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Neurons’ primary function is to encode and transmit information in the
brain and body. The branching architecture of axons and dendrites must
compute, respond and make decisions while obeying the rules of the sub-
strate in which they are enmeshed. Thus, it is important to delineate and
understand the principles that govern these branching patterns. Here, we
present evidence that asymmetric branching is a key factor in understanding
the functional properties of neurons. First, we derive novel predictions
for asymmetric scaling exponents that encapsulate branching architecture
associated with crucial principles such as conduction time, power minimiz-
ation and material costs. We compare our predictions with extensive data
extracted from images to associate specific principles with specific biophysi-
cal functions and cell types. Notably, we find that asymmetric branching
models lead to predictions and empirical findings that correspond to differ-
ent weightings of the importance of maximum, minimum or total path
lengths from the soma to the synapses. These different path lengths quanti-
tatively and qualitatively affect energy, time and materials. Moreover, we
generally observe that higher degrees of asymmetric branching—potentially
arising from extrinsic environmental cues and synaptic plasticity in response
to activity—occur closer to the tips than the soma (cell body).
1. Introduction
The concept of asymmetry lies at the core of many biological processes, particu-
larly in the nervous system, from asymmetries at the molecular level to
whole-brain asymmetries. At the molecular level, asymmetry underlies the
electrical and chemical transmission that enables information processing in
the brain. Neurons connect to one another through axons and dendrites at
synapses, where inter-cellular channels allow the transmission of signalling mol-
ecules, or neurotransmitters, and the spread of electrical currents. The asymmetry
of these channels at the molecular level leads to functional asymmetry of the
synapses, which is a key property enabling sensory processes [1]. At the cellular
level, polarity and the asymmetric organization of cellular component is vital to
many processes such as cell migration, cell division and morphogenisis [2].
Asymmetry in neurons in particular has an important role in determining the
physiology of neural circuits and cognition [3].

At the whole-brain level, a key feature and an important topic in the study of
the human brain is its division into hemispheres. The asymmetry between the left
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and right specialized regions of the human brain is crucial in
our understanding of its structural organization and cognitive
functions; many cognitive and psychiatric disorders are linked
to specific alterations in this lateral hemispheric asymmetry [4].
Hemispheric asymmetries have been observed not only in
humans, but in a range of species—including mammals,
birds, reptiles and fish—suggesting that lateral asymmetry is
not unique to humans but rather an important principle in
the structure and function of the nervous system [5].

In order to begin to understand broad-level asymmetries
in the human brain, it is important to begin with the basic
building blocks of the nervous system: neurons [6]. Neurons
are said to be one of the most polarized cells in the body, with
two distinct structural and functional domains—axons and
dendrites [7]. A deeper understanding of the details of
the structure and function of these neurites and how they
respond to developmental and environmental cues to form
synaptic connections is a crucial step leading up to an under-
standing of whole-brain asymmetry, cognition, behaviour
and how alterations lead to diseased states [6].

Axons and dendrites form extensive branching trees that
allow them to connect to one another, enabling information
processing and communication in animals. Axons and den-
drites are morphologically and functionally distinct; axons
have long parent branches that can transmit information
across large distances, and dendrites have shorter branches
with more extensive branching trees. Axons use action poten-
tials to transmit information over long distances, sometimes
even crossing brain regions. The branching patterns and asym-
metries of axons are characterized by systematic changes in
branching radius and length across bifurcation branching
points and are known to play a key role in signal propagation
dynamics in neurons [8]. These axons connect to the dendrites
of other neurons, which, in contrast, generally tend to rely on
passive electronic spread and do not conduct action potentials
[9]. Axons and dendrites have different mechanisms for form-
ing new branches near their synaptic connections, allowing
them to form the circuitry that is the backbone of information
flow in the nervous system in the most efficient and frugal
way [10,11]. Axon growth is determined by the problem of
finding an appropriate dendrite to form a synaptic connection
with, whereas dendritic growth is determined by activity-
dependent processes [10]. Foundational work by Santiago
Ramón y Cajal documented the vast diversity of structural
forms in neurons through detailed drawings of the morpho-
logy of neurons across cell types. Ramón y Cajal established
the correspondence between these diverse morphological
forms and the vast functional diversity across cell types by pro-
posing functional principles that govern the structure, such as
conservation of space, time and materials [12].

