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Two-dimensional free-space beam steering with 

an optical phased array on silicon-on-insulator 

J. K. Doylend
*
, M. J. R. Heck, J. T. Bovington, J. D. Peters, L. A. Coldren, and  

J. E. Bowers 

Dept. of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106, USA 
*doylend@ece.ucsb.edu 

Abstract: We demonstrate a 16-channel, independently tuned waveguide 

surface grating optical phased array in silicon for two dimensional beam 

steering with a total field of view of 20° x 14°, beam width of 0.6° x 1.6°, 

and full-window background peak suppression of 10 dB. 

©2011 Optical Society of America 

OCIS codes: (130.3120) Integrated optics devices; (250.5300) Photonic integrated circuits. 
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1. Introduction 

Optical phased arrays enable free-space beam steering without moving parts, making them 

desirable for robust point-to-point free-space communications, Light Detection and Ranging 

(LIDAR), and optical memory. Chip-scale optical phased arrays have been demonstrated 

using tunable gain elements [1] and phase tuning [2], and phased arrays composed of 

waveguide surface gratings in silicon-on-insulator (SOI) have also been demonstrated with a 

steering range of 2.3° x 14° using a single thermo-optic phase tuner together with wavelength 

tuning [3,4]. While the approach demonstrated by Acoleyen et al. is both CMOS-compatible 

and elegant in its simplicity, there is no means of actively compensating for accumulated 

phase errors between individual channels due to on-chip propagation and thermal cross-talk, 

thus resulting in undesirable off-axis peaks and limited tuning range. Phase tuning of the 
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individual channels provides a solution to these problems; such an approach has been used to 

demonstrate 1-dimensional beam steering in a silicon slab [5]. Also of note is an alternate 

technique in which an entirely passive device was used to raster a beam across the far field 

using wavelength alone [6], thus avoiding phase tuning elements altogether at the cost of a 

relatively wide beam in the far field (4°) and no means of arbitrarily shaping the wavefront. 

The use of SOI is significant because it is compatible with standard CMOS fabrication 

techniques; furthermore, with the advent of tunable optical sources [7, 8] and amplifiers [9, 

10] using hybrid integration of IIII-V gain materials with silicon rib waveguides, the prospect 

of a self-contained steerable free-space optical source becomes possible. 

In this work we demonstrate a 16-channel optical phased array in SOI in which the phase 

of each channel is individually controlled to achieve free-space beam steering in two 

dimensions across a 20° x 14° field of view, far field beam width of 0.6° x 1.6°, and 10 dB 

background peak suppression. The phase tuning was accomplished thermo-optically using 

resistive heaters in the vicinity of the waveguides. Phase errors and background peaks were 

minimized by an optimization algorithm using feedback from an infrared camera which 

recorded the far field image in real time; a lookup table of solved phase settings was then used 

to steer the beam arbitrarily without the need for real-time feedback. In this manner thermal 

crosstalk and phase errors were circumvented so as to achieve arbitrary two dimensional beam 

pointing within the field of view. 

2. Design and fabrication 

Rib waveguides of 1 µm width were patterned via photolithography in SOI and dry-etched to 

a depth of 280 ± 20 nm. The SOI has 500 nm top silicon thickness and 1 µm buried oxide. 

Multi-mode interferometer (MMI) 1x2 couplers were used to split the beam into 16 channels. 

Surface gratings were defined via e-beam lithography and etched to a depth of 75 nm. 

Resistive heaters of 470 µm length for thermo-optic tuning were fabricated by e-beam 

deposition and lift-off of a 72 nm / 75 nm nickel-chrome-gold metal stack directly on the 

silicon surface. The heaters were offset 6.5 µm from the rib waveguides so as to avoid excess 

loss due to metal optical absorption at the expense of thermal tuning efficiency. The 

waveguides in this phase-tuning region of the device were spaced 100 µm apart, of which 79 

µm was etched entirely to the buried oxide to enhance thermal isolation. The grating array had 

50% duty cycle, 3.5 µm lateral waveguide spacing, 200 µm length, and full width (i.e. the 

grating grooves completely spanned each waveguide). The propagation length from the input 

to the grating was approximately 4 mm. A schematic picture of the device is shown in Fig. 1. 

