fire models vary as power functions of noise. LIF tdecay (A),
QIF tdecay (B), and EIF tdecay (C) are given as functions of final noise
magnitude (noise level after the jump in noise). For the QIF model (B),
the decay time constants measured from responses to a jump in mean
are given by empty squares and the decay time constant measured
from responses to jumps in noise are given by filled circles. t0 = 1 ms
and s0

2 = 0.1 mV2-ms.
doi:10.1371/journal.pone.0003786.g010
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magnitudes of noise. We can break the Fokker-Planck operator

LFP(I,s) into a noise-independent component and a noise-

dependent component, i.e. L = L0+s2L1. The appearance of the

multiplicative s2 term causes the perturbative expansion of all

eigenvalues in increasing powers of s2. In particular, the real part

of the first non-zero eigenvalue is dominated by a s2 term in the

small noise limit.

l1 I,sð Þ~l1 I,0ð ÞzA Ið Þs2zO s4
� �

: ð18Þ

In addition, direct numerical analysis of the real part of the first

non-zero eigenvalue as a function of noise magnitude confirms the

quadratic dependence. The dependence of the real part of the first

non-zero eigenvalue of the Fokker-Planck equation on noise

magnitude for the super-threshold QIF model is quadratic (not

shown). The relation tdecay = 1/|Re(l2)| that was introduced in

the above equation can be used to explain the power-law

dependence of tdecay on s. The analysis for the QIF model is

drastically simplified because the whole parameter space (I,s) can

be mapped by scaling time and membrane potential to three 1-

dimensional subspaces (I = 21,0,+1,s) [40]. The sub and supra-

threshold regions are reduced to the I = 21,+1 subspaces, and the

case with fine-tuned balanced input is the I = 0 subspace.

When the jump in input is large relative to the pre-jump value, the

initial response overshoots the expected decaying oscillation for both

QIF and EIF models (for examples, see Figs. 8 and 9). This overshoot

occurs because the higher eigenvalues in the spectrum of Fokker-

Planck operator become relevant in the firing-rate calculation. This

overshoot can also be thought of as analogous to the instantaneous

jump observed in the LIF model, which can be recovered from the

EIF model in the limit of DR0. This explains why the overshoot is

more significant in noise jumps (see Fig. 4C, Fig. 4D, Fig. 5C, and

Fig. 5D). After a step increase in noise, the initial membrane

potential probability distribution widens. The coupling between

noise magnitude and the slope of the membrane potential

probability distribution causes a sudden increase in probability flow

towards higher potentials, pulling more neurons to the spike

generation potential. Because the spike generation mechanism in

QIF and EIF models is not instantaneous, the sudden increase in

probability flow in the finite V region appears as a delayed

overshoot. This delay corresponds to the time neurons take to reach

infinity (thus firing an action potential) from a membrane potential

near the peak of the probability distribution. Due to the V«2V

symmetry in Y(V) of the QIF model, this time is approximately

equal to half of the average inter-spike time interval.

Because the quadratic term in the Y(V) function dominates

spike generation in the QIF and EIF models, differentiating

between their firing responses can be difficult. For each model, we

adjusted D to set the Y(V) functions of the QIF and EIF models to

have the same radius of curvature at their minimum (see

Methods). As a result, the responses of both models are quite

similar. A comparison between Figure 4 and Figure 5, illustrating

QIF and EIF model responses under the influence of equal

amounts of noise, however, indicates that the EIF model dynamics

is more sensitive to noise. For example, the decaying response of

the EIF model in Figure 5 ‘‘forgets’’ the step in input much sooner

than the QIF model in Figure 4. We believe that this difference

arises because of the slower refractory period of the EIF model (the

linear vs. quadratic dependence of Y(V) on V for large negative V

and results in smaller values of Y(V)).

Conductance-based models decaying response. We also

studied the responses of the conductance-based neuron to

sudden jumps in mean and noise. The initial response to a jump

in either mean or noise begins with a sharp onset (discussed

earlier) followed by a decaying oscillation, as shown in Figure 11

(grey lines). Again, the thin black lines are fits of an

exponentially decaying sinusoidal function. Just as for the IF

models, the period of oscillation and decay rate depend on the

final firing rate and input variance after the jump in input. The

sharp onset, especially in the case of a noise jump, is a result of

having a large population of neurons very near the potential at

which the action potential is triggered. The time lag between

action potential initiation and detection is reflected in the

presence of the sharp, though not instantaneous, onset.

Discussion

We have studied the temporal dynamics of the firing rate

response of integrate-and-fire and conductance-based models to

rapid changes in mean or noise. For analysis purposes, we divided

the time course of the population response into two regimes. The

initial response, ‘‘response onset’’, indicates how fast the

population reacts to a change in its input. The asymptotic

behavior of the response as it approaches its final steady-state

value, referred to in this paper as the ‘‘decaying response’’, is

described by a characteristic time scale, tdecay. Any signals with

time scales slower than tdecay will be reflected in population firing

rate with little distortion.