Previous work has attempted to develop a quantitative
formalism to describe neurite branching through the laws of
conservation of time and materials as described by Ramón y
Cajal, using principles of optimization and a graph theoretical
algorithm to generate biologically realistic synthetic axonal and
dendritic trees [13,14]. While this framework is able to success-
fully generate biologically accurate branching trees, it is limited
in that it only considers the lengths of branching processes.
Focusing on the one-dimensional trace of these structures
only captures one element of the biological factors that affect
information processing speed, thus ignoring other important
contributors. Foundational work by Hodgkin and Rushton
describes the theoretical and empirical foundation for a
quantitative description of the dependence of conduction vel-
ocity on the calibre of neurites as well as myelination [15,16].
Our previous work incorporates volumetric interpretations
of conduction time delay and material costs using mathe-
matical principles from metabolic scaling theory in relation
to cardiovascular networks to incorporate metabolic costs.
Synthesizing these ideas leads to a unifyingmodel that can pre-
dict various morphological structural parameters for axons
and dendrites across a range of cell types [17].

We observe significant deviations from symmetric branch-
ing in neuron morphology data, as previewed in figure 1d,
suggesting that asymmetric branching is an important feature
for the structure of neurons, probably corresponding to func-
tional consequences as well. Although foundational work in
modelling cardiovascular networks assumes that the branching
junctions have perfect symmetry of the two daughter branches
[19,20], in biological resource distribution networks, there is
substantial variation around this symmetric case. Zamir first
quantified deviations around symmetric branching that occur
in vessels, showing differing levels of asymmetry across levels
of coronary arteries [21,22]. Further work by Tekin et al. built
on this to establish systematic patterns in asymmetry throughout
cardiovascular networks, adding to the analysis of asymmetry
in branching length and width to incorporate patterns of asym-
metry in branching angles [23], as well as deriving optimization
principles that underlie these patterns.

In order to understand the role of asymmetric branching in
neuronal function across cell types, here, we extend our model
of the structure–function correspondence to incorporate asym-
metric branching. Using the asymmetric branching approach
tomodel neurons,wemust consider amultitude of path lengths
from the soma to the synapses, suggesting that the whole
network—rather than one optimal path—has an important con-
tribution to neuron function and computation. Our results
allowus to formulate hypotheses about the connection between
branching and plasticity. In particular, our results suggest that it
is possible that asymmetric branching emerges due to plasticity
and responses to external factor. We hypothesize that asym-
metric branching provides these dynamic branching processes
with a robust architecture that is resilient to damage and
allows them to adapt to fluctuating environments.
2. Theory
We represent neurons as hierarchically branching information
processing networks, with successive branching levels that
decrease in radius and length according to a scaling (i.e.
power law) relationship. Figure 1 illustrates this, with a repre-
sentative image in Figure 1a and a diagram of a branching
junction in Figure 1b.

We predict how the information processing function and
surrounding substrate govern the branching structure of
neurons. We do this by optimizing a mathematical cost func-
tion subject to a set of constraints, which allows us to obtain
theoretical predictions for structural parameters that are the
best possible given the biological constraints of the physical
system [24]. Here, we choose a cost function that minimizes
conduction time delay and energy consumption (represented
by power loss) that is subject to computational, biological and
physical constraints.

C ¼ aPþ ð1� aÞT þ
X
i

lifiðrk, lk, k, N, n, eÞ: ð2:1Þ
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Figure 1. (a) An image of a mouse cerebellar Purkinje neuron and its dendritic branching structure. This image was obtained using confocal microscopy and Lucifer
yellow fluorescent dye. We have cropped this image available on CellImageLibrary.Org, distributed by Maryann Martone, Diana Price and Andrea Thor [18]. (b) A
diagram of a branching junction as part of a hierarchical branching network with successive branching levels, illustrating asymmetric branching junctions. (c) Defi-
nitions of asymmetric scale factors, β1 and β2, and average and difference scale factors, �b and Δβ. (d ) A quantification of the branching asymmetry present across
all data analysed, as measured by the difference scale factor, Δβ, where the most symmetric values lie at a value of 0.
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Equation (2.1) is a general form of this equation, where T
is conduction time delay and P is power loss due to dissipa-
tion based on the assumption that these neuron processes are
like wires through which a current is flowing, subject to
electrical ohmic resistance. The parameter α can be toggled
between 0 and 1 to minimize either power or time alone.
For this study, we focus on binary values of α, though
future work might consider intermediate values. We elabor-
ate on this in the Discussion section. The remaining terms
in this function are constraint functions, representing biologi-
cal quantities such as material costs that are held constant
during the optimization. Each term in the cost function
depends on the radius and length of the branch at each
branching generation k, where 0 is the branching generation
at the parent branch connected directly with the soma, and
N is the last branching generation at the tips. The constraint
functions fi depend on the radius and length, rk and lk, the
branching ratio n (where n = 2 for a bifurcating function),
and a parameter describing myelination, e, where e ¼ 0 for
unmyelinated fibres and e ¼ 1