 

Fig. 1. a) Schematic diagram of the 16-channel grating array with independently tuned 

channels for 2-dimensional beam steering. A multi-mode interferometer (MMI) tree split the 

input into 16 channels which were then independently phase tuned and coupled to a grating 

array. Beam steering in the longitudinal axis θ was accomplished via wavelength tuning while 

beam steering in the lateral axis ψ was accomplished by phase tuning. b) Schematic diagrams 

illustrating the respective orientations of the longitudinal axis θ and the lateral axis ψ. 
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The small grating etch depth relative to the overall rib waveguide dimensions was chosen 

to reduce the grating strength, thus increasing the propagation length over which the guided 

mode was outcoupled in order to maintain a narrow beam in the far field along the 

longitudinal axis. Solitary waveguide surface grating test structures with a variety of duty 

cycles and grating widths (i.e. width of the grating groove within the rib waveguide) were 

fabricated alongside the 16-channel device in order to evaluate the feasibility of incorporating 

chirp/apodization into future grating array devices. Scanning electron microscope images of 

the grating array, a grating test structure, and an optical microscope image of the phase tuners 

are shown in Fig. 2. 

 

Fig. 2. Scanning electron microscope images of (a) the grating array cross-section, (b) a single 

surface waveguide grating test structure, and (c) optical microscope images of the thermo-optic 

phase tuners. 

3. Passive grating characterization 

The far field output was characterized using a high-numerical-aperture aspheric lens (NA = 

0.83, effective focal length = 15 mm) to image the far field into the Fourier plane and two 

additional lenses (effective focal lengths 180 mm and 60 mm) to magnify and focus the beam 

onto an infrared camera (320x256 pixels, 25 µm pitch); this system has far field resolution of 

0.3° at normal outcoupling. The maximum longitudinal outcoupling angle measurable by the 

system (without tilting the lens tube relative to the chip surface) is 39°; the maximum 

measurable angle in the lateral direction is 33°. A polarization controller was used to align the 

polarization along the TE axis and a polarizer mounted in front of the camera was used to 

filter out any remaining TM polarized scattering; all measurements described in this work are 

for TE polarized input light. The 180 mm focal length lens was attached via a rotating mount 

such that near field images of the grating could be collected and then the lens could be 

reinserted for far field images. This characterization technique follows the approach presented 

by Thomas et al. [11] and enabled the system to be focused on the grating array (using the 

near field image for guidance) prior to collecting far field data. This system will henceforth be 

referred to as the “Fourier imaging system”. 
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Fig. 3. a) Beam profiler measurement system, and b) Fourier imaging system with removable 

lens for near field imaging. The removable lens is shown in green together with the associated 

far field ray traces, while the non-removable lenses are shown in red with the associated near 

field ray traces. ECL = external cavity laser; DUT = device under test. 

A second characterization system consisting of a Newport 818 photodetector mounted on 

a Newport ILS PP150 motorized stage at a distance of 14.7 cm from the chip surface and 

translated across the far field was used to profile the beam and calibrate the Fourier imaging 

system. A schematic of each characterization system is shown in Fig. 3. 

Test structures consisting of individual gratings fabricated on isolated waveguides were 

characterized to assess wavelength tuning and longitudinal beam width. The longitudinal 

emission angle θ is given by Eq. (1): 

 
0

sin
effn λ

θ
Λ −

=
Λ

 (1) 

where neff is the effective index of the waveguide within the grating for λ0, Λ is the grating 

pitch, and λ0 is the free-space wavelength. 

The longitudinal optical far field emission profile of a test grating with 600 nm pitch 

measured using the beam profiler is shown in Fig. 4 together with corresponding far field 

images captured using the Fourier imaging system and a plot of the longitudinal emission 

angle as a function of wavelength both for the 16-channel grating array and a corresponding 

test structure. The simulated output was obtained from Eq. (1) using the calculated effective 

index of the waveguide within the grating. For wavelengths from 1525 nm – 1625 nm, the 

tuning efficiency was measured to be 0.14 ± 0.01 °/nm, matching the value calculated from 

RSoft BeamPROP simulations. An offset of 4° between the measured and simulated 

outcoupling was observed and attributed to the effects of trenching, non-vertical sidewalls, 

and etch depth variation. The results of the Fourier imaging measurement matched those of 

the beam profile measurement, thus experimentally validating the former. 
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Fig. 4. (a) Normalized optical output profile in the far field measured using the beam profiler; 

(b) Far field images captured using the Fourier imager for wavelengths from 1625 nm (top) to 

1525 nm (bottom); (c) Plot of the longitudinal beam angle in the far field measured for an 

individual grating (blue) and a 16-channel grating array (red) using both the Fourier imaging 

system (square markers) and beam profiler (diamond markers), with the simulated output 

calculated from the Bragg equation shown for comparison. 