The temporal firing rate response of an integrate-and-fire model

can be predicted based on the characteristics of the membrane

potential probability distribution near threshold and the coupling

between the probability flow and the input current (for a review see

[41]). In this study we focused specifically on the leaky integrate-and-

fire model, the quadratic integrate-and-fire model, and the

exponential integrate-and-fire model because of their mathematical

tractability. For the LIF model the response onset to a step in mean

current appears as an instantaneous jump in firing rate for non-zero

ts. Because this instantaneous component arises from a non-zero

value of the probability distribution at spike threshold, it is absent

when ts equals zero. For a jump in noise, the LIF response onset

always contains an instantaneous component and overshoots the

final steady-state firing rate. Within the range of firing rates that we

studied, the size of the response onset increases for larger synaptic

time constants due to increases in the values of both the probability

distribution of the membrane potential and its derivative at spike

threshold for larger values of the synaptic time constant.

The firing rates of the QIF, EIF, and conductance-based

models, on the other hand, change smoothly, even in response to

an instantaneous increase in input current. This property is due to

Figure 11. Oscillating responses of the conductance-based
model under lower noise conditions. A) Firing rate of the
conductance-based model in response to a step of input current. The
synaptic time constant, ts, was 0 ms. The variance of synaptic
component was 722.5 mV2-ms. B) Firing rate of the conductance-based
model in response to a step of noise, with ts = 0 ms. The variance of
synaptic component was 160 mV2-ms.
doi:10.1371/journal.pone.0003786.g011
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the fast decay of the membrane potential distribution at relatively

depolarized (and thus close to spike detection threshold) values.

Silberberg et al have previously shown that living neurons also

respond to a step in noise with a rapid rise in firing rate [28], similar

to the behavior of the conductance-based model shown here. For the

EIF and QIF models, Fourcaud-Trocmé and Brunel [27] have

found that, in the low noise regime, the slope of the firing rate

increases during the brief time interval immediately after a sudden

jump in mean is slower than the corresponding increase for a jump in

noise, and that the reverse is true in high noise conditions. With close

inspection, the time interval with an approximate linear rise in firing

rates can be seen in Figures 4 and 5.

All IF model responses to relatively small jumps in mean current

or noise in the asymptotic region can be fit to exponentially

decaying oscillations for small ts (i.e. ts%tm). The decay time

constant has a power law dependence on the magnitude of the

background noise. We focused on the firing response of various IF

neurons at t = 0 (response onset), and at tR‘ (decaying response).

For the parameter range we studied, QIF and EIF responses to

large steps in mean or noise cannot be fit to a simple decaying

oscillation due to the importance of more rapidly decaying modes.

For small input jumps, the fit matches quite well, although there

are overshoots near t = 0. Also, the responses tend to decay faster

and appear sharper after a jump in noise than a jump in mean.

This sharpening of the response is due to the increased level of

noise. As mentioned earlier, overshoots arise through the

contributions of higher harmonics (eigenfunctions). The expansion

coefficients of these rapidly decaying modes (an in equation 9 of

Text S1) decrease with a power law as a function of n for large n,

i.e. limnR‘ an/ n2b. This relation is due to the existence of h2/

hV2 (the curvature of a function) in the Fokker-Planck operator,

LFP, which makes higher eigenfunctions more oscillatory functions

of V. The summation of these faster modes adds up to the sharper

appearance of oscillation just after the jump.

An increase in noise reduces the decay time constant, allowing

the firing rate to more faithfully follow the input current. This

process is much like ‘‘dithering’’, a technique used to minimize

artifacts in signal transmission. We can define the error in

transmission of a jump in mean or noise as the average in a time

window T of the difference between 1 and relative final firing rate

n(t)/n(t‘). This parameter was named the ‘‘dissimilarity’’ param-

eter for the more general case of an arbitrary input [42]. At this

level, T is an arbitrary parameter but it may be thought of as the

characteristic time scale of an input. There are two major

contributing factors to the dissimilarity between the input and the

output firing rate, the ‘‘systematic error’’, arising from the oscillatory

behavior (synchronization) displayed by all IF models converging

towards their final firing rate, and the ‘‘random error’’, the random

component of the response of each neuron. Although the random

error decreases in the large N (the number of network neurons)

limit, the systematic error persists even as NR‘. Increasing the

input noise causes firing rates to converge to their final values

more quickly and decreases the systematic error, although at the

same time it also increases the random error. The competition

between these effects of s on the dissimilarity parameter indicate

that, regardless of the model under consideration, there exists a

non-zero level of noise, sopt, that optimizes signal transmission.

The optimal value of noise will depend in part on the time scale

of the encoded signal. Any input signal can be approximated by a

piece-wise constant function with jumping period of T. The

variables sopt and T are dependent since T appears in a factor of

1-exp(T/tdecay) in the dissimilarity parameter if eq. (10) approx-

imates the firing rate well at all times. The weak dependence of

sopt on T in the large noise limit can be the basis for a robust

mechanism of fast and faithful signal transmission. In contrast, in

the small noise regime T and sopt are strongly correlated and

optimizing signal transmission requires that the system adjust the

magnitude of noise.
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Text S1

Found at: doi:10.1371/journal.pone.0003786.s001 (0.10 MB
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