2 for myelinated fibres. We
chose this parameter to vary this way because of previous
foundational experimental and theoretical work that shows
the conduction velocity is proportional to the square root of
the diameter of a neuron fibre for unmyelinated processes
and directly proportional to the diameter for myelinated
fibres [15,16]. Here, we focus on two main constraints: a
material constraint, which we represent as the total network
volume, and a time delay constraint, which we consider for
the specific cases that focus on power minimization.
In our previous work, we use optimization methods to
solve for theoretical predictions for scaling ratios for radius
and length of processes in successive branching generations,
β = rk+1/rk and γ = lk+1/lk [17]. However, a key assumption of
this work is that the branches are symmetric—the radius and
length of the two daughter branches at each branching junc-
tion are identical. Despite this assumption, most biological
axons and dendrites exhibit asymmetric branching [8,25].
By analysing neuron image reconstruction data from
NeuroMorpho.Org [26], we quantify the pervasiveness of
asymmetric branching across different cell types, as shown
in Figure 1d.

In Figure 1b, we show an example of asymmetric branch-
ing. Here, we have two unequal daughter branches at the
bifurcation point, so there are two separate scaling ratios
for radius and length, βk,1 = rk+1,1/rk and βk,2 = rk+1,2/rk
(shown in Figure 1c), and γk,1 = lk+1,1/lk and γk,2 = lk+1,2/lk,
respectively. Throughout the rest of this paper, when focus-
ing on a single branching junction, we will often simplify
notation to drop the subscript k for generation and just
write βk,1 as β1 and βk,2 as β2.

We define the average scale factor as �b ¼ ðb1 þ b2Þ=2 and
the difference scale factor as Δβ = (β1 − β2)/2 (shown in Figure
1c) based on conventions in previous work [27]. If we define
β1 as the scaling ratio corresponding to the larger branch, we
can describe β1 and β2 in terms of the average and absolute
value difference scale factors as in equation (2.2).

b1 ¼ �bþ jDbj and b2 ¼ �b� jDbj: ð2:2Þ
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Thus, we can think of |Δβ| as a measure of the magni-
tude of the asymmetry, or the amount of shift away from
the average. Figure 1d shows a distribution of Δβ in combined
data for a range of cell types and species, preserving the sign
as well as the magnitude to show variance around the
symmetric case in both directions. We later break this data
down into specific cell and process types in Figure 4.

Using an existing mathematical framework for asymmetric
branching networks in the cardiovascular system [27], we
extend our previous model [17] and are able to relax the
assumption of symmetric branching. Using the scaling ratios
in our expressions for power, time and network volume along
with the values for the radius and length at the tips, we
derive whole network properties. When compared with our
previous work, we needed to develop much more clever math-
ematical methods and do much more extensive derivations
than for the symmetric theory. A big advance in overcoming
these challenges is that we solve these equations recursively.
That is, we assume we know the resistance or time delay at
the terminal end of the network, and we then use the scaling
ratios to build backwards towards the cell body by successively
calculating each previous level based on the one below it until
the entire rest of the network is reconstructed [27].

First, we define power, one of the functions to be
minimized in the optimization, in terms of the asymmetric
scale factors,

P ¼ RN,TOT

XN
k¼0

YN�1

j¼k

b2
j,1

g j,1
þ b2

j,2

g j,2

 !0
@

1
A ð2:3Þ

Here, RN,TOT is the total resistance for all of the terminal
branches at the ends of the network. By recursion—using
the scaling ratios β and γ—we find the resistance at all
other branching levels in the network, and then sum over
these resistance at each network level k to obtain the resist-
ance of the whole network. More specifically, the scaling
ratios are used to find the resistance at the remaining N− 1
levels, starting from level N, by taking the correct combi-
nation of products according to index j. The resistance at
each generation is then summed over all N levels of the net-
work, as shown in the sum with index k. Note that we can
also formulate this in terms of the difference and absolute
value difference scale factors, where b j,1 ¼ �bþ jDbj and
b j,2 ¼ �b� jDbj. More explicit descriptions of the functions
in this form can be found in the electronic supplementary
material, appendix.

The other function to be minimized in the optimization is
the conduction time delay. This term is more complicated
with asymmetric branching, as there are multiple possible
paths that a signal might take through the network. Previous
work on plant networks deals with deviations from sym-
metry using a combination of terms relating to the mean
and maximum path lengths [28]. Thus, we consider different
cases of time delay: average time, total time, maximum time
and minimum time.