The ability to chirp individual gratings or to apodize the grating array can be a valuable 

means of optimizing efficiency and beam shape; grating width and duty cycle are parameters 

which can be adjusted for this purpose. However, since the far field emission angle is affected 

not only by wavelength but also by variation in the effective index according to Eq. (1), the 

variation in output angle as a function of grating duty cycle and width (i.e. the width of the 

grating grooves relative to the rib waveguide – see Fig. 5b) can be a concern since it 

necessarily introduces a spread of outcoupling angles in the far field. Accordingly the angular 

variation of the output as a function of duty cycle and grating width was characterized using 

single-grating test structures. A plot of the angular deviation with respect to each parameter is 

shown in Fig. 5 together with SEM images of gratings with varying width and duty cycle. As 

expected, ∆θ decreased with duty cycle due to the decreasing effective index of the mode with 

a larger fraction of the rib etched away and decreased for wider etched grating trenches. Total 

variation of >2° in the outcoupling angle was observed for duty cycles ranging from 20% - 

80%, and > 1.5° variation was observed for grating widths ranging from 100 nm – 900 nm. 

Accordingly, using these parameters as a means of chirping and/or apodizing would involve a 

significant tradeoff due to concomitant increases in beam width. 

 
Fig. 5. Plot of the longitudinal angular deviation in the far field (calculated relative to the 

output for 50% duty cycle and full width (i.e. width extending across the entire array of test 

structures) measured and simulated as a function of grating width and duty cycle. Shown to the 

right are SEM images of a 50% duty cycle grating with 0.9 µm width (upper left), 400 nm 

width (lower left), 50% duty cycle full width (upper right), and 20% duty cycle full width 

(lower right). 
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For a uniform grating the longitudinal beam width in the far field is determined by the 

propagation length over which power is emitted. The scattering profile of each single-grating 

test structure was measured from near field images of the optical emission, fitted to an 

exponential decay, and used to calculate beam width (full-width half-maximum, or FWHM) 

in the far field by numerically integrating the associated Fourier transform. These calculated 

results are plotted for a selection of duty cycles and grating widths in Fig. 6 together with the 

beam width directly measured in the far field using the Fourier imaging system. Theoretical 

values calculated from the propagation loss simulated using RSoft FullWAVE are shown for 

comparison. 

 

Fig. 6. Plots as a function of grating duty cycle (a) and width (b) of the longitudinal beam 

width (FWHM) in the far field calculated from the scattered power distribution in the near field 

(blue) and measured directly from the far field image (red) at 1555 nm. 

The grating strength increased as duty cycle approached 50%, yielding a smaller effective 

grating length and thus a larger beam width in the far field. Similarly, the grating strength 

increased with grating width, reducing the effective grating length and thus spreading the 

beam in the far field. The discrepancy between FWHM calculated from the near field images 

and measured directly in the far field was attributed to mode evolution within the grating, 

resulting in a spread of output emission angles and hence a larger than expected beam width. 

It should be noted that the measured far field beam width is also limited by the angular 

measurement resolution of the system (0.2° per pixel at θ = 31°). The disparity between the 

simulated and actual beam width also suggests additional scattering mechanisms within the 

grating (e.g. sidewall roughness). 

3. Phase tuned grating array characterization 

While beam control in the longitudinal axis θ was controlled with wavelength, control in the 

lateral direction was accomplished with a phased array. For a regular emitter array, the lateral 

direction ψ of the beam is determined according to Eq. (2): 

 0sin
2 d

λ φ
ψ

π
=  (2) 

where φ is the uniform phase increment between emitters, and d is the emitter spacing. In 

practice, however, phase errors are introduced by differences in effective path length between 

channels due to wavelength bends and process variation across the chip. To correct for these 

phase errors, a resistive heater was added in the vicinity of each waveguide so as to permit 

individual thermo-optic phase tuning of each channel. 

The phase tuning efficiency of a single element was measured using a Mach-Zehnder 

interferometer (MZI) test structure with the same waveguide profile and phase tuners used in 

the 16-channel grating array. The efficiency was found to be (215 ± 15) mW/π. In order to 
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provide 430 mW per channel as required to reach a full 2π tuning range, an ILX 3916 laser 

driver array with modulation inputs driven by a National Instruments analogue output data 

acquisition card via a custom-built buffer array was used. The thermo-optic tuners were 

fabricated with a resistance of (65 ± 5) Ω such that each could be driven past 500 mW without 

exceeding the laser driver voltage limit of 7.5 V. 