We define total time delay as follows in equation (2.4):

TTOT ¼ TN,TOT

XN
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g j,1

b
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�10
@

1
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As before, TN,TOT is the time delay at the tips, and we use
recursion—based on the scaling ratios β and γ—to find the
values at all the other levels of the network and then sum over
all the levels in the network to obtain the time delay for the
entire network. As a reminder, the parameter e represents mye-
lination, and it can be toggled between 0 and 1/2 formyelinated
versus unmyelinated processes, respectively. The average time
delay is similar, though the total time at each generation is
divided by the number of branches, 2k, at that generation,

�T ¼ TN,TOT

XN
k¼0

1
2k

YN�1
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Finally, we define the time delay for the maximum and
minimum path length. If we choose rk+1,1 to be the larger
daughter radius (Figure 1b), then we can define the maxi-
mum path length,

TMAX ¼ TN,TOT

XN
k¼0

YN�1

j¼k

b
1=2þe
j,1

g j,1

 !0
@

1
A: ð2:6Þ

Similarly, we can define the minimum path length,

TMIN ¼ TN,TOT

XN
k¼0

YN�1

j¼k

b
1=2þe
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 !0
@

1
A: ð2:7Þ

Next, we define the network volume or material cost—one
of the constraint functions to be held fixed in the optimization,

V ¼ VN,TOT

XN
k¼0

YN�1

j¼k

b2
j,1
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0
@
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In this study, we will minimize the cost function in
equation (2.1) under different limits to arrive at a suite of
relationships between the two scaling ratios, β1 and β2,
based on a scaling exponent P that dictates a generalized
conservation equation,

1 ¼ bP
1 þ bP

2 : ð2:9Þ

Although the distribution of scaling exponents yields infor-
mation about broad network behaviour, we first focus on how
asymmetry changeswith the distance from the soma. If we find
that the asymmetry is localized to specific parts of the cell, this
could be due to differences in the functional underpinnings
that drive structures in different regions of the cell or due to
other extrinsic factors such as connecting neurons or due to
environmental cues. In order to analyse the data in terms of dis-
tance from the soma, we can use an establishedmeasure called
leaf number that has been used to study scaling in dendritic
branching [29]. The leaf number is defined as the number of
tips that are distal to each branch. The leaf number at the tips
will be equal to 0, and the leaf number will be greatest near
the soma. Figure 2 illustrates leaf numbering. For each pair of
radius scaling ratios in the data, we have a corresponding
leaf number of the parent branch of the junction. We can
define asymmetry level in terms of the difference between β1
and β2, or the difference scale factor in equation (2.2). Distri-
butions of this difference scale factor for different cell types
are shown in Figure 4. Looking at the relationship between
leaf number and this measure of asymmetry will allow us
to determine where the most asymmetry occurs in terms of
distance from the soma, as illustrated in Figure 5.
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Figure 2. Branching network with leaf number, where L is the leaf number
at each junction. At the tips, L = 2, because there are two distal tips at each
junction. L increases for the branching junctions closer to the soma.
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Note that there is an analogous formulation for the differ-
ence scale factor for length, Δγ = (γ1− γ2)/2. In our analysis,
we fix the length-scale factor, Δγ = (γ1− γ2)2, to always be posi-
tive. This enforces the following sign convention on the
difference scale factor for radius. Consequently, when Δβ > 0,
one child branch will be both wider and longer than the
other child branch. When Δβ < 0, one child branch will be
wider and shorter than the other child branch. These two scen-
arios correspond to positive and negative asymmetric branching
and provide a visual way to interpret our results. Here, we
focus on branch width rather than length, meaning our results
are meaningful in terms of the magnitude but not the direction
of asymmetry. For the length scaling to be correctly interpreted,
we need to use an alternative [17,30–32] labelling scheme for
branching networks, such as Horton–Strahler labelling. We
expand upon this in the Discussion section.
3. Methods
We use the method of undetermined Lagrange multipliers to opti-
mize cost functions with varying constraints [33]. When we
perform this optimization, we arrive at equations that relate the
two radius scaling ratios to each other raised to some scaling expo-
nent (as in equation (2.9)) and corresponding to a generalized
conservation rule. We minimize the function by differentiating
with respect to each scaling ratio and setting the result equal to
zero to solve for the multiplier. Using the fact that the multiplier
is constant at each generation k, we set λk = λk+1 to solve for the
resultant equation. More details on each of these calculations can
be found in the electronic supplementary material, appendix.

To test the theoretical predictions and model, we compared
the results with data from NeuroMorpho.Org—an online data-
base with digital reconstructions from a wide range of species
[26]. These reconstructions are obtained by manually tracing
neuron image stacks using computational methods, some
manual and some automatic, obtained using microscopic and
staining techniques for in vitro neurons and slicing at regular
intervals. This database provides three-dimensional reconstruc-
tion data that are organized in text files that specify a pixel
identification (ID) label for each point, the x, y, z spatial coordi-
nates, the radius of the fibre at each point, and a parent pixel
ID that refers to the adjacent pixel previously labelled. The scal-
ing ratios for radius and length can be obtained by organizing
this data in terms of branches. This is accomplished by finding
the pixels at which the difference between the child pixel ID and
the parent pixel ID is greater than 2, which can be defined as
branching points. Based on the branching points, a branch ID
and parent branch ID can be assigned to each of the pixels. The
radius can be extracted from each of the branches by taking each
of the radius values in each branch and averaging them. The
length of each branch can be extracted by summing up the Eucli-
dean distances between each of the points in the branch. Once
the radius and length of each of the branches is found, the scaling
ratios are computed by dividing the daughter radius by the corre-
sponding value for the parent branch.We can identify the branches
that have the same parent to find the two daughters. To extract the
scaling exponent P as defined in equation (2.9), we use the fsolve
function in the python library SciPy to numerically solve for the
roots of the equation 1� ðbP

1 þ bP
2 Þ ¼ 0.

We look at neuron reconstructions from both axons and
dendrites for diverse cell types, brain regions and species. Due to
the small size of axons and the limited resolution of images, the
data available on NeuroMorpho.Org are limited in scope. The
axon reconstruction data, a total of 15 reconstructions, were
taken from the following species: fruit flies [34], dragonflies [35],
crabs [36], chickens [37] and rats [38]. The neurons were taken
from a range of brain regions: the midbrain, the hippocampus,
the antennal lobe, the optic lobe and the ventral nerve cord.

The Purkinje cells, a total of 12 reconstructions, are from mice
[39–42], rats [42–44] and guinea pigs Cavia porcellus [45]. The
motoneurons, a total of 18 reconstructions, are from zebrafish
[46,47], turtles [48], mice [49], rats [50], rabbits [51] and cats [52].

To study peripheral nervous system (PNS) neurons, we
sampled from reconstruction data that was labelled by region
on NeuroMorpho.Org. These data were taken from fruit flies
[53–55] and mice [56–59] and includes dendritic arborizations,
sensory neurons, somatic neurons and touch receptors, encom-
passing a total of 15 reconstructions.

The scaling ratio data were filtered to remove all daughter
pairs where the scaling ratio corresponding to either daughter
is equal to 1.0; these values probably occur due to the resolution
limit of the image where the radius of both the daughter and the
parent branches are equal to the pixel size. Since these values
contribute artefacts to the distributions extracted from the data,
we remove them from the final dataset.
4. Results
Here, we present our results and compare our theoretical
predictions with empirical data.
4.1. Theory results
From the general cost function as described in equation (2.1), we
derive a suite of predictions for scaling relationships. Through
this suite ofmathematical relationships,we canuse optimization
to derive powers and corresponding scaling ratios associated
with each neuronal function and mechanism. Table 1 and
Figure 3 summarize the results of these optimizations. More
details on the calculations are in the electronic supplementary
material, appendix.

Note that previous work has found similar power laws
for branching in neurons, such as Wilfred Rall’s 3/2 power
law [60]. Rall found that this power law holds for motoneur-
ons but not for other cell types. Here, we show that much
of the variation around this 3/2 power law can be predicted
and understood by varying the relative importance and
weighting of time versus energy along with the associated
biological and physical constraints.



Table 1. Theoretical predictions for scaling exponents for different functions and comparisons with the median values in the data. The first column is the
function that is minimized, either P or T, as obtained by varying α in equation (2.1). The second column represents a constraint function or a quantity that is
held fixed in the optimization. The third column is the result of the minimization using the method of undetermined Lagrange multipliers, and the fourth
column is the scaling exponent inferred from these results, which we can compare with the median in the data, including a 95% confidence interval shown in
the sixth column.

minimize constraint result exponent corresponding cell/process type data median (95% CI)

P V b2
1 þ b2

2 ¼ 1 2 Purkinje cell dendrites 2.14 (2.03–2.27)

Tavg,unmyel V b
5=2
1 þ b

5=2
2 ¼ 1 5/2 PNS neuron dendrites 2.98 (2.76–3.16)

Tmax,unmyel V b
5=2
1 ¼ 1 5/2 PNS neuron dendrites 2.98 (2.76–3.16)

Tmin,unmyel V b
5=2
2 ¼ 1 5/2 PNS neuron dendrites 2.98 (2.76–3.16)

Tavg,myel V b3
1 þ b3

2 ¼ 1 3 axons 2.96 (2.66–3.23)

Tmax,myel V b3
1 ¼ 1 3 axons 2.96 (2.66–3.23)

Tmin,myel V b3
2 ¼ 1 3 axons 2.96 (2.66–3.23)

P Ttot,unmyel b
3=4
1 þ b

3=4
2 ¼ 1 3/4 asymmetric motoneuron dendrites 0.90 (0.82–1.08)

P Tmax,unmyel b
3=2
1 ¼ 1 3/2 motoneuron dendrites 1.39 (1.35–1.42)