Thermal crosstalk between channels was measured by recording the resistance of each 

tuning electrode in the array at steady state while a single channel was subjected to high 

thermal power. The dependence of tuner resistance on temperature was determined separately 

by fabricating identical tuners on bulk silicon and measuring their resistance and the 

temperature of the substrate while slowly heating the substrate. A plot of the relative 

temperature thus measured across the tuning array with 15 of the 16 channels each driven to 

30 mW while a single channel near the center (channel 9) was driven at higher thermal power 

is shown in Fig. 7. 

 

Fig. 7. Relative thermal gradient across the 16-channel array when 15 channels were driven at 

30 mW and a single central channel was driven at higher thermal powers. Temperatures 

(relative to the corresponding values when all channels were driven at 30 mW) were calculated 

from the change in resistance of each tuner; the relationship between resistance and 

temperature for the tuners was calibrated separately using a thermocouple to record the 

temperature of a bulk silicon substrate on which identical tuners had been fabricated. 

It is apparent from Fig. 7 that crosstalk between channels is significant, with all channels 

heated by several degrees in response to power injected on a single channel. Since individual 

channels were separated by 79 µm wide trenches etched through the top silicon to the buried 

oxide, this suggests that injected thermal power heats the whole top silicon layer above the 

buried oxide as well as affecting adjacent channels via heat transfer along the axis of the 

waveguide particularly around the beginning and end of the thermal isolation trenches. This 

problem may be alleviated in future by using a thinner buried oxide and by etching holes 

through the buried oxide and depositing metal at each end to form thermal shunts between the 

top silicon layer and the substrate. 

While phase errors might be eliminated for a given beam angle using a particular phase 

vector applied to the thermo-optic tuners for each wavelength, a different beam angle requires 

a new tuning vector determined not only by Eq. (2) but also by the thermal crosstalk. It was 

therefore impractical, within this configuration, to control the beam output using Eq. (2) to 

predict the 16-element thermal tuning vector required for a given beam angle. Instead a brute-

force hill-climber algorithm implemented in NI LabVIEW code was used to solve for the 

optimal tuning vector along each desired beam direction, with the Fourier imaging system 

providing far field feedback. The algorithm operated by setting five closely spaced drive 

currents on a given channel and comparing the far field distribution for each by parsing the 

image from the infrared camera to calculate R, where R is the ratio of the power P(ψ0,θ0) (i.e. 

power measured in the vicinity of the desired angles ψ0 and θ0) to the overall power 

∫P(ψ,θ0)dψ collected within the total field of view near longitudinal angle θ0. The algorithm 
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calculated R(i,ψ0,θ0), ∂R/∂i, and ∂2
R/∂i

2
 using a polynomial fit, evaluated a truth table to 

decide in which direction and how far to step the drive current on the given channel, and then 

proceeded to the next channel. A flowchart illustrating these steps is shown in Fig. 8. 

 

Fig. 8. Hill-climber algorithm implemented in NI LabVIEW and used to optimize the phase 

tuning of the 16-channel grating array for beam outcoupling at a given lateral angle ψ using 

feedback from the Fourier imaging system. 

Using this automated optimization routine together with real-time feedback from the 

Fourier imaging system, phase tuning solution sets with background suppression of 10 dB 

were obtained for points at 1 degree spacing in each axis across a 14° (θ axis) by 20° (ψ axis) 

field of view. The algorithm generally required less than 100 iterations of the full tuning array 

to reach a solution; the iterative speed was limited by the 60 Hz refresh rate of the infrared 

camera such that 1.3 seconds was required to evaluate and adjust the full 16-element phase 

vector at 5 points per channel. Total solution time for each point was therefore typically less 

than 2.5 minutes although certain locations within the field of view required considerably 

longer to converge. 

Representative plots of the beam profile at ψ = 0°, θ = 31° (i.e. 1555 nm) as seen without 

phase tuning and as solved by this system are shown in Fig. 9 along with theoretical profiles 

and the corresponding sections of the far field images. 