P Tmin,unmyel b
3=2
2 ¼ 1 3/2 motoneuron dendrites 1.39 (1.35–1.42)
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4.2. Data results
Here, we compare the theoretical predictions with empirical
results, including histograms showing distributions of scaling
exponents and the relationship between asymmetry and net-
work level, or distance from the soma. The scaling exponent
data were restricted to values above 0. As in the neuroscience
literature [29], we compared the median values in the data
with the theoretical predictions. The coloured dotted lines
show the theoretical predictions for each comparison with
the median as well as the relative peaks in the data. The
legends show the function to which each theoretical predic-
tion corresponds. Here, we define P as the function
minimizing power with fixed volume and P* as the function
minimizing power with fixed time delay, which can be either
the average or maximum/minimum time delay. The function
T minimizes conduction time delay with fixed volume, and
we consider both the unmyelinated (e ¼ 0) and myelinated
(e ¼ 1

2) cases.
4.2.1. Asymmetry distributions across branching generations
Figure 4 shows the distributions of asymmetry in the branching
junctions of each of the neurite types,where degree of asymme-
try is represented as the difference scale factor, Δβ. The value of
μ is the mean of the data, and σ is the s.d. For all of the neurite
types, there is a normal distribution of asymmetry factors, with
a peak at the symmetric case, where Δβ = 0. Purkinje cells show
the least asymmetry, as σ is the smallest, which is consistent
with expectations based on the visual symmetries in their
branching architecture.

Figure 5 shows plots relating the degree of asymmetry to
the leaf number, where the smaller leaf numbers are the tips
closest to the synapses, as illustrated in Figure 2. Here, we
focus on the magnitude of the difference scale rather than the
direction of asymmetry, defined by the absolute value of the
difference scale factor Δβ, as defined previously. We observe
that the most asymmetric branching junctions (those that
occur above the asymmetry line) occur at lower leaf numbers,
meaning they are closer to the synapses in the branching net-
work for the neuron. We classify the data outside the 2 s.d.
line as asymmetric and within the asymmetric line as sym-
metric. We confirm our findings by performing a logistic
regression test with symmetry as a response variable and leaf
number as a predictor. We find a significant association
between leaf number and asymmetry (p < 2 × 10−16) for all
four cell/process types, confirming our previous observations.

4.2.2. Overall network power distributions
Figure 6 shows thedistributions of scaling exponents solved from
the data. These show general network-wide trends in branching,
and the corresponding solid black lines are the medians in the
data. The medians in the Purkinje cell and motoneuron scaling
exponent data correspond to the theoretical predictions for the
functions minimizing power, and the medians in the axons and
PNS neuron scaling exponent data correspond to the theoretical
predictions for the functions minimizing conduction time
delay. The motoneuron data correspond to the prediction for
the function that includes conduction time delay as a biophysical
constraint, while the Purkinje cell data correspond to the
prediction for the function that includes a material constraint.
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4.2.3. Symmetric versus asymmetric motoneuron branching
junctions

Although the general network-wide trends are useful, we also
split the data based ondegree of asymmetry.We split themoto-
neuron data into symmetric and asymmetric branches. For the
data classified as symmetric, the difference scale factors fall
within 2 s.d. from 0, while for the asymmetric data, the differ-
ence scale factors are more than 2 s.d. away from 0. Analysing
the data separately in Figure 7, we find different median
powers that correspond to theoretical predictions from differ-
ent functions. The scaling exponent data for asymmetric
branching junctions in motoneurons correspond to the
theoretical prediction for the function that interprets the con-
duction time delay as a sum of all possible paths, while the
data for the symmetric branching junctions correspond to
the prediction for the function that considers one optimal path.
5. Discussion
Asymmetric branching in neurons gives rise to multiple poss-
ible paths from the soma to the synapses and vice versa.
Although a symmetric branching network model can provide
insights into the connections between branching patterns and
functional principles of neurons, it obscures key features of
these networks, such as large differences in path lengths
from soma to tips and how those contribute to the functionality
of neurons. The introduction of asymmetric branching to our
model gives rise to multiple possible interpretations of the con-
duction time delay term, one that focuses on optimizing the
path associated with either the maximum or minimum con-
duction time delay in the network, and another that takes
into consideration the sum of all paths in the network. Notably,
the mathematical results of the optimization of the models are
the same for the symmetric model [17] and the maximum or
minimum interpretation of conduction time delay in the asym-
metric case. However, the total path interpretation of the
conduction time delay leads to different results for the function
minimizing power with a time delay constraint. Moreover, for
motoneurons, we find that splitting the scaling exponent data
into the most symmetric and the most asymmetric data leads
to different median values that correspond to theoretical
predictions for different interpretations of this constraint,
which also correspond to different regions in the cell relative
to the soma and synapses. The median for asymmetric junc-
tions corresponds to the theoretical prediction with the total
path length interpretation of the conduction time delay con-
straint, suggesting that the whole network—rather than just
one optimal path—is important for asymmetric branching
junctions. The symmetric model obscures this distinction,
and thus our comparisons of asymmetric and symmetric
branching junctions lead us to look more closely at the position



3.0
(a) (b)

(c) (d)

Purkinje cells

asymmetry line

2.5

2.0

��
β�

, d
eg

re
e 

of
 a

sy
m

m
et

ry

1.5

1.0

0.5

0

0 200 400 600 800 1000 1200 1400 1600

3.0

asymmetry line

2.5

2.0

1.5

1.0

0.5

0

0 200 400 600 800 1000 1200

3.0

asymmetry line

2.5

2.0

��
β�

, d
eg

re
e 

of
 a

sy
m

m
et

ry

1.5

1.0

0.5

0

0 200 400 600 800
leaf number

1000 1200 1400

3.0

asymmetry line

2.5

2.0

1.5

1.0

0.5

0

0 100 200 300 400 500
leaf number

600 700

motoneurons

peripheral nervous system cells axons

Figure 5. Plots of degree of asymmetry versus leaf number for (a) Purkinje cells, (b) motoneurons, (c) peripheral nervous system cells and (d ) axons. The horizontal
dashed line is what we define as a cut-off for the asymmetry line—a difference scale factor Δβ more than 2 s.d. away from the mean (at which symmetry
occurs)—that shows the division between the symmetric and asymmetric branching categories.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

20:20230265

8

of branching junctions relative to the soma or the synapses,
and whether there is any connection between this position
and asymmetry.

We define this position using the key measure of leaf
number. The distributions of leaf numbers shown in Figure 5
reflect what we know about differences in the structure of
axons and dendrites. The maximum leaf number for axons is
around 600, while it is around 1200–1600 for dendrites, thus
reflecting the longer single parent branch for axons versus the
more extensive branching and the greater number of branching
generations for dendrites. Moreover, there are significant differ-
ences observed among different types of dendritic structures.
Themaximum leaf numbers formotoneurons andPNSneurons
are around 1200, while it is around 1600 for Purkinje cells. We
hypothesize that these differences might be due to differences
in extracellular environments; motoneurons and PNS neurons
are both part of the sensorimotor circuits that are localized in
distal parts of the body, while Purkinje cells are located in the
cerebellumwithin the brain itself. As dendrite branch formation
is controlled by guidance cues in the environment that trigger
complex intracellular signalling cascades and lead to protru-
sions [61], the vastly disparate biological environments and
extrinsic cues probably greatly influence the extent of dendritic
branching in these different cell types.

Although our analysis of the correspondences across cell
types focuses onmedian values in the data, as seen in other bio-
logical networks [23], we find much more variance at the local
level. In neuroscience, theoretical and experimental work has
shown that motoneurons grow in a roughly self-referential
manner and their basic structure and branching points are
predetermined. However, environmental cues and activity-
dependent behaviour cause local changes in morphology
[61,62]. Here, we are able to observe that the median scaling
exponents differ significantly for symmetric and asymmetric
branching inmotoneurons, corresponding to different theoreti-
cal predictions. It is possible that the variance in symmetry of
branching junctions might account for the wide distribution
of scaling exponents for each cell type. The distributions of
scaling exponents have a wide variance and multiple local
peaks. Although we map the median scaling exponent to the
closest theoretical prediction in this analysis, it is possible
that there are multiple functional principles at play at different
localized regions of the cells, corresponding to the peaks
observed across the distribution. Moreover, we observe a corre-
spondence between asymmetry of branching junctions and
their relative position in a neurite, whether they are closer to
the tips or to the soma. At the tips, where the leaf number is
closest to zero, the branching junctions can be either extremely
symmetric or extremely asymmetric.

Importantly, the most asymmetric branching junctions
always occur at the tips. By contrast, the branching junctions
that occur closest to the soma all fall under the symmetric
type, where the Δβ value is within 2 s.d. from the symmetric
case. Thus, we observe two different symmetry/asymmetry
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regimes, with a shift from the most symmetric branching at
the soma to an increased number of asymmetric branching
junctions at the tips.
Because the tips of axons and dendrites are closest to the
synapses, this suggests that the asymmetry might have to do
with the forming of actual connections at the tips. This is
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consistent with existing knowledge that the branching of axons
and dendrites is determined by synapses; new branches are
formed preferentially near the synapses [10]. Moreover, pre-
vious studies have shown that there are activity-dependent
changes in morphology of motoneurons [63]. Studies of other
biological networks have also shown that they are robust to
damage and changes in the environment, developing corre-
sponding changes in morphology to adapt to environments
[64]. It is possible that the difference in power observed at
the tip is due to changes as a result of activity-dependent
behaviour such as synaptic formation and pruning. This is
consistent with empirically informed mathematical models
that describe the elongation of neurites as an extension of the
cytoskeleton, where the most active building blocks (micro-
tubules) are located at the distal portions and tips, making
them more susceptible to developmental variation based on
environmental cues [65].