 

Fig. 9. Beam profile in ψ axis and corresponding sections of the far field image for a 

wavelength of 1555 nm (a) without phase tuning and (b) with phase tuning after applying the 

optimization algorithm. The 2° discrepancy between measured and theoretical side lobe 

location is attributed to lens Seidel aberrations. 

The theoretical profile was attained by summing the far field contributions from each 

emitter assuming an emission amplitude function corresponding to the calculated mode 

profile at the grating etch depth. The measured beam width (FWHM) along ψ was 1.6°. It 

should be noted that the location of the secondary peaks at ψ = ±26° was determined by the 

spacing between array elements while their height was determined by the width of each array 

element. For beam pointing applications where the ability to collect the output at a single 
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emission angle is required, the total field of view over which a solitary beam can be swept is 

limited by the secondary peak spacing; for the device described here, the maximum total field 

of view was ±10° in order to prevent secondary peaks from encroaching on the field of view. 

It is therefore apparent that for a given number of channels there is a tradeoff in the ψ axis 

between beam width (ideally as small as possible) and total field of view (ideally as large as 

possible) since increased spacing between adjacent gratings reduces both the beam width and 

the secondary peak spacing. 

The phase solution set obtained for the entire field of view using the algorithm/feedback 

technique described above was then used to generate a look-up table (LUT) such that the 

beam could be pointed arbitrarily without further need for real-time feedback. Profiles of the 

beam in the ψ axis for alignment at 1° increments across the field of view are shown in Fig. 

10, and 3D plots of the beam measured at the corners and center of the field of view are 

shown in Fig. 11. 

 

Fig. 10. Measured beam profiles at 1555 nm wavelength as the beam was swept across the 

field of view in the ψ axis at 1° increments. 

 

Fig. 11. Plots of the 2D beam profiles at the corners and centre of the field of view located 

using the LUT. The field of view was chosen so as to exclude the secondary peaks. 

#153199 - $15.00 USD Received 22 Aug 2011; revised 21 Sep 2011; accepted 30 Sep 2011; published 18 Oct 2011
(C) 2011 OSA 24 October 2011 / Vol. 19,  No. 22 / OPTICS EXPRESS  21603



The optical efficiency of the device was measured by using the lookup table to point the 

beam at the Newport 818 photodetector in the far field. The Newport 818 photodiode has a 3 

mm diameter aperture - corresponding to 0.8° at a distance of 147 mm and θ = 35°; the 

photodiode aperture therefore limited the portion of the beam collected in the ψ axis. 

However a comparison of the measured peak power (−41.2 dBm for fiber launch power of 

−13 dBm) with the known photodiode aperture and measured beam width of 1.6° in the ψ axis 

suggests total beam power of −38.4 dBm (beam width in the θ axis was 0.7°, and therefore 

not significantly apertured by the photodiode). On-chip waveguide propagation loss and fiber-

to-chip facet coupling loss were measured via the Fabry–Pérot transmission fringes of a 

straight waveguide test structure and found to be 3.0 ± 0.2 dB/cm and 10.1 ± 0.2 dB 

respectively using 1.7 µm spot size lensed fiber. Since on-chip propagation length prior to the 

grating array was 4 mm, the grating efficiency (defined as the quotient of total power in the 

desired far field beam and on-chip waveguide-coupled power) was calculated to be −14.1 ± 

0.2 dB. Of this, theoretical coupling to the side lobes was calculated to account for 6.4 dB and 

downward emission into the substrate was calculated to account for 5.8 dB. The former can be 

addressed in future devices by increasing the rib waveguide width in order to suppress side 

lobes; the latter may be improved by optimizing the buried oxide thickness [12]. The 

remaining 1.9 dB was therefore due to excess loss within the 16-channel MMI tree and the 

grating array. 

4. Conclusion 

A 16-channel optical phased array fabricated in SOI with independently phase-tuned channels 

has been fabricated and shown to achieve free-space beam steering across a 20° x 14° field of 

view with far-field resolution of less than 1°, and background suppression of more than 10 

dB. The effect of duty cycle and grating width on far field beam direction and size were 

characterized and shown to introduce significant alteration in regard to both. 

An algorithm using feedback from far field images of the beam was applied to the 16-

channel device to solve for phased array solutions at each beam direction in the field of view, 

and these solutions were then incorporated into a lookup table such that the beam was 

steerable in two dimensions without feedback. This approach shows promise as a means of 

achieving rapidly scanned beams in two dimensions for applications such as LIDAR, free 

space communications and optical memory. 
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