Moreover, the fact that for asymmetric branching junc-
tions, the interpretation of conduction time delay as a sum
of all possible paths rather than one optimal path supports
the notion that asymmetric branching is connected to plas-
ticity in the network. These asymmetric branching patterns
are determined by the sum of paths across the whole net-
work, suggesting that the whole network is optimized in a
way that is robust to damage in single paths and such that
the whole network is optimized to make as many synaptic
connections with other neurites as possible.

In this analysis, we have chosen to focus on radius
scaling ratios and asymmetries that occur in the width of
daughter branches. Although length asymmetrymight provide
additional insights into the properties of these networks, the
branch length measurements are not accurately characterized,
as also previously reported for vascular scaling [30] as well
as other types of plant and animal networks [31,32]. Recent
work suggests Horton–Strahler labelling—where the first level
begins at the tips, and higher levels are determined when two
branches of the same level combine—may yield better estimates
of branch length scaling, as it has been previously applied
to neurons and other biological networks [66–68]. In future
work, we plan to investigate how this alternative labelling
scheme for branch lengths compares with theoretical predic-
tions derived using our framework. If we are able to obtain
meaningful results from the analysis of length scaling ratios,
the direction of asymmetry and the distinction between the
two types—positive and negative asymmetry—will be an impor-
tant consideration in addition to the magnitude which we
focused on here. Notably, it is also possible that incorporating
the length scaling ratios and length branching asymmetry into
our analysis might change the association we found between
degree of asymmetry and leaf number.

Moreover, we aim to formulate a new constraint that relates
to the way in which neurons fill space. So far, our optimization
considers only intrinsic properties of neurons without expli-
citly accounting for: (i) interactions among neurons, (ii)
electrical activity that might strengthen or prune synapses,
and (iii) environmental chemoattractants and chemorepellants
that might shape the growth and development of neurons, par-
ticularly in relation to their length. Adding this interaction term
might lead us to understand length scaling ratios more. We
might also incorporate the findings of other studies that have
looked at branching in terms of connectivity [69] and other fac-
tors such as mitochondrial transport and distribution [70] into
our model.
In addition, here, we have looked at optimization prob-
lems minimizing power and time individually. However, it
is possible that there might be intermediate values, and
different cell types might have different relative importance
of time and power in determining structure. A possible
avenue for future work is using numerical methods to
extend the number of functional principles we consider and
to better estimate parameters, such as the relative importance
of different functional principles and degree of myelination.
This might provide a more biologically realistic estimate for
scaling ratios, as it is likely that neuron cell structures are
designed to optimize not only conduction speed or energy
efficiency, but a relative combination of both.

Future studies have the potential to illuminate the func-
tion of asymmetry in neuron plasticity by analysing in vivo
neuron image data taken across stages of development.
Long term, a greater understanding of the details of the
asymmetries observed within and among neurites and
single cells may help pave the way to understanding lateral
asymmetries in the brain and the structure–function corre-
spondence. Moreover, we are limited by the amount of data
available at the resolution required for this method of analy-
sis involving the calibre of neuron processes. Our results
make a case for the promise of this type of analysis, and
with more data collected at higher resolutions and across
more cell types and species, we expect to further elucidate
and generalize these results.

In conclusion, we find that our asymmetric branching
model for axons and dendrites brings to light the importance
of considering all possible paths from the synapse to the
soma rather than one optimal path. While this distinction
does not affect the predictions for functions that minimize
conduction time delay, they alter the predictions for the func-
tions that minimize power and fix conduction time delay as a
constraint. For motoneurons, the different interpretations of
conduction time delay correspond to the median in the scal-
ing exponent data of different types of branching junctions.
The symmetric branching junctions agree with the predic-
tions focusing on one optimal path, while the asymmetric
branching junctions agree with the predictions that take all
paths into consideration.

Moreover, the asymmetric branching junctions are loca-
lized closer to the synapses, suggesting that there is some
connection between asymmetric branching and environmental
factors, plasticity and whole network robustness. This distinc-
tion between predictions for asymmetric and symmetric
branching is observed only when time delay is a constraint
(as opposed to a function to be minimized) and for moto-
neuron dendrites (but not axons). This is consistent with the
notion that dendrites, in contrast to axons, are shorter with
more extensive branching that allows them to connect to mul-
tiple other neurons [9]. Our results support the notion that the
whole network with its various paths—rather than simply
optimal paths—are important factors governing the structures
of these dendrites. Dendrite branches must reach multiple
potential synaptic targets, and these synaptic connections are
constantly evolving, forming and pruning. This asymmetric
branching framework is necessary in order to study and
reason about these features of the network.
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